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1 Introduction

The search for the conjectured QCD critical point has triggered much recent interest in
both theory and experiment. This critical point is the endpoint of the first-order transition
line, which separates the ordinary hadronic matter and quark-gluon plasma (QGP) [1, 2],
and is considered as one of the landmarks on the phase diagram of strong interaction
matter [3–5]. Many QCD-inspired models predict the existence of this critical point but
disagree widely on its location (see ref [6] for a review). Investigating the QCD critical
point from the first principle lattice QCD calculation is currently formidable due to the
sign problem at finite baryon density. The future development in quantum computing
may help solve this sign problem someday (e.g., refs [7, 8]), but this is not today. On
the observational frontier, looking for the QCD critical point is one of the main goals
of the second phase of the beam energy scan (BES) program at Relativistic Heavy Ion
Collider (RHIC) at Brookhaven National laboratory [5]. In addition, there are several
other approved experiments anticipated in the coming years, such as the multipurpose
detector (MPD) at the Nuclotron-based Ion Collider Facility (NICA) in Dubna and the
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Compressed Baryonic Matter (CBM) experiment at the Facility for Antiproton and Ion
Research (FAIR).

The experimental exploration of the QCD critical point decisively relies on the obser-
vational consequences of baryon density fluctuations which are enhanced with the growth
of the critical correlation length ξ. In equilibrium, their behaviors are fully determined
by the equation of state (EoS) with a critical point. However, those fluctuations would
inescapably fall out of equilibrium in heavy-ion collisions because of the expansion of the
fireball and the critical slowing down. There is mounting evidence indicating the off-
equilibrium fluctuations differ from the equilibrium expectation not only quantitatively
but also qualitatively [9–12]. This entails the development of dynamical models for density
fluctuations; see ref. [13] which summarizes the current status of the dynamical modeling
for BES physics.

The appropriate theoretical framework that serves this purpose is relativistic fluc-
tuating hydrodynamics [14]. In the conventional approach, a la, Landau-Lifshitz, one
adds white noise into hydrodynamic equations and fixes their magnitude by imposing
fluctuation-dissipation theorem. Besides simulating stochastic hydrodynamics directly, one
can alternatively derive the time evolution equation for hydrodynamic correlators [15–18].
For example, such an equation for the two-point correlator of density fluctuations in systems
relevant to the QCD critical point search has been investigated based on Hydro-Kinetic [19]
and Hydro+ formalism [16, 20, 21].

The primary goal of the present work is to study the dynamics of non-Gaussian fluc-
tuations of a generic conserved density near a critical point characterized by higher point
correlators. Our study is motivated by the significant sensitivity of the non-Gaussian fluc-
tuations to the growth of the critical correlation [22–24]. In fact, the measurement of
non-Gaussianity in the fluctuation of produced proton multiplicities as a function of beam
energy is considered as one of the key observables for the criticality [25, 26]. Recently,
there has been significant progress in describing the real-time evolution of non-Gaussian
fluctuations. This includes the formulation of the evolution equation for higher point cor-
relators of spatial-averaged order parameter field [10, 27] and diffusive mode [28], as well
as the simulations of stochastic hydrodynamics [12].

In contrast to existing works, in this paper, we consider newly developed effective field
theory (EFT) on the Schwinger-Keldysh (SK) contour for fluctuting fluid [29, 30], see also
refs. [31–33]. This EFT is constructed from action principle and symmetry, see refs. [34–37]
on recent applications. Given the difference in this formalism from the other approaches
used in the above-mentioned works, it would be useful to revisit the dynamics of the higher
point hydrodynamic correlators using this EFT method. Such a study will shed light on
to what extent this new formalism would complement the existing ones. Particularly, the
analysis so far has been limited to the Gaussian noise. While this is sufficient to generate
non-Gaussian density fluctuations in equilibrium with an appropriate critical EoS [10, 12,
28], the effects of non-linear interactions among noises on off-equilibrium non-Gaussian
fluctuations remain unclear to date.

We have applied the familiar field theory techniques for deriving the Schwinger-Dyson
equation to obtain the tree-level evolution equations for multi-point fluctuations of a generic
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conserved density which is assumed to be the order parameter near a critical point, see
eq. (3.46) together with eqs. (3.41), (3.61), and (3.62). We also derive the closed-form
solutions to those equations with arbitrary initial conditions, (4.3), which are new in lit-
erature. Those results are ready for implementation in realistic simulations for heavy-ion
collisions. We have included non-linear coupling among noise fields discussed recently by
Jain-Kovtun [38], see eq. (2.10). Those interactions are parametrized by a set of “stochastic
coefficients”, which do not enter into the hydrodynamic constitutive relation and are ab-
sent in stochastic hydrodynamics. But as pointed out in ref. [38], they do contribute to the
hydrodynamic behavior of four-point retarded density correlators. For Gaussian and cubic
fluctuations, we recover the previous results on evolution equations [28] (see also ref. [10])
in hydrodynamic regime, but our expressions also apply to the scaling regime of a critical
point. Remarkably, we find that, depending on the critical behavior of “stochastic coeffi-
cients”, the missing non-linear couplings among noise fields in the traditional fluctuating
hydrodynamic do contribute to off-equilibrium quartic fluctuations.

This work is organized as follows. In section 2.1, we review the construction of EFT
for a generic conserved density [29, 38]. Then, we define the multi-point correlators for
density fluctuations in section 2.2 and derive their evolution equation following the textbook
method of obtaining Schwinger-Dyson equation in section 2.3. After introducing two small
expansion parameters, we show evolution equations for Wigner transformed correlator at
tree-level in section 3 and acquire the closed-form solutions to those evolution equations
in section 4. Section 5 is devoted to discussing the application of our result to the QCD
critical point and related future directions.

2 Formalism

2.1 EFT for a conserved density

In this section, we review the ingredients of EFT for fluctuating hydrodynamics pertinent
to the present study. The interested reader might refer to the lecture notes [39] for a
pedagogical introduction.

Consider a many-body system described by a given microscopic theory. One could
imagine formally integrating out fast modes in the long-wavelength and low-frequency
limit. As a result, the system should be described by an effective action with a set of slow
variables including conserved charge densities, i.e., hydrodynamic modes. This work will
focus on EFT for a generic conserved charge density n and assume n becomes the order
parameter near a critical point.

We can define this EFT action I through the path integral representation of the gen-
erating functional W on the Schwinger-Keldysh (SK) contour,

Z = eiW [Ar,Aa] =
∫
DψrDψaeiI[ψa,ψr;Aa,Ar] , (2.1)

where I is a functional of the external gauge fields Ar and Aa, and the dynamical fields
ψr and ψa. In SK formalism, the r-variables are related to the physical observables (the
charge density n in the present case), while the a-variables are the corresponding noise
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variables. One can also interpret ψr and ψa as the U(1) phase degrees of freedom on each
fluid element (see refs. [29, 39] for more details).

The EFT action I and the associated Lagrangian density L must satisfy various sym-
metry and consistency requirements, as we now explain:

1. The action I is invariant under the gauge transformation parametrized by an arbitrary
U(1) phase φr/a,

Ar/a,α → Ar/a,α − ∂αφr/a , ψr/a → ψr/a + φr/a . (2.2)

Therefore, I should be constructed from the gauge invariant combination:

Ar/a,α = Ar/a,α + ∂αψr/a . (2.3)

The chemical potential is gauge invariant and can be identified with the temporal
component of Ar,α:

µ = Ar,0 . (2.4)

2. The EFT has a local shift symmetry:

ψr → ψr + ζ(x) . (2.5)

Physically, this is because each fluid element is free to make independent U(1) phase
rotations for time-independent ζ(x). This shift symmetries will be absent when the
global U(1) symmetry is spontaneously broken (see refs. [29, 40] for further details).

3. Fluctuation-dissipation relation is implemented through the invariance of the action
under the so-called dynamical Kubo-Martin-Schwinger (KMS) transformation [30,
41]. In the “classical” limit that quantum fluctuations are small compared with the
thermodynamic fluctuations, the dynamical KMS transformation is defined as

Ar,α → ΘAr,α , Aa,α → ΘAa,α + iβΘ∂tAr,α . (2.6)

Here Θ = PT represents a Z2 discrete parity transformation and β = T−1 with T

being the temperature.

4. The unitarity of the underlying system requires that (suppressing the Lorentz indices)

I[ψr, Ar;ψa = 0, Aa = 0] = 0 , I∗[ψr, Ar;ψa, Aa] = −I[ψr, Ar;−ψa,−Aa] . (2.7)

Given the above conditions, EFT Lagrangian density L can be constructed from the
double expansion in the a-fields and gradient. We shall count Ar,α as O(1) because of
eq. (2.4) and Aa,r as O(∂) since the phase of a-field, ψa, should be O(1). Following
ref. [38], we organize L as a summation of “KMS blocks”, where a KMS block at given
order n involves n number of a-fields, plus a set of terms with higher number of “a”-field
required to satisfy KMS symmetry. Because of the requirement by the unitarity (2.7), the
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lowest order KMS block should be n = 1. To the order of n = 2, the resulting effective
Langragian density reads [29, 38]

L = Aa,0n− λAa · (β∂tAr − iAa)

+ iϑ1
[
(Aa · β∂tAr)2 −A2

a(β∂tAr)2
]
− iϑ2A2

a(β∂tAr − iAa)2 , (2.8)

where λ is the conductivity and ϑ1,2 are additional “stochastic coefficients” characterizing
non-linear interactions among the density and noise fields.1 In each KMS block, we only
include the leading non-trivial contribution in gradient. For example, the first line of
eq. (2.8) belongs to n = 1 KMS block, where we include second order but ignore forth
order gradient terms. In contrast, the second line of eq. (2.8) represents terms in n = 2
KMS block, where each term must involve at least four powers of the gradient. Thus, we
write down the forth order gradient for this block. In future, we shall check the validity of
this organization scheme. For our present purpose, we shall take eq. (2.8) as our starting
point for the subsequently analysis.

As usual, the current can be read from the variation of the action with respect to the
external gauge field, e.g.,

Jαr = δIeff
δAa,α

−→ J0
r = n , Jr = −λ∇

(
µ

T

)
+ 2iλ∇ψa + . . . , (2.9)

where . . . denotes contributions from ϑ1,2. The first term in Jr represents the familiar
Fick’s law, while the second term accounts for the effect of Gaussian noise. The usual
diffusive equation can be obtained by varying L with respect to ψa and then setting all the
a-fields to be zero.

In the absence of ϑ1,2, the EFT action (2.10) is quadratic in a-field and can be matched
with the traditional stochastic hydrodynamics for diffusive mode with white Gaussian
noise [39]. The ϑ1-contribution to the Lagrangian density (2.10) is quadratic in noise field
while ϑ2-contribution also contains cubic and quadratic interactions among noise fields.
Both contributions do not enter into the standard stochastic hydrodynamics. As a prior,
the cubic and quartic interactions among noise fields might be parametrized by a handful
of “stochastic coefficients” even at fixed order in gradient. The dynamical KMS symmetry
fixes the form of those terms, as shown in ref. [38]. This demonstrates that one can em-
ploy the EFT approach to investigate non-linear noise-noise and noise-density interactions,
systematically, from the principle of symmetry.

In what follows, we shall consider the EFT Lagrangian density (2.8) at vanishing
external field as our starting point to analyze the fluctuation dynamics of density n:

L = n∂tψ − λ∇ψ · (β∇µ− i∇ψ)

+ iϑ1
[
(∇ψ · β∇µ)2 − (∇ψ)2(β∇µ)2

]
− iϑ2(∇ψ)2(β∇µ− i∇ψ)2 , (2.10)

where we have used eq. (2.4). Here and hereafter, we drop the subscript for ψ ≡ ψa. The
chemical potential µ and n will be related by equation of state (EoS) which encodes the
information on the critical point.

1The ϑ1,2 defined in the present paper is different from those in ref. [38] by a factor of T 2.
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As mentioned earlier, our study will focus on the non-Gaussian fluctuations near a
critical point. ϑ1,2 terms are at least fourth-order in gradient and can be safely dropped in
the hydrodynamic regime qξ � 1, where q is the typical momentum of fluctuating density
mode and ξ is the critical correlation length. However, they could be potentially important
for off-equilibrium non-Gaussian fluctuations in the scaling (critical) regime qξ ≥ 1, (cf.,
eq. (3.4)). As we shall see below, those ϑ1,2-contributions indeed enter into the evolution
equation for quartic density fluctuations even at tree-level.

2.2 Multi-point correlators

We are interested in the density fluctuation around a given hydrodynamic background

n(x) = (n(x))0 , ψ = 0 , (2.11)

which corresponds to the saddle point of the action (2.10). Here, we use x = (t,x) to
denote space time coordinates and adopt the subscript 0 for the background value. The
background charge density satisfies the diffusive equation,

∂t(n(x))0 = (F )0(x) , F (x) = −∇ · Jr , (2.12)

To describe the correlation among the fluctuations around the background profile,

δn(x) = n(x)− (n(x))0 , (2.13)

we define multi-point equal-time correlators,

Wn(t; x1, . . . ,xn) ≡
〈

n∏
i=1

δn(t,xi)
〉

c
, (2.14)

where the subscript “c” denotes the connected contribution and the average is given by

〈. . .〉 = 1
Z

∫
DnDψeiI(. . .) . (2.15)

2.2.1 Equilibrium

Before studying the real-time evolution of multi-point correlators (2.14), we here first review
their properties in equilibrium. In the present subsection, we shall assume the hydrody-
namic background is static and homogeneous.

We begin by considering the free-energy functional of the form,

βE [δn] =
∫

x

[1
2a(δn)2 + 1

2K(∇δn)2 + 1
3!a
′(δn)3 + 1

4!a
′′(δn)4

]
, (2.16)

where
∫

x ≡
∫

dx, a = β µ′ with prime denoting the derivative with respect to n with T

fixed, and K is a constant associated with gradient-free energy. Then, the multi-point
equal-time correlator in equilibrium (denoted by bar), Wn, is given by (cf. eq. (2.14)),

Wn(x1, . . . ,xn) =
〈

n∏
i=1

δn(t,xi)
〉

c,eq
, (2.17)
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where the equilibrium expectation can be evaluated as

〈. . .〉eq = 1
Zeq

∫
Dδne−βE[δn](. . .) , Zeq ≡

∫
Dδne−βE[δn] . (2.18)

Below, we shall consider Wns in Fourier space,

Wn(q1, . . . , qn) =
∫

y1
· · ·
∫

yn
Wn(x1, . . . ,xn)δ

(
x1 + · · ·+ xn

n

) n∏
j=1

e−iqj ·xj . (2.19)

For small magnitude of deviations away from the equilibrium, we can evaluate eq. (2.17)
by only accounting for “tree-level” contribution. More explicitly, for the equilibrium cor-
relator W 2, we only keep Gaussian part of eq. (2.16) and find that W 2 takes the familiar
Ornstein-Zernike form,

W 2(q) = 1
af(q) :

q
, (2.20)

where

f(q) = 1 + cq2 , c = K

a
= ξ2 , (2.21)

and the dashed line on eq. (2.20) is the diagram corresponding to W 2. In this work, we
shall replace the critical exponent η ≈ 0.04 by 0 for simplicity.

Turning to W 3, it receives the following contribution,

W 3(q1, . . . , q3) =
q1

q2

q3

= −a′
3∏
i=1

W 2(qi) , (2.22)

where the cubic vertex obtained from eq. (2.16) is proportional to −a′. Meanwhile, W 4 is
given by the contribution from the sum of the two diagrams:

W 4(q1, . . . , q4) =
q1

q2

q3

q4
+

q1

q2

q3

q4

=
[
−a′′ + (a′)2

(
W 2(q12) +W 2(q13) +W 2(q14)

)] 4∏
i=1

W 2(qi) , (2.23)

where the quartic vertex is proportional to −a′′ and we have introduced the notation,

qij = qi + qj . (2.24)

To this point, we have assumed that a′ and a′′ have no dependence on the momenta qi.
Strictly speaking, for a system near the critical point, this is only true for |qi|ξ ≤ 1. In the
scaling regime |qi|ξ ≥ 1, a′ and a′′ can strongly depend on qi. We defer the investigation
of this subtle point to future studies.
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2.3 Schwinger-Dyson equations

In this section, we shall follow the textbook derivation of Schwinger-Dyson equations from
the path integral to obtain the analogous equations for Wn.

We begin by considering the one-point function:

〈δn(x)〉 = 1
Z

∫
DnDψeiIδn(x) , (2.25)

and replace ψ(x) → ψ(x) + ε(x) with ε(x) being an arbitrary local function with a small
magnitude. Since this is just a field redefinition and the path integral integrates over all
configurations, the l.h.s. of eq. (2.25) should be the same. Therefore, the change of the
r.h.s. of eq. (2.25) must add to zero. At first order in ε(x), we arrive at the condition〈

δI

δψ(x1)δn(x)
〉

= 0 , (2.26)

or equivalently

〈∂t1n(x1)δn(x)〉 = 〈F (x1)δn(x)〉 . (2.27)

By substituting eq. (2.12) into the above equation, we have

〈∂t1δn(x1)δn(x)〉 = 〈δF (x1) δn(x)〉 , (2.28)

where δF = F − (F )0. Similar steps give〈
∂t1δn(x1)

n∏
j=2

δn(xj)
〉

=
〈
δF (x1)

n∏
j=2

δn(xj)
〉
. (2.29)

Now, we are ready to obtain the evolution equation for Wn. For this purpose, we
consider

n∑
i=1

∂ti

〈
n∏
i=1

δn(xi)
〉

c
, (2.30)

where we can view 〈δn(xi)〉c as a function of

t = t1 + . . .+ tn
n

, ∆t1 = t1 − t , . . . , ∆tn−1 = tn−1 − t . (2.31)

Noting ∂t =
∑n
i ∂ti , we conclude that taking the equal-time limit t1, . . . , tn → t on eq. (2.30)

gives ∂tWn(t; x1, . . . ,xn). On the other hand, eq. (2.30) can be evaluated using eq. (2.29),
leading to the evolution equation:

∂tWn(t; x1, . . . ,xn) = lim
equ.

n∑
i=1

〈
F (xi)

∏
j 6=i

δn(xj)
〉

c

= 1
2 lim
t→t′

〈F (t,x1)
n∏
j=2

δn(t′,xj)
〉

c

+
〈
F (t′,x1)

n∏
j=2

δn(t,xj)
〉

c


Cx1,...,xn

,

(2.32)
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where Cx1,...,xn denotes the n-cyclic permutation of (x1, . . . ,xn). For example, for a generic
function w(x1,x2,x3), this operation gives

[w(x1,x2,x3)]Cx1,...,x3
= w(x1,x2,x3) + w(x3,x1,x2) + w(x2,x3,x1) . (2.33)

On the last expression of eq. (2.32), we have specified the prescription for taking the equal-
time limit such that the results will not depend on whether t− t′ → 0+ or t− t′ → 0−.

Before closing this section, we remark that the method presented in this section can
equally apply to derive evolution equation for un-equal time correlators, see appendix B
for illustrative examples.

3 Evolution equations

3.1 Perturbative scheme

At this juncture, the Schwinger-Dyson equation (2.32) is exact and non-perturbative. To
make progress, we consider a perturbative evaluation of eq. (2.32).

First, we expand the Lagrangian density (2.10) in fluctuating fields δn and ψ:

L = (L)1 + (L)2 + (L)3 + . . . , (3.1)

where the subscript of (. . .) counts the power of fluctuating fields. Note (L)1 is simply a
total derivative for expansion around the saddle point of the action. Explicitly, we have
from eq. (2.10),

(L)2 = −ψ∂tδn+ ψ∇ ·
[
γ∇

(
1− c∇2

)
δn− iλ∇ψ

]
, (3.2)

(L)3 = ψ∇ ·
[1

2γ
′∇(δn)2 − acλ′δn∇(∇2δn)− iλ′δn∇ψ

]
, (3.3)

(L)4 = ψ∇ ·
[1

6γ
′′∇(δn)3 − 1

2acλ
′′(δn)2∇(∇2δn)− i

2λ
′′(δn)2∇ψ

]
+ iϑ1a

2
[
(∇ψ ·∇(1− c∇2)δn)2 − (∇ψ)2

(
∇(1− c∇2)δn

)2
]

− iϑ2(∇ψ)2
(
a∇(1− c∇2

)
δn− i∇ψ)2 , (3.4)

where we have used eq. (2.16) to give the relation between δµ and δn,

βδµ = β
δE
δn

= a
(
1− c∇2

)
δn+ 1

2! a
′(δn)2 + 1

3!a
′′(δn)3 . (3.5)

In the above expressions, the diffusive constant is given by

γ = a λ . (3.6)

The interacting Lagrangian density Lint = (L)3 + (L)4 + · · · describes non-linear inter-
action among δn and noise field ψ. They receive contributions depending on the variations
of inverse susceptibility a and conductivity λ with respect to thermodynamic quantities.
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The latter contribution, e.g., λ′, λ′′, is sometimes referred to as the multiplicative noise
effects because λ controls the magnitude of Gaussian noise in conventional stochastic hy-
drodynamics. Although those multiplicative noise contributions can involve more than
two powers of fluctuating density fields in Lint, to say ∝ ψδnδnδn, they only contain at
most two powers of a-field and do not capture the non-linear interaction among the noise
fields. In contrast, ϑ2-contribution features cubic and quartic power in noise-field, such as
∝ ψψψδn and ∝ ψψψψ, so it represents a distinctive class of noise-density interactions
from multiplicative noise.

In hydrodynamic regime qξ � 1, both the contribution from the kinetic term in
the free energy (terms proportional to c) and ϑ1,2 contribution are unimportant as they
involve four powers of gradient. However, in the scaling regime qξ ≥ 1, one can not
even obtain the correct equilibrium expectation for W 2 without including c-contributions
since c ∼ ξ2 and hence is not suppressed by qξ (see eq. (2.20)). Similarly, we expect the
significance of ϑ1,2 contribution if they exhibit non-trivial ξ-dependence near the critical
point. As shown in ref. [38], ϑ1,2 can be extracted from four-point retarded correlator for
any given microscopic theory. Currently, to the best of our knowledge, the critical behavior
of “stochastic coefficients” ϑ1,2 remains elusive but deserves investigation in the future.

Next, we set up a power counting scheme. Following the standard procedure in EFT,
we introduce the rescaled fields:

δñ = gδn , ψ̃ = g−1ψ , (3.7)

where g−2 = a−1 is the equilibrium Gaussian fluctuation of δn per unit volume (see
eq. (2.20)). So, the Gaussian fluctuation of the rescaled variable δñ will be the order
of the unity (cf. eq. (2.20)), which is one primary motivation for the definition (3.7). Even
away from the critical point, g would become small when the degree of freedom per phase
space volume, i.e., entropy density, is large. For example, for the QGP, g2 will be sup-
pressed if the number of color charge Nc and quark flavor Nf become large. Near the
critical point, g2 is suppressed as ξ−2 due to the growth of the correlation length ξ. To
make the dependence of g on entropy density and on correlation length more transparent,
we introduce the parametrization:

g = g0ξ̃
−1 , ξ̃ ≡ ξ

ξ0
, (3.8)

where ξ0 is the typical microscopic correlation length. By design, we require g0 to be small
for systems with large entropy density but is insensitive to the correlation length.

By expressing (L)2 in terms of the rescaled field (3.7), it is easy to check that (L)2 ∼
O(g0) (note λ ∼ g−2). Turning to (L)n>2, we first note that for a generic thermodynamic
function A,

A′

A
= 1
A

∂A

∂µ

(
∂n

∂µ

)−1
∼ g2 1

A

∂A

∂µ
. (3.9)

Since A−1∂A/∂µ should not depend on the density of degrees of freedom, it can be counted
as O(1) in a small g0 limit. On the other hand, if A scales with correlation length near the
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critical point, so does its derivative with respect to µ. For definiteness, we shall assume
the critical point under consideration is in the 3d Ising model universality class so that T
and µ can be mapped to r and h, where r is the reduced Ising temperature and h is the
Ising magnetic field. In general, ∂/∂µ can be expressed as a linear combination of ∂h and
∂r. Given that ∂h gives stronger dependence on the correlation length, we then have

1
A

∂A

∂µ
∼ ∂hA

A
∼ ξ̃

2δc
δc−1 , (3.10)

where δc ≈ 5 is the well-known Ising critical exponents. This leads to the relation

A′

A
δn ∼ gξ̃

2δc
δc−1 δñ = g0ξ̃

δc+1
δc−1 δñ = geff , (3.11)

where we have defined

geff ≡ g0(ξ̃)
δc+1
δc−1 = g0(ξ̃)

3
2 . (3.12)

This implies that L3 ∼ (∂L2/∂n)δn should be counted as geff . More generally, one can
show by following the analogous steps that

Ln ∼ gn−2
eff , (3.13)

meaning geff can be employed as an effective coupling constant organizing the loop correc-
tions to the tree-level results. It also follows from eq. (3.13) that〈

n∏
i=1

δñ

〉
c
∼ gn−2

eff , (3.14)

and we consequently obtain the power counting for cumulants

Wn ∼ g−ngn−2
eff ∼ g−2

0 ξ
5(n−2)

2 +n , (3.15)

which gives the familiar critical behavior for non-Gaussian fluctuations, W3 ∼ ξ9/2,W4 ∼
ξ7. The power counting for Wn works for equilibrium correlators and we shall assume this
counting for off-equilibrium situations.

Now, we estimate the parametric behavior of loop corrections, which is simply given by

ε0 ≡ g2
effQ

3
∗ , (3.16)

where Q∗ denotes the characteristic loop momentum (see ref. [37] for an explicit demonstra-
tion of the counting (3.16)). To obtain eq. (3.16), we have used the fact that propagators
for rescaled fields is counted as order 1. The small parameters which bear certain similarity
to ε0 have been introduced in refs [10, 28].

In this paper, we shall work in the limit ε0 → 0 and only keep tree-level contribution
to the r.h.s. of the evolution equation (2.32). For example, for typical Q∗0 ∼ ξ−1, ε0 ∼ g2

0,
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which is small when entropy of the system is large. We then have the following expression
in terms of original fluctuating fields (not for the re-scaled fields (3.7)):

∂tW2(t; x1,x2) = lim
equ.

[〈(δF )1(x1)δn(x2)〉c]Cx1,x2
, (3.17a)

∂tW3(t; x1, . . . ,x3) = lim
equ.

〈(δF )1(x1)
3∏

j=2
δn(xi)

〉
c

+
〈

(δF )2(x1)
3∏

j=2
δn(xi)

〉
c


Cx1,...,x3

,

(3.17b)

∂tW4(t; x1, . . . ,x4) = lim
equ.

〈(δF )1(x1)
4∏

j=2
δn(xi)

〉
c

+ . . .+
〈

(δF )3(x1)
4∏

j=2
δn(xi)

〉
c


Cx1,...,x4

,

(3.17c)

where the prescription for taking the equal-time limit is specified below eq. (2.32). The
expansion of δF in fluctuating field, (δF )n, can be obtained from the variation of (L)n+1
with respect to ψ or directly by expanding F , e.g.,

(δF )1 = ∇ ·
[
γ∇(1− c∇2)δn− 2iλ∇ψ

]
, (3.18)

(δF )2 = ∇ ·
[
λa′δn∇δn+ λ′aδn∇(1− c∇2)δn− 2iλ′δn∇ψ

]
. (3.19)

To evaluate the r.h.s. of eq. (3.17) at tree level, we can use Wick theorem and express 〈. . .〉c
in terms of propagators:

Grr(x1, x2) ≡ 〈δn(x1)ψ(x2)〉 , (3.20)
Gra(x1, x2) ≡ 〈δn(x1)ψ(x2)〉 , Gar(x1, x2) ≡ 〈ψ(x1) δn(x2)〉 , (3.21)

where the two-point function of a-field is zero by causality (see also appendix A). We shall
not present the explicit expression for the resulting (somewhat complicated) equations
here, although obtaining them is straightforward. Instead, in the next section, we shall
first assume an additional separation of scale and further simplify the evolution equations.

3.2 Patches

In many situations of interest, the typical expansion rate ω and gradient k of the back-
ground profile (n(x))0 is much smaller than the characteristic momentum q∗ of the fluctu-
ating modes, i.e.,

ε1 ∼
(ω, k)
q∗

� 1 . (3.22)

For example, q∗ can be estimated by equating the diffusive rate of the fluctuating modes
γq2
∗ with the expansion rate ω, yielding q∗ ∼

√
ω/γ, which is parametrically larger than

ω [15] (see also refs. [18]). Note, q∗ is associated with the inverse of the Kibble-Zurek
length near the critical point [27], see ref. [19] for an estimation of this scale for heavy-ion
collisions. In what follows, we shall assume the limit eq. (3.22), as refs. [18, 28] did.
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When the separation of scale (3.22) is satisfied, we can divide the whole system at a
given time into many patches with typical length lpatch satisfying q−1 � lpatch � k−1, and
we can neglect the variation of the background fields within each patch and ignore the cor-
relation of fluctuations at different patches. In this sense, we may call those patches “locally
homogeneous and causally disconnected”. Then, it is convenient to introduce the general-
ized Wigner transform (WT) of the multi-point correlator as well as their inverse [28]:

Wn(x̄; q1, . . . , qn−1) =
∫

y1
· · ·
∫

yn
Wn(x̄ + y1, . . . , x̄ + yn)δ

(
y1 + · · ·+ yn

n

) n∏
j=1

e−iqj ·yj ;

(3.23)

Wn(x1, . . . ,xn) =
∫

q1
· · ·
∫

qn
Wn(x̄; q1, . . . , qn−1) (2π)3δq1+...+qn

n∏
j=1

eiqj ·xj . (3.24)

Here, the integral in the momentum space is abbreviated as
∫

q ≡
∫

dq3/(2π)3. For n =
2, eq. (3.23) is reduced to the familiar expression for the Wigner function of Gaussian
fluctuations. In eq. (3.23), x̄ labels each patch, to say the position of its center of energy,
while qi is the wave vector of the fluctuation field. In each patch, the Wigner transform
corresponds to the Fourier transform inside the patch. With this understanding, we shall
use Wigner transform and Fourier transform interchangeable when we refer to a patch.
SinceWn is invariant under the shift of all momentum qi by the same vector, we can impose
the requirement

∑
i qi = 0, meaning only (n−1) qs are non-redundant. Hereafter, we shall

drop qn in the argument ofWn to simplify our notations and writeWn(t, x̄; q1, . . . , qn−1) ≡
Wn(t, x̄; q1, . . . , qn).

We are interested in deriving evolution equation for Wn in Fourier space. Applying
the generalized Wigner transform to eq. (3.17), its l.h.s. will be replaced by

∂tWn(t, x̄; q1, . . . , qn−1) = · · · . (3.25)

The remaining task is to evaluate the Wigner transform of the r.h.s. . For this purpose, we
must consider the Fourier transform of Lagrangian density (L)n and δF on each patch.

First, by the virtue that intra-patch interaction among fluctuating fields is suppressed,
we can define Lagrangian density L on a given patch x̄ as

Lpatch(x = x̄ + y) = L[(n(x))0 → (n(x̄))0; δn(x)→ δn(y), ψ(x)→ ψ(y)] . (3.26)

In another word, for x = x̄ + y lives in the patch x̄, we replace the background fields
(n)0(x) and (T )0(x) by (n)0(x̄) and (T )0(x̄), and the fluctuating fields δn(x) and ψ(x)
by δn(y) and ψ(y), respectively. Next, on each patch, we consider the action in Fourier
space. For example,∫

y
(Lpatch)2(x̄ + y) =

∫
dt
∫

q1,q2
[−ψ(q1)Γ(q2)δn(q2) + iλ(q1 · q2)ψ(q1)ψ(q2)] δq1+q2 ,

(3.27)

where the damping rate of the fluctuating modes at momentum q is given by

Γ(q) = γq2f(q) , (3.28)
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with f defined in eq. (2.21). Similarly, we can introduce vertex functions Un,m describing
non-linear interaction among fluctuating fields from interacting part of the Lagrangian
density (n > 2),∫

dt
∫

y
(Lpatch)n(x̄ + y)

=
∫

dt
∫

q1,...,qn

m0(n)∑
m=1

1
m
Un,m(q1, . . . , qn)

m∏
i=1

ψ(qi)
n∏

j=m+1
δn(qj)δq1,...,qn , (3.29)

where once again n counts the number of fluctuating fields, whereas m counts that of a-
fields. In eq. (3.29), m0(n) ≤ n is the maximum number of a-fields in (L)n, and one can
read these numbers from the Lagrangian, e.g., m0(3) = 2, m0(4) = 4. By construction, we
require Un,m to be symmetric under each permutation over (q1, . . . , qm) and (qm+1, . . . , qn).
In the expression of U , the parameters, γ, λ, ϑ1,2, etc., will depend on (t, x̄), but we shall
keep this dependence inexplicit. Likewise, we will suppress (t, x̄)-dependence in Wns from
now on. Note the Lagrangian density considered in this work is even in spatial gradient,
so that the vertex function is invariant under the spatial inversion:

Un,m(q1, . . . , qn) = Un,m(−q1, . . . ,−qn) . (3.30)

With eqs. (3.27) and (3.29), we obtain the Fourier transform of (δF )n

(δF )1
WT−→

∫
q′2

[
−Γ(q′2)δn(q′2) + 2iλ(q1 · q′2)ψ(q′2)

]
δ−q1+q′2

, (3.31)

and for n > 2,

(δF )n−1
WT−→

∫
q′2,...q

′
n

m0(n)∑
m=1

Un,m(−q1, q
′
2, . . . , q

′
n)

m∏
i=2

ψ(q′i)
n∏

j=m+1
δn(q′j)

 δ−q1+q′2+...+q′n
.

(3.32)

3.3 Evolution equations in Fourier space

We first consider the evolution equation for W2 characterizing Gaussian fluctuations. The
r.h.s. of eq. (3.17a), i.e.,

lim
equ.

[〈(δF )1(t,x1) δn(t2,x2) 〉c]Cx1,x2

WT−−→ lim
equ.

[
〈(δF )1(t, q1) δn(t′, q2)〉c

]
Cq1,q2

, (3.33)

can be divided into two parts from the decomposition (δF )1 = (δF )1,0 + (δF )1,1, where
(δF )1,m with m = 0, 1 being the m-th power of a-field:

(δF )1,0 (q1) = −
∫

q′2

Γ(q′2)δn(q′2)δ−q1+q′2
, (3.34)

(δF )1,1 (q1) =
∫

q′2

2iλ(q1 · q′2)ψ(q′2)δ−q1+q′2
. (3.35)
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The first part, corresponding to the contribution from (δF )1,0, is given by

lim
equ.

[
〈(δF )1,0(t, q1)δn(t′, q2)〉c

]
Cq1,q2

= −2Γ(q1)W2(q1) . (3.36)

Turning to the second part coming from (δF )1,1, we have

lim
equ.

[
〈(δF )1,1(t, q1)δn(t′, q2)〉c

]
Cq1,q2

= 2λq2
1 , (3.37)

where we have used the relation,

lim
equ.

[
〈δn(t,x1)ψ(t′,x2)

]
Cx1,x2

WT−−→ lim
equ.

[
Gra(t, t′; q1) +Gar(t, t′; q1)

]
= −i . (3.38)

To get eq. (3.38), we first note Gra(t, t′; q) and Gar(t, t′; q) should approach a common
q-dependent constant in the limit t− t′ → 0+ and t− t′ → 0−, and vanish when t < t′ and
t > t′, respectively. Then, we determine this constant to be −i from the expression for Gra

and Gra in the static background (B.5), i.e.,

lim
t−t′→0+

Gra(t, t′; q1) = −i , lim
t−t′→0−

Gar(t, t′; q1) = −i . (3.39)

Combining eqs. (3.36) and (3.37), we arrive at the evolution equation for W2,

∂tW2(q1) = [−Γ(q1)W2(q1)]Pq1,q2
+ S2(q1) , (3.40)

where Pqn denotes the permutation around (q1, . . . , qn). Note this is different from the
cyclic operation, e.g., (2.33), in general. The source term for W2 is given by

S2(q1) = 2λq2
1 . (3.41)

Before continuing, a further remark on the treatment of retarded/advanced response
function, Gra and Gar, at equal time is due here. When computing eq. (2.32), we evaluate
functions symmetric under the permutation of (t, t′). Therefore, Gra(t, t′; q) and Gar(t, t′; q)
should always appear in the combination as Gra(t, t′; q)+Gar(t, t′; q) and the results should
not depend on whether t − t′ → 0+ or t − t′ → 0−. As a consequence, we can practically
implement eq. (3.38) with the prescription,

lim
equ.

Gra(t, t′; q1) = lim
equ.

Gar(t, t′; q1) = − i
2 . (3.42)

Now, we return to determine the evolution equations for non-Gaussian fluctuations.
First, we observe the following generalization of eq. (3.36):

lim
equ.

〈∇ (δF )1,0 (t, q1)
n∏
j=2

δn(tj , qj)
〉

c


Cq1,...,qn

= −nΓ(q1)Wn(q1, . . . , qn−1) . (3.43)

Moreover, due to the causal structure of SK EFT, we have the relation (see appendix A
for a derivation)

lim
equ.

〈(
∇2ψ

)
(t′,x1)

n∏
j=2

δn(t,xj)
〉

c

= 0 , (for n > 2) , (3.44)
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which implies

lim
t′→t

〈
∇ (δF )1,1 (t′,x1)

n∏
j=2

δn(t,xj)
〉

c

= 0 , (for n > 2) . (3.45)

As detailed in appendix A, eq. (3.44) is general and holds for arbitrary ε0 and ε1. With
eqs. (3.43) and (3.44) at hand, the equations for W3 and W4 together with that for W2 can
be collectively written as

∂tWn(q1, . . . , qn−1) =
[
− 1

(n− 1)!Γ(q1)Wn(q1, . . . , qn−1)
]
Pq1,...,qn

+ Sn(q1, . . . , qn) ,

(3.46)

where the source terms are given by

S3 ≡ lim
equ.

〈(δF )2 (q1)
3∏
j=2

δn(qj)
〉
c


Cq1,...,q3

, (3.47)

S4 = lim
equ.

〈(δF )2 (q1)
4∏
j=2

δn(qj)
〉

c

+
〈

(δF )3 (q1)
4∏
j=2

δn(qj)
〉

c


Cq1,...,q4

. (3.48)

Upon substituting eq. (3.32), we find the relation,

〈(δF )n−1(q1)
n∏
l=2

δn(ql)〉c

=
n−1∑
m=1

Un,m(−q1, . . . ,−qn)
(
− i

2

)m−1 n∏
j=m+1

W2(qj)


Pq2,...,qn

+ · · ·

=
n−1∑
m=1

Un,m(q1, . . . , qn)
(
− i

2

)m−1 n∏
j=m+1

W2(qj)


Pq2,...,qn

+ · · · , (3.49)

where Pq2,...,qn arises from (n − 1)! ways to assign q2, . . . , qn to −q′2, . . . ,−q′n in (δF )n
and we have used eq. (3.30). Note eq. (3.49) can generally include other contribution · · ·
coming from loop corrections. Consequently, the source terms at tree-level take the form

S3(q1, . . . , q3) =

 2∑
m=1

U3,m(q1, . . . , q3)
(
− i

2

)m−1 3∏
j=m+1

W2(qj)


Pq1,...,q3

, (3.50)

S4(q1, . . . , q4) =

 4∑
m=1

U4,m(q1, . . . , q4)
(
− i

2

)m−1 ∏
j=m+1

W2(qj)

+
2∑

m=1
U3,m(q1, q2,−q12)

(
− i

2

)m−1
(W2(q2))1−δm2 W3(q3, q4)


Pq1,...,q4

,

(3.51)

– 16 –



J
H
E
P
0
3
(
2
0
2
2
)
1
2
4

where the second line of eq. (3.51) is obtained by generalizing eq. (3.49) and where qij is
defined in eq. (2.24). Note, we may read eqs. (3.50) and (3.51) from the diagrammatic
representation:

S3(q1, . . . , q3) = lim
equ.

 q1
q2

q3

+ q1
q2

q3

 , (3.52)

S4(q1, . . . , q4) = lim
equ.


q2

q3
q4

q1
+

q2

q3
q4

q1
+

q2

q3
q4

q1

+
q2

q3
q4

q1
+

q2

q3

q4
q1

+
q2

q3

q4
q1

 ,
(3.53)

where we use the solid line and solid-wavy line to represent Grr and Gra, respectively:

Grr(q) :
q

; Gra(q) :
q

. (3.54)

The empty circles in the second line of eq. (3.53) denote the insertions of iI3 which give a
contribution proportional to W3. Noting we are taking the equal-time limit, in eqs. (3.52)
and (3.53), we shall do the following which gives rise to eqs. (3.47) and (3.48):

1. Replace solid and solid-wavy lines with W2 and −i/2 (see eq. (3.42)), respectively;

2. insert appropriate vertex Un,m;

3. take care of symmetry factors.

Finally, by substituting the explicit expression for vertex functions, obtained from
eqs. (3.3) and (3.4),

U3,1(q1, . . . , q3) = −1
2a
′λq2

1 + 1
2λ
′
[

q1 · q2

W (q2)

]
Pq2,q3

, (3.55)

U3,2(q1, . . . , q3) = −2iλ′q1 · q2 , (3.56)

U4,1(q1, . . . , q4) = −1
6
(
a′′λ+ 2a′λ′

)
q2

1 + 1
12λ

′′
[

q1 · q2

W (q2)

]
Pq2,...,q4

, (3.57)

U4,2(q1, . . . , q4) = −iλ′′q1 · q2

+ i [ϑ1(q1 · q3)(q2 · q4)− (ϑ1 + ϑ2)(q1 · q2)(q3 · q4)]Pq1,q2

× 1
W 2(q3)W 2(q4)

, (3.58)
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U4,3(q1, . . . , q4) = −ϑ2 [(q1 · q2)(q3 · q4)]Pq1,...,q3

1
W 2(q4)

, (3.59)

U4,4(q1, . . . , q4) = iϑ2
6 [(q1 · q2)(q3 · q4)]Pq1,...,q4

, (3.60)

we determine explicit expression for source terms,

S3(q1, . . . , q3)

=
[
−1

2Γ(q1)a′W 2(q1)W2(q2)W2(q2) + λ′q1 · q2

(
W2(q2)
W 2(q2)

− 1
)
W2(q3)

]
Pq1,...,q3

, (3.61)

S4(q1, . . . , q4)

=
[
− 1

6a
′′ Γ(q1)W 2(q1)W2(q2)W2(q3)W2(q4)− 1

2a
′ Γ(q1)W 2(q1)W2(q2)W3(q3, q4)

− 1
3λ
′a′q2

1W2(q2)W2(q3)W2(q4) + 1
2λ
′q1 · (q3 + q4)

W 2(q34)
W2(q2)W3(q3, q4)

+ 1
2λ
′′q1 · q2

(
W2(q2)
W 2(q2)

− 1
)
W2(q3)W2(q4) + 1

2λ
′q1 · q2

(
W2(q2)
W (q2)

− 1
)
W3(q3, q4)

+ ϑ1 [(q1 · q3)(q2 · q4)− (q1 · q2)(q3 · q4)] W2(q3)W2(q4)
W 2(q3)W 2(q4)

+ϑ2(q1 · q2)(q3 · q4)
(
−W2(q3)W2(q4)
W 2(q3)W 2(q4)

+ 3
2
W2(q4)
W 2(q4)

− 1
2

)]
Pq1,...,q4

, (3.62)

where we have used the relation

λq2
1 = Γ(q1)W 2(q1) , (3.63)

and whereW 2 is the equilibrium Gaussian fluctuation on the patch x̄; its explicit expression
can be read from eq. (2.17) with understanding that a, ξ, etc., depend on t, x̄ through their
dependence on the background profile (n)0 and T . The evolution equations (3.46) together
with the explicit expression for the source term eqs. (3.41), (3.61), and (3.62) are the main
results of the present section.

The evolution equation for Gaussian hydrodynamic fluctuations has been studied re-
cently using Hydro-Kinetic [15, 19] or Hydro+ formalism [16]. Our expression for n =
2, (3.40) is consistent with these previous results. In hydrodynamic regime where the
damping rate Γ(q) (3.28) is reduced to γq2, our evolution equations agree with those ob-
tained in ref. [28]. The above equations also bear a similarity in structure to evolution
equations for cumulants of order parameter field in ref. [10].

The source terms for non-Gaussian fluctuations, Sn>2, depend on the thermodynamic
derivatives of inverse susceptibility a and conductivity λ as well as the additional “stochastic
coefficients” ϑ1,2. As evident from eq. (2.17), the equilibrium fluctuations should only
depend on the thermodynamic derivatives of a, but not on λ′, λ′′, and ϑ1,2. Therefore, the
latter should not modify the equilibrium expectations. Indeed, we can directly verify that
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those contributions in S3 and S4 vanish upon replacing Wns with the equilibrium value
Wns given in section 2.2.1. The remaining terms precisely balance the damping term in
evolution equation (3.46), indicating the r.h.s. of evolution equation vanishes when Wn are
evaluated at their equilibrium value (2.17) at it should.

Nevertheless, those λ′, λ′′, and ϑ1,2 contributions, in general, are important in away
from the equilibrium settings. In particular, we demonstrate explicitly for the first time that
non-linear coupling among noise fields, coming from ϑ2 terms in eq. (3.62), will generate off-
equilibrium quadratic fluctuations. This is also consistent with the generalized fluctuation-
dissipation theorem which relates the real-time W4 to four-point retarded correlator [42];
the latter depends on ϑ1,2 [38]. As a prior, ϑ1,2 effects may be of importance in the scaling
regime |q|ξ ≥ 1, depending on the critical behavior of “stochastic coefficients” yet to be
explored.

4 The solution

We are interested in obtaining the solutions to the evolution equation (3.46) with generic
initial conditions at initial time tI:

Wn(q1, . . . , qn−1)
∣∣∣
t=tI

= W I
n(q1, . . . , qn−1) . (4.1)

In the previous section, we have derived the explicit expression for Sn (see eqs. (3.41), (3.50),
and (3.51)). For n = 2, the evolution equation of the form (3.40) has been studied on semi-
realistic hydrodynamic grounds based on Hydro+ framework in refs. [20, 21]. In principle,
one can do the same for non-Gaussian fluctuations. Instead, we shall look for the closed-
form solutions to eq. (3.46).

Let us first define the response function G(t, t′; q) which is the solution to the initial
value problem,

∂tG(t, t′; q) = −Γ(q)G(t, t′; q) , G(t′, t′; q) = 1 . (4.2)

As before, Γ as well as G depend on the label of the patch x̄, but we will keep this
dependence inexplicitly. In essence, G obeys the same equation as linearized equation
for the diffusive mode, and is the Green’s function describing the diffusion of the density
fluctuation. Therefore, one should not be surprised that G is proportional to the EFT
propagator Gra, (4.5) given below. It is easy to verify that the solutions to eq. (3.46) with
the initial condition (4.1) is given by

Wn(t; q1, . . . , qn−1)

=
n∏
i=1
G(t, tI; qi)W I

n(q1, . . . , qn−1) +
∫ t

tI
dt′

n∏
j=1
G(t, t′; qj)Sn(t′; q1, . . . , qn) . (4.3)

The first term in eq. (2.14) describes the decay of initial fluctuations while the second term
represents the dissipation of the fluctuations generated during the evolution of the system.
Equation (4.3) can be implemented in realistic simulation in heavy-ion collisions by 1)
computing the response function (4.2) on top of the given hydrodynamic background; 2)
evaluating Sn, (3.41), (3.61), and (3.62); 3) performing the integration on time.
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4.1 Field theory interpretation

From the point of view of field theory, the solution (of Schwinger-Dyson equations), eq. (4.3)
reflects the fact that higher-point functions should be expressible in terms of vertex func-
tions characterizing non-linearity and two-point functions. To make this point more trans-
parent, we take W3 as an example and show explicitly that eq. (4.3) can be obtained by
directly evaluating tree-level diagrams contributing to W3.

Indeed, the cubic correlator W3 at t is given by

W3(q1, . . . , q3) =
q1

q2

q3

+
q1

q2

q3

= i
∫ ∞
tI

dt′
[
U3,1(q1, . . . , q3)Gra(t, t′; q1)Grr(t, t′; q2)Grr(t, t′; q3)

+U3,2(q1, . . . , q3)Gra(t, t′; q1)Gra(t, t′; q2)Grr(t, t′; q3)
]
Pq1,...,q3

,

(4.4)

where Um,n is evaluated at t′ and we have used the Feynman rule (3.54). Note the difference
between diagrams for equilibrium W̄3 in eq. (2.22) and non-equilibrium W3 in eq. (4.4).
Now substituting the expression for propagators (see appendix B for a derivation)

Gra(t, t′; q) = −iG(t, t′; q)θ(t, t′) , (4.5)
Grr(t, t′; q) = G(t, t′; q)W2(t′; q) , t > t′ , (4.6)

into eq. (4.4), we obtain

W3(t; q1, . . . , q3) =
∫ t

tI
dt′

3∏
j=1
G(t, t′; qj)S3(t′; q1, . . . , q3) , (4.7)

with S3 given by eq. (3.50). Equation (4.7) is nothing but the second term on eq. (4.3) for
n = 3, as we advertised earlier. To recover the first term in eq. (4.3), one needs to include
an additional boundary term at t = tI to the action by generalizing the method described
in ref. [43].

5 Summary and outlook

In the view that non-Gaussian fluctuations of baryon density would lead to the important
observational signature on the presence of the conjectured QCD critical point, we have
studied the multi-point fluctuations of a generic conserved density based on novel EFT
formalism for hydrodynamic fluctuations. We obtain not only evolution equations for
multi-point equal-time correlators of density fluctuation (see eqs. (3.46), (3.41), (3.50),
and (3.51)), which is related to the Schwinger-Dyson equation in the field theory language,
but also their solutions expressed in terms of the response function (propagator) (4.3) for
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arbitrary initial conditions. To the best of our knowledge, the present work is the first one
that applies the EFT formalism to study non-Gaussian fluctuations of a hydrodynamic
mode. Our work demonstrates that this EFT approach can be utilized to investigate this
intriguing problem systematically based on familiar field theoretical methods.

While the traditional stochastic hydrodynamics only includes Gaussian white noise,
we find non-linear interactions among noise fields, parametrized by (new) “stochastic co-
efficient” ϑ2 in eq. (2.8) [38], together with another independent term being proportional
to a different “stochastic coefficient” ϑ1, contribute additionally to quartic fluctuations
(n = 4) when the system is out of equilibrium. Given their potential importance, it would
be interesting and instructive to understand the critical behavior of those coefficients in
general and in QCD system specifically.

We focus on the pure diffusive mode and do not account for the full interaction among
hydrodynamic modes. We hope that the main features we obtain here will survive in
future more comprehensive studies. This anticipation’s validity should be checked with the
full hydrodynamic EFT theory as shown in refs. [29, 30]. That said, in the view toward
providing quantitative and benchmark guidance for the BESII data anticipated in the
upcoming years, we believe that incorporating the present results, including the compact
form solution to the evolution equation, (4.3) in realistic modelings, as was done previously
for Gaussian fluctuations in refs. [20, 21], is a more immediate priority.

For the conjectured QCD critical point, the slowest hydrodynamic mode is entropy per
baryon density, m ≡ s/n [16, 19]. It is also shown in ref. [19] that the Gaussian fluctuation
of this mode δm will always diverge with the largest Ising critical exponent γ ≈ 1.23.
We therefore expect that one should use evolution equation (3.46) as well as the solution
eq. (4.3) with the replacement for the QCD critical point (see ref. [28]):

δn→ δm , a→ n2

cp
, λ→ κ

n2 , (5.1)

where cp is the heat capacity at constant pressure and κ is thermal conductivity. In a
realistic situation, other refinements are needed. For example, the interpretation of t in
those equations should be elaborated [18] and might be related to the affine parameter
parametrizing the streamline in the background hydrodynamic solution. To make contact
with experimental observations, a freezeout prescription for Wns has to be formulated [44]
(see also refs. [45, 46]).

To obtain the evolution equation (3.46), we have assumed the smallness of two ex-
pansion parameter ε0 and ε1, defined in eqs. (3.16) and (3.22), respectively. The former
controls the loop corrections to the present tree-level results, while the latter, if is small,
justifies dividing the whole system into a collection of locally homogeneous patches. For
given hydrodynamic background, whether ε1 is small or not can be checked directly, along
the line of section VE in ref. [21]. Even in the case that ε1 is not small, one can return to
the evolution equation in real space (3.17) which is valid for arbitrary ε1. The importance
of the loop corrections ε0 also needs to be examined, which we defer to future work.
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A Causal structure

The causality imposes important constraints on the correaltors in SK formalism. In this
appendix, we review some of those constraints which we have used at various places in the
present work.

Let us begin with the largest time equation (LTE) which, in the context of this work,
states that for multi-point correlator of the fluctuating fields, denoted collectively by φs
(s = a, r), must satisfy

Gs1,...,sn,a(t1, . . . , tn, tn+1) = 〈φs1(t1) . . . φsn(tn)φa(tn+1)〉c = 0, tn+1 > t1, . . . , tn .

(A.1)

In this section, we shall suppress spatial dependence in our notations whenever possible, as
this is sufficient for the present purpose of studying causal structure. Physically, LTE (A.1)
tells us that the physical observables (r-field) can only be correlated with noise (a-field) in
the past but not in future. Applying LTE, we recover the familiar results Gra(t′, t) = 0 if
t′ < t and Gaa is identically zero. The interested reader can consult ref. [47] for a proof of
LTE in general situations.

A related property is that any diagrams that contains a loop made entirely of Gar

propagator should vanish. Let us denote the vertices in such a loop by V1, . . . , Vn which
are inserted at t1, . . . , tn, respectively. Since this loop only contains Gar(t, t′) ∝ θ(t′− t), it
is proportional to

∝ θ(t2 − t1)θ(t3 − t2) . . . θ(tn − tn−1)θ(t1 − tn) = 0 . (A.2)

The first n− 1 step functions will vanish unless tn > tn−1 . . . > t1. However, the last step
function is non-zero only if t1 > tn, implying eq. (A.2). For example, the loop diagram
below vanishes:

t t′ (A.3)

Now, let us prove eq. (3.44). We shall first show:

lim
t→t′
〈ψ(t,x1)

n∏
j=2

δn(t′,xj)〉c = 0 (for n > 2) . (A.4)

Our proof is inspired by the method used in ref. [47]. Note LTE (A.1) implies that eq. (A.4)
vanishes for t − t′ → 0+. In what follow, we shall consider the case, t − t′ → 0−, from
now on.
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First, we note that (A.4) is zero for n > 2 if we only include Gaussian part of the
action, so a non-zero contribution to eq. (A.4) must involve the insertion of vertices. Let
us consider the external a-field ψ(t) which can only connect to a r-leg of a vertex V1 at
time t1. Since all vertices must contain at least one a-leg, we can continue following an
a-leg in V1 which in turn has to connect with a r-leg through a Gar at the second vertex
V2 at time t2. Repeating this procedure, we find two possibilities (see also ref. [47]):

1. We end up with an internal vertex Vi at ti we have already encountered, meaning
we have an internal loop formed solely by Gar. As we explained earlier, the whole
diagram is zero.

2. We come to the external vertex V0 at t0 which connect with one r-field δn(t) through
a-leg. In this case, the diagram is proportional to∫

dt0dt1 . . . dtnθ(t1 − t) . . . θ(t′ − t0) , (A.5)

which also vanishes in the limit t→ t′. For example,

lim
t→t′ t

t′

t0

∝ lim
t→t′

∫ t′

t
dt0 = 0 . (A.6)

The above analysis is unchanged when arbitrary power of spatial derivatives acting
on eq. (A.4). We conclude that eq. (3.44) holds generically due to the causal structure of
SK EFT.

B The evolution equations for un-equal time correlators

In the main body of the present work, we focus on the equal-time correlators of density
fluctuations. Our method can be readily generalized to study un-equal time correlators,
such as Grr(x, x′) defined in eq. (3.20). From Schwinger-Dyson equation (2.29), we have:

∂tG
rr(x, x′) = 〈δF (x)δn(x′)〉 . (B.1)

Assuming ε0 is small, we could keep the tree level contribution which comes from (δF )1:

∂tG
rr(x, x′) = 〈(δF )1(x)δn(x′)〉 , t > t′ . (B.2)

Without losing generality, we assume t > t′ and consequently (δF )1,1 will not contribute
because of LTE (A.1). Further consider the limit ε1 → 0 and apply the Wigner transform
to eq. (B.2), we find

∂tG
rr(t, t′; q) = −Γ(q)Grr(t, t′; q) , t > t′ . (B.3)
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Solving eq. (B.3) with the initial condition G(t, t; q) = W2(t; q), we obtain eq. (4.6). Fol-
lowing a similar procedure, we have the equation for Gra,

∂tG
ra(t, t′; q) = −Γ(q)Gra(t, t′; q) , t > t′ . (B.4)

with the initial condition eq. (3.38). This leads to eq. (4.5).
We can test eq. (3.38) by considering the static background. In this situation, the

tree-level propagators can be read from eq. (3.2):

Gra(t, t′; q) = −iθ(t− t′)e−Γ(q)(t−t′) , Gar(t, t′; q) = −iθ(t′ − t)e−Γ(q)(t−t′) , (B.5)

which agrees with eq. (3.38).
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