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1 Introduction

In a recent paper [1], we extended the Hamiltonian formulation of Einstein theory in the
asymptotically flat context by allowing more flexible boundary conditions that involved
logarithmic terms. This generalization led to an enlargement of the asymptotic symmetry,
from the original BMS4 algebra [2–4] to the log-BMS4 algebra, which contains, besides
the familiar angle-dependent supertranslations, angle-dependent logarithmic supertrans-
lations [5–11]. This extension was carried out at spatial infinity following the approach
developed in [12, 13].

The presence in the asymptotic symmetry algebra of logarithmic supertranslations had
a dramatic impact, in that it enabled one to completely disentangle the Poincaré subal-
gebra from the supertranslations (ordinary and logarithmic), realizing at spatial infinity
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a mechanism similar to the one described at null infinity in [14–17] (see also [18–20] in
that context).

The purpose of this note is to carry out the analogous construction in the electro-
magnetic case, where angle-dependent u(1) gauge transformations play the role of the
supertranslations [21–25]. We consistently enlarge the boundary conditions of [26] in such
a way that the asymptotic symmetries contain angle-dependent gauge transformations that
grow at spatial infinity not only logarithmically in r, but also linearly in r,

ε ∼ a(θ, ϕ)r + b(θ, ϕ) ln r + c(θ, ϕ) + o(1).

The term linear in r is included because it is associated with the subleading soft theo-
rems [27–29].

In the standard approach where ε is restricted to take the form ε ∼ c(θ, ϕ) + o(1), the
angle-dependent u(1) asymptotic transformations of order one transform in a non-trivial
representation of the Poincaré algebra [26, 30]. As in the case of gravity, we show that
the enlargement of the symmetry enables one to disentangle the internal asymptotic angle-
dependent u(1) symmetries from the Poincaré algebra: the asymptotic symmetry algebra
is the direct sum of the two. In retrospect, this result is perhaps not too surprising as it
is in the line of the Coleman-Mandula theorem [31] (even though the hypotheses of this
theorem are not all fulfilled). The fact that the internal u(1) improper gauge symmetries
commute with the Lorentz transformations leads to an angular momentum that is free from
ambiguities under asymptotic angle-dependent u(1) transformations.

The change of generators that brings the asymptotic symmetry algebra to a direct sum
form involves redefinitions of the Poincaré generators by the addition of field-dependent
gauge transformations corresponding to a specific non linear redefinitions of the charges.

Our paper is organized as follows. In section 2, we give the form of the new, more
flexible, boundary conditions and verify the finiteness of the action. We then describe the
asymptotic gauge symmetries in section 3. Poincaré invariance is established in section 4
and further discussed in appendix A. The algebra of the asymptotic symmetries and the
redefinitions that bring it to a direct sum form are successively analysed in sections 5 and 6.
In the concluding section 7, we outline some potential future developments.

2 Action and asymptotic conditions

2.1 Extended Hamiltonian action

In the formulation where the conjugate momentum to A0 is kept, the phase space of the
Maxwell theory is spanned by the components (Ai, A0) of the vector potential and their
conjugate momenta (πi, π0). These are subject to the “primary constraint”

π0 ≈ 0 , (2.1)

and Gauss’s law, which arises as a “secondary constraint”,

G = −∂iπi ≈ 0 . (2.2)
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It is customary to eliminate π0 to obtain a reduced theory where the canonical variables
are (Ai, πi), the temporal component A0 appearing then as a Lagrange multiplier for the
(“secondary”) constraint G ≈ 0. We shall refrain from doing so here because A0 does carry
degrees of freedom at infinity when one imposes boundary conditions that are invariant
under an angle-dependent u(1) symmetry [12, 26]. It is in that case useful to keep its
conjugate momentum in the Hamiltonian description.

The extended Hamiltonian action of Maxwell theory is given by

IH [Ai, πi, A0, π
0;ψ, λ] =

∫
dt

∫
d3x

[
πiȦi + π0Ȧ0 − (H+ ε̃G + µ̃π0)− ψG−λπ0

]
+ B, (2.3)

H = 1
2√gπ

iπi +
√
g

4 F ijFij +A0G − ∂iπ0Ai , (2.4)

where ψ and λ are the respective Lagrange multipliers for the constraints (2.2) and (2.1)
and where the Hamiltonian contains constraint terms besides the usual energy density
1
2(E2 + B2), which we have included following [12, 26] for later convenience. We have set

ε̃ = ln r
r
ε̃
(1)
log + 1

r
ε̃(1) + o

(
r−1

)
, (2.5)

µ̃ = ln r
r2 µ̃

(1)
log + 1

r2 µ̃
(1) + o

(
r−2

)
, (2.6)

with

µ̃
(1)
log − µ̃

(1) = DAA
A + 3Ar , (2.7)

ε̃
(1)
log − ε̃

(1) = Ψ . (2.8)

Here, the functions of the angles AA, Ar and Ψ are the O(1) coefficients appearing in the
asymptotic expansion of the vector potential Aµ, see (2.15)–(2.18) below. The functions
µ̃

(1)
log, µ̃(1), ε̃(1)

log and ε̃(1) are not completely determined by the equations (2.7) and (2.8) but
only the combinations µ̃(1)

log − µ̃(1) and ε̃(1)
log − ε̃(1) are physically relevant (see below). With

the inclusion of the constraint terms, the Hamiltonian density H+ ε̃G+ µ̃π0 coincides with
the density of the Poincaré generator of time translations discussed below. Finally, the
term B is the integral over time of a surface term which we will write explicitly once we
have given the boundary conditions.

The constraint function G generates the gauge transformation

δAi = ∂iε , (2.9)

while the other constraint function π0 generates the gauge transformations

δA0 = µ . (2.10)

These are proper in the sense of [32] if ε and µ decrease sufficiently fast at infinity, i.e.

ε = o
(
r−1

)
, µ = o

(
r−2

)
, (2.11)
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as we shall explicitly show in section 3 below. We will assume that these fall-off conditions
are fulfilled until we discuss improper gauge transformations, which can only be meaning-
fully done after the boundary conditions have been made precise, a task which we have not
achieved yet.

Since the Lagrange multipliers parametrize the gauge transformation performed in the
course of the evolution (on top of the evolution generated by the Hamiltonian), we take
for them the same asymptotic decay

ψ = o
(
r−1

)
, λ = o

(
r−2

)
. (2.12)

Again, more general asymptotic behaviours can be considered once one has full control of
the improper gauge symmetries.

The action is invariant under the gauge transformations (2.9) and (2.10) provided one
transforms at the same time the Lagrange multipliers as

δψ = ε̇− µ− δε̃ , δλ = µ̇−4ε− δµ̃ (2.13)

(δε̃ and δµ̃ preserve the asymptotic decays of ψ and λ because δµ̃(1)
log = δµ̃(1) = δε̃

(1)
log =

δε̃(1) = 0). The action (2.3) is called the “extended action” because the gauge parameters
ε, µ of the constraints are taken to be independent [33, 34]. This is the form that exhibits
most explicitly the symmetry. The formulation that emerges from the Maxwell Lagrangian
is characterized by ψ = −ε̃ (a condition that is permissible once one allows for more general
asymptotic behaviours of the Lagrange multipliers), which relates ε and µ through µ = ε̇

so that δAµ = ∂µε. The two formulations are physically equivalent because ε̇ and ε are
independent at any given time [33, 34].

2.2 Asymptotic conditions

The gauge transformations (2.9), (2.10) and (2.11) are abelian so that their finite form
coincides with their infinitesimal ones. The boundary conditions on the canonical variables
are taken to differ from those of [12, 26] by gauge transformation terms ∆Ai = ∂iΘ,
∆A0 = Ξ with finite gauge parameter (Θ, Ξ) that contain contributions that are of order
O(r) and O(ln r) with respect to the leading orders present in [12, 26], i.e.

Θ = rΦlin + ln rΦlog + Φ + ln r
r

Φ(1)
log + o

( ln r
r

)
,

Ξ = Ψlin + ln r
r

Ψlog + 1
r

Ψ + ln r
r2 Ψ(1)

log + o

( ln r
r2

)
.

The terms Φlin, Φlog, Φ(1)
log, Ψlin, Ψ(1)

log and Ψlog are absent in [12, 26].
These gauge transformations only affect the components of the vector potential since

the momenta are gauge invariant. In polar coordinates,

ds2 = −dt2 + dr2 + gABdx
AdxB , gAB = r2gAB , (2.14)
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where gAB (A,B = 1, 2) is the round metric of the unit sphere, the asymptotic conditions
read explicitly

Ar = Φlin + 1
r
Ar + ln r

r2 A
log(2)
r + 1

r2A
(2)
r + o

(
r−2

)
, (2.15)

AA = r∂AΦlin + ln r ∂AΦlog +AA + ln r
r
A

log(2)
A + 1

r
A

(2)
A + o

(
r−2

)
, (2.16)

Alog(2)
r = −Φ(1)

log, A
log(2)
A = ∂A

(
Φ(1)

log

)
⇔ ∂AA

log(2)
r +A

log(2)
A = 0 , (2.17)

A0 = Ψlin + ln r
r

Ψlog + 1
r

Ψ + ln r
r2 Ψ(1)

log + 1
r2 Ψ(1) + o

(
r−2

)
, (2.18)

for the vector potential and

πr = πr + 1
r
πr(2) + 1

r2π
r
(3) +O

(
r−3

)
, (2.19)

πA = 1
r
πA + 1

r2π
A
(2) + 1

r3π
A
(3) +O

(
r−4

)
, (2.20)

π0 = 1
r2π

(2)
Ψ + o

(
r−2

)
, (2.21)

for the momenta, which carry density weight one. Here, the coefficients in the expansion
of r and ln r depend only on the angles and are subject to the following parity conditions,

Ar = odd , πr = even , AA = (A)even + ∂AΦ (Φ = even) , πA = odd , (2.22)
Φlin = odd , Φlog = odd , Ψlin = even , Ψlog = even . (2.23)

The parity conditions (2.22) reduce to those of [12, 26]. We will mention as we pro-
ceed where the parity conditions (2.23) on the new terms are needed. The parity condi-
tions (2.23) are simply enforced by allowing only Θ and Ξ in ∆Ai = ∂iΘ, ∆A0 = Ξ that
fulfill these parity conditions. Note that if Φ had an odd part, it could be absorbed in
(A)even so that we can assume that Φ is even.

We have kept the terms of order O(r−2) in Ar and O(r−1) in AA because they now
contribute to the charges. Similarly, πr(2) becomes physically relevant. Note that the
intermediate terms Alog(2)

r and A
log(2)
A , absent in [12, 26], have their entire origin in the

gauge transformation with gauge parameter ε = ln r
r Φ(1)

log, hence (2.17).
Once the boundary conditions have been specified, one can write down explicitly the

boundary terms in the action. The constructive procedure that we have followed for doing
so is explained in appendix A. It leads to

B =
∫
dt

∮
S∞

2

d2xS −
∫
dt

∮
S∞

2

d2xB , (2.24)

where
∮
d2xS is a surface integral which is linear in the time derivatives of the canonical

variables,

S =
√
g
(
−ArΨ̇ + ΨlogΦ̇−A(2)

r Ψ̇lin + Ψ(1)Φ̇lin
)
, Ψ(1) ≡ Ψ(1)

log −Ψ(1) , (2.25)

while B does not depend on the time derivatives of the canonical variables and is given by

B = ΠrΨlin +
√
g ∂AArD

AΦlin − 2
√
g ArΦlin , (2.26)
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with
Πr = πr +

√
gΨlog . (2.27)

It should be noted that the zero mode of Φ, which drops from the potential Ai, is present
in the action through the boundary kinetic term. Its conjugate is non trivial even in the
absence of charged fields, and given by the zero mode of Ψlog.

The boundary term
∮
d2xS completes the boundary term introduced in [26] in a way

that integrability of the boost charges, which was the very reason for introducing it there,
is maintained with our more general boundary conditions. Because S involves the time
derivatives of the fields, it contributes to the symplectic form, which reads explicitly

Ω =
∫
d3x

(
dV π

idVAi + dV π
0dVA0

)
−
∮
d2x
√
g
[
dVArdV Ψ− dV ΨlogdV Φ + dVA

(2)
r dV Ψlin − dV Ψ(1)

dV Φlin
]
. (2.28)

This symplectic form is non-degenerate in the sense that if X is a phase space vector field
such that ιXΩ = 0, then X = 0.

The symplectic form pairs Ar with Ψ, as in [26], and also introduces a surface conju-
gate Ψlog to Φ, which had none with the earlier boundary conditions since there was no
logarithmic term ln r/r in A0. The new variables Ψlin and Φlin, which would be absent if
we had limited the extension of the gauge transformations of [26] to gauge transformations
blowing only logarithmically at infinity (with no linear term), are naturally paired with
the subleading terms in the expansion of the components of the potential. This canonical
structure will be reflected in the Poisson brackets of the improper gauge charges. In fact,
the brackets of these charges conversely restrict the symplectic structure to the above form,
which provides an independent argument (besides integrability of the boost charges) for
extending the S of [26] as in (2.25).

As a side final comment to this subsection, we note that the pair (A0, π
0) was denoted

(Ψ, πΨ) in [12, 26], and that the Lagrange multiplier ψ was denoted A0. This was due
to the peculiar constructive way they were arrived at by studying the dynamics at the
boundary. We revert here to more familiar notations.

2.3 Asymptotic form of the constraints

We shall also require that the constraints decay one order faster than the one prescribed
in [26]. This yields (2.21) for π0 as well as G = O(r−3), which implies, since

G = 1
r
∂Aπ

A + 1
r2

(
∂Aπ

A
(2) − π

r
(2)

)
+ 1
r3

(
∂Aπ

A
(3) − 2πr(3)

)
+O

(
r−4

)
, (2.29)

the conditions
∂Aπ

A = 0 and ∂Aπ
A
(2) − π

r
(2) = 0 . (2.30)

These conditions are part of the asymptotic conditions on the canonical variables.
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2.4 Finiteness of the kinetic term

It is clear that the only potentially divergent term in the action is the bulk kinetic term∫
dtd3xπiȦi. We check in this subsection that it is finite. One finds by direct substitution
∫
dt dr d2xπiȦi =

∫
dt dr d2x

[
πrΦ̇lin + πA∂AΦ̇lin + ln r

r
πA∂AΦ̇log (2.31)

+ 1
r

(
πAȦA + πrȦr + πr(2)Φ̇lin + πA(2)∂AΦ̇lin

)
+O

(
r−2

) ]
. (2.32)

i) For the linear divergence, we note immediately that the first term is zero because
Φlin is odd, while the second vanishes by virtue of the condition ∂AπA = 0.

ii) The term proportional to r−1 ln r vanishes by virtue of ∂AπA = 0.

iii) The terms proportional to the logarithmic divergence reduce to (after considering
parity conditions) ∮

d2x
[
−∂AπAΦ̇−

(
∂Aπ

A
(2) − π

r
(2)

)
Φ̇lin

]
, (2.33)

which vanish by virtue of the conditions in (2.30).

The bulk kinetic term and hence the action are finite. The parity conditions on Φlin
and on the asymptotic fields appearing already in [12, 26], as well as the fast asymptotic
decay of the constraint functions, are key for this result.

2.5 Equations of motion

The equations of motion that follow from the action can be analyzed as follows.

• Variation with respect to the Lagrange multipliers yields the constraints G ≈ 0 and
π0 ≈ 0.

• Variation with respect to the field A0 yields, besides the bulk equation of motion
π̇0 +G = 0 which is a consequence of the constraints, the following conditions on the
asymptotic fields,

Ȧr = Φ̇lin = 0 , (2.34)

Ȧ(2)
r = 1√

g

(
πr +

√
gΨlog

)
, (2.35)

Φ̇ = Ψlin . (2.36)

• Variation with respect to π0 yields the bulk equation of motion

Ȧ0 − λ− ∂iAi − µ̃ = 0 (2.37)
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(without surface term contribution because π0 decreases sufficiently fast at infinity).
This equation implies

Ψ̇lin = 0 , (2.38)
Ψ̇log = 0 , (2.39)

Ψ̇ = 4Φlin + 2Φlin , (2.40)

Ψ̇
(1)

= 4Φlog + 2Ar , (2.41)

to the leading orders to which λ = o
(
r−2) does not contribute. The next orders can

then be used to express the subleading terms in Ȧ0 to the Lagrange multiplier λ.

• Variation of the action with respect to the conjugate momenta πi yields the equation

Ȧi − ∂i (A0 + ψ + ε̃)− πi√
g

= 0 , (2.42)

or equivalently
πi = √g (∂tAi − ∂i (A0 + ψ + ε̃)) . (2.43)

The asymptotic form of the field equations yields the following conditions

Φ̇lin = 0 , (2.44)

Ȧr = 0 , (2.45)
Ȧlog(2)
r + Ψlog = 0 , (2.46)

πr =
√
g
(
Ȧ(2)
r −Ψlog

)
, (2.47)

πr(2) =
√
g
(
Ȧ(3)
r + 2Ψ(1) −Ψ(1)

log + 2ψ(2) − ψ(2)
log + 2ε̃(2) − ε̃(2)

log

)
, (2.48)

which are consistent with the equations (2.34) and (2.35) obtained previously.

• Variation of the action with respect to the gauge field Ai yields for the bulk term (up
to a total time derivative):

δIbulk =
∫
dt
[
−
∫
d3x

(
π̇i +√g∇jF ij − ∂iπ0

)
δAi −

∮
d2x
√
g4

(
Ar − Φlog

)
δΦlin

]
,

(2.49)
and for the boundary term

δIboundary =−
∫
dt

∮
d2x
√
g
{[

Ψ̇−
(
4Φlin + 2Φlin

)]
δAr + Ψ̇logδΦ (2.50)

+ Ψ̇linδA
(2)
r +

[
Ψ̇

(1)
−
(
4Ar + 2Ar

)]
δΦlin

}
. (2.51)

This implies the equations

π̇i = −√g∇jF ij + ∂iπ0 , (2.52)

Ψ̇
(1)

= −4
(
Ar − Φlog

)
+4Ar + 2Ar = 4Φlog + 2Ar , (2.53)

Ψ̇ = 4Φlin + 2Φlin , (2.54)
Ψ̇log = Ψ̇lin = 0 , (2.55)
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which are consistent with the dynamical equations for the asymptotic components of
A0 derived above.
The time derivatives of the first three leading orders of the conjugate momentum are
then given by

π̇
r = 0 , (2.56)

π̇r(2) =
√
g4

(
Ar − Φlog

)
, (2.57)

π̇r(3) =
√
g
[
4A(2)

r +DA

(
A(2)A −Alog(2)A

)]
. (2.58)

Note that while the leading “monopole” term πr is conserved, the subsequent terms
are not. This is of course well known, but will not prevent us from defining a conserved
quantity involving the subleading term πr(2) and generating gauge transformations
that blow up at infinity, as achieved in [35] along different lines.

This concludes the discussion of the equations of motion.

3 Improper gauge symmetries

If one allows the parameters ε, µ in (2.9) and (2.10) to decrease slowlier at infinity, in a
way compatible with the asymptotic form of the gauge potential,

ε = rεlin + ln rεlog + ε+ ln r
r
ε
(1)
log + 1

r
ε(1) + o

(
r−1

)
, (3.1)

µ = µlin + ln r
r
µlog + 1

r
µ+ ln r

r2 µ
(1)
log + 1

r2µ
(1) + o

(
r−2

)
, (3.2)

with
εlin = odd , εlog = odd , ε = even , µlin = even , µlog = even , (3.3)

one finds that the transformations are still symmetries of the action but now of the “im-
proper gauge type” [32]. The bulk part of the corresponding generator is again given by the
combination

∫
d3x

(
µπ0 + εG

)
of the constraints, but there are in addition non-vanishing

surface terms at infinity.
The complete generator QX of the transformation generated by the phase space vector

field X is obtained through the general formula

ιXΩ = −dVQX , (3.4)

which receives in our case non trivial contributions both from the bulk part of the symplectic
form and from its surface part S [26]. (If Ω reduced to its canonical bulk part, the rule (3.4)
would reproduce the integrability condition of [36].)

Applying this general rule to the transformations (2.9) and (2.10), which imply the
following transformations of the asymptotic fields

δεΦlin = εlin , δεΦlog = εlog , δεΦ = ε , δεAr = εlog , δεA
(2)
r = ε(1) , ε(1) ≡ ε(1)

log − ε
(1) ,

(3.5)

δµΨlin = µlin , δµΨlog = µlog , δµΨ = µ , δµΨ(1) = µ(1) , µ(1) ≡ µ(1)
log − µ

(1) , (3.6)
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one finds that the canonical generator of the improper gauge symmetries reads

Gµ,ε =
∫
d3x

(
µπ0 + εG

)
+Qεlin +Qεlog +Qε +Qε(1) +Qµlin +Qµlog +Qµ +Qµ(1) , (3.7)

with

Qεlin =
∮
d2xεlin

[
πr(2) +

√
g
(
Ψ(1)

log −Ψ(1)
)]

, (3.8)

Qεlog =
∮
d2x
√
g εlogΨ , (3.9)

Qε =
∮
d2xε

(
πr +

√
gΨlog

)
, (3.10)

Qε(1) =
∮
d2x
√
g ε(1)Ψlin , (3.11)

and

Qµlin = −
∮
d2x
√
g µlinA

(2)
r , (3.12)

Qµlog = −
∮
d2x
√
g µlog Φ , (3.13)

Qµ = −
∮
d2x
√
g µAr , (3.14)

Qµ(1) = −
∮
d2x
√
g µ(1)Φlin . (3.15)

In the charge Qε(1) , only the even part of ε(1) contributes since the field Ψlin is even.
The odd part of ε(1) drops out and defines a proper gauge symmetry. To emphasize this
point, one sometimes writes Qε(1)

even
. Therefore, among the charges generating the improper

gauge symmetries parametrized by ε, there are two charges characterized by parameters
that are even functions on the sphere (Qε and Qε(1)

even
), and two charges characterized by

odd parameters (Qεlin and Qεlog).
Similarly, among the charges generating the improper gauge symmetries parametrized

by µ, there are two charges characterized by parameters that are odd functions on the
sphere (Qµodd

and Qµ(1)
odd

), and two charges characterized by even parameters (Qµlin and

Qµlog). This is because Ar and Φlin are odd funtions on the sphere, so that µeven and µ(1)
even

drop out from the charges and define proper gauge symmetries.
Furthermore, if ε(1)

log and ε(1) are such that ε(1) = 0, the corresponding gauge transfor-
mation is proper since it has zero charge. A similar property holds for µ(1)

log and µ(1).
There is thus a total of eight non trivial improper gauge charges, each characterized

by a definite parity under the sphere antipodal map. The brackets among these charges
are easily computed. They are found to form a centrally extended Abelian algebra with
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the following non-zero central charges

{Gεlin , Gµ(1)} = −{Gµ(1) , Gεlin} =
∮
d2x
√
g εlin µ

(1) , (3.16)

{Gεlog , Gµ} = −{Gµ,Gεlog} =
∮
d2x
√
g εlog µ , (3.17)

{Gε,Gµlog} = −{Gµlog , Gε} =
∮
d2x
√
g ε µlog , (3.18)

{Gε(1) , Gµlin} = −{Gµlin , Gε(1)} =
∮
d2x
√
g ε(1) µlin . (3.19)

In the paper [26] where the boundary conditions are more restrictive, only the im-
proper gauge charges Gε and Gµ are present. These commute, {Gε,Gµ} = 0 so that
the central terms are absent. The improper gauge charges associated with logarithmic
gauge transformations (Gεlog and Gµlog) are conjugate to these charges. The improper
gauge transformations linear in r bring in two additional new charges (Gεlin and Gµlin)
as expected, but at the same time they turn on the subleading gauge transformations,
which become non-trivial and also bring in two additional non trivial charges. These form
canonically conjugate pairs. It is because of the central terms present in the extended
improper gauge algebra that one can make the improper gauge generators commute with
the Poincaré generators in the asymptotic symmetry algebra, as in the gravity case [1], and
as we shall show explicitly below.

Among the improper gauge charges, Gε and Gµ combine to form the angle-dependent
u(1) charge seen at null infinity [26]. The charge Gεlin involves the 1/r3 component of the
electric field with an odd gauge parameter and is related to the electric dipole moment for
the ` = 1 spherical harmonic. Together with its companion Gµlin , we expect that it should
be connected to the charges that underlie the subleading soft photon theorems [27–29].

Note that the integrands of the charges Qεlin and Qεlog are not conserved in time since
it follows from the equations of motion that

∂t
(
πr(2) +

√
gΨ(1)) = 4Ar + 2Ar , ∂tΨ = 4Φlin + 2Φlin . (3.20)

This expresses the fact that Qεlin and Qεlog do not commute with the generator H of time
translations and hence are conserved only at the price of an explicit time dependence.
Indeed the Poisson brackets with the Poincaré generators (prior to decoupling) imply, as
we shall see,

{Gεlin , H} = Gµ , µ = −(4 εlin + 2εlin) (3.21)

and
{Gεlog , H} = Gµ(1) , µ(1) = −(4 εlog + 2εlog) . (3.22)

Similarly,
{Gµlin , H} = Gε , ε = −µlin (3.23)

and
{Gµlog , H} = Gε(1) , ε(1) = −µlog , (3.24)

in agreement with (2.35) and (2.36).
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The equations of motion have been derived in subsection 2.5 assuming that the La-
grange multipliers ψ and λ decrease sufficiently fast at infinity so that they define proper
gauge symmetries. The surface term in the action was adjusted under this assumption.
In fact, if we had not known that ψ = o(r−1) and λ = o(r−2), we would have derived
from the extremization of the action (2.3) (with that boundary term) that consistency of
the equations of motion implies that ψ and λ should define proper gauge transformations
(ψlin = 0 = ψlog = ψ = ψ

(1) and λlin = 0 = λlog = λ = λ
(1)).

A more general behaviour of the Lagrange multipliers ψ and λ can be accomodated.
One can allow them to define improper gauge symmetries provided one includes in the
action the corresponding surface integral. This would be in particular needed if one wanted
to impose the Lorenz gauge Ȧ0 = ∂iAi which requires from (2.37) that λ should be equal
to −µ̃.

4 Poincaré invariance

4.1 Poincaré transformations

The analysis of Poincaré invariance proceeds along the lines of [26], adapted to the less
stringent boundary conditions considered in this paper. We shall therefore give only the
final results and check their consistency. A more constructive approach, which was actually
the approach we followed to arrive at the results presented below, is given in appendix A.

The 10-dimensional Poincaré symmetry is generated by the vector fields conveniently
parametrized in spherical coordinates as

ξ = br + T , (4.1)
ξr = W , (4.2)

ξA = Y A + 1
r
D
A
W , (4.3)

where

DADBb+ gABb = 0 , DADBW + gABW = 0 , DAYB +DBYA = 0 , ∂AT = 0 . (4.4)

The boost function b(xA) and the spatial translation function W (xA) each belong to the
three-dimensional space of the spin-1 representation of the rotation group. The vector field
Y A generates infinitesimal rotations. It is a Killing vector on the sphere and depends also
on three parameters. The last parameter of the Poincaré group is given by T , which is
constant.

The Poincaré transformations of the fields are given by

δξ,ξiAi = ξπi√
g

+ ∂i (ξA0) + LξAi + δε(T,W )Ai , (4.5)

δξ,ξiπ
i = √g∇m

(
Fmiξ

)
+ ξ∂iπ0 + Lξπi , (4.6)

δξ,ξiA0 = ∇i
(
ξAi

)
+ LξA0 + δµ(b,T,W )A0 , (4.7)

δξ,ξiπ
0 = ξ∂iπ

i + Lξπ0 , (4.8)

– 12 –



J
H
E
P
0
3
(
2
0
2
3
)
0
7
3

These transformations take the same form as in [26], except for the additional correction
terms δε(T,W )Ai and δµ(b,T,W )A0 that must be added in order to preserve integrability of the
Poincaré charges (see below). These transformations are improper gauge symmetries with
parameters

ε(T,W ) = ln r
r
ε
(1)
log(T,W ) + 1

r
ε
(1)
(T,W ) + o

(
r−1

)
, (4.9)

and

µ(b,T,W ) = ln r
r2 µ

(1)
log(b,T,W ) + 1

r2µ
(1)
(b,T,W ) + o

(
r−2

)
, (4.10)

with

ε
(1)
(T,W ) = TA0 +D

A
WAA −WAr , (4.11)

and

µ
(1)
(b,T,W ) = 4bA(2)

r +T
(
DAA

A + 3Ar
)
−
(
Wπr− ∂AWπA

)
−
[
−∂AWD

AΨ +W
(
Ψlog + Ψ

)]
.

(4.12)
Asymptotically expanding (4.5)–(4.8) leads to the following transformation laws:

• For the leading orders:

δξ,ξiΦlin = LY Φlin + bΨlin , (4.13)
δξ,ξiΦlog = LY Φlog + bΨlog , (4.14)

δξ,ξiΨlin = LY Ψlin +DA

(
bD

AΦlin
)

+ 3bΦlin , (4.15)

δξ,ξiΨlog = LY Ψlog +DA

(
bD

AΦlog
)
, (4.16)

• For the subleading orders:

δξ,ξiAr = LYAr + b√
g
πr + bΨlog , (4.17)

δξ,ξiAA = LYAA + b√
g
πA + ∂A

(
WΦlin +D

B
W∂BΦlin + bΨ + TΨlin

)
, (4.18)

δξ,ξiπ
r = LY πr +

√
g DA

[
bD

A (
Ar − Φlog

)]
, (4.19)

δξ,ξiπ
A = LY πA −

√
g gABD

C(
bFBC

)
, (4.20)

δξ,ξiΨ = LY Ψ +D
A
W∂AΨlin +DA

(
bA

A)+ 2bAr + T
(
4Φlin + 2Φlin

)
, (4.21)

which implies that

δξ,ξiΦ = LY Φ +WΦlin +D
B
W∂BΦlin + bΨodd + TΨlin . (4.22)
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• For the sub-subleading orders:

δξ,ξiA
(2)
r = LYA(2)

r +D
A
W
(
∂AAr −AA

)
−WAr

+ b√
g
πr(2) + b

(
Ψlog(1) −Ψ(1)

)
+ T√

g
πr + T

(
Ψlog −Ψ

)
+ ε

(1)
(T,W ) , (4.23)

δξ,ξiA
(2)
A = LYA(2)

A +DBDAWA
B +D

B
WDBAA + ∂AWAr

+W∂AΦlog + b√
g
π(2)A + T√

g
πA , (4.24)

δξ,ξiπ
r
(2) = LY πr(2) +DA

(
D
A
Wπr

)
− ∂AWπA

+
√
g DA

[
b
(
D
A
A(2)
r +A(2)A −Alog(2)A)]+

√
g DA

[
TD

A (
Ar − Φlog

) )]
,

(4.25)

δξ,ξiπ
A
(2) = LY πA(2) +DB

(
D
B
WπA

)
+DBD

A
WπB +D

A
Wπr −WπA

−
√
g gABD

C(
bF

(2)
BC

)
+
√
g gABb

(
∂BA

(2)
r +A

(2)
B

)
−
√
g gABD

C(
TFBC

)
+
√
g TD

A
Ar , (4.26)

δξ,ξiΨ
(1)
log = LY Ψ(1)

log + ∂AWD
AΨlog −WΨlog

+DA

(
bAlog(2)A

)
+ bAlog(2)

r + T4Φlog + µ
(1)
log(b,T,W ) , (4.27)

δξ,ξiΨ(1) = LY Ψ(1) + ∂AWD
AΨ +W

(
Ψlog −Ψ

)
+DA

(
bA(2)A

)
+ b
(
A(2)
r +Alog(2)

r

)
+ T

(
DAA

A +Ar
)

+ µ
(1)
(b,T,W ) , (4.28)

δξ,ξiΦ
(1)
log = LY Φ(1)

log − ∂AWD
AΦlog + bΨ(1) + TΨlog − ε

(1)
log(T,W ) . (4.29)

4.2 Poincaré generators

The justification of the above definitions of the Poincaré transformations of the fields and
of the symplectic structure is that the latter is invariant under the former,

LXξ,ξiΩ = 0 (4.30)

with Xξ,ξi the phase space vector field defined by (4.5)–(4.8). The verification of (4.30) is
somewhat cumbersome and involves the following key ingredients:

• The divergent terms in LXξ,ξiΩ are zero thanks to the parity conditions and the
equation (2.17). In particular, the parity conditions (2.23) on the new terms in the
asymptotic expansion of the vector potential are needed.

• The surface term in the symplectic form has been adjusted so that the remaining
terms in LXξ,ξiΩ, which are finite surface terms (with no bulk contribution), exactly
cancel, taking into account the contributions coming from the correcting gauge trans-
formation terms δε(T,W )Ai and δµ(b,T,W )A0. As in [26], it is actually the requirement
that LXξ,ξiΩ should vanish for boosts (ξ = br, ξi = 0) that fixes the form of the
surface terms to be added to the standard canonical bulk part of Ω.
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Since LXξ,ξiΩ = dV ιXξ,ξiΩ, one can now compute the Poincaré generators through the
formula

ιXξ,ξiΩ = −dV Pξ,ξi . (4.31)

One gets

Pξ,ξi =
∫
d3x

(
ξH+ ξiHi + ε(T,W )G + µ(b,T,W )π

0
)

+ Bξ,ξi , (4.32)

where
H =

√
g

4 F ijFij + 1
2√gπ

iπi − ∂iπ0Ai − ∂iπiA0 , (4.33)

(as above) and

Hi = Fijπ
j − ∂jπjAi + π0∂iA0 , (4.34)

Bξ,ξi =
∮
d2x

{
b
(
ΠrΨ + Πr

(2)Ψlin +
√
g∂AArA

A +
√
g ∂AA

(2)
r D

AΦlin −
√
g A(2)

r Φlin
)

+ Y A
(
Πr
AA + Πr

(2)∂AΦlin +
√
gΨ∂AAr +

√
gΨlin∂AA

(2)
r

)
+ T

(
ΠrΨlin +

√
g ∂AArD

AΦlin − 2
√
g ArΦlin

)
+W

[(
4Πr + 3Πr

)
Φlin +D

AΠr
∂AΦlin +

√
g Ar4Ψlin +

√
g ∂AArD

AΨlin
]}
,

(4.35)

with

Πr = πr +
√
gΨlog , (4.36)

Πr
(2) = πr(2) +

√
g
(
Ψ(1)

log −Ψ(1)
)
. (4.37)

5 Asymptotic symmetry algebra

A direct computation shows that the algebra of the asymptotic symmetries as defined above
is the semi-direct sum of the Poincaré algebra with the above Abelian set of improper gauge
symmetries, endowed with non-trivial central charges. Indeed, the Poisson brackets of the
generators are given by

{
Pξ1,ξi1

, Pξ2,ξi2

}
= Pξ̂,ξ̂i , (5.1){

Gµ,ε, Pξ,ξi
}

= Gµ̂,ε̂ , (5.2){
Gµ1,ε1 , Gµ2,ε2

}
= C{µ1,ε1;µ2,ε2} , (5.3)

where

ξ̂ = ξi1∂iξ2 − ξi2∂iξ1 , (5.4)
ξ̂i = ξj1∂jξ

i
2 − ξ

j
2∂jξ

i
1 + gij (ξ1∂jξ2 − ξ2∂jξ1) , (5.5)
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and

µ̂lin = −Y A∂Aµlin − 3bεlin −DA

(
bD

A
εlin
)
, (5.6)

ε̂lin = −Y A∂Aεlin − bµlin , (5.7)

µ̂log = −Y A∂Aµlog −DA

(
bD

A
εlog

)
, (5.8)

ε̂log = −Y A∂Aεlog − bµlog , (5.9)

µ̂ = −Y A∂Aµ−DA

(
bD

A
ε
)
− T

(
4 εlin + 2εlin

)
− ∂AWD

A
µlin , (5.10)

ε̂ = −Y A∂Aε− bµ− Tµlin −Wεlin − ∂AWD
A
εlin , (5.11)

µ̂
(1) = −Y A∂Aµ

(1) + 3bε(1) +DA

(
bD

A
ε(1)
)
− T

(
4 εlog + 2εlog

)
+ 3Wµlog − ∂AWD

A
µlog ,

(5.12)

ε̂
(1) = −Y A∂Aε

(1) − bµ(1) − Tµlog − ∂A
(
D
A
Wεlog

)
. (5.13)

in addition to (3.16)–(3.19).

6 Algebraic decoupling of the u(1) charges

The presence of invertible central terms in the algebra of the improper gauge symmetries
can be used to redefine the Poincaré generators in such a way that the new form of the
algebra has a direct sum structure: the improper gauge charges commute with the new
Poincaré generators. The redefinition is non-linear and is obtained by just applying the
general formulas derived in [1].

It is in our case explicitly achieved by adding to the Poincaré transformations the
following field-dependent improper gauge transformations

µ
(b,Y )
lin = −LY Ψlin − 3bΦlin −DA

(
bD

AΦlin
)
, (6.1)

ε
(b,Y )
lin = −LY Φlin − bΨlin , (6.2)

µ
(b,Y )
log = − 1√

g
LY Πr −DA

(
bD

A
Ar
)
, (6.3)

ε
(b,Y )
log = −LYAr −

b√
g

Πr
, (6.4)

µ(b,Y,T,W ) = −LY Ψ−DA(bAA)− T
(
4Φlin + 2Φlin

)
− ∂AWD

AΨlin , (6.5)

ε(b,Y,T,W ) = −LY Φ− bΨ− TΨlin −WΦlin − ∂AWD
AΦlin , (6.6)

µ
(1)
(b,Y,T,W ) = − 1√

g
LY Πr

(2) − 3bA(2)
r −DA

(
bD

A
A(2)
r

)
− T

(
4Ar + 2Ar

)
+ 1√

g

(
−3WΠr + ∂AWD

AΠr
)
, (6.7)

ε
(1)
(b,Y,T,W ) = −LYA(2)

r −
b√
g

Πr
(2) −

T√
g

Πr + 2WAr − ∂AWD
A
Ar . (6.8)
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The parameters of these transformations depend on the charges themselves and pre-
serve integrability. The charges associated with these gauge transformations are given by

Qextra
µ,ε = −

∮
d2x

{
b
(
ΠrΨ + Πr

(2)Ψlin +
√
g∂AArA

A+
√
g ∂AA

(2)
r D

AΦlin−
√
g A(2)

r Φlin
)

+ Y A
(
Πr
AA + Πr

(2)∂AΦlin +
√
gΨ∂AAr +

√
gΨlin∂AA

(2)
r

)
+ T

(
ΠrΨlin +

√
g ∂AArD

AΦlin − 2
√
g ArΦlin

)
+W

[(
4Πr + 3Πr

)
Φlin +D

AΠr
∂AΦlin +

√
g Ar4Ψlin +

√
g ∂AArD

AΨlin
]}
.

(6.9)

These boundary terms are supplemented by weakly vanishing bulk terms with gauge param-
eters εextra

(b,Y,T,W ) and µextra
(b,Y,T,W ), the fall-off of which is determined by the above parameters.

In fact, the above transformations were derived from these charges, which were con-
structed according to the general formulas of [1], so that integrabilty was not really an issue.

The new Poincaré generators read

P̃ξ,ξi = Pξ,ξi +Gextra
µ,ε , (6.10)

Because
Bξ,ξi +Qextra

µ,ε = 0 , (6.11)

the new Poincaré generators are pure bulk

P̃ξ,ξi =
∫
d3x

[
ξH+ ξiHi + (ε(T,W ) + εextra

(b,Y,T,W ))G + (µ(b,T,W ) + µextra
(b,Y,T,W ))π0

]
, (6.12)

without surface term. One can then check that their brackets with the u(1) gauge charges
are weakly zero: {

Gµ,ε, P̃ξ,ξi
}

= 0 . (6.13)

This implies in particular that they are conserved with no explicit time dependence. One
can also check that the new Poincaré generators satisfies the Poincaré algebra:{

P̃ξ1,ξi1
, P̃ξ2,ξi2

}
= P̃ξ̂,ξ̂i . (6.14)

The computation is direct. This result is actually guaranteed to hold by the general
argument of [1].

7 Conclusions

In this paper, we have consistently extended the asymptotic symmetries of electromag-
netism in four spacetime dimensions by allowing improper gauge transformations parame-
trized by coefficients that blow up at infinity like ln r and r. We have also shown that the
structure of the algebra can be used to redefine the Poincaré generators in such a way that
there is no u(1) ambiguity in the definition of the Lorentz generators (angular momentum
and boost generators (center of mass)). Even though parametrized by a function of the
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angles, the u(1) charges transform in the trivial representation of the redefined Lorentz
algebra. The necessary redefinitions are non-linear and can be performed in a direct man-
ner because we have a well-defined Hamiltonian formulation (see [37] for a more complete
discussion of this point in the context of Poisson manifolds). In particular, integrability of
the redefined transformations is never an issue.

Similar results, which go beyond the analysis of [38] by adopting more flexible boundary
conditions, can be established in higher dimensions as we shall show in future work.

One might wonder whether one could continue the construction and include gauge
transformations that asymptotically blow up like r2, or r3 etc. While we have not made
a systematic analysis of this question, preliminary investigations lead to a negative con-
clusion, because there are too many divergences in the formalism that cannot be cancelled
by suitable choices of the parity conditions, which can only be of two types (even or odd).
This agrees with the conclusion of [28] (note that the multipole charges of [35] generically
diverge in a time-dependent context, since one might then have higher spherical harmonic
terms in, say the 1/r order of the fields).

The terms linear in r in the gauge parameters are somewhat analogous to the su-
perrotations or the Diff(S2) transformations considered in the works [39–42]. Our study
gives some hope that these can be consistently included at spatial infinity, but the non-
linear complexity of Einstein theory calls for caution in drawing conclusions that might be
premature. Further work is clearly needed to settle satisfactorily this issue.

Finally, it would be of great interest to investigate how our work is explicitly translated
at null infinity. To achieve that task one should first go back to the standard ‘non-extended’
formalism where the Lagrange multiplier ψ is fixed in terms of the other fields since it is the
formulation that is directly connected with the standard Lagrangian formulation. Work
along these lines is in progress.

Note added. After this paper was completed, we became aware of the recent preprint [43]
where the canonical formulation of gauge transformations that blow up at infinity is con-
sidered along different lines.
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A Poincaré invariance

In this appendix, we provide details on how the kinetic term (2.25) and the asymptotic
form of the transformations of the fields under Poincaré transformation were arrived at.
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A.1 Non-integrability of the boosts and time translations with standard sym-
plectic form

We start with the familiar description of the canonical formalism of gravity in terms of the
spatial components Ai of the vector potential and its conjugate momoentum πi (electric
field). The corresponding symplectic form is pure bulk and reads

Ω =
∫
d3xdV π

idVAi . (A.1)

The change of the symplectic form Ω under the Poincaré diffeomorphism ξ = br + T

normal to the equal time hyperplanes is given by

LξΩ =
∮
d2x
√
g (br + T ) gABdV FrAdVAB . (A.2)

Taking into account the fall-off of the mixed radial-angular component of the curvature

FrA =− 1
r

(
∂AAr − ∂AΦlog

)
− ln r

r2

(
∂AA

log(2)
r +A

log(2)
A

)
− 1
r2

(
∂AA

(2)
r +A

(2)
A −A

log(2)
A

)
+ o

(
r−2

)
, (A.3)

and of the angular component of the gauge field, we obtain the following expression,

LξΩ =−
∮
d2x
√
g (br + T )

(
∂AdVAr − ∂AdV Φlog

)
D
A
dV Φlin

− ln r
∮
d2x
√
g b
(
∂AdVA

log(2)
r + dVA

log(2)
A

)
D
A
dV Φlin

− ln r
∮
d2x
√
g b
(
∂AdVAr − ∂AdV Φlog

)
DAdV Φlog

−
∮
d2x
√
g b
(
∂AdVAr − ∂AdV Φlog

)
dVA

A

−
∮
d2x
√
g b
(
∂AdVA

(2)
r + dVA

(2)
A − dVA

log(2)
A

)
D
A
dV Φlin , (A.4)

We now make use of the fact that the components Alog(2)
i are pure gauge, then ∂AAlog(2)

r +
A

log(2)
A = 0, which takes care of the first logarithmic divergence. The remaining two

divergent terms (in r and ln r) vanish by assuming that Φlog is odd. After integration by
parts and using that

Φlin = odd , (A.5)
AA = (AA)even + ∂AΦ, (A.6)

the finite terms can be re-written as

LξΩ =
∮
d2x
√
g dVAr

[
∂A
(
bdVA

A
)

+ T4 dV Φlin
]
−
∮
d2x
√
g ∂A

(
bD

A
dV Φlog

)
dV Φ

+
∮
d2x
√
g dVA

(2)
r ∂A

(
bD

A
dV Φlin

)
+
∮
d2x
√
g ∂A

(
bdVA

(2)A
)
dV Φlin

−
∮
d2x
√
g
[
∂A
(
bdVA

log(2)A
)

+ T4 dV Φlog
]
dV Φlin . (A.7)

These are not zero and hence, with the relaxed boundary conditions for Ai, Poincaré
transformations are not canonical transformations for (A.1).
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A.2 New symplectic form and invariance under boosts and time translations

In order to obtain an invariant symplectic form, we include A0 and its conjugate π0 with
the asymptotic behaviour described in the text and adopt as new symplectic form

Ωnew =
∫
d3x

(
dV π

idVAi + dV π
0dVA0

)
−
∮
d2x
√
g
[
dVArdV Ψ− dV ΨlogdV Φ + dVA

(2)
r dV Ψlin −

(
dV Ψ(1)

log − dV Ψ(1)
)
dV Φlin

]
,

(A.8)

(with π0 ≈ 0; Ωnew is just denoted Ω in the main text since it is the only one appearing
there). The bulk term dV π

0dVA0 is the standard canonical one, the surface term dVArdV Ψ
has been introduced in [26] while the idea behind the introduction of the other surface terms
is that if one takes δξΨlin = DA

(
bD

AΦlin
)
, δξΨlog = DA

(
bD

AΦlog
)
, δξΨ = DA

(
bA

A) +
T4 dV Φlin, δξΨ(1)

log = DA

(
bAlog(2)A

)
+ T4Φlog and δξΨ(1) = DA

(
bA(2)A

)
, one eliminates

the non-integrable terms (A.7). However, this introduces other non-integrable terms (since
there are additional variations coming from the new terms), so that the approach is not
yet complete.

To get integrable boosts, we proceed as in [26] and adopt the transformation laws of
the bulk fields shown there to work, namely,

δξA0 = ∇i
(
ξAi

)
, (A.9)

δξπ
0 = ξ∂iπ

i , (A.10)

δξAi = ξπi√
g

+ ∂i (ξΨ) , (A.11)

δξπ
i = √g∇m

(
Fmiξ

)
+ ξ∂iπ0 . (A.12)

This implies the following transformation laws for the asymptotic fields

δξΨlin = DA

(
bD

AΦlin
)

+ 3bΦlin , (A.13)

δξΨlog = DA

(
bD

AΦlog
)
, (A.14)

δξΨ = DA

(
bA

A)+ 2bAr + T
(
4Φlin + 2Φlin

)
, (A.15)

δξΨ(1)
log = DA

(
bAlog(2)A

)
+ bAlog(2)

r + T4Φlog , (A.16)

δξΨ(1) = DA

(
bA(2)A

)
+ b

(
A(2)
r +Alog(2)

r

)
+ T

(
DAA

A +Ar
)
. (A.17)

δξΦlin = bΨlin , (A.18)

δξΦ = bΨodd + TΨlin , (A.19)

δξAr = b√
g
πr + bΨlog , (A.20)

δξA
(2)
r = b√

g
πr(2) + b

(
Ψlog(1) −Ψ(1)

)
+ T√

g
πr + T

(
Ψlog −Ψ

)
. (A.21)

These contain additional terms besides the new ones written below (A.8).
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The change in the bulk part of the symplectic form is found to be

Lξ (Ωnew)bulk =
∫
d2SiξdV F

ijdVAj + r

∮
d2xbdV π

rdV Ψlin + ln r
∮
d2xbdV π

r
(2)dV Ψlog

+
∮
d2x

[
b
(
dV π

rdV Ψ + dV π
r
(2)dV Ψlin

)
+ TdV π

rdV Ψlin
]
. (A.22)

In order to eliminate the divergent terms we impose the following parity conditions

Ψlin = even and Ψlog = even . (A.23)

The variation of the boundary term of the symplectic form is given by

Lξ (Ωnew)boundary = LξΩprevious −
∮
d2x

[
b
(
dV π

rdV Ψ + dV π
r
(2)dV Ψlin

)
+ TdV π

rdV Ψlin
]

−
∮
d2x
√
g
{[

4bdVA(2)
r +TdV

(
DAA

A+ 3Ar
)]
dV Φlin−TdV ΨdV Ψlin

}
,

(A.24)

where LξΩprevious is given in (A.7), and is identically cancelled by the first surface integral
in (A.22).

Putting everything together, one finds that the variation of the new symplectic form
reduces to the expression

LξΩnew = −
∮
d2x
√
g
{[

4bdVA(2)
r + TdV

(
DAA

A + 3Ar
)]
dV Φlin − TdV ΨdV Ψlin

}
. (A.25)

These terms can be eliminated by performing the following field dependent subleading
gauge transformations

ε
(1)
(T ) = TΨ , (A.26)

µ
(1)
(b,T ) = 4bA(2)

r + T
(
DAA

A + 3Ar
)
, (A.27)

where ε(1) = ε
(1)
log − ε(1) and µ(1) = µ

(1)
log − µ(1). Note that these correcting terms do not

vanish even if the boosts are zero since they contain a contribution involving T .

A.3 Invariance of the new symplectic form under spatial translations

The change of the bulk term of the symplectic form under a spatial diffeomorphism is
given by

Lξi (Ωnew)bulk =
∫
d2SIξ

i
(
dV π

jdVAj + dV π
0dVA0

)
, (A.28)

which reduces to the non-vanishing boundary term:

Lξi (Ωnew)bulk =
∮
d2x

(
WdV π

r − ∂AWdV π
A
)
dV Φlin . (A.29)

for our relaxed asymptotic conditions. On the other hand, the variation of the boundary
term reads

Lξi (Ωnew)boundary =
∮
d2x
√
g
{[
−∂AWD

A
dV Ψ +WdV

(
Ψlog + Ψ

)]
dV Φlin

+
(
D
A
WdVAA −WdVAr

)
dV Ψlin

}
. (A.30)
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The sum of these terms can be cancelled by corrective gauge transformations generated by
the subleading parameters

ε
(1)
(W ) = D

A
WAA −WAr , (A.31)

µ
(1)
(W ) = −

(
Wπr − ∂AWπA

)
−
[
−∂AWD

AΨ +W
(
Ψlog + Ψ

)]
, (A.32)

which involve only spatial translations.
This completes the discussion of Poincaré invariance of the theory.
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