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1 Introduction

Recently there has been significant progress in the application of resurgence theory and
exact WKB analysis to quantum mechanics (e.g. [1–15]). Simultaneously, many interesting
relations have been discovered between quantum mechanical systems and supersymmet-
ric gauge theories (e.g. [16–39]). The discovered relationships provide various tools to
study the quantum mechanical problems in the context of quantization of Seiberg-Witten
curves [40, 41] in certain 4d N = 2 theories. Furthermore these relationships have proven
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useful in the study of differential equations appearing in various different contexts, as an
example see the recent developments in applying Seiberg-Witten techniques to black hole
perturbation theory [42–45].

Previous work has primarily focused on the study of second order differential equations
such as the Schrödinger equation, in examples where the equation could be interpreted as
the quantum Seiberg-Witten curve in a certain rank one 4d N=2 gauge theory. An inter-
esting and important direction is to generalize such analyses to higher rank gauge theories
whose quantum Seiberg-Witten curves could be higher order differential equations. Similar
to the Schrödinger equation, such higher order differential equations have intrinsic mean-
ings from the viewpoint of higher rank 4d N = 2 theories and their associated integrable
systems.1 Furthermore, techniques developed to study higher rank 4d N = 2 theories may
benefit the study of higher order differential equations appearing elsewhere in physics and
mathematics.

Our goal in this paper and its follow up [47] is to study the quantum Seiberg-Witten
curve of a 4d N = 2 pure SU(3) super Yang-Mills (SYM) theory via different approaches.
We hope our results not only benefit the study of super Yang-Mills theories, but also sheds
light on the exact WKB analysis for higher order Schrödinger-like equations.

1.1 Supersymmetric gauge theories and quantum mechanical systems

We begin with a review of correspondences between supersymmetric gauge theories and
quantum mechanical systems from three different perspectives.

1.1.1 The gauge/Bethe correspondence

The first perspective arises in the context of gauge/Bethe correspondence [16, 48, 49] in
which 4d N = 2 gauge theories in the Ω-background provide the quantization of certain
classical integrable systems. Concretely, one takes the Nekrasov-Shatashvili (NS) limit
with ε1 = ~ and ε2 → 0 yielding the low energy effective 2d N = (2, 2) theory with an
effective twisted superpotential given by:

W̃eff(a, ~) = lim
ε2→0

ε2logZ(a, ε1 = ~, ε2), (1.1)

where Z(a, ε1, ε2) is the 4d Nekrasov partition function in the Ω-background [50, 51]. We
have denoted the vacuum expectation values of complex scalars in the N = 2 vector
multiplets by a. The effective 2d theory has a discrete set of vacua corresponding to
solutions of

exp
(
∂W̃eff(a, ~)

∂ai

)
= 1, i = 1, . . . , r (1.2)

where r is the rank of the 4d theory. In the context of quantum integrable systems,
W̃eff(a, ~) is identified with the Yang-Yang functional, and equation (1.2) is the Bethe
equation determining the set of eigenvalues of mutually commuting Hamiltonians.

1For example, these higher order differential equations are satisfied by the regular part of the partition
function of the corresponding gauge theories with the insertion of a canonical surface defect in the Nekrasov-
Shatashvili limit of the Omega background [46].
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There is a special class of 4d N = 2 theories called class S theories T (g, C) which are
obtained by compactifying the 6d (2, 0) theory of type g on a Riemann surface C with
a partial topological twist [52, 53]. Subjecting a class S theory to Ω-deformation in the
NS limit [16, 54] gives quantization of the corresponding Hitchin integrable system where
the corresponding phase space is the moduli space MH(g, C),2 of solutions to Hitchin’s
equations on the Riemann surface C [55].

In this context, the Seiberg-Witten curve of the class S theory is quantized to an
oper [56], which is a certain meromorphic differential operator on C. As an example
consider the case of g = AN−1, an oper in a class S theory of type AN−1 could be locally
written as the following N -th order meromorphic operator on C:

ON (z) := ∂Nz + t2(z, ~)∂N−2
z + · · ·+ tN (z, ~). (1.3)

Moreover, the variety of opers is an ~-dependent Lagrangian submanifold in MH(g, C, ~)
which provides the quantization of Coulomb branch of the class S theory.

In [18] it was proposed that, for a class S theory T (AN−1, C), there exists a specific
Darboux coordinate system in which the generating function for the variety of opers is
identified with the effective twisted superpotential up to certain boundary contribution at
infinity. This is often called the NRS conjecture. As studied in [18], for N = 2 such coor-
dinates are complexified Fenchel-Nielsen coordinates [57]. Some examples of N > 2 have
been explored in [46, 58], where the relevant Darboux coordinates are higher-rank analoges
of Fenchel-Nielsen coordinates. In particular, [46] gave a gauge-theoretic derivation of NRS
conjecture and its generalization to a certain A2 class-S theory by studying certain 1/2-
BPS codimension-two surface defects in the 4d theory. Concretely, the non-perturbative
Dyson-Schwinger equation [22] satisfied by the surface defect partition function in the Ω-
background gives a quantized version of opers which reduces to the oper equation in the
NS limit.

1.1.2 The topological string/spectral theory correspondence

Another interesting development is the topological string/spectral theory (TS/ST) corre-
spondence [20, 21, 59] which associates a non-perturbative quantum mechanical operator
to a toric Calabi-Yau manifold. The relevant spectral problem is associated with the quan-
tization scheme for mirror curves to the toric Calabi-Yau manifold. In particular, explicit
expressions for the spectral determinant could be written down using an 11d version of
the topological string free energy [20] which allows for the derivation of exact quantization
conditions for the operator spectrum.

To make contact with 4d N = 2 theories, one uses geometric engineering methods [60]
by taking a certain limit of the topological string theory on the appropriate Calabi-Yau
geometry [32, 61]. Quantization of the Seiberg-Witten curve arises as the canonical quanti-
zation of an algebraic curve. As an example, [61] studied a deformed Hamiltonian in quan-
tum mechanics which arises in the context of the quantization of Seiberg-Witten curves

2Here one needs to specify the global form of the gauge group G corresponding to the Lie algebra g. In
this article we consider g = sl(N) and G = SU(N).
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(as hyperelliptic curves [40, 62–64] ) for 4d N = 2 pure SU(N) SYM. A conjectural ex-
act quantization condition was written down in closed form, using the 4d limit of TS/ST
correspondence.

1.1.3 Opers and the conformal limit

There is yet another way, introduced in [19], to describe the quantization of the Coulomb
branch of class S theories in terms of the variety of opers.

As described in [52], compactifying a class S theory T (g, C) on a circle with radius
R yield a low energy effective theory which is a 3d N = 4 sigma model with target space
being a Hitchin moduli space MH(g, C). Note that the radius R of the compactification
circle is a parameter in the corresponding Hitchin’s equations. MH(g, C) has a CP1-worth
of complex structures parametrized by ζ, where at ζ = 0 the moduli space is a complex
integrable system. It is described as a torus fibration over the Coulomb branch of the 4d
theory, where the torus fibre parameterize the choice of Wilson lines and ’t Hooft lines
around the circle. With respect to the complex structure at ζ = 0, there is a canonical
Lagrangian submanifold L corresponding to the locus inMH(g, C) where the Wilson and
’t Hooft lines are turned off. L is canonically isomorphic to the 4d Coulomb branch.

The quantization of 4d Coulomb branch in this setup happens in a special scaling limit,
the so-called conformal limit [19], where one sends both ζ and R to zero while keeping
~ = ζ/R fixed. ViewingMH(g, C) as a complex symplectic manifold in complex structure
ζ, the conformal limit is a well-defined scaling limit and one denotes the resulting complex
symplectic manifold asMH(g, C; ~). Let L~ be the image of L under the conformal limit,
the statement is that L~ is a Lagrangian submanifold in MH(g, C; ~) and furthermore it
was conjectured to coincide with the variety of opers. The physical motivation behind this
conjecture was through twisted compactification of the 4d theory on Ω~-deformed cigar-like
geometry [54], where L~ is related to the boundary condition at the tip of the cigar. This
conjecture was demonstrated to be true in various examples in [19] and subsequent work
such as [29, 31, 32, 38, 65–67]. From a mathematical point of view, this conjecture was
proven in some special cases in [68].

From a computational point of view, the conjecture in [19] offers new insights into the
study of quantum Seiberg Witten curves of class S theories. In particular, the conformal
limit connects the exact WKB methods for opers with the exact WKB methods for flat
connections parametrized by R and ζ. These methods were developed in [52, 69]. Con-
cretely, the Stokes graphs appearing in exact WKB for opers are the same as the spectral
networks introduced in [69]. As a result, techniques from the study of spectral networks
could be directly applied to the exact WKB analysis for the Schrödinger equation and its
higher order analogues. This philosophy was further explored in [31] which described the
exact WKB method in the language of abelianization. We will give an overview of the
method in section 2.

1.2 Different methods to compute resummed quantum periods

In section 1.1 we reviewed three setups where the quantization of Seiberg-Witten curves
occurs motivating different methods to compute the corresponding properly resummed
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quantum periods. Computing quantum periods using these different methods and ver-
ifying their agreement plays an important role in understanding the correspondences
between 4d N = 2 gauge theories and quantum mechanical systems. Recently such
checks have been performed in 4d N = 2 SU(2) SYM without or with matter content,
see [11, 23–25, 28, 32, 38, 70–73] for example. In this paper and [47] our objective is to
generalize such analysis to higher rank theories, using 4d N = 2 pure SU(3) SYM as a
concrete example.

Let us consider the quantum Seiberg-Witten curve for a class S theory T (AN−1, C)
with associated differential equation corresponding to an SL(N)-oper in (1.3):[

∂Nz + t2(z, ~)∂N−2
z + · · ·+ tN (z, ~)

]
ψ(z) = 0. (1.4)

The standard WKB method makes the following ansatz for the wavefunction ψ(z):

ψ(z) = exp
(1
~

∫ z

z0
λ(z)dz

)
. (1.5)

Substituting (1.5) into (1.4) yields an order-N analogue of the Riccati equation. The first
step in constructing a solution is building a formal series solution to the Riccati equation in
powers of ~. At order-~0, the relevant equation describes the classical Seiberg-Witten curve
for T (AN−1, C) as an N -fold branched covering C̃ → C. There are N choices of order-~0

solutions corresponding to the N sheets of the Seiberg-Witten curve C̃. We choose a sheet
i and consider the formal series solution

λformal
i (~) =

∞∑
n=0

λ
(n)
i ~n, (1.6)

where λ(0)
i is an order-~0 solution. The higher order λ(n)

i are then uniquely fixed by recur-
sively solving the Riccati equation in orders of ~.

Classical periods of the Seiberg-Witten curve are given by the integrals of λ(0) along 1-
cycles γ of C̃, where γ labels the IR electromagnetic (and flavor) charge. Correspondingly,
the quantum periods or WKB periods are defined as

Πγ(~) :=
∮
γ
λformal(~)dz, γ ∈ H1(C̃,Z), (1.7)

where Πγ(~) is a formal power series in ~

Πγ(~) =
∞∑
n=0

Π(n)
γ ~n, Π(n)

γ =
∮
γ
λ(n)dz. (1.8)

Π(n)
γ in general diverges as n! [23, 32, 72, 74, 75]. An approach for properly resumming

Πγ(~) is the Borel resummation. There could be rays in the Borel plane along which the
Borel transform has singularities. As a consequence, Πγ(~) is not Borel summable for
certain phases of ~. One could nevertheless define lateral Borel resummations by slightly
deforming the integration contour below or above the ray corresponding to such a phase.
These two choices of deformation produce different answers, where the difference is defined
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as the Stokes discontinuity of quantum periods. Borel resummation of quantum periods
and their associated Stokes discontinuities have a very rich structure which has been an
important topic in resurgence theory, see for example [76].

The correspondences between gauge theories and quantum mechanical systems re-
viewed in section 1.1 motivates alternative ways to compute the resummed quantum peri-
ods, which we describe below.

1.2.1 Computing quantum periods via abelianization

Motivated by developments reviewed in section 1.1.3, the exact WKB method could be
reformulated geometrically in the context of abelianization [31, 58, 69, 77]. Abelianization
maps a flat SL(N,C)-connection over the Riemann surface C to a flat GL(1,C)-connection
over the Seiberg-Witten curve C̃ → C. The Borel resummed quantum periods are closely
related to the Voros symbols Xγ(~),3 defined as the holonomy of the flat abelian connection
along 1-cycles γ in C̃.

Using abelianization methods, Xγ(~) can be explicitly written as products of Wron-
skians of distinguished local solutions to the oper equation (1.4). In this way, Xγ(~) could
be identified as spectral coordinates on a moduli space of flat SL(N,C)-connections. For the
case of SL(2)-opers, Xγ(~) are Fock-Goncharov coordinates in generic situations [52, 78].
In certain cases one could also obtain exponentiated complexified Fenchel-Nielsen coordi-
nates [18, 57, 77]. For the case of higher-rank SL(N)-opers, Xγ(~) could be identified with
higher-rank Fock-Goncharov coordinates [69, 78] in special cases or higher length-twist
coordinates [46, 58] generalizing Fenchel-Nielsen coordinates. In general though, abelian-
ization for higher-rank opers yield spectral coordinates that haven’t been studied in detail
previously.

The connection between Xγ(~) and the quantum periods is mediated by certain asymp-
totic properties of Xγ(~) motivated from [19, 31, 52, 69]. In particular, as ~ → 0 while
staying within a certain half of the ~-plane, log (Xγ(~)) admits an asymptotic expansion

log (Xγ(~)) ∼ 1
~

Πγ(~), (1.9)

where Πγ(~) is the formal series of quantum periods defined in (1.7). Moreover, if ~ → 0
along the central ray within the half-plane, ~log (Xγ(~)) produces the Borel resummed
quantum periods.4

For SL(2)-opers, mathematically such asymptotic behavior of Voros symbols has been
proven by Koike-Schäfke and further studied by [79–81]. For higher SL(N)-opers it remains
to be a conjecture. Certain numerical evidence for this conjecture in the higher rank case
has been provided in [31, 67]. In this paper we provide further evidence in the concrete
example of an SL(3)-oper which appears in the quantization of the Seiberg-Witten curve
of the 4d N = 2 pure SU(3) SYM theory.

3More precisely, the Voros symbol depends on a phase parameter θ. Detailed definitions are described
in section 2.

4If Πγ(~) happens to be not Borel-summable, then ~log (Xγ(~)) is conjectured to produce the median
Borel summation of Πγ(~) [31].
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1.2.2 Computing quantum periods via TBA-like integral equations
The spectral coordinates Xγ(~) obey certain TBA-like integral equations [19], which could
be viewed as the conformal limit of the TBA-like integral equations in [82]. Such integral
equations are determined by the BPS spectrum of the corresponding 4d N = 2 theory and
are very useful in the study of quantum periods.

There exists an interesting correspondence between BPS states and the resurgent prop-
erties of quantum periods [19, 29, 32, 66]. Singularities of the Borel transform for quan-
tum periods are controlled by the BPS spectrum of the 4d theory. Moreover, the Stokes
discontinuities of quantum periods are closely related to the Kontsevich-Soibelman trans-
formation [52, 82, 83]. As a consequence, the BPS spectrum and subsequently the integral
equations predict the locations of singularities in the Borel plane and the discontinuites in
lateral Borel resummations of quantum periods.

The Borel resummed quantum periods are solutions to the integral equations. In prin-
cipal, one can compute them by solving the integral equations iteratively, after specifying
appropriate boundary conditions on the solutions. This perspective has been explored in
various examples in [19, 20, 29, 31, 32, 67]. In [47], we will provide numerical calculation
of resummed quantum periods using the integral equations.

1.2.3 Computing quantum periods via instanton calculus
The NS limit [16] of instanton calculus [50, 51] also provides a resummation of quantum
periods [32, 70]. Concretely, instanton calculus picks up distinguished quantum periods: the
quantum A- and B-periods {a1(~), . . . , ar(~), a1

D(~), . . . , arD(~)},5 satisfying the quantum
special geometry relation

aiD(a1, . . . , ar; ~) = ∂FNS(a1, . . . , ar; ~)
∂ai

, i = 1, . . . , r (1.10)

We have denoted the Nekrasov-Shatashvili free energy [16] by FNS(a1, . . . , ar; ~), which is
~ times the effective twisted superpotential W̃eff. This free energy is given as a power series
in the instanton counting parameter with a non-vanishing convergence radius in a certain
parameter range around the semiclassical region.

Given the NS free energy, the quantum A-periods ai(~) could be obtained by inverting
the quantum Matone relation [23, 26, 27, 84–89]. The quantum B-periods aiD(~) are then
computed via (1.10). For appropriate parameter range, both ai(~) and aiD(~) are convergent
series expansion in the instanton counting parameter with non-zero convergence radius, in
particular they are exact in ~. Instanton calculus thus provides a natural resummation for
the quantum A- and B-periods.6

The NRS conjecture and its higher rank generalization [18, 46, 58] suggests that the
instanton resummed quantum A- and B-periods correspond to certain special spectral coor-
dinates: the Fenchel-Nielsen coordinates or higher length-twist coordinates. Symbolically7

5Here r denotes the rank of the theory.
6The relationship between instanton resummation and Borel resummation has been clarified in [32] in

the context of N = 2 pure SU(2) SYM.
7There are certain ambiguities in FN or higher length-twist coordinates corresponding to a certain

monodromy action mixing a with aD. We thank Andrew Neitzke for discussions on this.
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one expects the following relation in the higher rank case:

log
(
X length
γ (~)

)
= 1

~
a(~), log

(
X twist
γ (~)

)
= 1

~
aD(~). (1.11)

1.3 The canonical quantization and surface defects

Thus far we have avoided talking about an important issue in the quantization of Seiberg-
Witten curves. In principal there could be different quantization choices which reduce
to the same classical Seiberg-Witten curve. A natural question would be which choice
corresponds to the canonical quantization where observables such as the Borel resummed
quantum periods agree with predictions from TBA equations and instanton calculus. There
has been many discussions on the canonical quantum Seiberg-Witten curve from gauge the-
ory considerations [16, 17, 23–26, 28, 39, 46, 54, 61, 70, 90–100]. In [47], we derive such
a canonical quantization using the canonical surface defect instanton partition function
following similar methods as [46]. Concretely, one first computes the surface defect par-
tition function in the full Omega background. Taking the Nekrasov-Shatashvili limit and
extracting the regular part of the partition function then yields wavefunctions satisfying a
certain differential equation. This differential equation is regarded as the canonical quan-
tum Seiberg-Witten curve, in the sense that it has a natural gauge theory interpretation.
As a further remark, the canonical surface defect also plays an important role in the exact
WKB analysis for the quantum Seiberg-Witten curve. In particular, the soliton spectrum
of the surface defect determines the Stokes curves governing the Stokes phenomena for the
solutions to the differential equation.

There is another point of view about the canonical quantization. The classical Seiberg-
Witten curve arises here in the class-S construction of N = 2 pure SU(3) super Yang-Mills
(SYM) theory. Geometrically, the canonical choice of quantum Seiberg-Witten curve should
come from analyzing the conformal limit [19] of the Hitchin section [55] in the corresponding
Hitchin moduli space. Such limit for the case of SL(N)-opers on a Riemann surface without
any punctures has been analyzed in [68]. The conformal limit of Hitchin section for the case
of punctured Riemann surfaces is in general not well-understood, even more so in the pres-
ence of irregular punctures.8 Our strategy here will be experimental, we will give two possi-
ble quantization choices in (1.12) where both choices are motivated from [68]. As we will see,
asymptotic analysis for spectral coordinates confirms both choices in (1.12) are valid quan-
tizations for the classical class-S Seiberg-Witten curve of the pure SU(3) SYM. However,
only one choice is canonical from the gauge theory point of view as we will derive in [47].

1.4 The SU3 equation

In this paper and its followup [47] we investigate the quantum Seiberg-Witten curve for
the N = 2 pure SU(3) super Yang-Mills. Work exploring some perspectives of this theory
has appeared in [61, 99, 101]. We start with the canonical Seiberg-Witten curve appearing
in the class-S construction of N = 2 pure SU(3) SYM via compactifying a 6d (2, 0) theory
of type A2 on CP1 with two irregular singularities at z = 0 and z =∞.

8For regular punctures, the canonical choice is the one under which the monodromies around regular
punctures are unipotent.
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We consider two possible quantizations of this Seiberg-Witten curve in terms of the
following third-order differential equations:

A :
[
∂3
z + ~−2u1

z2 ∂z +
(
~−3

( Λ
z4 + u2

z3 + Λ
z2

)
− ~−2u1

z3

)]
ψ(z) = 0,

B :
[
∂3
z + ~−2u1 + ~2

z2 ∂z +
(
~−3

( Λ
z4 + u2

z3 + Λ
z2

)
− ~−2u1 + ~2

z3

)]
ψ(z) = 0,

(1.12)

where u1 and u2 are Coulomb branch parameters. We denote both equations as the SU(3)
equations, they both produce Voros symbols with the expected asymptotics. However,
equation B is the canonical quantum Seiberg-Witten curve from the gauge theory per-
spective as we describe more in [47]. In particular, the quantum periods for equation B

obtained from using the abelianization method or the gauge theory perspective match with
each other in relatively good precision.

As discussed in section 1.2, there are different methods to compute properly resummed
quantum periods in this theory. In this paper we focus on the method described in sec-
tion 1.2.1, namely we compute the Borel resummed quantum periods via abelianization.
In the followup [47], we investigate the TBA method described in section 1.2.2 and the
instanton calculus method described in section 1.2.3, along with perspectives from the in-
stanton partition function of the N = 2 SU(3) Yang-Mills with the insertion of a canonical
1/2-BPS codimension-two surface defect.

Concretely, we study loci in both the strong-coupling region and the weak-coupling
region. In the strong-coupling chamber with 12 BPS states, the Voros symbol Xγ(~) could
be expressed in terms of Wronskians of distinguished local solutions to (1.12) which decay
exponentially as one goes into the irregular singularity at z = 0 or z =∞. Xγ(~) are certain
coordinates for flat SL(3,C)-connections over CP1 with two irregular singularities. We are
not aware of a previous study of such coordinates. We also numerically evaluate log (Xγ(~))
and compare with the expected asymptotic quantum periods expansion truncated to a
certain order in ~. We find good numerical agreement and view this as evidence that
higher-order exact WKB analysis via abelianization does work as expected.

We also investigate certain loci in the weak-coupling region where Xγ(~) is expressed
using the exponentially decaying local solutions as one goes into an irregular singularity,
as well as the eigenvectors of the monodromy around the irregular singularity. The Xγ(~)
constructed in such loci of the weak-coupling region is an instance of the higher length-
twist coordinates. Different from examples in [46, 58], here Xγ(~) are coordinates on a
moduli space of flat SL(3,C)-connections over a surface containing irregular singularities.
We perform numerical checks against the expected asymptotic quantum periods expansion.
Additionally, we comment on the exact quantization condition (EQC) for a bound state
problem associated with the differential equation (1.12).

Finally we remark that it would be very interesting to have a gauge-theoretical deriva-
tion of the higher length-twist coordinates in this example and understand the generalized
NRS conjecture by studying the canonical surface defect in the N = 2 pure SU(3) theory,
following the work of [46].
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2 Exact WKB and abelianization for SL(3)-opers

The exact WKB method is an approach to study the Stokes data of linear scalar differential
equations. Originating from the study of Schrödinger equations, it has been developed in
large number of studies, for a sampling of literature see e.g. [74, 102–106]. Recently the
exact WKB method for higher order Schrödinger-like equations has also been initiated
in [107–111].

In [31, 69] a new geometric reformulation of exact WKB has been proposed for
Schrödinger operators and higher order opers. A key ingredient in this reformulation is a
process of abelianization, which maps a flat SL(N,C)-connection over a Riemann surface
C to a flat GL(1,C)-connection over a N -fold covering C̃ → C. In this section we review
exact WKB analysis in the language of abelianization, following closely the descriptions
in [31].

Concretely, we focus on the case of SL(3)-opers, namely an third-order differential
equation involving two meromorphic potentials P2(z, ~) and P3(z, ~):[

∂3
z + ~−2P2(z, ~)∂z +

(
~−3P3(z, ~) + 1

2~
−2P ′2(z, ~)

)]
ψ(z) = 0. (2.1)

Although this equation is written explicitly in a single coordinate patch, it could be for-
mulated on a Riemann surface C with a complex projective structure. In that context
ψ(z) is interpreted as a section of K−1

C where KC is the canonical bundle, P2 is a mero-
morphic quadratic differential, and P3 is a meromorphic cubic differential. In particular,
equation (2.1) could be viewed as the quantization of the following Seiberg-Witten curve:

C̃ = {λ : λ3 + p2λ+ p3 = 0} ⊂ T ∗C, (2.2)

where λ denotes the Seiberg-Witten differential, p2,3 are the order-~0 terms in P2,3.
The exact WKB method for SL(3)-opers (or higher SL(N)-opers) is not yet on solid

footing in mathematics, however it was conjectured in [31] that the traditional exact WKB
method for Schrödinger equations could be extended to SL(3)-opers by combining the
methods developed in [69] with the scaling limit of [19]. Numerical evidence supporting this
conjectural picture in certain examples have appeared in [31, 58, 67]. Our description here
also builds upon this conjecture and we will provide further numerical evidence supporting
this conjecture in sections 3 and 4.

2.1 The WKB solutions

The exact WKB method is centered around the construction of distinguished local WKB
solutions, see e.g. [102, 104, 106] for the case of Schrödinger equations.

Written in local coordinate z on a contractible open set U ⊂ C, a WKB solution
of (2.1) on U takes the following form:

ψ(z) = exp
(1
~

∫ z

z0
λ(z)dz

)
, (2.3)

– 10 –
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21

13

23

12

13

31
32

(12)

Figure 1. A representative local picture of a Stokes graph in the neighborhood of two simple
branch points of different types. The orange crosses represent simple branch points, while the
orange dashed lines represent the choice of branch cuts.

where z0 ∈ U is a chosen basepoint. For ψ(z) to be a solution of (2.1), λ(z) must obey the
following third-order analogue of the Riccati equation:

λ3(z) + 3~λ(z)∂zλ(z) + ~2∂2
zλ(z) + P2(z, ~)λ(z) + P3(z, ~) + 1

2~P
′
2(z, ~) = 0. (2.4)

We first build a formal series solution λformal in powers of ~. At order-~0, the Riccati
equation (2.4) becomes (

λ(0)
)3

+ p2λ
(0) + p3 = 0, (2.5)

where λ(0) is the leading order-~0 term in the formal series. Thus we encounter a 3-fold
ambiguity, this could be resolved by choosing a solution to (2.5) or equivalently by choosing
a sheet i of the following 3-fold covering of C:

C̃ = {λ(0) :
(
λ(0)

)3
+ p2λ

(0) + p3 = 0}. (2.6)

In WKB language this is usually called the WKB curve, which could be identified with
the Seiberg-Witten curve of a 4d N = 2 theory. In particular, λ(0) corresponds to the
Seiberg-Witten differential.

Once we have chosen a sheet i and the corresponding solution λ
(0)
i to (2.5), higher

order terms in the formal series are determined by solving (2.4) perturbatively in ~. For
example, suppose we take P2 = 0 and P3 doesn’t depend on ~, then the first few orders in
this formal series take the form

λformal
i =

∞∑
n=0

λ
(n)
i ~n

= λ
(0)
i − ~

P ′3
3P3

+ ~2 6P3P
′′
3 − 7 (P ′3)2

27P 2
3 λ

(0)
i

+ . . .

(2.7)

By construction λformal
i is only a formal series in ~, substituting λformal

i into the WKB
ansatz (2.3) we obtain formal solutions ψformal

i to the differential equation (2.1). A mean-
ingful question is: under what conditions could one interpret ψformal

i as an asymptotic series
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of certain actual solution ψi, such that ψi ∼ ψformal
i as ~ → 0? A natural way to produce

the solutions ψi is to perform Borel resummation of ψformal
i . However, in general one can

not do so globally on C, but only away from the so-called Stokes curves. The Stokes curves
are one-dimensional curves on the Riemann surface C which divide C into different regions.
Within each region Borel resummation produces actual solutions ψi, which jump as one
goes across a Stokes curve.

In fact one can define Stokes curves more generally as θ-Stokes curves labeled by a
phase θ. The conjectural picture is that away from such curves there exist actual solutions
ψθi , such that ψθi has the desired expansion ψθi ∼ ψformal

i as ~→ 0 while staying within the
following half-plane

Hθ = {~ : Re
(
e−iθ~

)
> 0}. (2.8)

Taking θ = Arg(~), one then obtains the Stokes curves appearing in the Borel resummation
story.

The θ-Stokes curves are one-dimensional curves on the Riemann surface C carry-
ing labels ij. They are defined as follows: along an oriented θ-Stokes curve of type ij,
e−iθ

(
λ

(0)
i − λ

(0)
j

)
dz is real and positive, where λ(0)

i(j) are the i(j)-th solution to the WKB
curve (2.5). We remark that the above condition could be interpreted as the BPS condi-
tions for solitons associated with the canonical surface defect in the corresponding class-S
theory [69]. In this sense, the BPS soliton spectrum controls the Stokes phenomena for
solutions to the quantum Seiberg-Witten curve, such as equation (2.1).

For simplicity suppose the 3-fold covering C̃ only has simple branch points, then from
each branch point there emanate three θ-Stokes curves. An important new feature of θ-
Stokes curves for higher order SL(N)-opers is that a θ-Stokes curve of type ik could be born
from the intersection of θ-Stokes curves of types ij and jk [69, 107, 108]. The collection
of θ-Stokes curves defines the Stokes graph W at phase θ. Examples of Stokes graphs
for the SU(3) equation could be found in figure 3, figure 4 and figure 5. In figure 1 we
give a representative local picture of a Stokes graph in the neighborhood of two simple
branch points.

Within a domain that doesn’t contain any θ-Stokes curves of type ij, one obtains the
actual solutions ψθi (z) and ψθj (z) to the SL(3)-oper equation (2.1). In particular, if the
domain doesn’t contain any θ-Stokes curves of any type we would obtain three solutions
ψθ1,2,3(z) which give a basis of solutions to the SL(3)-oper equation (2.1). As one crosses a
θ-Stokes curve of type ij, the solution ψθi jumps by a constant multiple of ψθj . The rules
for gluing together solutions across θ-Stokes curves could be formulated in the context of
abelianization [69, 77], which we describe below.

2.2 Abelianization

The SL(3)-oper equation (2.1) could be written as a first order differential equation with
3× 3 matrix coefficients. Concretely, in a local patch the equation is given as∂z + ~−1

 0 −
√

2
4 P2

P3
2√

2 0 −
√

2
4 P2

0
√

2 0





~3

2 ψ
′′(z) + ~

4P2ψ(z)
− ~2
√

2ψ
′(z)

~ψ(z)

 = 0. (2.9)
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The SL(3)-oper equation can therefore be interpreted as a flat SL(3,C)-connection ∇ in a
jet bundle over C.

On the other hand, the WKB ansatz (2.3) could be interpreted as a solution to the
following first-order differential equation(

∂z − ~−1λθi (z)
)
ψθi (z) = 0. (2.10)

This is equivalent to say that ψθi (z) corresponds to a flat section of an abelian GL(1,C)-
connection ∇ab,θ in a line bundle L over the Seiberg-Witten curve C̃, where i labels the
sheet index of the covering C̃ → C. As described in [77], ∇ab,θ has monodromy −1 around
branch points of C̃ → C. Therefore, strictly speaking, ∇ab,θ is an almost-flat connection
over C̃.

From this point of view, finding WKB solutions ψθi (z) to the SL(3)-oper equation (2.1)
could be reformulated as finding the map from a flat SL(3,C)-connections ∇ over C to an
almost-flat GL(1,C)-connection ∇ab,θ over C̃, using the Stokes graph W at phase θ. Such
procedure is denoted as the W -abelianization of ∇ and has been studied in [69, 77, 79].
For a given ∇ and a given Stokes graphW , there are finitely many W -abelianizations of ∇.
For the choice of θ = arg(~), exact WKB analysis selects a distinguished W -abelianization
of ∇ [112].

Concretely, the W -abelianization procedure provides a gluing formula for local solu-
tions across θ-Stokes curves. Recall that in the complement of the θ-Stokes graph, we have
bases of local solutions ψθi to the SL(3)-oper equation (2.1), however such solutions could
be different on the two sides of a θ-Stokes curve. One can nevertheless give a gluing map
which takes solutions on the left hand side of a θ-Stokes curve to solutions on the right hand
side. Across a θ-Stokes curve of type ij, the gluing prescription could be summarized as

ψ
L
i

ψLj
ψLk

 7→
1 x 0

0 1 0
0 0 1


ψ

L
i

ψLj
ψLk

 =


[ψLi ,ψ

L
j ,ψ

L
k ]

[ψRi ,ψ
L
j ,ψ

L
k

]ψ
R
i

[ψLj ,ψ
L
k ,ψ

L
i ]

[ψRj ,ψ
L
k
,ψLi ]ψ

R
j

[ψLk ,ψ
L
i ,ψ

L
j ]

[ψR
k
,ψLi ,ψ

L
j ]ψ

R
k

 , (2.11)

where x is certain constant, and [ψi, ψj , ψk] denotes the Wronskian of the three solutions.
As we will see in sections 3 and 4, for special values of θ it could happen that a θ-

Stokes curve of type ij coincides with a θ-Stokes curve of type ji. In this case, the gluing
prescription is chosen to be9

ψ
L
i

ψLj
ψLk

 7→
z x 0
y z 0
0 0 1


ψ

L
i

ψLj
ψLk

 =



√
[ψLi ,ψ

L
j ,ψ

L
k

][ψLi ,ψ
R
j ,ψ

L
k

]
[ψRi ,ψ

R
j ,ψ

L
k

][ψRi ,ψ
L
j ,ψ

L
k

]ψ
R
i√

[ψLj ,ψ
L
i ,ψ

L
k

][ψLj ,ψ
R
i ,ψ

L
k

]
[ψRj ,ψ

R
i ,ψ

L
k

][ψRj ,ψ
L
i ,ψ

L
k

]ψ
R
j

[ψLk ,ψ
L
i ,ψ

L
j ]

[ψR
k
,ψLi ,ψ

L
j ]ψ

R
k

 , (2.12)

where z2 − xy = 1.
9As described in [31], there are other possible choices for the gluing formula. The one we use here

amounts to an “averaged” choice.
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2.3 The spectral coordinates

The spectral coordinates are defined as holonomies of the almost-flat GL(1,C)-connection
∇ab,θ along 1-cycles γ on C̃:

X θγ = Holγ∇ab,θ ∈ C×, γ ∈ H1(C̃,Z). (2.13)

By applying the gluing formulae (2.11) and (2.12), X θγ can be expressed in terms of
the Wronskians of local solutions ψθi (z) to the SL(3)-oper equation (2.1). For the SU(3)
equation (1.12) considered in this article, as we will see in sections 3 and 4, the gluing
prescriptions impose relations among local solutions ψθi (z) in different regions separated
by θ-Stokes curves. After solving such constraints the X θγ are expressed in terms of Wron-
skians of distinguished local solutions, either as asymptotically decaying solutions as z
approaches a singularity or as eigenvectors of the monodromy around a loop. In this way,
X θγ are identified with certain coordinate functions on a moduli space of flat SL(3,C)-
connections. In particular, for certain special loci in the weak-coupling region, as will be
described in section 4, we obtain coordinates of higher length-twist type generalizing com-
plexified Fenchel-Nielsen coordinates [18, 113]. Higher length-twist coordinates have also
been studied in other examples in [46, 58].

The spectral coordinates depend on the following quantities: the phase θ, Planck’s
constant ~, and the potentials P2 and P3 encoding Coulomb branch parameters etc. As long
as the topology of θ-Stokes graph doesn’t change, the dependence on θ is trivial. However,
in the (P2, P3, θ) parameter space there is a codimension-1 locus where the topology of
θ-Stokes graph changes [53, 69]. Such locus corresponds to the existence of 4d BPS states
and is often denoted as the BPS locus. Across the BPS locus, X θγ jump by the Kontsevich-
Soibelman transformation [53, 69, 83].

The spectral coordinates have nice asymptotic properties: as ~ → 0 in the half plane
Hθ defined in (2.8), X θγ is expected to admit the following asymptotic expansion [31]:

X θγ ∼ exp
[1
~

∮
γ
λformaldz

]
. (2.14)

If ~ is exactly located on the center ray of Hθ, or equivalently θ = arg(~), then X arg(~)
γ have

stronger properties [31]. If (P2, P3, θ) is not on the BPS locus, X arg(~)
γ is conjectured to be

the Borel summation of the asymptotic expansion (2.14). If (P2, P3, θ) happens to be on
the BPS locus, then the corresponding Borel transform might have singularities10 and the
asymptotic series might not be Borel summable in which case X arg(~)

γ is expected to pro-
duce the median Borel summation from (2.14). In summary, asymptotic properties of the
spectral coordinates enables one to compute Borel resummed quantum periods series (1.8)
using abelianization methods.

10This happens if γ has non-trivial DSZ pairing with the IR charge of the 4d BPS state appearing at the
BPS locus.
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Figure 2. Central charges of the 12 BPS states at u1 = u2 = 0.

3 The SU(3) equation in the strong-coupling region

From now on, we specialize to the SU(3) equations (1.12), which corresponds to the quan-
tum Seiberg-Witten curve for 4d N = 2 pure SU(3) SYM. In this section we focus on
the analysis in the strong-coupling region, while in section 4 we study (1.12) in the weak-
coupling region.

3.1 The BPS spectrum

In the strong-coupling region, u1 and u2 are small and the BPS spectrum is finite, con-
sisting of 12 BPS states [69, 114–116]. We choose a positive basis {γ1, γ2, γ3, γ4} for the
IR electromagnetic charge lattice. Geometrically, γi corresponds to homology classes in
H1(C̃,Z) where C̃ is the Seiberg-Witten curve. We show representative cycles in these
holomogy classes in figure 4. Identifying the Dirac-Schwinger-Zwanziger pairing with the
intersection pairing in H1(C̃,Z), we obtain the following pairing matrix with respect to the
chosen basis {γ1, γ2, γ3, γ4}: 

0 0 1 −2
0 0 −2 1
−1 2 0 0
2 −1 0 0

 . (3.1)

The 12 BPS states have the following IR charges:

± γ1,±γ2,±γ3,±γ4,±(γ1 + γ3),±(γ2 + γ4). (3.2)

The BPS spectrum respects a Z6 symmetry induced by the action of the discrete R-
symmetry on the central charge operator. In particular, if we take u1 = u2 = 0 the BPS
states have phases 0, π/3, 2π/3, π, 4π/3, 5π/3 and their central charges have the same norm.
This is illustrated in figure 2.

3.2 Stokes graphs

As described in section 2, the Stokes graph appearing in the exact WKB method depends
on a phase parameter θ. In particular, if θ happens to be a phase equal to the central
charge phase of a 4d BPS hypermultiplet the corresponding Stokes graph contains finite
segments or webs. If θ happens to be equal to the phase of a 4d BPS vector multiplet,
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Figure 3. Zoomed-in Stokes graphs at θ ≈ 0.3037π, 0.6963π, π, where we have taken u1 = 0.3,
u2 = 0,Λ = 1 and we focus on details near z = 0. The irregular singularity at z = 0 is denoted
by a blue dot. The irregular singularity at z = ∞ is not shown in the figure. Branch points are
represented as orange crosses, while orange dashed lines denote the choice of branch cuts. Finite
segments or webs are colored in red. In the class S setup [52, 53, 69] they correspond to the
trajectories of 6d BPS strings which give rise to 4d BPS states after the twisted compactification
on C.

the Stokes graph would contain annulus domain. Such phases are usually called critical
phases. For example, taking u1 = 0.3, u2 = 0 and Λ = 1, in figure 3 we show the Stokes
graphs zoomed in around z = 0 at critical phases θ ≈ (0.3037π, 0.6963π, π).11 Details of
the Stokes graphs at large |z| are similar to what is shown in figure 4.

At the special point u1 = u2 = 0, Stokes graphs at critical phases all look the same
except that the sheet labeling gets permuted. As an example, figure 4 shows the Stokes
graph at θ = π/3. In the following, we will derive an expression for the spectral coordinates
in terms of the distinguished local solutions to the SU(3) equation (1.12).

3.3 Solving the abelianization problem

The Stokes graph in figure 4 divides the punctured-plane into 16 regions; in each region we
could choose a basis of local WKB solutions to the SU(3) equation (1.12). In particular,
there are two distinguished local solutions:

• The local WKB solution t near z = 0 characterized as a solution which decays
exponentially as z → 0 along the negative imaginary axis.

• The local WKB solution s near z = ∞ characterized as a solution which decays
exponentially as z →∞ along the negative imaginary axis.

11The Stokes graph at phase θ+ π looks almost identical to that at phase θ, except the arrow directions
are reversed. Therefore it suffices to consider Stokes graphs at phases within (0, π].
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Figure 4. The Stokes graph at θ = π/3 with u1 = u2 = 0 and Λ = 1. The irregular singularity at
z = 0 is represented by a blue dot, while the irregular singularity at z =∞ is not shown in the figure.
Branch points and branch cuts are denoted by orange crosses and orange dashed lines respectively.
The monodromy cut is represented by a brown dotted line. We also show representative cycles
corresponding to the basis charges γ1, γ2, γ3 and γ4 in purple, blue, red and green respectively.
The Stokes graph divides the puntured-plane into 16 regions, which are labeled by circled purple
numbers.

Based on the gluing rules in section 2.2, we could immediately identify a few local
WKB solutions in some regions in figure 4 as s, t or their images under the monodromy
actions M and M−1 around the irregular singularity. However, across the 16 regions there
are 10 local WKB solutions which are not straightforwardly related to the distinuighed
ones which we denote as ψi (i = 1, . . . , 10). The local WKB solutions in the 16 regions are
listed in table 1. Here to write the basis concretely as an ordered tuple we have used the
trivialization of C̃ away from the branch cuts.

The concrete task of abelianization is solving ψi in terms of distinguished local solutions
and the monodromy M . For this purpose, we consider constraints coming from gluing
factors across θ-Stokes curves. As an example, the gluing factor across the θ-Stokes curve
of type 13 between regions 3b and 5a indicates that ψ2,Mt,M2t are co-planar in the
solution space. Let us denote 〈α, β〉 as the two-dimensional plane spanned by α and β

in the three-dimensional space of local solutions, then we have 〈ψ2,Mt〉 = 〈M2t,Mt〉.
Similarly, the gluing factor across the coincident θ-Stokes curves of type 12 and 21 between
regions 8a and 10a implies 〈ψ2,Mψ5〉 = 〈Ms, s〉. For generic M , ψ2 then corresponds to
the intersection between 〈Ms, s〉 and 〈M2t,Mt〉. All of the 10 local WKB solutions ψi
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region basis region basis
1

(
Mt, s, t

)
2

(
Mt,ψ1, t

)
3a

(
Mt,ψ2, t

)
3b

(
ψ2, t,Mt

)
4

(
Mt,ψ3, t

)
5a

(
M2t, t,Mt

)
5b

(
Mt,M−1t, t

)
6

(
Mt,ψ4, t

)
7

(
Mt,ψ5, t

)
8a

(
ψ2,Mψ5,Mt

)
8b

(
M−1ψ2, ψ5, t

)
9

(
ψ6, s, ψ7

)
10a

(
Ms, s,Mt

)
10b

(
s,M−1s, t

)
10c

(
t, s,M−1s

)
11

(
Ms, s,M−1s

)
12

(
Ms, s, ψ7

)
13

(
Ms, s, ψ8

)
14a

(
Ms, s, ψ9

)
14b

(
s,M−1s,M−1ψ9

)
14c

(
M−1ψ9, s,M

−1s
)

15a
(
s,M−1s, ψ10

)
15b

(
ψ10, s,M

−1s
)

16
(
ψ6, s,M

−1s
)

Table 1. Bases of local WKB solutions for the 16 regions shown in figure 4.

could be determined in a similar fashion:
ψ1 = 〈s, t〉 ∩ 〈M2t,Mt〉, ψ2 = 〈Ms, s〉 ∩ 〈M2t,Mt〉,
ψ3 = 〈M2t,Mt〉 ∩ 〈M−1t, t〉, ψ4 = 〈Mt, s〉 ∩ 〈M−1t, t〉,
ψ5 = 〈s,M−1s〉 ∩ 〈M−1t, t〉, ψ6 = 〈Ms, s〉 ∩ 〈Mt, t〉,
ψ7 = 〈M−1s, s〉 ∩ 〈Mt, t〉, ψ8 = 〈M−1s, s〉 ∩ 〈Mt,Ms〉,
ψ9 = 〈M−1s, s〉 ∩ 〈M2s,Ms〉, ψ10 = 〈t,M−1s〉 ∩ 〈Ms, s〉.

(3.3)

3.4 The spectral coordinates

Let Xγi ,12 denote the holonomy of ∇ab,θ along cycles γi shown in figure 4. The Xγi are then
certain spectral coordinates for the flat SL(3,C)-connection ∇. We remark that, although
the Stokes graph in figure 4 was drawn at the special point u1 = u2 = 0, the expressions
for Xγi in terms of distinguished local solutions hold as we move to small non-zero u1,2.
The Stokes graph doesn’t go through topological changes in that process.

Applying the gluing formulae (2.11) and (2.12), these spectral coordinates are given in
terms of the Wronskians of distinguished local solutions:

Xγ1 = [Mt,Ms, s][ψ7, ψ6, s][t,M−1s, s]
[ψ7, s,Ms][t,Mt, s][ψ6, s,M−1s] ,

Xγ2 = [s, t,Mt][M−1ψ2, ψ5, t][s,Mt, t]
[M−1ψ2, t,M−1t][Ms, s,Mt][ψ5, t,Mt] ,

Xγ3 = [ψ5, s, t][M−1s, s, ψ6][M−1t, t,M−1ψ2]
[ψ5, t,Mt][M−1s, s, t][M−1s,M−1ψ2, t]

√
[s,Mt, t][ψ7,Mt, s]
[ψ7, s, ψ6][t, ψ6, s]

,

Xγ4 = [ψ6, t, s][Mt, t, ψ5], [Ms, s, ψ7]
[ψ6, s,M−1s][Mt, t, s][Mt,ψ7, s]

√
[t,M−1s, s][M−1ψ2,M−1s, t]

[M−1ψ2, t, ψ5][s, ψ5, t]
,

(3.4)

12From now on, we suppress the dependence on θ in the notation for spectral coordinates for compactness
reasons.
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~ = eiπ/3 ~ = 1
2eiπ/3

evaluation of (3.4) 1
~Πγ(~) at o(~6) evaluation of (3.4) 1

~Πγ(~) at o(~6)

logXγ1 −3.5756 −3.5873 −10.2481 −10.2482
logXγ2 −3.5756 −3.5873 −10.2481 −10.2482
logXγ3 1.7878− 0.4490i 1.7937− 0.4405i 5.12405 + 1.88253i 5.12412 + 1.88266i
logXγ4 1.7878− 0.4490i 1.7937− 0.4405i 5.12405 + 1.88253i 5.12412 + 1.88266i

Table 2. Comparison of logXγ with the formal quantum periods expansion up to order-~6 at
~ = eiπ/3 and ~ = 1

2eiπ/3 for equation A of (1.12), where we have set u1 = u2 = 0 and Λ = 1.

where ψ2,5,6,7 are intersections of certain planes spanned by the distinguished local solutions
s, t and their images under the monodromy action. They are given explicitly in (3.3).

As a remark, the expressions for Xγi in (3.4) correspond to the critical Stokes graph
(figure 4) at θ = π/3. Following the same procedure as described above, we also obtain
expressions for the spectral coordinates X±γi at θ = π/3+ ε and θ = π/3− ε for small ε. X±γ1

and X±γ2 have the same expression as in (3.4). Meanwhile X+
γ3 (X+

γ4) differs from X
−
γ3 (X−γ4)

by a Kontsevich-Soibelman transformation involving Xγ1,2 . The Xγ3,4 in (3.4) could be
thought of as an average of X±γ3,4 . These properties are consistent with the expected Stokes
phenomena for the Borel-resummed quantum periods, which are controlled by the BPS
spectrum illustrated in figure 2. Concretely, across the phase θ = π/3, spectral coordinates
Xγ where γ has non-trivial DSZ pairing with γ1,2 would jump by a Kontsevich-Soibelman
transformation.

We further remark that the Wronskian expressions of Xγ in (3.4) are the same for
both quantization choices in (1.12); this is because the Stokes graph is determined by
the classical Seiberg-Witten curve as described in section 2.1. However, it is true that
the concrete special solutions such as s and t differ between the two quantization choices
resulting different numerical values of Xγ .

3.5 The asymptotic behavior

As ~ → 0 while staying within the half-plane Hθ defined in (2.8), ~logXγ is conjectured
to have an asymptotic series expansion given by the formal quantum periods series (1.8).
We perform numerical checks against this conjecture. On the one hand, we evaluate (3.4)
by numerically solving (1.12) and computing the Wronskians of distinguished solutions.
On the other hand, we can compute the truncated series in ~ of the formal quantum
periods Πγ(~). For example, we first consider the differential equation A in (1.12). Taking
u1 = u2 = 0 and Λ = 1, numerical results for ~ = eiπ/3 and ~ = 1

2eiπ/3 are listed in table 2.
From table 2 we see that as |~| gets smaller, the spectral coordinates obtained via the

abelianization method get closer to the truncated quantum periods expansion.13 This is
in line with the conjectured asymptotic behavior of spectral coordinates. Unfortunately,

13As Πγ(~) is an asymptotic series, there exist an optimal term where the agreement would be the best.
Here we approximate the optimal term by numerical experiments.
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~ = 1
2eiπ/3

evaluation of (3.4) 1
~Πγ(~) at o(~6)

logXγ1 −11.21119 −11.21120
logXγ2 −11.21119 −11.21120
logXγ3 5.60559 + 2.71805i 5.60560 + 2.71808i
logXγ4 5.60559 + 2.71805i 5.60560 + 2.71808i

Table 3. Comparison of logXγ with the formal quantum periods expansion up to order-~6 at
~ = 1

2eiπ/3 for equation B of (1.12), where we have set u1 = u2 = 0 and Λ = 1.

numerical evaluation of (3.4) becomes rather difficult for small |~|; we are not able to
demonstrate the asymptotic behavior at smaller |~|. Nevertheless, we regard table 2 as the
evidence that the higher-order exact WKB method indeed works. As a further remark, we
notice that the system has a symmetry where Xγ1 = Xγ2 and Xγ3 = Xγ4 . The numerical
values in table 2 do respect such symmetry, which could serve as an extra consistency
check for our analysis. We perform similar analysis for equation B of (1.12). Here the
numerical agreement seems slightly better; we list the values at ~ = 1

2eiπ/3 in table 3.
The asymptotic analysis suggests that both differential equations A and B of (1.12) are
valid quantization choices of the classical Seiberg-Witten curve, although the differential
equation B is the canonical quantization from the gauge theory point of view, as we will
describe in upcoming [47].

4 The SU(3) equation in the weak-coupling region

4.1 A Stokes graph

Now we turn our attention to the weak-coupling region, where the BPS spectrum becomes
very complicated [115]. In particular, we consider parameters under which a Stokes graph
of the higher length-twist type [58] appears. Our motivation for considering such Stokes
graphs is, as briefly described in section 1.2.3, to make connections with gauge theory
calculations. The corresponding spectral coordinates are higher length-twist coordinates,
which are closely related to the quantum a and aD periods. In this paper we construct
the higher length-twist coordinates using abelianization methods, while perspectives from
instanton calculus is investigated in [47].

Taking Λ = 1, u2 = 0, and real u1 > 1.25, at θ = 0 the Stokes graph looks like
figure 5. In particular, we see a ring domain corresponding to the W -bosons; this ring
domain is denoted as the region 7 in figure 5. We choose a basis {γ′1, γ′2, γ′3, γ′4} of the
IR charge lattice as shown in figure 5. This basis is more natural for the analysis in the
weak-coupling region. We will write down the corresponding spectral coordinates Xγ′

i
in

section 4.3. In particular, Xγ′
1,2

are higher length coordinates and Xγ′
3,4

are higher twist
coordinates.
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Figure 5. The Stokes graph at θ = 0, with u1 = 4.5, u2 = 0 and Λ = 1. The notation conven-
tions are the same as those in figure 4. We show representative cycles corresponding to the basis
charges γ′1, γ′2, γ′3 and γ′4 in purple, red, green and blue respectively. This Stokes graph divides the
punctured-plane into 13 regions.

4.2 Solving the abelianization problem

The Stokes graph in figure 5 divides the punctured-plane into 13 regions. The local WKB
solutions in each region turn out to be expressed in terms of the following distinguished
local solutions:

• The local WKB solution t near z = 0 and the local WKB solution s near z = ∞,
characterized as exponentially decaying solution as z → 0 and z → ∞ respectively,
along the negative imaginary axis.

• Eigenvectors α, β and γ of the counterclockwise monodromy M around z = 0. For
the parameter range we consider here, namely real u1 > 1.25, u2 = 0 and ~ ∈ R+,
the eigenvalues of the monodromy M are all real and positive. Moreover, one of the
eigenvalues is 1. Let us denote the eigenvalues of M as µα, µβ and µγ , corresponding
to the eigenvectors α, β and γ respectively. Then α, β and γ are specified according
to the condition µα = 1, µβ > 1 and µγ < 1.14

14One might wonder where this particular specification for α, β and γ comes from. After all, given a
generic monodromy matrixM we have 6 ways of defining (α, β, γ). The choice we take here is the one which
matches the leading asymptotic behavior of spectral coordinates given by the classical periods around the
ring domain.
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region basis region basis
1a

(
t,Mt,M−1t

)
1b

(
M−1t,Mt, t

)
2a

(
Mφ1,Mt, t

)
2b

(
t, φ1,M

−1t
)

2c
(
φ1, t,M

−1t
)

3
(
φ2,Mt, φ3

)
4

(
φ2, φ4, γ

)
5

(
φ5, φ6,M

−1t
)

6
(
φ5, β, φ7

)
7

(
α, β, γ

)
8

(
φ8, β, φ9

)
9

(
φ8, φ10, s

)
10

(
φ11, φ12, γ

)
11

(
φ11,Ms, φ13

)
12a

(
φ14,Ms, s

)
12b

(
s,Ms, φ14

)
13a

(
M2s,Ms, s

)
13b

(
Ms,M2s, s

)
13c

(
s,Ms,M−1s

)
Table 4. Bases of local WKB solutions for the 13 regions shown in figure 5.

We proceed by first listing bases of local WKB solutions for each region in table 4.
In this case there are 14 local solutions φi not straightforwardly related to the above
distinguished solutions and their images under the monodromy action.

Similar to the strong coupling case described in section 3.3, by exploring the constraints
imposed by the gluing condition we could solve for φi. The solutions are given as follows:

φ1 = 〈t,Mt〉 ∩ 〈M−2t,M−1t〉, φ2 = 〈t,M−1t〉 ∩ 〈α, β〉,
φ3 = 〈t,M−1t〉 ∩ 〈Mt, γ〉, φ4 = 〈Mt, γ〉 ∩ 〈α, β〉,
φ5 = 〈t,Mt〉 ∩ 〈α, γ〉, φ6 = 〈t,Mt〉 ∩ 〈M−1t, β〉,
φ7 = 〈M−1t, β〉 ∩ 〈α, γ〉, φ8 = 〈α, γ〉 ∩ 〈Ms,M2s〉,
φ9 = 〈α, γ〉 ∩ 〈β, s〉, φ10 = 〈β, s〉 ∩ 〈Ms,M2s〉,
φ11 = 〈α, β〉 ∩ 〈s,M−1s〉, φ12 = 〈α, β〉 ∩ 〈Ms, γ〉,
φ13 = 〈Ms, γ〉 ∩ 〈s,M−1s〉, φ14 = 〈s,M−1s〉 ∩ 〈M2s,Ms〉.

(4.1)

4.3 The spectral coordinates

The spectral coordinates Xγ′
1,2

could be identified with the higher length coordinates on
the moduli space of flat SL(3,C)-connections. They are simply given by the corresponding
eigenvalues of the monodromy action:

Xγ′
1

= µβ , Xγ′
2

= µγ . (4.2)

The spectral coordinates Xγ′
3,4

are higher twist coordinates. We express them via
Wronskians of the distinguished local solutions:

Xγ′
3

=

√
− [Ms, φ14, s][Ms, φ8, s][φ10, φ9, φ8][β, φ7, φ5][β,M−1t, φ5][φ6, φ1,M−1t][t,M−1t,Mt]

[φ10, φ14, s][β, φ9, φ8][β, s, φ8][φ6, φ7, φ5][t, φ1,M−1t][t, φ5,M−1t][φ2, φ3,Mt]

×

√
[t, φ3,Mt][φ2, φ4, γ][φ2, β, γ][α, φ9, β][φ8, φ10, s][φ8,M2s, s]

[φ2,M−1t,Mt][α, φ4, γ][φ8, φ9, β][φ8, γ, β][Ms,M2s, s][Ms, φ10, s]
,
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Xγ′
4

= 1
µα

√
[s, φ14,Ms][s, φ11,Ms][φ13, φ12, φ11][γ, α, β][γ, φ5, β][φ7, φ6, φ5][t,M−1t,Mt]

[φ13, φ14,Ms][γ, φ12, φ11][γ,Ms, φ11][φ7, α, β][M−1t, φ6, φ5][M−1t, β, φ5][φ2, φ3,Mt]

×

√
[t, φ3,Mt][φ2, φ4, γ][φ2, β, γ][α, φ12, γ][φ11, φ13,Ms][φ11,M−1s,Ms]

[φ2,M−1t,Mt][α, φ4, γ][φ11, ψ12, γ][φ11, β, γ][s,M−1s,Ms][s, φ13,Ms] , (4.3)

where the local WKB solutions φi are given in (4.1).
The expressions in (4.3) look rather formidable. As a consistency check and an appli-

cation, we consider the exact quantization condition (EQC) for a spectral problem relevant
to the SU(3) equation (1.12). Imagine we would like to study a certain bound state solu-
tion to (1.12) living along a one-dimensional path between z = 0 and z = ∞, where the
solution decays as z approaches 0 and ∞. For example, suppose the one-dimensional path
goes into z = 0 and z = ∞ along the negative imaginary axis, then the condition for the
existence of such bound states is that the distinguished solution s decaying into z = 0 is
proportional to the distinguished solution t decaying into z = ∞ after analytical continu-
ation to a common region. Substituting this condition into (4.3), the complicated-looking
expressions simplify to

1
µβ
Xγ′

3
= 1, µβXγ′

4
= 1. (4.4)

Equation (4.4) is regarded as the EQC for such bound states.
In [61] the authors studied EQC for a family of exactly solvable deformed Hamilto-

nians obtained by quantizing the Seiberg-Witten curve for 4d N = 2 SU(N) SYM in the
hyperelliptic form. In the case of SU(3) SYM, the Seiberg-Witten curve we use here comes
from class S construction; it is in the dual parametrization of the Seiberg-Witten curve
considered in [61]. It would be interesting to clarify the relation between (4.4) and the
EQC in [61] derived from certain 4d limit of TS/ST correspondence.

4.4 The asymptotic behavior

Similar to section 3.5, here we perform numerical checks against the asymptotic behavior
of spectral coordinates. Taking u1 = 4.5, u2 = 0 and Λ = 1, some numerical results for
equation A and B of (1.12) are listed in table 5 and table 6 respectively.

In the evaluation of logXγ′ using (4.2) and (4.3), similar to what happens in the strong
coupling region, we found it difficult to perform numerical evaluation at small ~. Compared
to the strong coupling region, here the numerical evaluation contains an extra step, namely
diagonalizing the monodromy matrix M and finding its eigenvalues and eigenvectors. As
~ gets rather small, one of the eigenvalues for M becomes very small, introducing further
difficulty in the numerical analysis. Nevertheless, from table 5 and table 6 one can see
that as ~ goes from 1 to 0.7, ~logXγ′ becomes closer to the truncated quantum periods
expansion. This provides evidence for the conjectured asymptotic behavior of spectral
coordinates.
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~ = 1 ~ = 0.7

evaluation (4.2-4.3) 1
~Πγ′(~) at o(~2) evaluation (4.2-4.3) 1

~Πγ′(~) at o(~2)

logXγ′
1

11.90 11.98 18.14 18.17

logXγ′
2

−11.90 −11.98 −18.14 −18.17

logXγ′
3

5.93 + 0.94i 5.99 + 0.96i 9.080 + 2.692i 9.086 + 2.697i

logXγ′
4

−5.93− 0.94i −5.99− 0.96i −9.080− 2.692i −9.086− 2.697i

Table 5. Comparison of logXγ′ with the formal quantum periods expansion up to order-~2 for
equation A of (1.12) at ~ = 1 and ~ = 0.7, where we have set u1 = 4.5, u2 = 0 and Λ = 1.

~ = 1 ~ = 0.7

evaluation (4.2-4.3) 1
~Πγ′(~) at o(~2) evaluation (4.2-4.3) 1

~Πγ′(~) at o(~2)

logXγ′
1

13.411 13.408 19.1723 19.1715

logXγ′
2

−13.411 −13.408 −19.1723 −19.1715

logXγ′
3

6.67 + 2.71i 6.71 + 2.66i 9.61 + 3.89i 9.59 + 3.88i

logXγ′
4

−6.67− 2.71i −6.71− 2.66i −9.61− 3.89i −9.59− 3.88i

Table 6. Comparison of logXγ′ with the formal quantum periods expansion up to order-~2 for
equation B of (1.12) at ~ = 1 and ~ = 0.7, where we have set u1 = 4.5, u2 = 0 and Λ = 1.
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