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1 Introduction

High-energy partons traveling through hot or cold QCD matter receive random transverse
momentum kicks from multiple small-angle scattering with the medium. The typical total
transverse momentum change p⊥ after traveling through a length L of medium involving
many such interactions is parametrized as

〈p2
⊥〉 = q̂L, (1.1)
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where q̂ is determined by characteristics of the medium. q̂ also appears in formulas for
high-energy parton splitting rates in the medium. For example, formalism developed by
Baier, Dokshitzer, Mueller, Peigné, and Schiff [1–4] and Zakharov [5–7] (BDMPS-Z) gives
(in appropriate limits) the in-medium gluon splitting rate1

dΓ
dx

= αsPg→gg(x)
2π

√
(1−x+x2)q̂A
x(1−x)E (1.2)

for g → gg with energies E → xE, (1−x)E. (The subscript of q̂A indicates the q̂ appropriate
for the adjoint color representation, i.e. for gluons, and CA=Nc is the adjoint-representation
quadratic Casimir.)

In the original picture (figure 1a) of momentum broadening motivating (1.1), q̂ is
determined by small-angle elastic scattering rates of high-energy particles scattering from the
medium. Liou, Mueller, and Wu (LMW) [9] realized that soft gluon radiation accompanying
elastic scatterings (figure 1b) can also carry away transverse momentum and so change p⊥
in an important way. Formally, this effect is suppressed by a power of αs but is enhanced
by what can be a potentially large double logarithm. They found that such logarithms
could be absorbed into an effective value q̂eff = q̂ + δq of q̂. To leading-log order, the soft
radiation effects are accounted for by

δq̂ = CAαs
2π ln2

(
L

τ0

)
q̂, (1.3)

where τ0 is the scale of the mean-free path for typical small-angle elastic scattering in
the medium. They also worked out how to resum the effects of multiple soft gluon
bremsstrahlung to leading-log order. Later, various authors [10–12] investigated similar
effects for in-medium splitting rates such as (1.2). That is, what would be the effect on
q → qg or g → gg (figure 2a) of having an additional softer bremsstrahlung (figure 2b)
occur during an underlying, harder in-medium splitting process. They again found a double
logarithm. Moreover, they found that the effect was completely accounted for, at leading-log
order, simply by making the same modification (1.3) to the q̂ appearing in splitting rates
such as (1.2). So, there are important soft radiative corrections, but they are universal in
that they can be absorbed into q̂ in a way that is independent of whether your interest is
p⊥ broadening or splitting rates.

In the context of p⊥ broadening, LMW also computed the single-log correction, sub-
leading to the double-log correction (1.3). In this paper, I examine whether the single-log
correction is also universal. At first sight, it may not seem to be. Ref. [13] recently extracted,
in the large-Nc limit, the soft single-log corrections to the hard splitting rate (1.2) from
more-general results for g → ggg (e.g. figure 2b with nothing soft). As I will review, the

1It’s difficult to figure out whom to reference for the first appearance of (1.2). BDMS [4] give the q→qg
formula in their eq. (42b) [with the relevant limit here being the infinite volume limit τ0 →∞ for their time
τ0]. They then discuss elements of the g→gg case after that but don’t quite give an explicit formula for the
entire rate. (They are not explicit about the formula for ω0.) Zakharov makes a few general statements
about the g→gg case after eq. (75) of ref. [7]. As an example from ten years later, the explicit formula is
given by eqs. (2.26) and (4.6) of ref. [8] in the case where s represents a gluon.
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large E 〈p2
⊥〉=q̂L

distance L� τ0

τ0

(a)

soft ωy=yE � E

〈p2
⊥〉=q̂effL

(b)

Figure 1. (a) A cartoon of transverse momentum broadening as a high-energy particle traverses a
QCD medium. The arrows represent small transverse momentum kicks from the medium due to
small-angle elastic scattering with the medium. (b) The same, but here some transverse momentum
is also carried away by a relatively soft (but still high-energy) bremsstrahlung.

large E
hard xE

hard (1−x)E

(a)

soft ωy=yE � E

(b)

Figure 2. (a) A hard, underlying splitting process (bremsstrahlung or pair production) with energies
E → xE, (1−x)E. (b) One example of adding an additional, softer gluon bremsstrahlung, which
should be understood as occurring during the formation time of the underlying, harder splitting
process (a).

coefficient of that single log is a slightly complicated function of the energy fraction x of
the daughter of the hard splitting process (figure 2a), which has no analog in the discussion
of p⊥ broadening (figure 1a). Nonetheless, we will see that there is a connection. I will
show that the slightly complicated soft single-log correction to hard splitting can be exactly
reproduced from the simpler LMW result for the soft single-log correction to p⊥ broadening.
We will see that this requires re-doing the BDMPS-Z calculation of (1.2) in a more general
way that allows incorporation of the LMW result.

That calculation will verify, in a highly non-trivial example, that the soft single-log
corrections to q̂ are universal (and that they completely account for all soft single-log
corrections to hard splitting). This will also be an important cross-check of the more general
calculation of the non-soft overlapping splitting g → gg → ggg in refs. [14–18].

It would be nice to also have a relation between the single logs that is not embedded in
the cogs of a re-derivation of the BDMP-Z formula. Inspired by that equivalence, I later find
a way to algebraically rewrite the formula for the previously known single-log correction [13]
to hard splitting in ways that more directly connect to the LMW result for p⊥ broadening.
That version will be a re-writing, not a re-derivation, of the single logs. But it will isolate
more clearly the physics of the single log result and may be useful in applications.

Outline. In the next section, I review the phase space for soft emission that gives rise to
double logarithms, and I give some important caveats about exactly what will be checked
in this paper regarding single logarithms. In section 3, I then quote the already-known
results for single logarithms from soft radiative corrections to p⊥ broadening and to hard
g→gg splitting. I also give a short, qualitative review of the formalism underlying LMW’s
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calculation for p⊥ broadening and explain why one cannot instantly apply their q̂eff result
to the usual rate formula for hard g→gg splitting. Section 4 briefly reviews the BDMPS-Z
based derivation of the hard splitting rate (1.2) as preparation for modifying that derivation
in section 5 to properly incorporate the q̂eff from p⊥ broadening. Section 5 will successfully
reproduce the single logarithm previously extracted in ref. [13], but using here a much
simpler calculation that assumes universality of soft radiative corrections to q̂. We will
also see that, at the level of soft radiative corrections, there is a difference between a q̂eff
involving (i) one particle in the amplitude and one in the complex conjugate amplitude
vs. (ii) two particles in the amplitude. One gets both types of q̂’s appearing in splitting
calculations; to my knowledge, a difference between (i) and (ii) in this context has not
previously been demonstrated.2 In section 6, I show a variety of ways of writing the final
result for soft corrections to hard g→gg splitting in terms of the result for q̂eff from p⊥
broadening, along with some qualitative explanation of the results. The most compact
formulation is presented in section 7, where I give my conclusions.

2 Caveats and assumptions

2.1 The double log region

Throughout this paper, I will draw diagrams for contributions to splitting rates using
the conventions of ref. [14], which are adapted from Zakharov’s description of splitting
rates [5–7]. In figure 3a, the blue factor represents the calculation of the splitting amplitude
in (lightcone) time-ordered perturbation theory. The red factor is the conjugate amplitude.
Figure 3b shows the same time-ordered contribution to the rate, depicted by sewing together
the amplitude and conjugate amplitude. I then follow Zakharov’s picture of re-interpreting
the right-hand diagrams as three particles propagating forward in time. Only the high-
energy particle lines are shown in these diagrams: the lines implicitly interact with the
medium as they propagate, and there is an implicit average of the rate over the randomness
of the medium.

Figure 4 depicts a soft radiative correction (the magenta line) to the underlying splitting
process of figure 3b. Throughout this paper, I will refer to the energy of the initial high-
energy particle in the underlying hard splitting process as E and to the energy of the soft
radiative gluon as

ωy ≡ yE, (2.1)

as in figure 2. As shown in figure 4, I define ∆ty to be the separation between times of the
y emissions in the amplitude and conjugate amplitude, which is to be integrated over.

For the underlying hard splitting process E → xE, (1−x)E, it will be convenient for
qualitative, parametric discussions to take xE to be the smaller of the two daughters. The

2Caron-Huot speculated on this possibility at the end of section 3.1 of ref. [19]. He also speculated in
private correspondence (2018) that there would be a difference corresponding to iπ terms, which is indeed
the type of difference I now find in (5.22). As motivation, he pointed me to the iπ terms in eq. (51) of
ref. [20], which represents an NLO dipole-dipole scattering amplitude in vacuum computed from light-like
Wilson lines.
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=

x+ x+

xE

)*(

E

time time

1

2

3

(a) (b)

Figure 3. (a) A time-ordered contribution to the rate for single splitting, such as g → gg of
high-energy gluons, with amplitude in blue and conjugate amplitude in red. (b) A single diagram
representing this contribution to the rate. In both cases, all lines implicitly interact with the medium.
We need not follow particles after the emission has occurred in both the amplitude and conjugate
amplitude because I will consider only the p⊥-integrated rate. (See, for example, section 4.1 of
ref. [14] for a more explicit argument, although applied there to a more complicated diagram.) Nor
need we follow them before the first emission because we approximate the initial particle as on-shell.
Only one of the two time orderings that contribute to the rate is shown above.

eventual derivations and results, however, will be symmetric with respect to x→1−x. I will
not assume x� 1 (though that case is also covered by the analysis provided y � x). It’s
sometimes convenient to also write the x daughter energy as ωx:

ωx ≡ xE. (2.2)

In my analysis, “soft” y means soft compared to x but still high-energy compared to
medium scales:

(medium scale)� ωy � ωx. (2.3)

(For a quark-gluon plasma, “medium scale” above just means the temperature T .) Paramet-
rically, I will refer to the typical duration of the splitting process as the x formation time

tform(x) ∼
√
ωx
q̂

=
√
xE

q̂
. (2.4)

Here and throughout, I will study the simple case where the medium is homogeneous over
the formation time (and corresponding length).

With this notation, the shaded areas of figure 5 correspond to the parametric region of
(ωy,∆ty) that generates the double log.3 If one strictly sticks to the q̂ approximation, the
double log region corresponds to

ωy
q̂ tform(x) � ∆ty � tform(y). (2.5)

The second inequality just says that the time ∆ty for the y emission must fit within the
y formation time tform(y) ∼

√
ωy/q̂. [For ∆t � tform(y), scattering with the medium

3For small x, this parameter region for (ωy,∆ty) is equivalent to that discussed in LMW [9] in the context
of leading-log resummation.
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∆ty

y small

x

time

1

2

3

Figure 4. The rate diagrams which (together with their complex conjugates) produce the double
logarithm [10–12]. On each end, the relatively-soft y gluon may connect to any of the three lines of
the underlying splitting process. In my analysis, all of the underlying lines will also be gluons. The
magenta color of the y gluon is used here to indicate that it could be colored blue or red depending
on whether its left-hand end is connected to a blue or red line, respectively.

decoheres the y emission process.] The physical significance of the first inequality is more
apparent by re-expressing (2.5) as constraints on transverse momenta:4

k2
⊥x � k2

⊥y � q̂∆ty. (2.6)

The first inequality is transverse momentum ordering k⊥y � k⊥x and ensures that the y
emission does not disrupt the underlying x-emission process. In this language, the second
inequality ensures that the accumulated transverse momentum transfer from the medium
during the y emission (∆k⊥y ∼

√
q̂∆ty ) does not disrupt the soft y-emission process.

If (2.5) were the only constraints, then the double-log region would cover an infinite
area between the two sloped lines in figure 5, which means that the double log would be
infrared divergent. This divergence is cut off, however, because the q̂ approximation is a
multiple-scattering approximation, and it becomes senseless for describing the y emission
once the time ∆ty for that emission becomes less than or order the mean-free time τ0 for
small-angle collisions with the medium. This is the origin of the ∆t� τ0 constraint on the
double log region in figure 5.

Figure 5 is similar to the double-log region discussed by LMW [9] for transverse
momentum broadening, except that the duration tform(x) of the underlying hard splitting
process plays the role here that the length L of medium traversed plays in the case of
transverse momentum broadening.

4One way to see the equivalence is to consider that, ignoring medium effects, emission of the y gluon
would be off-shell in energy by ∆Ey ∼ k2

⊥y/2ωy. By the uncertainty principle, this can only last a
time ∆ty ∼ 1/∆Ey without some interaction that can put it on shell, and so k2

⊥y ∼ 2ωy/∆ty. Similarly,
k2
⊥x ∼ 2ωx/∆tx, but the dominant time scale in the underlying splitting process is ∆tx ∼ tform(x). Then (2.6)

translates to (2.5).
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lnωy

ln
∆
t
y

∆t ∼ tform(x) ∼
√
ωx/q̂

∆ty ∼ τ0

ω
y
∼
q̂τ0

tform
(x)

ω
y
∼
ω
x

k⊥
y
∼
k⊥
x

∆ty
∼ t fo

rm
(y)
∼
√
ωy/

q̂

Figure 5. The double-log region of the soft gluon (y) emission parameter space in figure 4
corresponds to all of the shaded regions above. Single logs are determined by the behavior at the
boundaries of this region. In this paper, I restrict attention to the red-colored region and the single
log contributions from its boundaries.

2.2 Significant caveats

Double logs arise from integration over the shaded parametric regions of figure 5. Sub-
leading, single logs are determined by the behavior of the integration at/near the boundaries
of the double log region. The goal of this paper is to first show how to apply LMW’s
momentum broadening results to find single log corrections to splitting processes, and to
then verify that result by comparison with single logs extracted much more laboriously [13]
from generic-y (not specifically small-y) results [18] for double splitting g → ggg. However,
those generic-y calculations have so far been performed only in the q̂ approximation, and
so cannot account for single logs coming from the horizontal lower boundary ∆t ∼ τ0 in
figure 5. I will not attempt to study the physics of the breakdown of the q̂ approximation.
Instead, in this paper I will restrict attention to the double and single logs coming from the
red region of figure 5, where the q̂ approximation can be used at all the boundaries.

The double logs are universal for any value of Nc. The generic-y formulas of ref. [18],
and so the single logs extracted from them, were derived in the large-Nc limit. Similarly,
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an important step in this paper will be justified by appeal to the large-Nc limit. Like the
double logs, the result might be the same for general Nc, but I do not currently know a
way to argue it.

2.3 Customary caveats

For the purpose of this paper, I will treat the original “bare” value of q̂ in q̂eff = q̂ + δq̂

as a constant, independent of energy. There are caveats and counter-caveats concerning
logarithmic dependence of that approximation which I will simply ignore in this paper.5

In general, of course, αs depends on scale. The αs associated with a high-energy
bremsstrahlung (ωy � the medium scale) may be moderately small even if the medium
itself is strongly coupled. I will formally assume that this “bremsstrahlung αs” is small.
For simplicity, I will also ignore its running (other than in the motivation for treating it
as small).

3 Known double and single log results

3.1 Soft corrections to hard splitting g → gg

Having explained what will be calculated, I can now quote the single log result found in
ref. [13] for g→gg. For small y, the differential rate corresponding to the soft-radiative
corrections of figure 4 was found to be

δ

[
dΓ
dx

]
= −CAαs

4π

[
dΓ
dx

]
LO

∫
y�x

dy
ln y + s̄(x)

y
, (3.1a)

where [dΓ/dx]LO is the leading-order splitting rate (1.2) and

s̄(x) = − ln
(
16x(1−x)(1−x+x2)

)
+ 2

[
x2(ln x− π

8
)

+ (1−x)2(ln(1−x)− π
8
)]

(1− x+ x2) . (3.1b)

The ∆ty of figures 4 and 5 has already been integrated over. In (3.1a), the designation
“y � x” for the soft integration region should be understood as shorthand for the more
general and symmetric condition that y � min(x, 1−x).

If one integrates (3.1a) with a small IR cut-off ycut�1 on y, the IR logarithms from (3.1a)
become6

δ

[
dΓ
dx

]
= CAαs

4π

[
dΓ
dx

]
LO

[
1
2 ln2 ycut + s̄(x) ln ycut

]
. (3.2)

5For example, for fixed-coupling calculations for a weakly-coupled medium, the large-q⊥ Rutherford tail
dΓel/d(q2

⊥) ∝ α2
s/q

4
⊥ of the elastic scattering cross-section causes logarithmic dependence of 〈q2

⊥〉 on the
upper scale of q⊥ relevant to the process under consideration. On the other hand, including running of αs

as dΓel/d(q2
⊥) ∝ α2

s (q⊥)/q4
⊥ is enough to eventually tame that dependence if the relevant upper scale Q⊥ for

q⊥ is large enough that αs(Q⊥) is small compared to the strength of αs at medium scales. (See, for example,
section VI.B of ref. [21], which combined earlier observations of refs. [3] and [22].)

6If x� 1, the single log coefficient (3.1b) becomes s̄(x) ' − ln x− 4 ln 2− π
4 . In this limit, one might

wish to re-organize the classification of double vs. single logs in (3.2) in terms of ln(ycut/x) rather than
ln ycut. (See section 4.2 of ref. [18] for more discussion.) In order to be able to also talk about the case x∼1
of an underlying hard g→gg splitting (and also to symmetrically treat the limits x� 1 and 1−x� 1), I
find it easiest to leave formulas in terms of ln ycut.
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The IR cut-off ycut on y is equivalent to a cut-off (ωy)cut = ycutE on the soft gluon energy
ωy. In the application to figure 5, this cut-off would be chosen as the left boundary of the
red region, in order to get the contribution to large double and single logs from the entire
red region. However, when comparing results to the approach in this paper, it will be easier
to just focus on the un-integrated version, given by the integrand of (3.1a). I will loosely
refer to s̄(x) as the “single-log coefficient,” but this is really short-hand for the relative
coefficient of the term generating the single log in (3.1a) compared to the one generating
the double log.

I should emphasize that the terms single and double log in this paper refer solely to the
dependence on the soft gluon y, and they do not directly refer to whether or not particular
terms have logarithmic dependence on the underlying hard gluon energy fraction x. All the
terms in (3.1b) will be considered part of the “single-log coefficient.”

3.2 LMW logarithms for p⊥ broadening

The LMW [9] soft radiative correction to the q̂ for p⊥ broadening, coming from the analog
of the red region of figure 5, is7

δq̂LMW ' q̂
[
−CAαs

2π

∫
y�x

dy
ln y + s̄LMW(∆b)

y

]
(3.3a)

in my notation, with

s̄LMW(∆b) = 2 ln
(

1
4(∆b)2

√
1
2 q̂AE

)
+ 2γE. (3.3b)

As I now briefly review, the transverse separation ∆b appearing above arises in discussions
of p⊥ broadening from a slightly formal procedure. Later, in the case of soft corrections to
hard splitting rates, it will play a more direct role.

3.2.1 Review: the “potential” V (∆b)

One way to describe the physics of figure 1a is to say that random kicks from the medium
cause the p⊥ of the high-energy particle to make a random walk in p⊥-space. This is like a
p⊥ version of Brownian motion, and so can alternatively be described by a p⊥ version of
the diffusion equation:

∂tρ(p⊥, t) = κ∇2
p⊥
ρ(p⊥, t), (3.4)

where ρ is the probability distribution in p⊥. The coefficient κ is the p⊥-space diffusion
constant, which is related to q̂ by κ = q̂/4. Fourier transforming (3.4) from p⊥-space to
transverse position space b gives

∂tρ(b, t) = −C(b) ρ(b, t) (3.5)
7Eq. (3.3a) comes from adding LMW [9] eqs. (29) and (34) for what they call their (b) and (a) boundaries

of the double log region. Then divide both sides by ω, and integrate over ω. For more details and a notation
translation table, see my appendix A, taking real parts throughout the discussion there. Of particular
importance: the discussion in LMW’s main text is in the context of the large-Nc approximation, where their
quark q̂ corresponds to my q̂A/2.
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with
C(b) = κb2 = 1

4 q̂b
2. (3.6)

This is the diffusive (i.e. q̂) approximation to what is often called, more generally, the
collision kernel C(b) in the literature.8

It will be useful for later discussion to multiply both sides by i so that the equation takes
the mathematical form of a 2-dimensional “Schrödinger equation” (with no kinetic term):

i∂tρ(b, t) = V (b) ρ(b, t). (3.7)

with
V (b) = −iκb2 = − i

4 q̂b
2. (3.8)

For this reason, the q̂ approximation is sometimes called the “harmonic oscillator approxi-
mation.” Note, however, that the spring constant of this harmonic oscillator is imaginary.
Formally, (3.8) would mean that

q̂ = 2iV ′′(0). (3.9)

Analogous to how actual potential energies between static test charges may be computed
using Wilson loops, the “potential” V (b) may be related to the type of Wilson loop shown
in figure 6 [23, 24], which has long light-like sides, transverse extent ∆b, and expectation
∼ e−iV (∆b)T (where T is the long time duration of the loop). The color coding I have used
for the long sides of the Wilson loop follows the same convention as figure 3. In this case,
the blue line can be thought of as roughly representing an amplitude for a high-energy
particle traveling through and interacting with the medium, like in figure 1a. The red line
can be roughly thought of as a contribution to the conjugate amplitude, and together they
give information related to rates. For example, formally, q̂, which contains one piece of
information about rates, can be extracted from (3.9).

There are many subtle details to contend with if one wants to make the Wilson loop
definition precise. One consideration is how exactly to implement the different time-ordering
prescriptions of the blue and red lines while keeping the Wilson loop gauge invariant [25],
but that’s a detail that we’ll be able to ignore. Another, related consideration is whether one
should think of the light-like Wilson loop of figure 6 as a limiting case of slightly time-like
Wilson loops or of slightly space-like Wilson loops. Though one may mostly read this paper
without worrying about this detail, a little discussion here may clarify some later arguments.

8If one starts with more general considerations of elastic scattering from the medium, instead of the
diffusion approximation (3.4), one could start with the Fokker-Plank equation

∂tρ(p⊥, t) =
∫
d2q⊥

dΓel

d2q⊥

[
ρ(p⊥−q⊥, t)− ρ(p⊥, t)

]
,

where Γel is the cross-section for elastic scattering from the medium. By again switching to b space, this
would lead to (3.6) with

C(b) =
∫
d2q⊥

dΓel

d2q⊥
(1− eib·q⊥ ).

Formally, (3.6) is the small-b approximation to this result. As energy increases, deflections of the high-energy
particles become smaller, and so changes in their transverse position become small. The high-energy limit
corresponds to the small-b limit and so to the q̂ approximation (with caveats about log dependence of q̂).
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Figure 6. A Wilson loop with transverse separation ∆b and long, light-like sides.

Physically, the particles represented by the long sides of the Wilson loop are moving slightly
slower than the speed of light (at the very least because of medium-induced masses). On
the other hand, as explained by Caron-Huot in ref. [19], a very slightly space-like loop is
also sensitive to the contributions to q̂ [or more generally C(b)] that are due to scattering
of the high-energy particles from pre-existing fluctuations in the gauge fields of the medium.
That includes, for example, all the physics of elastic scattering9 from the medium. For the
slightly space-like loop, lack of causal connection implies that operators at different points
on the loop commute with each other, and so it matters not how the lines of the loop are
time ordered. This will be an advantage later on for making certain generic arguments. (It
is also the definition relevant to a recent method for extracting C(b) from lattice simulations
for weakly-coupled quark-gluon plasmas [26, 27].) However, when it comes to calculating
the soft radiation effect δq̂, we must instead think of the slightly time-like loop. And we
will see later that how the lines are time-ordered impacts the values of different δq̂’s arising
in later application of soft corrections to energy loss.

Overall, I will consider the bare q̂ to be defined by the slightly space-like loop (so
that time-ordering does not matter), with the additional caveat that (at the very least)
no radiation effects corresponding to ωy > ycutE will be included in the bare q̂, since
ycutE < ωy � ωx is going to represent the soft radition (with IR cut-off) effects that will
define δq̂. Fortunately, a more rigorous definition of bare q̂, and its separation from δq̂, will
not be necessary for my purpose in this paper.

3.2.2 LMW’s calculation

Imagine that q̂ is initially determined from scattering of the hard particles from the medium,
as in figure 1a. LMW’s calculation of the soft radiative corrections of figure 1b was equivalent
to computing the diagrams shown in figure 7. In this language, their result was that the
soft-radiation correction to the initial potential (3.8) is

δVLMW(∆b) = − i4δq̂(∆b)× (∆b)2, (3.10)

9For the purpose of this discussion, the term “elastic” means that the high-energy particle does not split;
it need not assume anything about what happens to particles in the medium.
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Figure 7. The diagrams underlying the LMW calculation. The Wilson lines and the radiated soft
gluon line are all implicitly interacting with the medium.

with δq̂(∆b) given by (3.3a). Since that δq̂(∆b) depends logarithmically on ∆b, it does not
have a finite limit as ∆b → 0. That is, δVLMW is proportional to

[
ln(∆b) + const

]
(∆b)2

at small ∆b, not a truly quadratic potential. In any application, the value of δq̂ will
depend logarithmically on the relevant scale of ∆b as so on the relevant scale of ∆b’s
Fourier conjugate, q⊥.

This situation has long been known to arise even in the context of leading-order
perturbative calculations of the original elastic-scattering q̂ for a weakly-coupled quark-
gluon plasma (when running of the coupling is not included). In that case, it is an issue
related to large-q⊥ tails of the differential Rutherford scattering cross-section and to the
fact that, mathematically, asking for the formal expectation 〈p2

⊥〉 (which can be dominated
by very rare events with very large p⊥) can be a very different question than asking for
the “typical” or median value of p2

⊥.10 One may resolve these issues in the context of p⊥
broadening, as briefly mentioned by LMW. We will not need to think about this at all,
however. For the application of this paper, I will show that the LMW result (3.3) for δq̂(∆b)
can be used as is, without any ambiguity of interpretation.

3.3 A seeming disconnect

The problem with immediately making a connection between the LMW single log coeffi-
cient (3.3b) for soft radiative corrections to p⊥ broadening and the single log coefficient (3.1b)
extracted from soft corrections to hard splitting processes is that the LMW coefficient
depends on one separation ∆b. For the hard splitting process, there are three different,
relevant transverse separations

bij ≡ bi − bj (3.11)

as depicted in figure 8. Moreover, these separations are not fixed: they are functions of time.
Quantum mechanically, one must sum over all paths the three particles can take during
the emission process. In order to see how to make use of the LMW result to include soft
corrections, we need to first drill down and review some details of the usual leading-order
BDMPS-Z calculation of the underlying hard splitting rate.

10See section 3.1 of BDMPS ref. [3]. See also, for example, the discussion in section 1.B and appendix A
of ref. [28].
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Figure 8. The hard splitting rate diagram, with emphasis on the three different transverse
separations bij . The longitudinal momentum fraction labels (x1, x2, x3) are shown for later reference.

4 Review: leading-order BDMPS-Z splitting rates in q̂ approximation

4.1 The “Hamiltonian”

I’ll use Zakharov’s version of the BDMPS-Z formalism for splitting rates. This corresponds
to thinking of the three lines in figure 3 (two particles in the amplitude and one in the
conjugate amplitude) as a total of three particles evolving forward in time. Zakharov then
treats the evolution as, formally, a type of quantum mechanics problem. A quick, heuristic
way to understand the basic formulation is to first ignore interactions with the medium. In
that case, the two particles in the amplitude will evolve quantum mechanically as e−iε1t

and e−iε2t, where, for high-energy particles moving nearly collinear with the z axis,11

εi '
√
p2
z + p2

⊥ ' |pz|+
p2
⊥

2|pz|
. (4.1)

The one particle in the conjugate amplitude evolves instead as (e−iε3t)∗ = e+iε3t. Altogether,

the free system evolves as e−iHt with H = p2
⊥1

2|pz1 |
+ p2

⊥2
2|pz2 |

− p2
⊥3

2|pz3 |
. Now include (medium-

averaged) interactions with the medium by including a three-body “potential” analogous to
the two-body potential V (∆b) discussed previously:

H = p2
⊥1

2|pz1 |
+ p2

⊥2
2|pz2 |

− p2
⊥3

2|pz3 |
+ V(3)(b1, b2, b3), (4.2)

where bi are the 2-dimensional transverse positions of the particles conjugate to p⊥i. There
are various situations, such as (i) the weakly-coupled limit of a quark gluon plasma or (ii)
the large-Nc limit, where one may argue that the 3-body potential decomposes into a sum of
2-body potentials. However, in the context of the harmonic oscillator (i.e. q̂) approximation
to potentials, there is a very simple, completely general argument: any quadratic potential
that is invariant under translations and rotations in the transverse plane12 can be written
in the form

V(3)(b1, b2, b3) = c12b
2
12 + c23b

2
23 + c31b

2
31 (4.3)

for some constants cij .
11For simplicity, I am assuming that the energies are high enough that bare and medium-induced particle

masses meff are ignorable compared to typical p⊥ values for the splitting process. In an infinite medium,
this is parametrically (ωxq̂)1/2 � m2

eff .
12The medium need not be invariant with respect to large transverse translations. All that is relevant here

is whether it is, to good approximation, transverse translation invariant over the scale of the tiny transverse
deflections that very high-energy particles pick up in a formation length. My analysis in this paper ignores
the possibility that the medium may not be sufficiently invariant under rotations in the transverse plane in
situations where the jet is cutting across the flow of the medium. See [29].
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In this paper, I will focus on the case of g→gg splitting since that’s the underlying hard
process for the soft radiation single log coefficient (3.1b) that I eventually want to reproduce
from LMW’s corrections to momentum broadening. In that case, the usual decomposition
used in the literature would correspond to

V(3)(b1, b2, b3) = − i
8 q̂A(b212 + b223 + b231). (4.4)

The coefficients in (4.4) can be motivated in various ways, such as from arguments for
weakly-coupled plasmas. However, I will now review a more general argument in the context
of the q̂ approximation (adapted, with some additional clarification, from refs. [14, 30]13).

I mentioned earlier the technical point that I was taking my bare q̂ values to be defined
by the light-like limit of slightly space-like Wilson loops, and that time-ordering prescriptions
were then unimportant. As far as q̂ values are concerned, there is then no difference between
amplitude (blue) and conjugate amplitude (red) lines in figure 3. For g→gg splitting, the
(bare) 3-body potential in (4.3) must then be completely symmetric under permutations,
so that

V(3) = c(b212 + b223 + b231). (4.5)

(We will see later that this type of symmetry argument does not work exactly for soft radiative
corrections, where time ordering matters.) Since the three high-energy particles in figure 3
must form a color singlet (after medium averaging), the combined color representation of
gluons 1 and 2 is forced to be in the adjoint representation so that that pair can form a
color singlet with gluon 3. Now consider the limiting case of (4.5) where b1 = b2. Then
the combination of gluons 1 and 2, which are on top of each other, is indistinguishable
from a single gluon at that location. The 3-gluon system is then equivalent to a 2-gluon
system, and so (4.5) with b1 = b2 must reproduce the gluon case − i

4 q̂Ab
2 of the 2-particle

potential (3.8). That fixes the coefficient c of the 3-body harmonic oscillator potential (4.5)
to give (4.4).

It will be useful to now introduce some notation that I will use throughout the paper.
For the hard, single splitting E → xE, (1−x)E, I define the longitudinal momentum
fractions

(x1, x2, x3) ≡ (1−x, x,−1). (4.6)

xi is defined to show the flow of pzi ' xiE forward in the time as defined by the arrows
in figure 8. Note that the particle in the conjugate amplitude (red) has negative x3 in
this convention.

The final step of setting up the BDMPS-Z calculation is to simplify the 3-particle
problem to an effective 1-particle problem by using symmetries of the problem. One may use
transverse translation invariance to eliminate one particle degree of freedom by separating
out what in ordinary 2-dimensional quantum mechanics would be the “center of mass”
motion. It turns out that one may also use invariance of the original problem under tiny
rotations that change the direction of the z axis to eliminate a second particle degree

13See, in particular, eq. (2.21) of ref. [14] and the corresponding paragraph of appendix A of ref. [14],
which cover the more general case where the three particles can be in any color representations.
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dΓ
dx

= 2 Re
∫ ∞

0
d(∆t)

∆t

Figure 9. The hard splitting rate. The shaded region indicates the region of time evolution between
the two vertices, which is described by the 2-dimensional “quantum mechanics” Hamiltonian H.

of freedom. The result is that b12, b23 and b31 may be expressed in terms of a single
2-dimensional degree of freedom B, with14

b12 = (x1+x2)B = −x3B, b23 = (x2+x3)B = −x1B, b31 = (x3+x1)B = −x2B.

(4.7)
The momentum conjugate to B is

P = x2p⊥1 − x1p⊥2 = x3p⊥2 − x2p⊥3 = x1p⊥3 − x3p⊥1. (4.8)

With this reduction, the “Hamiltonian” given by (4.2) and (4.4) reduces to a single, 2-
dimensional harmonic oscillator

H = P 2

2M0
+ 1

2M0Ω2
0B

2 (4.9)

with
M0 = |x1x2x3|E = x(1−x)E, (4.10)

and (for g→gg)

Ω0 =
√
− iq̂A

2E

( 1
x1

+ 1
x2

+ 1
x3

)
=
√
− iq̂A(1−x+x2)

x(1−x)E . (4.11)

Note that M0 and Ω0 are both symmetric under permutation of the three momentum
fractions (x1, x2, x3).

4.2 The calculation

Following Zakharov’s formulation [6], the rate is given schematically in figure 9 which, in
my notation, translates to[

dΓ
dx

]
LO

= αsP (x)
M2

0
Re
∫ ∞

0
d(∆t) ∇B ·∇B′〈B,∆t|B′, 0〉

∣∣∣
B=0=B′

. (4.12)

Here, the subscript “LO” stands for leading order in powers of “bremsstrahlung αs.” The
factor 〈B,∆|B′, 0〉 corresponds to time evolution in the shaded region of figure 9 and is

14For a detailed discussion of this reduction to a single degree of freedom, in the language used here, see
sections 2.5 and 3 of ref. [14]. [Warning: the definition of (x1, x2, x3) in ref. [14] is permuted compared
to the one used here.] The original use of the reduction was by Zakharov [6] and then incorporated into
BDMPS [4]. Something equivalent was also used by ref. [31]. (For translations of the notation of these
works, see the appendix of ref. [8].)

– 15 –



J
H
E
P
0
3
(
2
0
2
2
)
1
3
4

given by the quantum mechanics propagator associated with the Hamiltonian (4.9). In the
q̂ approximation I am using in this paper, this is simply a standard harmonic oscillator
propagator, which in two dimensions is

〈B,∆t|B′, 0〉 = M0Ω0 csc(Ω0∆t)
2πi exp

(
i
2M0Ω0

[
(B2+B′2) cot(Ω0∆t)− 2B ·B′ csc(Ω0∆t)

])
.

(4.13)
The derivatives, the overall factor of αs, and the DGLAP splitting function P (x) in (4.12)
come from the two high-energy splitting vertices in the diagram. The current that a
transversely-polarized gluon couples to in the collinear limit relevant to high energies is
proportional to the transverse momentum. Correspondingly, in momentum space, the
derivatives in (4.12) correspond to factors of P , which characterize transverse momentum
and which become −i∇ in B space. The factor of 1/M2

0 in (4.12) arises from various
normalization factors.

Using (4.13) in (4.12) and integrating over ∆t then yields

[
dΓ
dx

]
LO

= αsP (x)
π

Re(iΩ0). (4.14)

For the case of g→gg, (4.11) then gives the final, standard result

[
dΓ
dx

]
LO

= αsPg→gg(x)
2π

√
q̂A(1−x+x2)
x(1−x)E (4.15)

quoted earlier for the q̂ approximation in an infinite medium.

5 Incorporating LMW q̂ corrections into the BDMPS-Z calculation

5.1 Setup

The idea is to incorporate the LMW corrections to q̂ into the 3-gluon potential (4.4) used for
the BDMPS-Z calculation, choosing the ∆b in LMW to be the bij appearing, respectively,
in each term of the potential:

V eff
(3) (b1, b2, b3) = − i

8

[
q̂eff

A (b12) b212 + q̂eff
A (b23) b223 + q̂eff

A (b31) b231

]
. (5.1)

The assumption here that the last term cares only about the separation b31 (and symmetri-
cally for the other terms) can be justified in the large-Nc limit.

To see this, imagine re-drawing the original g→gg time-ordered rate diagram of figure 3b
as a triangular cross-section lozenge, as in figure 10a. The large-Nc requirement that
diagrams be planar can be understood as a requirement that any additions to figure 10a
must lie on the surface of the lozenge without crossing lines. (The surface of the lozenge
is topologically equivalent to a 2-sphere, which can be stereographically projected onto
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Figure 10. (a) A redrawing of the time-ordered g→gg hard splitting diagram of figure 3b, depicted
here as a 3-dimensional lozenge with triangular cross-section. In the large-Nc limit, additions to
this diagram representing interactions must be drawable on the surface of the lozenge. The black
triangles are just a visual aid, representing cross-sections of the lozenge at instants in time. (b)
An example of a soft correction (curly gluon line), along with an example of medium correlations
represented by the brown lines. Both 2-point and higher-point correlations are shown by way of
example, but the analysis in this paper only assumes that the correlation length of the medium
is small compared to formation times, not that the medium is weakly-coupled. Drawing the soft
correction and correlators on the surface of the lozenge is just an abstraction for the sake of discussing
the dominant time-ordered diagrammatic contributions in the large-Nc limit: there is no implication
that the physical path of these lines must follow such a surface in transverse position space b.

a plane. So any diagram that can be drawn on the lozenge’s surface without crossing
lines can be mapped to a planar diagram.) Now consider, in particular, a soft correction
to the hard splitting, as in figure 2. Figure 10b gives an example, where the soft curly
gluon line connects lines 1 and 3. In the large-Nc limit, the soft line must then lie along
the corresponding face of the lozenge. Correlations of interactions with the medium may
be represented by a network of medium gluon correlators connecting to the high-energy
particles. In large-Nc, these correlations (brown lines in the figure) must also lie on the
surface of the lozenge. That means that the soft gluon in figure 10b only has medium
correlations with particles 1 and 3 in this example. That soft gluon line is not affected at
all by particle 2 and so only knows about the separation b31 between particles 1 and 3.
Figure 10b represents a correction to direct medium correlations between particles 1 and 3
and so represents a correction to the q̂Ab

2
13 term of the original potential (4.4). In summary,

the last term in the corrected potential (5.1) depends only on b31 in the large-Nc limit.
We now need to repeat the BDMPS-Z calculation using the effective potential (5.1)

that includes LMW soft-radiative corrections to q̂. This is no longer a harmonic oscillator
problem, but we can still get a relatively simple answer to first order in the high-energy
splitting αs by expanding around the usual BDMPS-Z q̂-approximation result using time-
ordered quantum mechanical perturbation theory in the correction δV to the original
potential V(3):

δV(3)(b1, b2, b3) = − i
8

[
δq̂LMW

A (b12) b212 + δq̂LMW
A (b23) b223 + δq̂LMW

A (b31) b231

]
. (5.2)

Using the reduction (4.7) of the 3-particle problem to an effective 1-particle problem, that’s

δV(3)(B) = − i
8

[
δq̂LMW

A (|x3|B) (x3B)2 + δq̂LMW
A (|x1|B) (x1B)2 + δq̂LMW

A (|x2|B) (x2B)2
]
. (5.3)
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δ = −i
∫ ∆t

0
dt1

∫
d2B1

∆V(3)
insertion
at (t1,B1)

Figure 11. First-order perturbative correction to the integrand of the leading-order hard splitting
rate in figure 9.

First order perturbation theory for (4.12) corresponds to15

δ

[
dΓ
dx

]
= αsP (x)

M2
0

Re
∫ ∞

0
d(∆t)

∫ ∆t

0
dt1

∫
d2B1 (5.4)

×∇B ·∇B′

[
〈B,∆t|B1, t1〉︸ ︷︷ ︸

harmonic osc.

(
−i δV(3)(B1)

)
〈B1, t1|B′, 0〉︸ ︷︷ ︸

harmonic osc.

]∣∣∣
B=0=B′

, (5.5)

which I’ve depicted schematically in figure 11. It’s convenient to switch integration variables
to (t, t′) ≡ (∆t−t1,−t1) and then reorganize (5.5) as

δ

[
dΓ
dx

]
= αsP (x)

M2
0

Re
{
−i
∫
d2B1

[∫ ∞
0

dt∇B〈B, t|B1, 0〉
]
B=0

·
[∫ 0

−∞
dt′ ∇B′〈B1, 0|B′, t′〉

]
B′=0

δV(3)(B1)
}
. (5.6)

Using the harmonic oscillator propagator (4.13), the time integrals give16

[∫ ∞
0

dt∇B〈B, t|B1, 0〉
]
B=0

= − iM0B1
πB2

1
e−

1
2M0Ω0B2

1 =
[∫ 0

−∞
dt1 ∇B′〈B1, 0|B′, t′〉

]
B′=0

,

(5.7)
and so (5.6) simplifies to

δ

[
dΓ
dx

]
= αsP (x)

π2 Re
{
i

∫
d2B1
B2

1
e−M0Ω0B2

1 δV(3)(B1)
}
. (5.8)

15This is similar in form to the method used by Mehtar-Tani and Tywoniuk [32] to deal with logarithmic
dependence (the Rutherford tail) in the bare value of q̂ through what they call the Improved Optical
Expansion. Here, however, I am taking the bare q̂ to be fixed and am instead interested in the LMW soft
radiative corrections, which have logarithmic dependence, and my expansion parameter is the assumed-small
αs associated with the splitting of high-energy particles (including what I call the “soft” ones).

16These are the same integrals that appear in section 5.1 of ref. [14] for the analysis of the initial and final
3-particle evolution in the context of hard radiative corrections to single splitting.
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5.2 First (naive) calculation

Now use (5.8) with the δV(3) of (5.3) and the LMW soft radiative correction (3.3) to q̂. For
the moment, I will use (3.3) for all of the δq̂’s. But we will need to revisit that choice later
for δq̂(b12), which involves two blue lines in figure 10a rather than a blue line paired with
a red line.

Because of the symmetric treatment of different pairs of the hard particles in the δV(3)
potential (5.3), it’s useful to correspondingly break up the rate correction (5.8) into the
terms coming from each such pair:

δ

[
dΓ
dx

]
= δ

[
dΓ
dx

]
12

+ δ

[
dΓ
dx

]
23

+ δ

[
dΓ
dx

]
31

(5.9a)

with
δ

[
dΓ
dx

]
ij

= αsP (x)
8π2 x2

k Re
∫
d2B1 e

−M0Ω0B2
1 δq̂LMW

A (|xk|B1). (5.9b)

Above and hereafter, k refers to the index 1, 2, 3 that is different from both i and j.
Applying (3.3a), I’ll write (5.9) using the notation

δ

[
dΓ
dx

]
ij

=
∫
y�x

dy

[
dΓ
dx dy

]
ij

, (5.10)

with [
dΓ
dx dy

]
ij

= −CAα
2
sP (x)

16π2y
x2
kq̂A Re

∫ ∞
0

d(B2
1) e−M0Ω0B2

1
[
ln y + s̄LMW(|xk|B1)

]
(5.11)

in the small-y limit relevant to the soft radiative corrections (5.10). (The notation dΓ/dx dy
also makes contact with the notation of refs. [13, 18] for double splitting with overlapping
formation times.) With (3.3b) for s̄LMW, the B2

1 integral in (5.11) is straightforward,17 giving

[
dΓ
dx dy

]
ij

= −CAα
2
sP (x)

4π2y
Re
{

x2
kq̂A

4M0Ω0

[
ln y + 2 ln

(
x2
k

4M0Ω0

√
1
2 q̂AE

)]}
. (5.12)

This result can be algebraically manipulated into a nicer form by using (4.11) to
show that

x2
kq̂A

4M0Ω0
= iwijΩ0 (5.13)

with

wij ≡
x2
k

x2
1 + x2

2 + x2
3
. (5.14)

By definition, the wij have the property that

w12 + w23 + w31 = 1, (5.15)
17Change integration variable to λ ≡ M0Ω0B

2
1 and use

∫∞
0 dλ e−λ lnλ = −γE. Note that the γE term

from this integration cancels the γE term in LMW’s single log coefficient (3.3b)!
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and we’ll see later that it is useful to think of them as relative weights of various contributions
(hence the choice of letter “w”). For now, use (5.13) to rewrite (5.12) as[

dΓ
dx dy

]
ij

= −CAα
2
sP (x)

4π2y
wij Re

{
iΩ0

[
ln y + 2 ln

(
iwijΩ0

√
E/2q̂A

)]}
. (5.16)

Knowing the complex phase of Ω0 = e−iπ/4|Ω0|, this can be rewritten as[
dΓ
dx dy

]
ij

= −CAαs
4πy wij

[
dΓ
dx

]
LO

[
ln y + 2 ln

(
wij |Ω0|

√
E/2q̂A

)
− π

2

]
(5.17)

in terms of the BDMPS-Z rate [dΓ/dx]LO given by (4.14). The π/2 term arises from the
logarithm of the complex phase in (5.16) [in combination with the operation 2 Re{iΩ0 · · · }].
The corresponding single-log coefficient s̄(x) appearing in (3.1a) for soft radiative corrections
to hard g→gg splitting would then be

s̄ = s̄12 + s̄23 + s̄31 (5.18)

with
s̄ij = wij

[
2 ln

(
wij |Ω0|

√
E/2q̂A

)
− π

2

]
. (5.19)

Using the explicit values (x1, x2, x3) = (1−x, x,−1) of the three longitudinal momentum
fractions, and using the formula (4.11) for Ω0, one may algebraically manipulate this result
into a form similar to the coefficient (3.1b) extracted from the soft-y limit of difficult
generic-y calculations in ref. [13]. By having instead repeated BDMPS-Z using the LMW
correction to q̂, we obtain here the slightly different result

s̄(x) = − ln
(
16x(1−x)(1−x+x2)

)
+ 2

[
x2(ln x− π

8
)

+ (1−x)2(ln(1−x)− π
8
)
− π

8
]

(1− x+ x2) . (5.20)

This result matches (3.1b) except for the very last π/8 term above (in red). This discrepancy
originates from the π/2 term in (5.19) for the particular case of s̄12.

5.3 Fixing up amplitude-amplitude δq̂(b12)

As mentioned earlier, LMW’s calculation [9] of soft radiative corrections to p⊥ broadening
corresponds to studying the rate of p⊥ change for a single particle, and a rate involves
an amplitude for the particle (a blue line in my conventions) multiplied by a conjugate
amplitude for that particle (a red line). However, in the previous derivation, in one place I
used LMW’s formula for δq̂ to treat soft radiation between two particles in the amplitude
(two blue lines). We now need to go back and fix that up. Fortunately, LMW’s derivation
can be adapted to this case.

The top line of figure 12 shows the analog, for two amplitude Wilson lines, of my
depiction of LMW’s diagrams in figure 7. By rotation invariance about the direction of the
Wilson lines, the sum can be rewritten as in the second line of figure 12. Finally, LMW’s
calculation is determined by the soft gluon propagator. It matters whether that propagator
is in the amplitude or conjugate amplitude (blue or red), which it inherits in these diagrams
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Figure 12. Similar to the diagrams of figure 7 for the LMW correction, but here both Wilson lines
are amplitude (blue) lines.

from the first vertex it is emitted from. In the last two lines of figure 12, it does not matter
whether the lower Wilson line is colored blue or red. By comparing the last line of this
figure to the LMW case of figure 7, we then see that the result is the same except that one
should not take the real part Re(· · · ) at the end. We can use the derivation from LMW’s
paper [9] if we (i) avoid ever taking the real part and, correspondingly, (ii) are very careful
to keep track of complex phases in their derivation. See appendix A for details. The result
is that (3.3b) is modified to

s̄blue-blue(∆b) = 2 ln
(

1
4(∆b)2

√
1
2 q̂AE e

−iπ/4
)

+ 2γE. (5.21)

The only difference is the factor of e−iπ/4 inside the argument of the logarithm, and so

s̄blue-blue(∆b) = s̄LMW(∆b)− iπ

2 . (5.22)

Now using this amplitude-amplitude soft correction in (5.11) in the case of [dΓ/dx dy]12 gives[
dΓ
dx dy

]
12

= −CAα
2
sP (x)

4π2y
Re
{

x2
3q̂A

4M0Ω0

[
ln y + 2 ln

(
x2

3
4M0Ω0

√
1
2 q̂AE e

−iπ/4
)]}

(5.23)

instead of (5.12). The explicit e−iπ/4 above cancels the phase of Ω0 inside the logarithm,
eliminating the π terms in this case, so that the corresponding version of (5.19) is

s̄12 = w12

[
2 ln

(
w12|Ω0|

√
E/2q̂A

)]
. (5.24)

5.4 Total

Using (5.19) for blue-red pairs and (5.24) for the blue-blue pair, the total single log
coefficient is

s̄ = s̄12 + s̄23 + s̄31 (5.25)

= w12

[
2 ln

(
w12|Ω0|

√
E/2q̂A

)]
+ w23

[
2 ln

(
w23|Ω0|

√
E/2q̂A

)
− π

2

]
(5.26)

+ w31

[
2 ln

(
w31|Ω0|

√
E/2q̂A

)
− π

2

]
. (5.27)
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This now exactly reproduces the result (3.1b) extracted from the small-y limit of generic-y
results for double splitting.

6 Other ways to write the final answer

Algebraically, the final answer (5.27) may be evocatively written directly in terms of the
LMW single-log coefficient of (3.3b) as

s̄ = w12 s̄LMW(b̄12) + w23
[
s̄LMW(b̄23)− π

2
]

+ w31
[
s̄LMW(b̄31)− π

2
]
, (6.1a)

where

b̄ij ≡
√
wij

4|Ω0|
eγE q̂A

(6.1b)

may be interpreted as a typical separation of the indicated pair during the underlying hard
splitting process.

For qualitative understanding of this formula, it will also be useful to use (5.13)
and (5.14) to rewrite it in the form

s̄ = w12 s̄LMW(|x3B̄|) + w23
[
s̄LMW(|x1B̄|)− π

2
]

+ w31
[
s̄LMW(|x2B̄|)− π

2
]

(6.2a)

with

B̄ ≡
√

1
eγEM0Ω0

. (6.2b)

I have no physical insight to offer about the O(1) normalization factor eγE in (6.1b)
and (6.2b): I simply chose that normalization so that (6.1a) would reproduce (5.27).
However, one may understand both the parametric scale and longitudinal momentum fraction
(x1, x2, x3) dependence of the b̄ij = |xkB̄|. First, consider the x� 1 case of the hard g→gg
splitting (but x� y so that x is still hard compared to the soft corrections we have been
computing). In that case, the x2=x gluon is the hard particle most deflected by the medium,
and its deflection is what controls the formation time, so that tform(x) ∼

√
ωx/q̂ =

√
xE/q̂.

The transverse momentum kicks during the formation time of the hard splitting process are
then of order Q⊥ ∼

√
q̂tform ∼ (xEq̂)1/4, and the corresponding transverse separation scale

should be 1/Q⊥ ∼ (xEq̂)−1/4 for the separation of the easily-deflected x2=x gluon from
the harder-to-deflect x1 and x3 gluons. So we expect

b13 � b12 ' b23 ∼ (xEq̂)−1/4 for x� 1, (6.3)

which is indeed the parametric behavior of (6.1b) in this limit. But we can make a more
precise argument about the x dependence, without assuming x� 1, by remembering that
transverse separations are precisely related to the reduced variable B by (4.7): namely,
bij = |xkB|. The variable B, in turn, describes a harmonic oscillator with mass M0
and frequency Ω0. For a quantum harmonic oscillator, the fundamental distance scale is
parametrically (M0Ω0)−1/2, as in (6.2b). So, in hindsight, we could have expected that the
typical separations bij would be proportional to the b̄ij = |xkB̄| determined by (6.2b).
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Figure 13. Soft radiation from three hard lines somewhere in the middle of a hard g→gg splitting
process. This is a magnified view of one of the soft vertices in figure 2, and here the magenta triangle
is just a way to represent that the soft gluon can couple to any one of the three hard lines. This
figure depicts the relative transverse positions of the lines during the soft emission process and shows
the case of slightly small x, for which x2=x is typically the farthest away of the three hard lines.

I originally introduced the weights wij appearing in (6.1a) as the relative sizes (5.14) of
squares of the longitudinal momentum fractions (x1, x2, x3). For some insight into their
role, use (6.1b) to re-express the weights in terms of the relative sizes of the typical squared
transverse separations:

wij =
b̄2ij

b̄212 + b̄223 + b̄231
. (6.4)

Now consider the picture in figure 13 of a soft emission from the three lines of an underlying
hard emission. In this figure, the transverse separations of the hard lines are depicted near
the time of the soft emission. Imagine two of those lines are relatively close together, as in
the case x� 1 covered by (6.3). It will be more difficult for an even softer (and so long
wavelength) emission y to resolve the close pair (3, 1) than it is to resolve the less-close pairs
(1, 2) and (2, 3). The weights (6.4) appearing in (6.1a) reflect the relative difficulty of the
soft radiation to resolve these different pairs. Though I’ve been focused on the single logs,
the same is true of the double logs. The ln y behavior in (3.1a), which generates the double
log after integration with dy/y, also decomposes into contributions from different pairs as

ln y = w12 ln y + w23 ln y + w31 ln y. (6.5)

One may wonder why the weights wij in (6.1a) and (6.5) care about the relative size
of b̄2ij rather than the size of b̄2ij directly. This is an artifact of having factored out the
full leading-order rate [dΓ/dx]LO in the definition (3.1a) of the soft corrections. Inserting
a factor of 1 = w12+w23+w31 and using (6.1b), the formula (4.14) for [dΓ/dx]LO can be
rewritten as [

dΓ
dx

]
LO

= αsP (x)
4π
√

2
eγE q̂A(b̄212 + b̄223 + b̄231). (6.6)

Using this and (5.17), or alternatively returning to (5.12) and directly using bij = |xkB̄|
and (6.2b) (and in either case also including the proper phase from section 5.3 for the
amplitude-amplitude pair [dΓ/dx dy]12):

δ

[
dΓ
dx

]
=
∫
y�x

dy

[
dΓ
dx dy

]
, (6.7)
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with
dΓ
dx dy

=
[
dΓ
dx dy

]
12

+
[
dΓ
dx dy

]
23

+
[
dΓ
dx dy

]
31

= −CAα
2
sP (x)

16π2y
√

2
eγE q̂A

{
b̄212
[
ln y + s̄LMW(b̄12)

]
+ b̄223

[
ln y + s̄LMW(b̄23)− π

2
]

+ b̄231
[
ln y + s̄LMW(b̄31)− π

2
]}
. (6.8)

Alternatively, one may define a complex-valued

βij ≡ |xk|B̄ (6.9)

in terms of complex-valued B̄ (6.2b). Then

dΓ
dx dy

= −CAα
2
sP (x)

16π2y
eγE q̂A Re

{
β2

12
[
ln y + s̄blue-blue(β12)

]
+ β2

23
[
ln y + s̄LMW(β23)

]
+ β2

31
[
ln y + s̄LMW(β31)

]}
, (6.10a)

which writes the final answer in terms of just s̄LMW for red-blue pairs of lines and s̄blue-blue
for blue-blue pairs of lines, without additional, explicitly written π terms. Or one may
compactly write everything in this form in terms of s̄LMW by noting

Re
{
β2

12
[
ln y + s̄blue-blue(β12)

]}
= Re

{
β2

12
[
ln y + s̄LMW

(
|β12|

)]}
. (6.10b)

7 Conclusion

We have seen that, at the “microscopic” level, using the p⊥-broadening effective value of
q̂eff inside the BDMPS-Z calculation of hard g→gg scattering correctly reproduces not only
double logs but also the subleading, single-log soft radiative corrections to hard g→gg
splitting. Using (6.6), (6.7) and (6.10), we can also express the final, soft-radiation corrected
splitting rate in terms of the p⊥-broadening effective q̂eff(∆b) = q̂ + δq̂LMW(∆b) from (3.3a)
as [

dΓ
dx

]
LO

+ δ

[
dΓ
dx

]
= αsP (x)

4π Re

β̂2
12

√
q̂eff

A (|β12|)
E

+ β̂2
23

√
q̂eff

A
(
β23
)

E
+ β̂2

31

√
q̂eff

A
(
β31
)

E


(7.1a)

through first order in soft radiative corrections δq̂, with complex-valued transverse separation
scales βij given in terms of dimensionless β̂ij by

βij ≡
e−γE/2

(q̂AE)1/4 β̂ij (7.1b)

and β̂12
β̂23
β̂31

 ≡ (q̂AE)1/4
√

1
M0Ω0

|x3|
|x1|
|x2|

 = e−iπ/8[1
2x(1−x)(1−x+x2)]1/4

 1
1−x
x

 . (7.1c)
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Because of the complex phase in (7.1c), the q̂eff
A
(
|β12|

)
is not the same thing as q̂eff

A (β12),
breaking the symmetry between the three gluons in (7.1a). That means, at the level of soft
radiative corrections, one can no longer ignore the difference between q̂eff effects for particle
pairs with (i) both particles in the amplitude vs. (ii) one particle each in the amplitude and
conjugate amplitude. For traditional BDMPS-Z based calculations in the q̂ approximation,
the possibility of such differences has always been ignored.

One of the side benefits of the result of this paper is that it provides a highly non-
trivial cross-check of the very involved calculations of hard radiative corrections to g→gg in
refs. [14–18], from which the limit of soft-radiative corrections was extracted in ref. [13]. In
particular, the “π terms” in those results, such as the π terms in (3.1b), required a great
deal of fussy work to correctly choose branch cuts at intermediate stages of the calculation.
It is reassuring to see everything match up exactly with the much simpler derivation here
for the case of soft radiative corrections.

In this paper, I have used a sharp IR cut-off ycutE on the softest radiative gluon
(allowing coverage of at most the red region of figure 5), because that was the explicit
calculation [13] that was available to compare to. Readers may wonder what would happen
in a more complete calculation that also included the gray region of figure 5 and correctly
handled the breakdown of the q̂ approximation at ∆t ∼ τ0. Similarly, one might want to
include running of the αs associated with the soft splitting. My personal expectation is
that the “microscopic” version of the universality of q̂ shown in this paper will continue to
hold (at least in the large-Nc limit). That is, I expect that if one repeated the BDMPS-Z
derivation using the full q̂LMW(∆b) (now including the gray region and/or running of αs),18

then one would obtain a result that correctly incorporated soft radiative corrections to hard
splitting g→gg. I expect this because, as in figure 5, the time scales for soft radiation (and
especially for the gray region) are small compared to the formation time tform(x), and so
the soft gluon curly line in figure 10 extends only for a relatively short time, during which
the hard-particle lines are approximately straight with approximately constant separation,
just like in the calculation of the soft correction δq̂ to transverse momentum broadening
depicted in figure 7 (or alternatively figure 12). I believe that the basis for the calculation
that I’ve made in this paper depends merely on this (large-Nc) factorization, and not on
the exact details of the formula for the soft correction. It would be interesting to explore to
what extent the “macroscopic” final formula (7.1) might also be robust, were one to use the
full q̂LMW(∆b) to redo the BDMPS-Z calculation.

Finally, a very interesting unresolved question is whether the results of this paper
require the large-Nc approximation, or whether “microscopic universality” for sub-leading
single logs holds for finite Nc as well.

18I should perhaps say an “LMW-like” q̂LMW(∆b) that includes the gray region. Once the q̂ approximation
breaks down, the details of the calculation can depend on the details of the medium. LMW handle the
breakdown of the q̂ approximation with expressions involving distribution functions of gluons in the medium.
It is currently unclear to me, at least, exactly how these should be defined for my own favorite application,
which is to quark-gluon plasmas.
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A Complex phases in LMW’s derivation

LMW [9] were always interested in the real part of their diagrammatic results. Here, I
clarify some of the complex phases in LMW’s derivation for the sake of my section 5.3,
where the result is needed without taking the real part.

Like LMW’s discussion in their main text, I will work here in the large-Nc limit, even
though their results for δq̂ for transverse momentum broadening are more general and
do not ultimately depend on this limit. Similarly, even though I am interested in soft
radiative corrections to momentum broadening of gluons, here I will follow LMW and focus
on corrections to momentum broadening of quarks. In the context of the large-Nc limit,
their quark q̂ is related to gluon q̂A by

q̂ = q̂A
2 (large Nc). (A.1)

These details do not matter. If one did the same calculations for hard particles in any color
representation R, one would find the same final formula for the relative correction (δq̂R)/q̂R.
By sticking to the case considered by LMW, however, the discussion will be simpler, and I
will be able to more easily compare formulas.

Table 1 gives a translation between LMW’s notation and the notation I have used in
the main text. To simplify direct comparison to their equations, I will mostly use LMW’s
notation in this appendix. One exception has to do with the fact that part of LMW’s
calculation is set up so that their propagator G and complex frequency ω0 represent a
situation where the soft gluon is first emitted in the conjugate amplitude — what in this
paper I would draw as a red gluon. With my conventions, I am interested in handling
the case where the soft gluon is emitted in the amplitude — a blue gluon. The relevant
propagator and complex frequency are then G∗ and ω∗0 in LMW’s notation, which I will
call G and Ωs (see table 1). The subscript on Ωs stands for “soft.”19

A.1 Setup

LMW carry out different parts of their derivation in slightly different ways. In some parts
[their calculation of single logs from boundary (b)], they implicitly treat the soft gluon as
what I would call a red gluon (one emitted first from the conjugate amplitude). In other

19My Ωs here is called Ωy in ref. [13].
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LMW this paper
ω ωy=yE
x⊥ ∆b
B⊥ b of the soft gluon
t ∆ty
Nc CA (= 2CF for Nc→∞)
q̂ see text

ω0≡
√
iq̂/ω Ω∗s≡

(√
iq̂A/2ωy

)∗
=
√
−iq̂A/2ωy

G G∗

G0 G∗vac
l0 τ0

Table 1. Translations between the notation of LMW [9] and this paper.

parts [their calculation of single logs from boundary (a)], their formulas implicitly treat it
as what I would call a blue gluon (emitted first from the amplitude). None of that matters
to their application, because they need to take Re(· · · ) at the end. But I additionally
need the case where I do not take the real part. So, we need to first review the general
starting formula from whence their single log contributions are extracted. Here, I will briefly
summarize the origin of that formula in the language I have used in this paper. My starting
formula will be a very minor variation of LMW’s.

Imagine computing the soft radiative correction to the amplitude-amplitude (blue-blue)
potential, represented by figure 12. As discussed in the main text, taking Re(· · · ) of the
result will then be equivalent to LMW’s calculation.

Without radiative corrections, the light-like Wilson loop has length dependence propor-
tional to

e−iV0(x⊥)L (A.2)

where
V0(x⊥) = − i

4 q̂x
2
⊥ (A.3)

as in (3.8). The first-order correction represented by figure 12 is

δ
[
e−iV (x⊥)L

]
= −CFg

2
∫

soft

dω

(2π)2ω

∫ L

0
dz2

∫ z2

0
dz1 e

−iV0(x⊥) (L−z2)

× ∇B1⊥ ·∇B2⊥

ω2 G(B2⊥, z2;B1⊥, z1)e−iV0(x⊥) z1

∣∣∣∣∣
B2⊥=x⊥

B2⊥=0

∣∣∣∣∣
B1⊥=x⊥

B1⊥=0

, (A.4)

where z1 and z2 are the z coordinates (equivalently times) of the first and second vertices.
Above, the two factors of e−iV0(x⊥)··· represent the contributions to the Wilson loop (i) from
after z2 and (ii) from before z1.20 The dω/[(2π)2ω] comes from the usual relativistic phase

20Roughly speaking, the factorization of medium correlations into (i) z < z1, (ii) z1 < z < z2, and (iii)
z2 < z is a consequence of high-energy formation lengths being large compared to the correlation length
l0 of the medium, so that medium correlations appear approximately instantaneous compared to the time
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space measure d3p/[(2π)32ω] for the (approximately on-shell) soft gluon, the transverse
d2p⊥/(2π)2 part of which is absent because we are working in transverse position space
instead of transverse momentum space. CF is the quark quadratic Casimir

CF = Nc
2 (large Nc). (A.5)

The −CFg
2 ∇B1⊥ ·∇B2⊥/ω

2 comes from the vertices igT acolorv · Aa where the soft gluons
attach to the Wilson lines, summed over transverse polarizations of the (nearly-collinear)
soft gluon. The four different terms added/subtracted by the combinations of values of
B1⊥ and B2⊥ indicated at the end of (A.4) represent the four diagrams in figure 12.21 The
G is the two-dimensional quantum mechanics Green function for the propagation of the soft
gluon in the medium, in the q̂ approximation, analogous to (4.13). In the LMW case where
the hard particles are quarks rather than gluons, and where the quarks are taken to have
fixed transverse positions 0 and x⊥ as above, the analog of the 3-particle potential (4.4) is

V(qgq)(0, b,x⊥) = − i
8 q̂A

[
|b|2 + |b− x⊥|2

]
= − i

4 q̂
[
|b|2 + |b− x⊥|2

]
(large Nc), (A.6)

in which b is the transverse position of the soft gluon. The b231 term of (4.4) does not appear
here because in the large-Nc limit the quarks cannot directly interact when there is a gluon
between them. Up to conventions concerning complex conjugation, (A.6) is the potential
that appears in LMW eq. (6). Complex conjugation arises because I consider the case of a
gluon emitted first from the amplitude, whereas LMW eq. (6) implicitly refers to the case
where the gluon is instead first emitted from the conjugate amplitude. As a result, the
explicit formula for my propagator G in (A.4) is the complex conjugate G∗ of their formula
for their propagator G in LMW eq. (8).22

In order to make contact with LMW’s starting formula, rewrite (A.4) above as

δ
[
e−iV (x⊥)L

]
=
∫

soft

dω

ω
N (x⊥, ω) (A.7a)

with

N (x⊥, ω) ≡ −CFαs
ω2

∫ L

0
dz2

∫ z2

0
dz1 e

−iV0(x⊥) (L−z2)

×∇B1⊥ ·∇B2⊥G(B2⊥, z2;B1⊥, z1)e−iV0(x⊥) z1

∣∣∣∣∣
B2⊥=x⊥

B2⊥=0

∣∣∣∣∣
B1⊥=x⊥

B1⊥=0

. (A.7b)

scale of splitting processes. More specifically, it’s because LMW’s boundary (a) corresponds to separations
z2−z1 � l0. [It’s actually z2−z1 & l0, but the z2−z1 ∼ l0 end of boundary (a), by itself, is not log enhanced
and does not contribute to single logs.]

21For the first two diagrams in the first line of figure 12, there is an extra minus sign compared to the
self-energy diagrams. In the Wilson loop formulation, this may be described as arising from the fact that,
going around the Wilson loop, the integration

∮
dx · A follows the two light-like Wilson lines in opposite

directions, so that there is a relative minus sign associated with the vertex factor for the backward-going line.
22To see the relation, complex conjugate LMW eq. (6) and then multiply both sides by i to get a

Schrödinger-like equation for my G = G∗. Reading off the potential V from that Schrödinger equation
reproduces my (A.6).
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This is related to the starting equation for N(x⊥, ω) in LMW eq. (12) by

N(x⊥, ω) = Re
[
N (x⊥, ω)−Nvac(x⊥, ω)

]
, (A.8)

where Nvac is the vacuum version of N , which corresponds to the limit q̂→0.
Rewrite the dz2 dz1 integration as integration over (z1 + z2)/2 and t ≡ z2 − z1. In the

limit of L large compared to the soft gluon formation time, one may approximate the upper
limit on the t integral as ∞ and use translation invariance to approximate the integral over
(z1 + z2)/2 as L:

δ
[
e−iV (x⊥)L

]
' −CFαsLe

−iV0(x⊥)L
∫

soft

dω

ω3

∫ ∞
0

dt eiV0(x⊥) t

×∇B1⊥ ·∇B2⊥G(B2⊥, t;B1⊥, 0)
∣∣∣∣∣
B2⊥=x⊥

B2⊥=0

∣∣∣∣∣
B1⊥=x⊥

B1⊥=0

. (A.9)

From (A.9) and the formal perturbative expansion e−iV (x⊥)L ' e−iV0(x⊥)L(1− iδV (x⊥)L) =
e−iV0(x⊥)L(1− 1

4δq̂ x
2
⊥L), identify

1
4 δq̂ x

2
⊥ ' CFαs

∫
dω

ω3

∫ ∞
0

dt eiV0(x⊥) t∇B1⊥ ·∇B2⊥G(B2⊥, t;B1⊥, 0)
∣∣∣∣∣
B2⊥=x⊥

B2⊥=0

∣∣∣∣∣
B1⊥=x⊥

B1⊥=0

= CFαs

∫
dω

ω3

∫ ∞
0

dt eq̂x
2
⊥t/4 ∇B1⊥ ·∇B2⊥G(B2⊥, t;B1⊥, 0)

∣∣∣∣∣
B2⊥=x⊥

B2⊥=0

∣∣∣∣∣
B1⊥=x⊥

B1⊥=0

.

(A.10)

In order to make further contact with LMW, let me rewrite (A.10) as

δq̂ L ' −∇2
x⊥

∫
dω

ω
Ñ (x⊥, ω) (A.11)

with

Ñ (x⊥, ω) ≡ −CFαs
ω2 L

∫ ∞
0

dt eq̂x
2
⊥t/4 ∇B1⊥ · ∇B2⊥G(B2⊥, t;B1⊥, 0)

∣∣∣∣∣
B2⊥=x⊥

B2⊥=0

∣∣∣∣∣
B1⊥=x⊥

B1⊥=0

.

(A.12)

In the limit taken, Ñ is related to the N of LMW eq. (12) by

N(x⊥, ω) = Re
[
e−iV0(x⊥)LÑ (x⊥, ω)− Ñvac(x⊥, ω)

]
= Re

[
e−q̂Ax

2
⊥L/4Ñ (x⊥, ω)− Ñvac(x⊥, ω)

]
. (A.13)

LMW’s use of vacuum subtraction is extremely convenient computationally but inessen-
tial: as I briefly discuss in appendix A.5, Ñvac vanishes. I will take advantage of this to
be a little sloppy in what follows. The reader may assume that later formulas are vacuum
subtracted unless I specifically refer to the vacuum piece.
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A.2 Crossing the boundary (b)

LMW’s boundary (b) refers to the upper boundary in my figure 5. In LMW eq. (27),
they write

N(x⊥, ω) = i
αsNcx

2
⊥ω

4π

∫ L

t0
dt
L− t
t3

{(
ω0t

sin(ω0t)

)3 [
4− sin2(ω0t)

]
− 4

}
. (A.14)

There is an implicit real part Re(· · · ) of the right-hand side of the equation [see LMW
eq. (19)], which they did not write explicitly. t0 is an (ω dependent) scale chosen to lie
between the two boundaries, parametrically far from either:

ω

q̂L
� t0 �

1
|ω0|

. (A.15)

Taking small-x⊥ limits appropriate to boundary (b) the same way as in LMW, I find
that my Ñ of (A.12) is given by the complex conjugate of the right-hand side of (A.14). In
the relevant large-L limit L� 1/|ω0|,

Ñ (x⊥, ω) ' −iαsNcx
2
⊥ω

4π L

∫ ∞
t0

dt

t3

{( Ωst

sin(Ωst)

)3 [
4− sin2(Ωst)

]
− 4

}
, (A.16)

where I define Ωs ≡ ω∗0 as described earlier.
In the |Ωs|t0 � 1 limit of (A.15), the integral gives

Ñ (x⊥, ω) ' αsNcx
2
⊥

4π q̂L

[
ln
(
iΩst0

2

)
+ 1

3

]
. (A.17)

If one takes the real part, this agrees with the LMW eq. (28) result that

N(x⊥, ω) ' αsNcx
2
⊥

4π q̂LRe
[
ln
(
ω0t0

2

)
+ 1

3

]
, (A.18)

where I have here made explicit the implicit Re(· · · ) in LMW’s equation.23

Using (A.17) in (A.11), the contribution to q̂ from LMW’s boundary (b) is

δq̂
∣∣
boundary b = q̂

∫
soft

dω

ω

αsNc
π

[
ln
( 2
iΩst0

)
− 1

3

]
= q̂

∫
soft

dω

ω

αsNc
π

[
ln
( 2
t0

√
ω

q̂
e−iπ/4

)
− 1

3

]
. (A.19)

If the real part is taken, as would be appropriate in the case of red-blue pairs of lines, this
result becomes equivalent to LMW eq. (29).24

23I’ve also fixed a trivial typographic error by restoring a missing factor of αs.
24Specifically, divide both sides of LMW eq. (29) by ωL and then integrate over soft ω.
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A.3 Crossing the boundary (a)

LMW’s boundary (a) refers to the lower boundary of the red region in my figure 5.
Parametrically, it corresponds to

t ∼ ω

q̂L
� 1
|ω0|

. (A.20)

Expand the general formula (A.12) for Ñ in small |ω0|t and also small x⊥, making no
assumption about the size of ωx2

⊥/t. The leading order result (after an implicit vacuum
subtraction) is

Ñ (x⊥, ω) ' −αsNc
12π q̂L

∫ t0

0
dt

[(
x2
⊥
t

+ iω(x2
⊥)2

2t2

)
eiωx

2
⊥/2t + 4i

ω
(1− eiωx2

⊥/2t)
]
, (A.21)

where t is integrated over t < t0 because here we are focused on the range of t that contains
boundary (a) instead of boundary (b). For the sake of contact with the discussion in LMW,
I should mention that (A.21) turns out to be equivalent to an expansion of the general
formula (A.12) for Ñ to first order in q̂ (remembering that the definition of ω0 depends
on q̂). The real part of (A.21) is the same as LMW eq. (32).

Doing the time integral in (A.21) gives

Ñ (x⊥, ω) ' αsNcx
2
⊥

4π q̂L

[
ln
(
− iωx

2
⊥

2t0

)
+ γE −

1
3

]
, (A.22)

whose real part corresponds to LMW eq. (33) [which has an implicit Re(· · · )]. Using (A.22)
in (A.11), the contribution to q̂ from LMW’s boundary (a) is

δq̂
∣∣
boundary a = −q̂

∫
soft

dω

ω

αsNc
π

[
ln
(
− iωx

2
⊥

2t0

)
+ γE −

1
3

]

= q̂

∫
soft

dω

ω

αsNc
π

[
ln
(

2t0
ωx2
⊥
eiπ/2

)
+ 1

3 − γE

]
(A.23)

The real part is equivalent to LMW eq. (34).

A.4 Total

In this paper, I am focused only on what LMW call boundaries (a) and (b). Adding (A.19)
and (A.23) gives

δq̂ = q̂

[
−αsNc

π

∫
soft

dω

ω

[
ln
(

1
4x

2
⊥Ωsω

)
+ γE

]]
= q̂

[
−αsNc

π

∫
soft

dω

ω

[
ln
(

1
4x

2
⊥
√
q̂ω e−iπ/4

)
+ γE

]]
. (A.24)

Taking the real part and translating to my notation gives the LMW result in the form I
quoted in (3.3). Not taking the real part gives my (5.21) instead.
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A.5 A brief word about Ñvac

Earlier, I mentioned that the vacuum contribution

Ñvac(x⊥, ω) = −CFαs
ω2 L

∫ ∞
0

dt∇B1⊥ ·∇B2⊥Gvac(B2⊥, t;B1⊥, 0))
∣∣∣∣∣
B2⊥=x⊥

B2⊥=0

∣∣∣∣∣
B1⊥=x⊥

B1⊥=0

(A.25)

vanishes. In the case of the LMW application to momentum broadening, this is because an
on-shell hard particle cannot radiate in vacuum, because of energy-momentum conservation.
The large-L limit that we took to get to (A.12) formally disposed of any vacuum radiation
associated with the particle being “created” or “destroyed” at the ends of the lightlike
Wilson lines (i.e. at z = 0 or z = L). So Re(Ñvac) must vanish, and it turns out that the
imaginary part vanishes as well. Showing this mathematically from (A.25) is a little tricky
because of divergences associated with t→0, which I will now briefly discuss and resolve.

Eq. (A.25) corresponds to setting q̂ to zero and using the vacuum version

Gvac(B2⊥, t;B1⊥, 0) = ω

2πit e
iω|B2⊥−B1⊥|2/2t (A.26)

of the propagator G in (A.12). That gives

Ñvac(x⊥, ω) = CFαs
π

L

∫ ∞
0

dt

[
− iωx

2
⊥

t3
eiωx

2
⊥/2t + 2

t2

(
1− eiωx2

⊥/2t
)]
. (A.27)

The rapid oscillation of eiωx2
⊥/2t as t → 0 makes those terms in the integrand have a

convergent integral. However, the integral of 2/t2 in (A.27) has no such convergence factor,
and so the integral, as written, is ill-defined.

One may be able to argue correct iε prescriptions for the t integral. However, in
my experience [16], it is often less confusing to handle t→0 divergences in LPM effect
calculations by using dimensional regularization.

Let d ≡ d⊥ = 2− ε be the number of transverse dimensions. The d-dimensional version
of the vacuum propagator (A.26) is

Gvac(B2⊥, t;B1⊥, 0) =
(

ω

2πit

)d/2
eiω|B2⊥−B1⊥|2/2t (A.28)

Then (A.25) gives

Ñvac(x⊥, ω) ∝
∫ ∞

0
dt

[
− iωx

2
⊥

t2+ 1
2d
eiωx

2
⊥/2t + d

t1+ 1
2d

(
1− eiωx2

⊥/2t
)]
, (A.29)

which for d=2 is the time integral in (A.27). But in dimensional regularization we may
analytically continue the result from values of d where it converges (−2 < d < 0) and is
unambiguous. The integrand in (A.29) is a total derivative:

Ñvac(x⊥, ω) ∝
∫ ∞

0
dt

d

dt

[
− 2
td/2

(
1− eiωx2

⊥/2t
)]

= 0. (A.30)
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