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Abstract: Low-scale seesaw variants protected by lepton number symmetry provide a
natural explanation of the smallness of neutrino masses but, unlike their higher-scale coun-
terparts, with potentially testable phenomenology. The approximate lepton number sym-
metry arranges the heavy neutrinos in pseudo-Dirac pairs, which might be accessible at
collider or even beam dump experiments if their mass is low enough and their mixing
with the active neutrinos sufficiently large. Despite their pseudo-Dirac nature, their small
mass splittings may lead to oscillations that prevent the cancellation of their potential
lepton-number-violating signals. Interestingly, these small splittings may also resonantly
enhance the production of a lepton number asymmetry for low-scale leptogenesis scenar-
ios or, for extremely degenerate states, lead to an asymmetry large enough to resonantly
produce a keV sterile neutrino dark matter candidate with the correct relic abundance via
the Shi-Fuller mechanism. In this work we explore the parameter space of the different
low-scale seesaw mechanisms and study the size of these splittings, given their important
and interesting phenomenological consequences. While all low-scale seesaw variants share
the same dimension 5 and 6 operators when integrating out the heavy states, we point out
that the mass splitting of the pseudo-Dirac pairs are very different in different realizations
such as the inverse or linear seesaw. This different phenomenology could offer a way to
discriminate between low-scale seesaw realizations.
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1 Introduction

Among the different extensions of the Standard Model (SM) of particle physics able to
accommodate the evidence for neutrino masses and mixings from the neutrino oscillation
phenomenon, the inclusion of right-handed neutrinos is arguably the simplest. Given their
singlet nature, a Majorana mass at a new energy scale at which lepton number (L) is
violated is allowed for them together with standard Yukawa couplings with the SM left-
handed neutrinos.

In the high-scale seesaw mechanism [1–4], the new mass scale is much larger than the
electroweak scale, suppressing the masses of the mostly active neutrino mass eigenstates
and providing a rationale for the smallness of neutrino masses. Nevertheless, that same
explanation of the smallness of neutrino masses renders the mechanism virtually untestable,
since also the mixing of the new states with the active neutrinos is similarly suppressed
and their energy scale too high to probe. Moreover, such a high new-physics scale coupled
to the Higgs through the neutrino Yukawa couplings introduces a hierarchy problem [5, 6].

Alternatively, the smallness of neutrino masses may also be naturally explained through
a symmetry argument. Indeed, the Weinberg d = 5 operator [7] obtained upon integrating
out the new heavy states and that gives rise to the masses of the mostly active neutrinos
violates L by two units, being a Majorana type of mass. Thus, an approximate L symmetry
imposed in the Lagrangian would naturally suppress at all orders the d = 5 operator and
hence neutrino masses [8–10]. On the other hand, the only d = 6 operator obtained
at tree level upon integrating out the heavy states and that encodes the heavy-active
neutrino mixing through deviations of the lepton mixing matrix from Unitarity [11], does
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not violate L. Hence, in symmetry-protected versions of the seesaw mechanism, the d = 6
operator is actually expected to be less suppressed than its d = 5 counterpart and the
heavy-active mixing can be sizable with no conflict with the small neutrino masses. Given
the approximate L symmetry the heavy neutrinos arrange in pseudo-Dirac pairs. The
symmetry suppression allows these pairs to be relatively light and have sizable mixings,
allowing to probe for the existence of these heavy neutral leptons (HNLs) at collider or
beam dump experiments [12], while the masses of the mostly active neutrinos from the
symmetry-protected Weinberg operator remain small.

Several variants of these low-scale, symmetry-protected seesaws have been studied
depending on the source of the small symmetry-breaking terms, such as the inverse [13, 14]
and linear [15, 16] seesaws. All of them are characterised by small neutrino masses from
the d = 5 Weinberg operator proportional to the small, symmetry-breaking parameters
and by large mixing of the heavy pseudo-Dirac pairs with the active neutrinos encoded in
the d = 6 operator. However, the different possible sources of L violation that give rise to
the light neutrino masses do lead to significantly different splittings among the masses of
the members of the pseudo-Dirac pairs [17, 18]. Indeed, even though both the Weinberg
operator and the heavy neutrino mass splitting violate L by two units, the relation between
these two quantities is different in the different realizations of low-scale seesaws.

Interestingly, the mass splitting of the pseudo-Dirac pairs has very significant phe-
nomenological consequences. On the one hand, depending on its size, these splittings may
drive oscillations between two states provided that the oscillation length is smaller than the
decay length. In such a scenario, the cancellation between the opposing Majorana phases
of the two members of the pair, which strongly suppresses any L-violating process given
their pseudo-Dirac nature, is prevented [17–22]. In this regime, the decay products of the
heavy neutrinos would instead correspond to those of a Majorana state. The areas of the
parameter space for which the heavy neutrinos behave as Dirac or Majorana thus strongly
depend on the mass splitting between the two members of the pseudo-Dirac pairs.

On the other hand, when resonant [23] or ARS leptogenesis [24, 25] is considered in low-
scale seesaws, a strong degeneracy among the sterile neutrino states can lead to a significant
enhancement of the L asymmetry produced (see also [26–39] and references therein).

The degree of degeneracy is thus fundamental to asses the size of the final baryon
asymmetry. Furthermore, while the bounds on the mixing of a kev-scale, sterile neutrino
dark matter candidate from X ray constraints are too strong to allow its production via
mixing through the Dodelson-Widrow mechanism [40], it has been shown that this produc-
tion can be resonantly enhanced if in the background of a very large L asymmetry through
the so-called Shi-Fuller mechanism [41–43]. The generation of such a large background L
asymmetry in turn requires an even stronger degeneracy among the pseudo-Dirac pairs.
Interestingly, a very large L asymmetry would also help to reconcile recent estimations of
the primordial deuterium [44] and 4He [45] abundances which show a ∼ 2σ and ∼ 3σ ten-
sion respectively with the predictions of Big Bang Nucleosynthesis (BBN) in the standard
ΛCDM model [46].

Therefore, the level of degeneracy of the heavy neutrinos is critical, not only for the
potential observation of L violating signals if the heavy neutrinos are eventually produced
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at experimental facilities, but also for the potential generation of the baryon asymmetry of
the universe and of sterile neutrino dark matter. In this work we perform a thorough scan
of the full parameter space of the different realizations of the low-scale seesaws, studying
the allowed size of the mass splitting between members of the pseudo-Dirac pairs. We start
by reviewing in section 2 the original results of refs. [17, 18], which focus on the minimal
scenario with only one pair of HNLs, highlighting the value of the HNL mass splittings and
its connection with light neutrino masses. In this restricted scenario there is a one to one
correspondence between the HNL and light neutrino mass splittings. Our main original
contribution in this study is to go beyond these minimal setups and explore how much the
naive expectations for the value of the HNL mass splitting in the minimal setup can change
when more than a single HNL pair is considered. This thorough study is performed for a
linear seesaw in section 3 and an inverse seesaw in section 4. In both cases, we generalise the
naive estimations obtained in the minimal scenario, showing and quantifying under which
conditions is it possible to find largely enhanced o suppressed HNL mass splittings. Thus
we conclude that the possible values of the HNL splitting can be significantly beyond those
studied so far, but only if certain cancellations or symmetries that we carefully quantify and
comment upon take place. Our main original results are summarized in section 5 through
the comparison of figures 1 and 6, which depict respectively the expectation for the HNL
mass splitting and LNV phenomenology in minimal low-scale seesaws from refs. [17, 18]
and how that expectation can change when more than a single pseudo-Dirac pair is present,
as well as the conditions required to reach the different values. These results also show how
separated the predictions between the linear and inverse realizations can be, so that it might
be used as a way of discerning between the mechanisms for neutrino masses and mixings.

2 The minimal 2-HNL scenario and its phenomenology

The observation of neutrino flavour change and its explanation through the oscillation phe-
nomenon requires two distinct mass splittings among the three neutrino mass eigenstates.
These are the so-called “atmospheric” and “solar” mass splittings, which correspond to
|∆m2

31| = 2.5 · 10−3 eV2 and ∆m2
21 = 7.4 · 10−5 eV2, respectively [47]. Thus, at least two of

the three light neutrino mass eigenstates need to acquire non-zero masses, which in turn
requires the addition of at least two HNLs in the type-I seesaw. These heavy neutrinos N
will, in all generality, have two contributions to their masses. The usual Yukawa couplings
with the SM left-handed leptons leading to a Dirac mass term mD after the Higgs develops
its vacuum expectation value v; and a symmetric Majorana mass MM , which is allowed for
them at the Lagrangian level given their gauge singlet nature. Thus, the mass terms can
be combined in a single mass matrix NMνN c where:

Mν =
(

0 mD

mT
D MM

)
, (2.1)

– 3 –



J
H
E
P
0
3
(
2
0
2
3
)
0
5
7

and N = (νL N c)T . In the seesaw limit of mD � MM , this matrix can be block-
diagonalised through a unitary transformation V

Mblock
ν = V TMνV =

(
mν 0
0 MN

)
, (2.2)

where
V =

(
1− 1

2Θ∗ΘT Θ∗
−ΘT 1− 1

2ΘTΘ∗

)
+O(Θ3) , (2.3)

and Θ = mDM
−1
M represents the mixing between the active SM neutrinos and the HNLs.

This rotation gives for mν the well-known coefficient for the Weinberg d = 5 operator in
the type-I seesaw:

mν ' −ΘMMΘT , (2.4)

and for the heavy neutrinos:

MN = MM + 1
2
(
Θ†ΘMM +MMΘTΘ∗

)
. (2.5)

These two symmetric matrices can finally be diagonalised via Unitary transformations U ′
and V ′, respectively, so that the full rotation relating the flavour and mass eigenstates is
given by:

U =

(1− 1
2Θ∗ΘT

)
U ′ Θ∗V ′

−ΘTU ′
(
1− 1

2ΘTΘ∗
)
V ′

+O(Θ3) . (2.6)

Notice that the upper-left 3×3 sub-block that will appear in the CC interactions of the light
neutrinos with the charged leptons, that is the PMNS mixing matrix, is not unitary. The
unitarity deviation Θ∗ΘT /2 corresponds to the coefficient of the only d = 6 operator ob-
tained at tree level when integrating out the HNLs [11]. Conversely, the upper-right block of
eq. (2.6), U`N , contains the coupling of the heavy neutrinos with charged leptons via CC in-
teractions, for which important experimental constraints from direct searches exist [48, 49].

The minimal scenario with only 2 HNLs, focusing in particular on its low-scale real-
ization where the HNLs form a pseudo-Dirac pair, was studied in depth in ref. [50]. Here
we will review its allowed parameter space when the correct pattern of masses and mixings
of the light neutrinos is recovered and discuss in particular the expected mass splitting of
the pseudo-Dirac pair and its correlation to the observed light neutrino mass splittings.

In all generality, the mass matrix containing the possible Yukawa couplings between
the SM neutrinos and the two HNLs as well as a Majorana mass for the HNLs can be
written as

Mν =

 0 Y v/
√

2 Y ′v/
√

2
Y T v/

√
2 µ′ M

Y ′T v/
√

2 M µ

 , (2.7)

and N = (νL N c N ′)T , with N and N ′ the right- and left-handed components of the would-
be pseudo-Dirac pair, respectively. In order for this general type-I seesaw to lead to small
neutrino masses for the mostly SM neutrino mass eigenstates but at the same time allow

– 4 –



J
H
E
P
0
3
(
2
0
2
3
)
0
5
7

for sizable Yukawas and a low-mass scale for the HNLs, an approximate L symmetry must
be imposed [9, 10, 51], so that µ/M,µ′/M, Y ′ � 1. Indeed, in the limit of µ = µ′ = Y ′ = 0,
L is exactly conserved and the HNLs form a Dirac pair of mass M . However, the mixing
of the SM neutrinos with the left-handed component of the Dirac HNL (N ′), and thus its
associated phenomenology, can still be sizable. In particular:

Θ =
(

0 Y v√
2M

)
≡ (0 θ) , (2.8)

is unsuppressed by any small parameter as the d = 6 operator is not protected by L.
When introducing a L violating term to generate neutrino masses, the same parameters

will also induce a non-zero splitting ∆M between the two members of the pseudo-Dirac pair,
pointing towards a connection between active neutrino masses and HNL mass splittings.
The explicit relation between the two depends however on the particular low-scale realiza-
tion considered. The aim of this work is precisely to explore in detail this connection. As a
first step, we devote this section to first sketch the naive expectations for different models.

The different variants of low-scale seesaws induce small neutrino masses by introduc-
ing some of the soft breaking terms in eq. (2.7). In particular, the inverse seesaw (ISS)
introduces a small Majorana mass µ�M for the N ′ states, while the linear seesaw (LSS)
considers a small Yukawa coupling Y ′ between the SM lepton doublet and N ′. Their
contribution to the light neutrino masses reads:

mν '
v2µ

2M2Y Y
T − v2

2M
(
Y Y ′T + Y ′Y T

)
. (2.9)

Finally, we could also introduce a small Majorana mass µ′ � M for the N states,
although it does not contribute to the light neutrino masses at tree level, since it does not
increase the rank of Mν . Nevertheless, as it does break L, neutrino masses are no longer
protected and it contributes at one loop1 [52, 53]:

mν '
µ′

16π2
M2
H + 3M2

Z

2M2 Y Y T . (2.10)

This term has the same structure than the ISS contribution in eq. (2.9), so we will refer to
this realization as loop-induced ISS.

Notice that in this case with only 2 HNLs, the ISS contributions, both at tree level
through µ in eq. (2.9) and at loop level via µ′ in eq. (2.10), have rank 1 and hence can only
give mass to a single light neutrino. Conversely, the LSS contribution with Y ′ has rank 2
and may explain the observed pattern of neutrino masses and mixings. Moreover, the ISS
contributions can be combined with the LSS by redefining an “effective” Yukawa coupling
Ŷ ′ = Y ′ −

(
µ/2M + µ′

(
M2
H + 3M2

Z

)
/32π2M

)
Y , and their contributions to mν can be all

combined as
mν = − v2

2M
(
Y Ŷ ′T + Ŷ ′Y T

)
. (2.11)

1Notice that the logarithmic dependence in the loop contribution has been expanded assuming M �
MH ,MZ , µ

′ as in ref. [52], but, for our all our numerical computations, only M � µ′ will be assumed.
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Then, Ŷ ′ and Y are completely determined [50], up to an overall scale, by the neutrino
masses and mixings. On the other hand, the impact of Y , µ and µ′ in the mass splitting
∆M of the pseudo-Dirac pair is very different, which implies different relations between
light neutrino masses and heavy mass splittings for each scenario. Furthermore, while
having simultaneously ISS and LSS terms is certainly possible, high-energy realizations
based on symmetry arguments to obtain the necessary L-conserving texture tend to lead
to only one source of L breaking (see for instance [16, 54–66]). Thus, in the following will
consider separately each of the realizations.

In the case of the LSS, ∆M is of the same order of the light neutrino masses and in
the case of a single HNL pair it is fixed by the light neutrino mass difference [17, 18, 67]

∆MLSS = ∆mν . (2.12)

On the other hand, the ISS contributions µ and µ′ directly generate a HNL mass splitting,
∆M = µ+µ′, and comparing this with their respective contributions to mν in this minimal
scenario we can write:

∆M ISS = ∆mν

θ2 , (2.13)

∆M loop-ISS = 16π2v2(
M2
H + 3M2

Z

)∆mν

θ2 . (2.14)

From these equations, it is then clear that we expect very different HNL mass splittings in
each realization of the low-scale seesaws. Roughly speaking, ∆M is of the same order of
light neutrino masses in the LSS, while it is enhanced by two inverse powers of the small
mixings in the ISS, and even further in the loop-ISS by an additional loop factor. Thus, in
principle, we should expect ∆M loop-ISS > ∆M ISS > ∆MLSS.

In order to illustrate the importance of this difference between low-scale seesaws, we
follow ref. [18] and consider the implications for the observability of lepton number violating
(LNV) processes. First, let us recall that, when mediated by a single Majorana HNL, the
same rates for LNV and lepton number conserving (LNC) processes are expected. As in the
low-scale seesaws L is only softly broken, the naive expectation is that LNV processes should
also be very suppressed, which in practice happens due to the destructive contributions
of each member of the pseudo-Dirac HNL pairs.2 Nevertheless, when the LNV process is
mediated by HNL produced on-shell, it is possible that oscillations between the members of
pseudo-Dirac pair happen, which could prevent the cancellation suppressing LNV signals
in low-scale seesaws.

Whether HNL oscillations are effective is controlled by the relative size of two scales:
the mass splitting between them, which controls their oscillation frequency, and their life-
times (or equivalently the decay width ΓN ). If ∆M � ΓN , HNLs will decay before they
have time to oscillate, so the destructive interference between the HNLs is efficient and
LNV processes are suppressed. On the other hand, if ∆M � ΓN , HNLs oscillate many
times before decaying, their effects are averaged out and similar rates for LNV and LNC
processes are expected, as in the single Majorana HNL case. The coherence needed in order
to have an effective destructive interference for LNV processes is lost.

2Moreover, this is accompanied by a constructive interference for the LNC processes, see for instance [68].
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Figure 1. Contourlines for the condition ΓN = ∆M in each low-scale seesaw. Above (below) these
lines we expect LNV processes to be (un)suppressed with respect to the LNC ones. Also shown the
line corresponding to the tiny ∆M shown to work for explaining DM via a sterile neutrino produced
through the Shi-Fuller mechanism. As a reference, we show the laboratory bounds for UeN [48, 49]
(gray shadowed area in the upper part), and the seesaw limit (solid black line) below which the
HNLs generate too small active neutrino masses.

The HNL decay width, being a LNC observable, is the same in every low-scale seesaw
realization and is determined by its mass and mixings to active neutrinos (see for instance
ref. [69]). The HNL mass splitting, on the other hand, is generated only via the L break-
ing terms and thus is different in each low-scale seesaw, as can be explicitly seen from
eqs. (2.12)–(2.14). Consequently, the condition ∆M = ΓN that separates the regime where
LNV processes are suppressed or not will be different for each low-scale seesaw. This is
quantified in figure 1, where we show the ∆M = ΓN condition for the LSS, ISS and loop-
ISS3 Above each of these lines, the corresponding model predicts a suppression for the LNV
processes. Bellow them, coherence is lost and LNV processes are no longer suppressed. We
see that the regimes with suppressed and unsuppressed LNV are clearly different for each
of the low-scale seesaws, which provides a way to experimentally distinguish them.

Figure 1 also shows the mass splitting of ∆M ∼ 10−7 eV , which has been shown in
ref. [43] to generate enough lepton asymmetry so that the correct sterile neutrino dark
matter is obtained via the Shi-Fuller mechanism. While the position of this line falls
into the region of interest of many experiments (such as DUNE [69]), generating such a
small ∆M with just a single HNL pair is impossible with only one source of L violation
as in the LSS or ISS. Instead a cancellation of many orders of magnitude between the
different contributions in eqs. (2.12)–(2.14) would be required. In practice, the LSS term

3For the LSS we assume NO and for the (loop-)ISS a reference scale of mν =
√

∆m2
atm ≈ 0.05 eV.

– 7 –



J
H
E
P
0
3
(
2
0
2
3
)
0
5
7

would provide the dominant contribution to the light neutrino masses mν , leading to a
contribution of similar order to ∆M via eqs. (2.12), too large by 5 or 6 orders of magnitude.
Then an opposite contribution to ∆M through the ISS parameters µ or µ′ would be needed
to bring it to the reference value of O(10−7) eV while having a negligible impact in mν ,
as long as θ is small enough. This very fine-tuned cancellation between parameters of a
priori different origins (a Yukawa coupling versus a Majorana mass term) seems difficult to
justify in a natural way and, moreover, it is highly unstable under higher order corrections.

In the rest of the paper, we will go beyond this minimal 2-HNL scenario, including
additional HNLs in order to investigate if such small values of ∆M are achievable when
only the LSS or ISS terms are considered separately (and therefore no cancellations between
them can be present). We will also explore how the sharp predictions of the boundaries
between LNC and LNV behaviours depicted in figure 1 may be modified in these non-
minimal scenarios. Thus, for the rest of the paper, we will consider only the pure LSS
or pure ISS cases with several HNL pairs, which also correspond to most high-energy
realizations of these scenarios. Indeed, when symmetry arguments to obtain the necessary
L-conserving texture or a dynamical origin of the L symmetry breaking are considered,
only one source of L breaking is typically present.

3 Linear seesaw

We start considering a pure LSS scenario with n pairs of HNLs, with a neutrino mass
matrix given by

Mν =

 0 Y v/
√

2 Y ′v/
√

2
Y T v/

√
2 0 M

Y ′T v/
√

2 M 0

 . (3.1)

Here, the Yukawa couplings Y and Y ′ are generic complex 3×nmatrices, with Y ′ containing
the small L breaking parameters, and M is a heavy n × n mass matrix that we can take
as real and diagonal without any loss of generality. It is possible to map this mass matrix
to the canonical type-I seesaw in Eq (2.1) identifying:

mD =
(
Y Y ′

)
v/
√

2 , MM =
(

0 M

M 0

)
, (3.2)

so the light neutrino mass matrix reads:

mν = −v
2

2
(
YM−1Y ′T + Y ′M−1Y T

)
. (3.3)

On the other hand, in the LSS the HNL pairs are degenerate at leading order, since
MM has eigenvalues that are exactly degenerate in absolute value. The small mass splitting
is generated from the O

(
Θ2MM

)
terms in eq. (2.5), which are of the same order as the

contribution to the light neutrino masses, as we already saw explicitly in eq. (2.12) for
a single HNL pair. In presence of more pseudo-Dirac pairs, the model has more free
parameters and this simple relation does not need to hold anymore. Nevertheless, it is
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still possible to connect the HNL mass splittings with light neutrino masses by considering
trace relations.

In the LSS, the neutrino mass matrix Mν is traceless. Then, using the block-
diagonalization in eq. (2.2), we have

0 = Tr {Mν} = Tr
{
V ∗Mblock

ν V †
}
, (3.4)

and using eq. (2.3) to evaluate the r.h.s. explicitly, we get

Tr
{
V ∗Mblock

ν V †
}
' Tr {mν}+ Tr

{
ΘTΘ∗MM

}
+ 2iTr

{
ΘT Im [Θ]MM

}
= 0 . (3.5)

The second term in this equation can be related to the HNL mass splittings. In order to
do so, we first recall that the matrix MM is traceless, so using eq. (2.5) we can identify
Tr
{

ΘTΘ∗MM

}
= Tr {MN}. Second, we notice that at leading order the heavy MN matrix

has degenerate eigenvalues by pairs but with opposite sign. Thus, when we include the
small perturbation induced by the second term in eq. (2.5) and take the trace, only the
small mass splittings will survive, i.e.,

Tr {MN} =
n∑
i=1

∆Mi . (3.6)

Therefore, we can rewrite eq. (3.5) as

n∑
i=1

∆Mi + Tr {mν} = −2iTr
{

ΘT Im [Θ]MM

}
. (3.7)

This equation applies to a LSS with any number of pairs and represents the generalization
of the simple ∆M = ∆mν relation in the minimal scenario with only one pair of HNLs.
Notice however that in presence of several HNL pairs, it is possible to have some pairs
with very small mass splittings, as long as the rest of the pairs have large enough ∆M to
satisfy this equation. Furthermore, it is in principle posible to have cancellations between
the two traces in eq. (3.7), so every HNL pair could have a very small mass splitting while
still reproducing the correct light neutrino masses and mixings. We will show an explicit
example of such configuration later in our numerical analysis.

The r.h.s. of eq. (3.5) originates from the fact that the block-diagonalisation of eq. (2.3)
is not trace preserving if there are complex phases in the Yukawa couplings (i.e. V TV 6= 1).
In the case of real parameters, the r.h.s. is zero and we have a more direct relation between
HNL mass splittings and light neutrino masses.4 We explore these two hypotheses of real
and complex parameters in the following, focusing on the case of having two pairs of HNLs.
While being the minimal extension with respect to the simplest LSS model, we will see that
it already has enough freedom to cover scenarios with HNL mass splittings much smaller
or bigger than the naive expectations.

4Notice however that Tr{mν} is not necessarily equal to the sum of neutrino masses, since there are still
phases involved in its diagonalization. We will discuss it in more detail later.

– 9 –



J
H
E
P
0
3
(
2
0
2
3
)
0
5
7

3.1 Next-to-minimal LSS

We will now focus on studying the LSS with two pseudo-Dirac pairs, which is the simplest
extension of the minimal LSS with one pair. Notice that, while not being the minimal
setup to explain current oscillation data, it does contain the minimal amount of pairs that
one needs to accommodate 3 massive neutrinos.

From now on, we will use a similar notation to the one introduced in [50], where we
parameterise the Yukawa couplings as unitary vectors in flavor space times their modulus.
Namely,

Y = (y1u1 y2u2) , Y ′ =
(
y′1v1 y′2v2

)
, (3.8)

where u†iui = 1 and v†ivi = 1 for i = 1, 2. In this notation, the light neutrino mass matrix
in eq. (3.3) takes the following form:

mν = −ε1
(
u1vT1 + v1uT1

)
− ε2

(
u2vT2 + v2uT2

)
, (3.9)

where we have introduced the two light neutrino mass scales εi ≡ v2yiy′i
2Mi

, with the heavy
scales Mi given by the entries of the diagonal matrix M .

On the other hand, using eq. (2.5), the HNL mass splittings can be computed in terms
of the model parameters in this parametrisation:

∆Mi ≈ 2εiρi , (3.10)

where we have defined ρi = u†ivi as the scalar product of the two unitary Yukawa directions
of each pair, which can be always considered real independently of the Yukawa couplings
being complex.5

Once more, we see explicitly that the HNL mass splittings in the LSS are controlled
by the light neutrino mass scales εi, although they are additionally weighted by the scalar
product ρi. In the minimal LSS model with 1 HNL pair, there is only one ρ and it is fixed by
light neutrino masses [50], so we recover eq. (2.13). Now, in our next-to-minimal LSS with
2 pairs, the relation is more involved, however we can still relate the size of the HNL mass
splittings to light neutrino masses by means of eq. (3.7). In the following, we analyse this re-
lation in detail assuming real parameters first, and generalising to complex ones afterwards.

Real Yukawa case. If the Yukawas are assumed to be real, a rather simple relation can
be found between the pseudo-Dirac mass splittings and the light neutrino masses, since the
r.h.s of eq. (3.7) vanishes. This is just a consequence of the fact that, when the Yukawa
couplings are real, the block-diagonalisation matrix in eq. (2.3) is orthogonal and the trace
is preserved. Thus, eq. (3.7) reduces to

∆M1 + ∆M2 = −Tr {mν} . (3.11)

Now, since the PMNS matrix in this case is orthogonal (δCP = 0), the diagonalisation
of the light sector is also trace-preserving and the trace of mν will be the sum of its

5This is due to the fact that we can always rephase N and N ′ such that N → e−iϕ/2N , N ′ → e−iϕ/2N ′,
which in turn induces a rephasing of ρ → eiϕρ without introducing phases in any quantity that was
previously real. Using this freedom we can rephase away any complex phase in ρ, thus keeping it real.
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eigenvalues. However, this does not mean that it will be equal to the sum of neutrino
masses due to the fact that all the eigenvalues of mν must be real, but not necessarily
positive.6 Indeed, the matrix in eq. (3.9) will always have one eigenvalue with opposite
sign to the other two.7 The choice of which mass eigenvalue has flipped its sign will
depend on the particular configuration of the Yukawa couplings of the model, leading to
three different values for Tr {mν} (up to a global sign):

|Tr {mν}| =


|m2 +m3 −m1| ≡ t1 ,
|m1 −m2 +m3| ≡ t2 ,
|m1 +m2 −m3| ≡ t3 ,

(3.12)

withmi the physical masses of light neutrinos, given by the absolute value of the eigenvalues
of mν .

As for the l.h.s. of eq. (3.11), one also has to take into account possible signs, since our
physically interesting quantity is the absolute value of the mass splittings, and not their
sign. Following eq. (3.10), its sign depends on the sign of ρi which, again, depends on the
particular configuration of the Yukawa couplings. Therefore, if one marginalises over all
the possible sign combinations both for ∆Mi and Tr {mν}, we arrive at the expressions for
curves in which |∆Mi| can lie

|∆M1|+ |∆M2| = t1,2,3 , |∆M1|−|∆M2| = t1,2,3 , |∆M2|−|∆M1| = t1,2,3 . (3.13)

Figure 2 shows the shape of these lines in the mass splittings space, for different choices
of the lightest neutrino mass and neutrino mass ordering, be it Normal Ordering (NO) or
Inverted Ordering (IO). In this logarithmic scale, we find that the HNL mass splitting
must lie along one of these three triangular-shaped lines centered around (ti, ti). For
mlightest = 0.8 eV, the maximum allowed value by KATRIN [71], light neutrinos are almost
degenerate, t1 ' t2 ' t3 ' 0.8 eV, and the three lines collapse to a single one for both NO
and IO. As we lower the value of mlightest the three traces ti take different values, so the
correlation curves separate depending on the ordering. Indeed, we see that for the chosen
values ofmlightest, in the case of NO two of the traces are always almost degenerate, whereas
for IO there are values of mlightest for which the traces have substantially different values.

From these results, it is clear that the mass splitting of one of the pairs can vanish as
long as the other mass splitting is equal to one of the traces t1,2,3. Getting to a scenario
where both ∆Mi could vanish at the same time seems difficult in this case, although there is
a particular value of mlightest, different for each mass ordering, for which one of the traces
vanishes, allowing both HNL mass splittings to be arbitrarily small. On the opposite
direction, we also find solutions for which the HNL mass splittings, both of them actually,
can be enhanced considerably with respect to their naive expectations of O(mν).

6Notice that neutrino masses are obtained from the square root of the positive eigenvalues of m†νmν

and that a negative sign in an eigenvalue of mν only amounts to a Majorana phase. However, to relate
LNV quantities such as the pseudo-Dirac pair mass splitting with the measured neutrino masses through
eq. (3.7), these phases are relevant.

7Each matrix Ô = uvT + vuT has two non-zero eigenvalues λ± = ±1 + ρ where |ρ| =
∣∣u†v∣∣ < 1 and

it can be shown that the sum of two such matrices, and therefore mν , generally has three non-vanishing
eigenvalues with one of them having opposite sign with respect to the other two.
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Figure 2. Correlation curves along which the tree-level HNL mass splittings must lie in order to
accommodate oscillation data in the next-to-minimal LSS with real Yukawas. Upper (lower) panels
are for NO (IO), each for a different hypothesis of lightest neutrino mass: KATRIN upper limit
(left panels in red), the ΛCDM cosmological upper bound of

∑
mν = 0.12 eV [70] (central panels,

green), and an ad-hoc scale that makes the three triangular curves more distinct and visible (right
panels, blue), which is more pronounced in the case of the IO.

In order to explore better these correlations and to understand under which conditions
we can get to the extreme values of the HNL mass splittings, we perform a numerical scan of
the parameter space of this next-to-minimal LSS compatible with current oscillation data.

The details on how we perform this scan are given in appendix A, while the results are
shown in figure 3.

We notice that the numerical results follow the analytical description in eq. (3.13)
very closely. Nevertheless, this new figure allows to distinguish three regions with different
behaviours: firstly, a regime shown in green in which the two mass splittings are as naively
expected, both of the order of the traces ti; secondly, a direction (in orange) in which
the two mass splittings become larger and their values are almost identical; and, finally,
directions (in blue) along which one of the mass splittings becomes arbitrarily small, as
the other one saturates to the values of one of the three traces t1,2,3.

These regimes can be understood in terms of the parameters of our model and how
they translate into the mass splittings (namely through eq. (3.10)). The orange regime
corresponds to the two light neutrino mass scales εi becoming larger than the physical
neutrino mass scales. Thus, in order to reproduce the correct neutrino masses, i.e. avoiding
too large light neutrino masses, the contributions from ε1 and ε2 need to cancel each other
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Figure 3. Numerical scan of the next-to-minimal LSS with real Yukawa couplings, showing the
mass splittings of the two pairs of HNLs after imposing agreement with oscillation data. Blue points
correspond to configurations where some Yukawas are almost perfectly orthogonal, while orange
ones to those where large cancellations between parameters are happening. Green points do not fall
into any of these categories. Furthermore, in the last plot we have shown in dark red the directions
along which the parameter configurations exhibit both large cancellations and almost orthogonal
Yukawas. Further details are given in the text.

precisely. Hence, both scales become very similar, giving rise to very similar mass splittings.
As such, increasing ∆M in this regime implies a very precise cancellation between the two
contributions, signalling either some symmetry relating them or a significant fine-tuning of
the model. In order to quantify the amount of cancellation between the two mass scales,
we define the following quantity

cε =
∣∣∣∣ε1 − ε2ε1 + ε2

∣∣∣∣ , (3.14)

and color-code the points in our parameter scan with different shades of orange. In
particular figure 3 depicts points with cε < 10−2, 10−3 or 10−4 (from lighter to darker
orange), showing that enhancing the HNL mass splitting with respect to their naive values
ti requires increasingly more precise cancellations between the, a priori, independent
parameters ε1 and ε2.

On the other hand, the regime in blue corresponds to points with one of the mass
splittings being very small. According to eq. (3.10), this situation corresponds to either
one of the εi or one of the ρi becoming very small. However, there is a limit on how
small the scales εi can be in order to reproduce the correct neutrino masses, i.e., if the
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contribution of one of the pairs is too small, one of the neutrinos will not acquire enough
mass. Thus, this regime actually corresponds to one of the ρ going to 0. In other words,
one of the pseudo-Dirac pairs may have a very small or even zero splitting if its Yukawa
directions are orthogonal. Conversely, the other pair must have a splitting set by one of
the quantities t1,2,3.

As before, it is interesting to quantify how orthogonal the Yukawa vectors need to be
in order to allow for such small mass splittings. We do this by color-coding the values of
the scalar products ρ1 and ρ2, which measure the alignment between the Yukawa vectors.
In particular, we show in blue those points with one of the ρi < 10−2, 10−3 or 10−4 (from
lighter to darker blue). Notice that, in order to achieve the reference ∆M ∼ 10−7 eV
for the Shi-Fuller mechanism for DM neutrino production, a HNL pair whose Yukawas
are orthogonal to a precision of roughly 3 to 4 orders of magnitude would be necessary.
Interestingly, there are models based on symmetry arguments where some Yukawas are
orthogonal, see for instance [72–74].

Finally, green points in figure 3 correspond to intermediate choices of the parameters
in which there are no significant cancellations or orthogonal Yukawa couplings and thus,
both mass splittings lie close to the naive expectations. Nevertheless, and before moving
on to complex Yukawa couplings, we would like to stress again that the color coding in
figure 3 is not meant to exclude scenarios with enhanced or suppressed HNL mass splittings,
but rather to quantify the “price to pay”, either through fine-tuning or some additional
symmetry argument, in order to move along the different directions.

Moreover, notice that even if the Yukawa couplings of one of the pairs are perfectly
orthogonal and there is a perfect cancellation of ∆M at tree level, this cancellation is not
stable under higher order corrections in absence of any additional symmetries.

Complex Yukawa case. We now consider the generalization of the previous discus-
sion when switching on the possible CP phases so as to also allow for non-zero values of
the PMNS phase δCP or the necessary CP-violation sources in order to have a successful
leptogenesis mechanism.

The crucial difference between having real and complex Yukawas is that now the
transformation that diagonalises the mass matrix is not trace preserving. Namely, the
r.h.s of eq. (3.7) does not vanish, the traces of the heavy and light sectors are not equal,
and thus the HNL mass splittings satisfy

∆M1 + ∆M2 = −Tr {mν} − 2iTr
{

ΘT Im [Θ]MM

}
. (3.15)

Moreover, both the Majorana and Dirac phases of the light neutrino sector can have arbi-
trary values. Then, Tr {mν} is not always given by the sum (up to relative signs) of the
light neutrino masses, but it takes the more general form of

Tr {mν} = Tr
{
U ′∗mdiag

ν U ′†
}

=
∑
α,i

(
U ′∗αi

)2
mi , (3.16)

where U ′ = UPMNS · UM is the unitary matrix that diagonalises mν in eq. (2.6), including
the possible Majorana phases.
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In analogy with the effective mass for the neutrinoless double decay process, this
quantity can be seen as the sum of effective Majorana masses of the three lepton flavours

Tr {mν} =
∑

α=e,µ,τ
mαα . (3.17)

It turns out that, except for very small values of mlightest, this quantity is not bounded
from below, which is in stark contrast with the case without phases in which Tr {mν} had
only 3 possible values (cf. eq. (3.12)). Furthermore, a lower bound for the second term
in the r.h.s. of eq. (3.15) cannot be set only from light sector quantities, as it contains
mixings and phases belonging to the heavy sector. Thus, in general, this term may also
vanish. Therefore, it is possible to make the r.h.s. of eq. (3.15) vanish for certain Yukawa
configurations, which would imply vanishing mass splittings (at tree level) for both pseudo-
Dirac pairs. Notice that this configuration was not possible in absence of complex phases
unless mlightest had the precise value so as to cancel one of the ti in eq. (3.12).

In order to showcase the existence of such configurations in which exact cancellations
of both mass splittings at tree level are present, we consider a particular case that can be
treated analytically. Notice that, in order for ∆Mi to vanish, ρi = 0 is required, i.e. the
two Yukawa directions of each pair (ui and vi) need to be orthogonal. We consider the
following setup:

u†1v1 = ρ1 = 0 , u†2v2 = ρ2 = 0 ,
u†1u2 = eiα/2 , v†1v2 = eiβ/2 ,
u†1v2 = eiγ/2 , u†2v1 = eiδ/2 . (3.18)

This configuration corresponds to the 4 Yukawas disposed along the edges of a square
pyramid with equilateral triangle sides, and (by construction) it yields ∆Mi = 0 at tree
level, since ρ1 = ρ2 = 0. Furthermore, even though in the remaining 4 scalar products one
can consider 4 different complex phases (α, β, γ, δ), they are not independent and in fact
only 2 phases are physical: the phases in v†1v2 and u†2v1 can be set to 0 due to the freedom
of rephasing each of the two pseudo-Dirac pairs separately.

The moduli of the mass eigenvalues of this particular configuration are:

mi =


ε1 ,

ε2 ,√
ε21 + ε22 + 2ε1ε2 cos ξ ,

(3.19)

where ξ is the only phase combination that contributes to neutrino masses (the other combi-
nation appears in the form of Majorana phases). This equation shows the impact of allowing
for complex Yukawa couplings: in the real limit (ξ = 0, π), the three mass eigenvalues are
correlated, since one neutrino mass would be fixed given the other two. In this context, if we
want to reproduce the correct mass splittings for light neutrinos while still having ∆Mi = 0,
there is only one particular value of mlightest which can do the job (which corresponds to
the mlightest value that makes one of the three trace values t1,2,3 in eq. (3.12) vanish). How-
ever, in presence of complex phases, there is additional freedom (an extra parameter) to
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Figure 4. Same as figure 3, but for complex Yukawa couplings. The regions highlighted in light
blue represent the areas where solutions compatible with oscillation data exit, even if our numerical
scan did not fully cover them.

accommodate the correct neutrino masses. Even though this is only a simplified example,
it illustrates that, while the condition ρ1 = ρ2 = 0 with real Yukawas is too restrictive so
to explain neutrino masses, this is not the case in the presence of complex phases.

These solutions with suppressed HNL mass splittings are an example of how the pres-
ence of complex phases can distort the results found for the real case. Thus, it motivates
to explore the more general behavior. Due to the additional degrees of freedom that the
complex phases introduce, scanning the parameter space compatible with oscillation data
in the same way as in the real case is not efficient. Indeed, there are now 7 extra (physical)
phases in the Yukawa couplings that need to be scanned over. Consequently, in order
to scan efficiently the complex Yukawa couplings that reproduce oscillation data, we will
follow the master parametrisation presented in [75], particularised for our next-to-minimal
LSS. The details of said parametrisation are shown in appendix B.

The results of our scan are shown in figure 4, following the same color code as be-
fore. We clearly see that the presence of complex phases loosens the strong correlations
we found in the case of real Yukawa couplings, although the overall behaviour is similar
and the qualitative discussion about the areas with large cancellations or very orthogonal
Yukawa couplings still applies. The biggest difference is that now we find solutions below
the correlation lines in figure 3, covering the area where the two mass splittings can be
suppressed at the same time.
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From the numerical solutions displayed in figure 4, it is not easy to conclude how
small the ∆Mi could be, since the scan points cluster around the “natural” green region
close to the light neutrino mass scales. Indeed, as discussed above, the solutions for which
much smaller values of the HNL mass splittings are possible correspond to very particular
configurations, which are very difficult to realise through a random general scan unless they
are enforced. Nevertheless, we have already shown in eq. (3.18) an example where both
∆Mi can vanish and still reproduce oscillation data, which provides a “proof-of-principle”
that all the region below the lines of the real case is now open.8 Furthermore, in the more
easily tractable case with real Yukawas shown in figure 3, we have shown and quantified
the requirements on the parameters in order to have values of ∆M both above and below
those lying in the green area. By comparing figures 3 and 4 we also see that the main effect
of adding complex phases is to allow smaller values that in the real case for the same level
of cancellation in the model parameters.

On the other hand, we do not find any solutions in our numerical scan above the values
of the real case. More precisely, we find that all the points lie below one of these curves∣∣ |∆M1| − |∆M2|

∣∣ ≤ max [t1, t2, t3] . (3.20)

Summing up, we conclude that in the complex next-to-minimal LSS it is possible to
find solutions where both tree-level mass splittings are arbitrarily suppressed at the same
time, while the scenario with real Yukawas provides an upper limit for the correlations
between the two. We display these regions, where we have shown solutions to exist, as blue
shaded areas in figure 4. The coloured points quantify the level of cancellation needed in
order to reach the most extreme values in this space. While these areas are more difficult to
populate in the most general setup with complex phases, we find that they align well with
the more exhaustive results of the real case and expect a very similar behaviour. While
these areas may be viewed as significantly fine-tuned, symmetry arguments could perhaps
provide a rationale to expect those relations, particularly for the condition to obtain very
small ∆M which requires the Yukawa directions in flavour space to be orthogonal [72–74].

4 Inverse seesaw

In this section we consider a pure ISS realization, although we notice that our discussion
also applies to the loop-ISS, with the corresponding HNL mass splittings enhanced by the
loop factor as in eq. (2.14). In general, assuming the presence of n pairs of HNLs, the ISS
neutrino mass matrix reads

Mν =

 0 Y v/
√

2 0
Y T v/

√
2 0 M

0 M µ

 , (4.1)

where, as before, the Yukawa Y is a generic complex 3×n matrix and M is a heavy n×n
mass matrix taken, without loss of generality, to be real and diagonal. The difference with

8Indeed, we could go continuously from the ∆M1 = ∆M2 = 0 point to the green area by adding small
perturbations to the orthogonality conditions in eq. (3.18).
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respect to the LSS model is in the small L breaking term, which is now in the complex
symmetric µ-matrix, whose entries are small compared with those of M .

As in the previous section, we can map this matrix to the general type-I seesaw in
eq. (2.1). Then, we have

mD = (Y 0) v/
√

2 , MM =
(

0 M

M µ

)
, (4.2)

and the light neutrino mass matrix in eq. (2.4) reads

mν = v2

2 YM
−1µ M−1Y T . (4.3)

The heavy sector mass is still given by eq. (2.5), however MM is not traceless in the ISS,
and therefore it already contains a contribution to the HNL mass splittings at leading order
in the seesaw expansion. More precisely, in the ISS the MM term contains the µ-matrix,
whose diagonal elements already contribute to the mass splittings, that is,

∆Mi = µii . (4.4)

The O(Θ2MM ) term in eq. (2.5) now introduces subleading contributions to the HNL mass
splittings (i.e. suppressed by the small mixing angles), which will be, in general, negligible.

Comparing eqs. (4.3) and (4.4), we see that the HNL mass splittings and light neutrino
masses are generated at different orders in the seesaw expansion and are not so directly
correlated. This is in sharp contrast with the case of the LSS in the previous section,
where they were both of the same order. In general, we could naively expect that each of
the ISS pairs will have a splitting following eq. (2.13), with a ∆M enhanced with respect
to light neutrino masses by two inverse powers of the small mixing between the heavy
neutrinos and the active flavour states. Nevertheless, eq. (4.4) already suggests that it is
possible to find a scenario where µ is purely off-diagonal, so that ∆Mi = 0 at leading order,
while still reproducing the correct neutrino masses and mixings due to the flavor structure
of the Yukawa couplings in eq. (4.3). Of course, in this limit with a vanishing leading
contribution, the O(Θ2MM ) term in eq. (2.5) will become relevant and generate a mass
splitting with a similar dependence to the LSS case. However, this is still a suppression
with respect to the naive expectations in the ISS.

In order to explore the relation between eqs. (4.3) and (4.4) in more detail, we consider
the simplest ISS that can accommodate the current oscillation data [76]. This model
contains 2 HNL pairs, which give mass to only two light neutrinos, and, as we will discuss,
already introduces enough freedom to lead to significant deviations from the naive ISS
expectations for the HNL mass splittings.

4.1 Minimal ISS

In this minimal 2-pair scenario, the Yukawa matrix and the µ-matrix take the form:

Y = (y1u1 y2u2) , µ =
(
µ1 µ3
µ3 µ2

)
, (4.5)
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where, as in the LSS case, we have decomposed the Yukawa matrix in terms of two unitary
vectors (u1 and u2) and their moduli (y1 and y2). This translates into a light neutrino
mass matrix given by

mν = µ̃1u1uT1 + µ̃2u2uT2 + µ̃3
(
u1uT2 + u2uT1

)
, (4.6)

where we have defined the three light neutrino mass scales as

µ̃1 = µ1
v2y2

1
2M2

1
= µ1U

2
1 , µ̃2 = µ2

v2y2
2

2M2
2

= µ2U
2
2 , µ̃3 = µ3

v2y1y2
2M1M2

= µ3U1U2 , (4.7)

and the total squared mixing of a given mass eigenstate to all active flavours as:

U2
i ≡

∑
α=e,µ,τ

|UαNi |
2 = v2

2M2
i

y2
i , i = 1, 2 . (4.8)

In this minimal case, mν is a rank-2 matrix and therefore one neutrino remains mass-
less. This scenario is similar to the minimal LSS, since both have only two independent
Yukawas to build the Weinberg operator. The difference lies in the heavy sector, which
has now two pairs, and the additional degrees of freedom in the µ matrix, which generates
HNL mass splittings already at the leading order. Indeed, in contrast even to the next-
to-minimal LSS, it is enough to consider the simplest case of real parameters for both Y

and µ to find scenarios with very suppressed or very enhanced HNL mass splittings. In
this context, the two non-vanishing light neutrino masses can be computed analytically in
terms of four quantities: the 3 mass scales µ̃i and the scalar product σ ≡ u†1u2 ∈ [0, 1).
More precisely, the eigenvalues λ± of the mν matrix in eq. (4.6) are given by,

λ± = 1
2

(
µ̃1 + µ̃2 + 2µ̃3σ ±

√
(µ̃1 + µ̃2 + 2µ̃3σ)2 − 4

(
µ̃1µ̃2 − µ̃2

3
)

(1− σ2)
)
. (4.9)

Notice that, while λ+ can be always considered positive9 and thus directly identified as the
heaviest active neutrino mass, the sign of λ− will depend on the sign of the second term
in the square root. This term is proportional to the determinant of the µ-matrix:

µ̃1µ̃2 − µ̃2
3 = U2

1U
2
2 · detµ , (4.10)

so, depending on the sign of detµ, we have two distinct cases for the physical light neutrino
masses m±:

m+ = λ+ , m− = sign
(
detµ

)
λ− , (4.11)

which will lead to qualitatively different results in the following.
On the other hand, the HNL mass splittings are given by

∆Mi = µi − µ̃3σ = µ̃i/U
2
i − µ̃3σ , (4.12)

9We can always flip the sign of µ̃1 + µ̃2 + 2µ̃3σ, so that it is positive, rephasing by eiπ/2 the fields N ′1
and N ′1 together with N1 and N2.
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Figure 5. Different regions of parameter space of the minimal ISS compatible with oscillation data.
In the orange area large cancellations between parameters are required and in blue area one needs a
large hierarchy between parameters of the same nature. In the red area both conditions happen at
the same time, while in the green area neither of them. In every case, darker color indicates more
extreme conditions. Further details are given in the text.

where the first term arises from the leading order term of eq. (2.5) and the second from the
subleading term of O(Θ2MM ). In general, it is enough to take into account just the first
term, as the second one is suppressed by the small mixing angles, although we will discuss
the validity of this approximation later.

It is important to notice that light neutrino masses are only able to fix the µ̃i quantities,
and thus, unlike the LSS scenario, it will not be possible to compute the mass splittings
in a mixing-independent way, i.e., we will only be able to fix the mass splitting times the
mixing squared, ∆Mi ·U2

i . This was already expected from the naive estimate in eq. (2.13),
which we are generalizing now to a more realistic ISS able to accommodate oscillation data.
For this reason, we scan in µ̃1 and µ̃2 and, for each point, we fix the value of µ̃3 and σ

that correctly reproduce oscillation data. We specifically scan both cases with positive and
negative detµ, since they cannot be related by field rephasing and lead to qualitatively
different results.

We find that, for the detµ > 0 case, only a relatively small region of (µ̃1, µ̃2) space can
be made compatible with oscillation data. In particular, we find that µ̃1 and µ̃2 cannot
be separated by many orders of magnitude, which in turn limits the values that ∆M1 · U2

i

and ∆M2 · U2
i can have. Indeed, if for instance µ̃2 � µ̃1, then µ3 cannot be too small in

order to correctly reproduce two neutrino masses, which means µ̃3 ∼ µ̃1 � µ̃2 and thus
detµ ∝ µ̃1µ̃2− µ̃2

3 < 0. Then, the regions in which there are strong hierarchies between µ̃1
and µ̃2, and that can thus cover the full parameter space require detµ < 0 and this is the
situation to which most points studied correspond to.

The results of our numerical study are shown in figure 5, for both NO and IO. As in the
case of the LSS, we identify with different colors the various regions of the parameter space
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where some specific condition needs to be met. In particular, in the orange regions the
model contains large parameters that need to cancel each other in order for the light neu-
trino masses to remain small. In the blue area there is a large hierarchy among parameters
that could be expected to be of the same order, while in the red area these two conditions
happen at the same time. Conversely, the green region does not show any specific pattern
and the values for the mass splittings are not far from the naive expectations of O(mν/U

2).
We will discuss the orange and blue regions in more detail, since the red one is just

the intersection of these two. The orange region corresponds to large values of (µ̃1, µ̃2), so
that each of the HNL pairs induces too heavy contributions to the mostly-active neutrino
masses, and therefore the two contributions need to cancel each other to a large degree. In
other words, when µ̃1,2,3 become much larger than the physical neutrino masses, a precise
cancellation to several orders of magnitude must occur between their different contributions
in order to generate the correct neutrino masses. In order to quantify the amount of
cancellation, we can compare the scale of neutrino masses to the expected mass if the three
µ̃1,2,3 scales were not allowed to cancel each other. For example, from eq. (4.9) we can define

cµ ≡
m−

|µ̃1|+ |µ̃2|+ 2 |µ̃3σ|
, (4.13)

which will be smaller when stronger cancellations take place. We then identify regions
with large cancellations by imposing cµ < 10−2, 10−3 or 10−4, displayed in figure 5 from
lighter to darker orange. Therefore, it becomes clear that enhancing the HNL mass
splittings in the minimal ISS requires of large cancellations between a priori independent
parameters, in a very similar fashion to the LSS scenario in figures 3 and 4.

On the other hand, the blue region corresponds to small (µ̃1, µ̃2) values, which can
be actually connected to cases with large hierarchies among the entries of the µ matrix.
Indeed, notice that in the case of small µ̃1,2 their contribution to neutrino masses are
negligible, and it is then µ̃3 who must be responsible of explaining their measured values.
As a consequence, the smaller we make µ̃1 and µ̃2, the more off-diagonal our µ matrix
becomes, which, in absence of a specific symmetry argument providing a rationale for that
hierarchy, can also be considered a source of fine-tuning. A good measure of this hierarchy is
the following quantity, which has the advantage of being independent of the HNL mixings:

hµ ≡
µ̃1µ̃2
µ̃2

3
= µ1µ2

µ2
3
. (4.14)

With this definition we identify areas with very hierarchical µ matrices in figure 5 through
contours corresponding to hµ < 10−2, 10−3 or 10−4 (from lighter to darker blue). The same
conditions apply to the red contours, which satisfy the hµ and cµ criteria at the same time.

Given the trend shown in figure 5, the limit µ̃1,2 → 0 in order to obtain an extremely
small value for ∆M1,2, as required for instance in the Shi-Fuller mechanism, could be
interesting. From the blue area, this seems possible as long as we allow for very off-
diagonal µ matrices. Furthermore, it is easy to justify such a hierarchy if the two HNLs
involved in the µ matrix have opposite charge under some new symmetry, much in the
same way that lepton number is invoked to have a mostly off-diagonal Majorana matrix in
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the low-scale seesaw scenarios under study. Nevertheless, this argument has an important
caveat. In figure 5, the HNL mass splittings are shown considering only the leading order
contribution, i.e. ∆MiU

2
i ≈ µ̃i. However, for very small µ̃1,2, the next to leading order

term in eq. (4.12) will dominate and generate a non-zero ∆M . The specific point where
the approximation breaks down depends on the values of U1,2, so it cannot be depicted
explicitly in figure 5 but has been rather included in figure 6 in the next section. In the
µ̃1,2 → 0 limit, mν in eq. (4.6) has the same form as for the minimal LSS, with light
neutrino masses given by

m± ≈ µ̃3 (1± σ) , (4.15)

and ∆Mi = µ̃3σ = (m+ −m−)/2. Therefore, choosing a completely off-diagonal µ-matrix
does not allow to obtain extremely suppressed ∆Mi, as the subleading contribution pre-
vents it from going lower than the scale of light neutrino mass splittings. In order to obtain
smaller values, one would need a very precise cancellation between the leading and sub-
leading contributions, which would be analogous to the cancellations between the ISS- and
LSS-like contributions discussed in section 2 and more difficult to justify. Nevertheless,
these cancellations are, a priori, possible and thus we see that already in the minimal ISS
with real Yukawas and Majorana mass all values of ∆M1 and ∆M2 are allowed. We thus
do not consider its generalization introducing either complex phases or additional singlets.

5 Discussion and conclusions

Low-scale seesaw scenarios — such as the inverse or the linear seesaw — in which neutrino
masses are protected by an approximate L symmetry, allow for sizable mixing of the HNLs
that may lead to several interesting and potentially testable phenomenological signals.
Furthermore, they may provide a connection between the origin of neutrino masses and
other fundamental problems of the SM such as the source of the baryon asymmetry of the
universe or the nature of its mysterious DM component. Upon integrating out the HNLs,
that arrange themselves in very degenerate pseudo-Dirac pairs given the approximate L
symmetry, both the inverse and the linear variants lead to the same effective operators
and, hence, to the same low-energy phenomenology. Nevertheless, the actual mass split-
ting of the pseudo-Dirac pairs is significantly different in the two scenarios. Interestingly,
this splitting plays a crucial role in several phenomenological observables, from inducing
L-violating signals at laboratory experiments to controlling the final baryon asymmetry ob-
tained through leptogenesis. Being a L-breaking quantity, its origin and size is connected
to the masses of the mostly active neutrinos. The precise relation, however, is different
in each low-scale seesaw realization. This is manifest in the simplest model with only one
pair of HNLs, where both quantities are related by eqs. (2.12)–(2.14). These equations fix
the size of ∆M , avoiding very large or very small mass splittings.

In this work, we have explored how these relations between the HNL mass splittings
and light neutrino masses generalise to non-minimal low-scale seesaws. We have seen that
adding more HNLs provides more freedom, allowing for deviations from the naive expec-
tations where the (tree-level) mass splittings can be arbitrarily suppressed or enhanced.
Nevertheless, these deviations come at the price of pushing the model to corners of the
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Figure 6. ΓN = ∆M bands for the next-to-minimal LSS with mlightest = 0.03 eV (left) and for
the minimal ISS (right), assuming NO in both cases. The conditions under which the width of the
bands are altered are shown with the same color-coding as figures 3–5. As a comparison, we also
show as gray dotted lines the lines corresponding to the minimal LSS (left) and the naive estimate
for the ISS with only one HNL pair (left). For the minimal ISS plot, we have included a dashed
gray line corresponding to the ΓN = ∆M contour in the case of a purely off-diagonal µ-matrix
(that is, the dominant contribution to HNL mass splittings is the NLO of the seesaw expansion).

parameter space with large cancellations between parameters or with very particular con-
figurations, as we have characterised in figures 3–5.

In order to investigate the phenomenological implications of these deviations, we con-
sider again figure 1 and see how it is modified upon the addition of a second pair of HNLs.
The results are shown in figure 6 for the case of the next-to-minimal LSS (left panel) and
minimal ISS (right panel), both with 2 pairs of HNLs.

In the simplest case with only one pair, as in figure 1, the contour lines for ΓN = ∆M
delimiting the boundary between observable LNV signals and their absence, had a very
sharp prediction. With the simple extension to 2 pairs, we have shown in the previous
sections that the boundary can be displaced arbitrarily up or down if sufficiently “extreme”
configurations, either based on symmetry arguments or fine-tunnings, are allowed. Even
without entering these corners of the parameter space, the extra freedom implies that the
position of this boundary is not that clearly determined. We display this variation as a
band in figure 6, where we have used the same color code as in figures 3–5.

In particular, we find that larger values of ∆M , so that LNV signals would become ob-
servable for larger masses and mixings, requires of large cancellations between the L break-
ing parameters of the model in both scenarios. These areas of parameter space are colored
in different shades of orange depending on the level of cancellation required. On the other
hand, pushing the line downwards, so that LNV signals are more suppressed, is possible for
very specific configurations with (almost) perfectly orthogonal Yukawa vectors in the LSS,
or with very hierarchical µ matrix in the ISS. Naively this situation might be more easily
justified through symmetry arguments and, interestingly, these smaller values of ∆M may
imply significant enhancements in the generation of an L assymmetry in low-scale leptogen-
esis scenarios or even realizing the Shi-Fuller mechanism for sterile neutrino DM generation.
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We again stress that all regions of the parameter space in figure 6 can be reached with
sufficiently extreme configurations, even though we only depicted levels of cancellation or
hierarchies up to 10−4. Notice that, due to the strong dependence of the HNL width on its
mass,10 these cancellations or hierarchies must happen at a large degree in order to show
sizable deviations from the naive expectations in figure 6. But the white areas of the plot
are still accessible by increasing those levels accordingly. Nevertheless, these particular
solutions are not stable under next-to-leading order contributions unless a new symmetry
is introduced to justify and protect them. An example of this instability is provided by
the minimal ISS with purely off-diagonal µ matrix. At leading order, the mass splittings
vanish and thus the (blue) band in the right panel of figure 6 would reach all the way down.
Nevertheless, as discussed in eq. (4.15), the NLO term becomes important here, and sets
the actual position of the band to the dashed line in figure 6. Going below this line would
be possible but require a cancellation between the LO and NLO terms.

Another interesting conclusion from figure 6 is that the boundary for LNV observability
is in general rather different in both panels, providing a way to distinguish experimentally
these two low-scale seesaw realizations. Although all the parameter space is technically
reachable in both scenarios for sufficiently extreme configurations, a region exists in between
the bands for the LSS and ISS where the former predicts suppressed LNV signals while
the latter does not. Indeed, the green bands of both LSS and ISS show little to no overlap
in the non-excluded parameter space. Thus, if a HNL lying within the intermediate region
was discovered, it would point out to a specific low-scale seesaw realization, providing
non-trivial information on the underlying high-energy theory.

To summarise, we have explored in depth the connection between the observable light
neutrino masses and the mass splitting ∆M of the pseudo-Dirac HNL pairs beyond the
minimal realizations of both the linear and inverse seesaw models. We found that values
of ∆M arbitrarily larger or smaller than the naive expectation from the minimal scenario
are possible. Nevertheless, significant cancellations for large ∆M or very particular config-
urations for small ∆M are necessary. We have quantified the level of these cancellations,
hierarchies and alignments, and characterised the different areas of the parameter space
showing what is required for each model to reach a certain ∆M . This may provide a
rationale to experimentally distinguish both scenarios. Interestingly, we find that smaller
values of ∆M seem possibly related to specific symmetric configurations, particularly in
the LSS which already predicts smaller values than the ISS. This suggests a way to achieve
the very degenerate values of ∆M required for sufficient generation of an L asymmetry so
as to realise the Shi-Fuller mechanism of sterile neutrino DM production. Furthermore,
such a large L asymmetry would also help to reconcile the estimations of the primordial
abundances with their BBN predictions. Thus, our results may serve to throw light into the
high-energy completions of the model, both by providing a guide to discriminate regions of
the LSS and ISS parameter spaces through observations and by identifying some potential
underlying fundamental symmetries.

10Scaling as U2m5
N below the W mass and as U2m3

N above it.
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A Scanning the next-to-minimal LSS with real Yukawas

In this appendix we sketch the procedure through which we have scanned the parameter
space of the 2-pair-LSS in absence of complex phases. Our goal here is to present a
systematic but efficient way of scanning the parameter space that is compatible with light
neutrino masses and mixings, which are generated via the mass matrix in eq. (3.9).

The LSS with two pairs has a rather large number of dimensions in its parameter
space: even in the case in which the Yukawas are real, the physical basis contains 12
independent couplings plus 2 mass scales for each of the two pairs. However, for the light
neutrino mass matrix only 10 combinations of the parameters are relevant, i.e. the 4 unitary
Yukawa directions (u1,v1,u2,v2), which are parametrised by 2 angles each, and the 2 light
mass scales (ε1, ε2). Moreover, the correct reproduction of neutrino masses (assuming some
hypothesis for mlightest) and the PMNS matrix (without the CP phase) set 6 independent
constraints. Therefore, we are left with only 4 parameters in which we randomly scan.

We will scan in different combinations of parameters, depending on which region of
mass-splitting space we are, by means of solving the upper triangular part of the matrix
equation:

UTPMNSmνUPMNS = mdiag
ν , (A.1)

where mν is constructed from the model parameters as in eq. (3.9), mdiag
ν =

diag (m1,m2,m3) and UPMNS is the usual parametrisation of the PMNS matrix:

UPMNS =

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13
s12s23 − c12c23s13e

iδCP −c12s23 − s12c23s13e
iδCP c23c13

 , (A.2)

with δCP = 0 for this real case. Notice, however, that mν is a Majorana mass matrix, thus
the eigenvalues that appear in the diagonal entries upon diagonalisation are not necessarily
positive. In general, one needs to add a diagonal Majorana phase matrix in order to keep
them positive, which in this real case contains just signs. Nevertheless, these signs are
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not relevant for our purposes, and it is just enough to solve eq. (A.1) by considering the
absolute value of the diagonal entries.

In order to explore the different regions in ∆M space, we have used different priors.
For the ∆M � mν we have used a log-uniform prior in the scalar products ρ1,2; for the
intermediate region ∆M ∼ mν , we have used a uniform prior in the angles that parametrise
the unitary Yukawa directions; and finally, for the ∆M � mν we have used a log-uniform
prior in the two mass scales ε1,2.

B Parametrisation of the complex next-to-minimal LSS

For the purpose of scanning the parameter space of the complex Yukawa case, we will
follow the parametrisation for a general neutrino mass matrix presented in [75] and
particularise it to the next-to-minimal LSS. This parametrisation is specially convenient
for the linear seesaw, since this kind of model features two distinct Yukawa coupling
matrices. These are expressed as:

Y = 1
iv
U ′
√
mdiagATW T

√
M , (B.1)

Y ′ = 1
iv
U ′
√
mdiagBTW †

√
M , (B.2)

with the following parametrization matrices:

• W is a 2× 2 unitary matrix such that:

W =
(
eiϕ1 0

0 eiϕ2

)(
cosα sinα
− sinα cosα

)(
1 0
0 eiφ

)
. (B.3)

In fact, the phases eiϕ1 and eiϕ2 are not physical, since they just rephase ui → eiϕiui
and vi → e−iϕivi, which is precisely the transformation we get if we rephase Ni and
N ′i by eiϕi . Thus these phases encode this field-redefinition freedom and, thus, can
always be chosen such that ρi = u†ivi ∈ R.

• The A matrix is a product of an upper-triangular 2× 2 matrix T , complex but with
real diagonal entries, and an additional matrix C1:

A = TC1 . (B.4)

In our 2-pair scenario, these matrices have the following form:

T =
(
a c

0 b

)
with a, b ∈ R, c ∈ C , (B.5)

C1 =
(
z1 1 0
z2 0 1

)
with 1 + z2

1 + z2
2 = 0, z1, z2 ∈ C . (B.6)

A possible way of parametrising the C1 matrix is:

z1 = i cos z , z2 = i sin z , with z ∈ C . (B.7)

– 26 –



J
H
E
P
0
3
(
2
0
2
3
)
0
5
7

• The B matrix is built from the previous matrices (T and C1), a complex antisym-
metric 2× 2 matrix (K), and the C2 matrix.

B =
(
T T
)−1

[C1C2 +KC1] . (B.8)

Again in our case, K and C2 take the following form:

K =
(

0 d

−d 0

)
with d ∈ C , (B.9)

C2 =

−1 0 0
0 1 0
0 0 1

 . (B.10)
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