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1 Introduction

The production of a pair of massless leptons at hadron colliders like the Large Hadron
Collider (LHC) at CERN — the so-called Neutral-Current Drell-Yan (NCDY) process
— is one of the most important and most studied hadron collider processes. From an
experimental perspective, its clean final-state signature makes it an ideal candidate for
luminosity measurements and detector calibration. The DY process also plays a key role
in the measurement of parton distribution functions (PDFs) at the LHC and in many
searches for physics beyond the Standard Model (SM). From a theoretical perspective, the
invariant-mass distribution of the produced lepton pair is arguably the simplest hadron
collider observable, and it often serves as a template to understand the structure of higher-
order QCD corrections at hadron colliders more generally. It is thus important to have a
solid theoretical understanding for the NCDY process, including higher-order corrections
in both the strong and electroweak coupling constants.

At leading order (LO) in the electroweak coupling constant, the massless lepton pair is
produced via the propagation of an intermediate, off-shell photon or Z-boson [1]. The next-
to-leading order (NLO) QCD corrections have been computed several decades ago [2, 3].
The next-to-next-to-leading order (NNLO) corrections were computed in refs. [4–9] in a ver-
sion of the SM where all quarks, including the top quark, are considered massless, and the
effects of finite quark masses were computed in refs. [10–12]. Fully differential predictions
for the Drell-Yan process at NNLO are readily available, see for example refs. [13–17]. Elec-
troweak corrections, including mixed QCD-electroweak corrections are also available [18–
22].

The uncertainty on the NNLO results due to missing higher orders in the QCD pertur-
bative expansion was estimated to be at the percent level by varying the renormalisation
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and factorisation scales by a factor of two around a central scale related to the invariant
mass of the lepton pair. Very recently, also next-to-next-to-next-to-leading order (N3LO)
corrections in the strong coupling have been computed, but only for the contributions from
an intermediate off-shell-photon [23]. Unlike for N3LO corrections to inclusive Higgs pro-
duction processes [24–30], it was found that for large ranges of invariant masses, the N3LO
corrections are sizeable and lower the value of the cross section by a few percent, which is
more than the missing higher order uncertainty estimated from varying the perturbative
scales at NNLO. This result was recently confirmed by the independent computation from
the double-differential computation for lepton-pair production via an off-shell photon at
N3LO in ref. [31] and the computation of the fiducial cross setion at N3LO in ref. [32]. A
similar behaviour was observed for the production of a lepton-neutrino pair at N3LO [33].
This shows that N3LO corrections are highly needed if we want to reach a precision at the
percent level for vector-boson production at hadron colliders. In particular, a complete
calculation of the NCDY process in the SM at N3LO, including also the contributions from
the exchange of the Z-boson, is highly desired.

The computation of higher-order corrections including Z-bosons, however, is much
more challenging. Unlike the photon, the Z-boson has both vector and axial couplings to
fermions. Higher-order computations typically diverge, and they are conventionally reg-
ularised using dimensional regularisation, where the space-time dimension is analytically
continued from D = 4 to D = 4 − 2ε dimensions. Axial couplings involve a γ5 matrix,
which is an intrinsically four-dimensional object, and so its treatment in dimensional reg-
ularisation is ambiguous (see ref. [34] and references therein for a review). Moreover, it is
well known that the axial current is anomalous in QCD, and its divergence is described
by the famous Adler-Bell-Jackiw (ABJ) anomaly equation [35–37] (this anomaly is absent
for the vector current, as a consequence of Yang’s theorem [38]). In the complete SM, the
axial anomaly cancels. Calculations involving massive top quarks, however, are technically
extremely challenging, and therefore computations are usually done in an effective theory
where the top quark is infinitely heavy and is integrated out. This procedure does no longer
naively work in the presence of an axial current, because the resulting effective theory is
anomalous [39].

The goal of this paper is to present for the first time complete results for the invariant
mass distribution for the NCDY process in the SM at N3LO in the strong coupling con-
stant, including contributions from both an intermediate photon and Z-boson. Our main
contribution is the computation the inclusive N3LO cross section for an axial-vector state
in QCD. We treat the γ5 matrix by working in the Larin scheme [40–44] and we work in
a theory with five massless active quark flavours where the top quark has been integrated
out. Since this effective theory is anomalous, the top quark does not completely decouple.
We include non-decoupling effects via a Wilson coefficient multiplying the axial current in
the effective theory. As a result, we obtain the complete N3LO cross section in the SM,
up to terms that are power-suppressed in the top quark mass. The finite top-mass effects
are known to be small at NNLO, and we expect the size of the missing power-suppressed
terms to be negligible at N3LO as well. As a result, we obtain for the first time complete
phenomenological predictions for the NCDY process to third order in the strong coupling.

– 2 –



J
H
E
P
0
3
(
2
0
2
2
)
1
1
6

P
<latexit sha1_base64="4fLVmpxMEsUPMXRqkFcV8/BKs8E=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUL9gFtkMn0ph07mYSZiVBCv8CNC0Xc+knu/BsnbRbaemDgcM65zL0nSATXxnW/ndLa+sbmVnm7srO7t39QPTzq6DhVDNssFrHqBVSj4BLbhhuBvUQhjQKB3WBym/vdJ1Sax/LeTBP0IzqSPOSMGiu1mg/Vmlt35yCrxCtIDQrY/NdgGLM0QmmYoFr3PTcxfkaV4UzgrDJINSaUTegI+5ZKGqH2s/miM3JmlSEJY2WfNGSu/p7IaKT1NApsMqJmrJe9XPzP66cmvPYzLpPUoGSLj8JUEBOT/Goy5AqZEVNLKFPc7krYmCrKjO2mYkvwlk9eJZ2LuufWvdZlrXFT1FGGEziFc/DgChpwB01oAwOEZ3iFN+fReXHenY9FtOQUM8fwB87nD6mZjNQ=</latexit><latexit sha1_base64="4fLVmpxMEsUPMXRqkFcV8/BKs8E=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUL9gFtkMn0ph07mYSZiVBCv8CNC0Xc+knu/BsnbRbaemDgcM65zL0nSATXxnW/ndLa+sbmVnm7srO7t39QPTzq6DhVDNssFrHqBVSj4BLbhhuBvUQhjQKB3WBym/vdJ1Sax/LeTBP0IzqSPOSMGiu1mg/Vmlt35yCrxCtIDQrY/NdgGLM0QmmYoFr3PTcxfkaV4UzgrDJINSaUTegI+5ZKGqH2s/miM3JmlSEJY2WfNGSu/p7IaKT1NApsMqJmrJe9XPzP66cmvPYzLpPUoGSLj8JUEBOT/Goy5AqZEVNLKFPc7krYmCrKjO2mYkvwlk9eJZ2LuufWvdZlrXFT1FGGEziFc/DgChpwB01oAwOEZ3iFN+fReXHenY9FtOQUM8fwB87nD6mZjNQ=</latexit><latexit sha1_base64="4fLVmpxMEsUPMXRqkFcV8/BKs8E=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUL9gFtkMn0ph07mYSZiVBCv8CNC0Xc+knu/BsnbRbaemDgcM65zL0nSATXxnW/ndLa+sbmVnm7srO7t39QPTzq6DhVDNssFrHqBVSj4BLbhhuBvUQhjQKB3WBym/vdJ1Sax/LeTBP0IzqSPOSMGiu1mg/Vmlt35yCrxCtIDQrY/NdgGLM0QmmYoFr3PTcxfkaV4UzgrDJINSaUTegI+5ZKGqH2s/miM3JmlSEJY2WfNGSu/p7IaKT1NApsMqJmrJe9XPzP66cmvPYzLpPUoGSLj8JUEBOT/Goy5AqZEVNLKFPc7krYmCrKjO2mYkvwlk9eJZ2LuufWvdZlrXFT1FGGEziFc/DgChpwB01oAwOEZ3iFN+fReXHenY9FtOQUM8fwB87nD6mZjNQ=</latexit><latexit sha1_base64="4fLVmpxMEsUPMXRqkFcV8/BKs8E=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUL9gFtkMn0ph07mYSZiVBCv8CNC0Xc+knu/BsnbRbaemDgcM65zL0nSATXxnW/ndLa+sbmVnm7srO7t39QPTzq6DhVDNssFrHqBVSj4BLbhhuBvUQhjQKB3WBym/vdJ1Sax/LeTBP0IzqSPOSMGiu1mg/Vmlt35yCrxCtIDQrY/NdgGLM0QmmYoFr3PTcxfkaV4UzgrDJINSaUTegI+5ZKGqH2s/miM3JmlSEJY2WfNGSu/p7IaKT1NApsMqJmrJe9XPzP66cmvPYzLpPUoGSLj8JUEBOT/Goy5AqZEVNLKFPc7krYmCrKjO2mYkvwlk9eJZ2LuufWvdZlrXFT1FGGEziFc/DgChpwB01oAwOEZ3iFN+fReXHenY9FtOQUM8fwB87nD6mZjNQ=</latexit>

P
<latexit sha1_base64="4fLVmpxMEsUPMXRqkFcV8/BKs8E=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUL9gFtkMn0ph07mYSZiVBCv8CNC0Xc+knu/BsnbRbaemDgcM65zL0nSATXxnW/ndLa+sbmVnm7srO7t39QPTzq6DhVDNssFrHqBVSj4BLbhhuBvUQhjQKB3WBym/vdJ1Sax/LeTBP0IzqSPOSMGiu1mg/Vmlt35yCrxCtIDQrY/NdgGLM0QmmYoFr3PTcxfkaV4UzgrDJINSaUTegI+5ZKGqH2s/miM3JmlSEJY2WfNGSu/p7IaKT1NApsMqJmrJe9XPzP66cmvPYzLpPUoGSLj8JUEBOT/Goy5AqZEVNLKFPc7krYmCrKjO2mYkvwlk9eJZ2LuufWvdZlrXFT1FGGEziFc/DgChpwB01oAwOEZ3iFN+fReXHenY9FtOQUM8fwB87nD6mZjNQ=</latexit><latexit sha1_base64="4fLVmpxMEsUPMXRqkFcV8/BKs8E=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUL9gFtkMn0ph07mYSZiVBCv8CNC0Xc+knu/BsnbRbaemDgcM65zL0nSATXxnW/ndLa+sbmVnm7srO7t39QPTzq6DhVDNssFrHqBVSj4BLbhhuBvUQhjQKB3WBym/vdJ1Sax/LeTBP0IzqSPOSMGiu1mg/Vmlt35yCrxCtIDQrY/NdgGLM0QmmYoFr3PTcxfkaV4UzgrDJINSaUTegI+5ZKGqH2s/miM3JmlSEJY2WfNGSu/p7IaKT1NApsMqJmrJe9XPzP66cmvPYzLpPUoGSLj8JUEBOT/Goy5AqZEVNLKFPc7krYmCrKjO2mYkvwlk9eJZ2LuufWvdZlrXFT1FGGEziFc/DgChpwB01oAwOEZ3iFN+fReXHenY9FtOQUM8fwB87nD6mZjNQ=</latexit><latexit sha1_base64="4fLVmpxMEsUPMXRqkFcV8/BKs8E=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUL9gFtkMn0ph07mYSZiVBCv8CNC0Xc+knu/BsnbRbaemDgcM65zL0nSATXxnW/ndLa+sbmVnm7srO7t39QPTzq6DhVDNssFrHqBVSj4BLbhhuBvUQhjQKB3WBym/vdJ1Sax/LeTBP0IzqSPOSMGiu1mg/Vmlt35yCrxCtIDQrY/NdgGLM0QmmYoFr3PTcxfkaV4UzgrDJINSaUTegI+5ZKGqH2s/miM3JmlSEJY2WfNGSu/p7IaKT1NApsMqJmrJe9XPzP66cmvPYzLpPUoGSLj8JUEBOT/Goy5AqZEVNLKFPc7krYmCrKjO2mYkvwlk9eJZ2LuufWvdZlrXFT1FGGEziFc/DgChpwB01oAwOEZ3iFN+fReXHenY9FtOQUM8fwB87nD6mZjNQ=</latexit><latexit sha1_base64="4fLVmpxMEsUPMXRqkFcV8/BKs8E=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUL9gFtkMn0ph07mYSZiVBCv8CNC0Xc+knu/BsnbRbaemDgcM65zL0nSATXxnW/ndLa+sbmVnm7srO7t39QPTzq6DhVDNssFrHqBVSj4BLbhhuBvUQhjQKB3WBym/vdJ1Sax/LeTBP0IzqSPOSMGiu1mg/Vmlt35yCrxCtIDQrY/NdgGLM0QmmYoFr3PTcxfkaV4UzgrDJINSaUTegI+5ZKGqH2s/miM3JmlSEJY2WfNGSu/p7IaKT1NApsMqJmrJe9XPzP66cmvPYzLpPUoGSLj8JUEBOT/Goy5AqZEVNLKFPc7krYmCrKjO2mYkvwlk9eJZ2LuufWvdZlrXFT1FGGEziFc/DgChpwB01oAwOEZ3iFN+fReXHenY9FtOQUM8fwB87nD6mZjNQ=</latexit>

�
<latexit sha1_base64="xXeP4fWvUDKmvgl18vZjV9Y7J+c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYhA8hV0R9Bj0oMcI5gHJEnons8mYeSwzs0II+QcvHhTx6v9482+cJHvQxIKGoqqb7q445czYIPj2VlbX1jc2C1vF7Z3dvf3SwWHDqEwTWieKK92K0VDOJK1bZjltpZqiiDltxsObqd98otowJR/sKKWRwL5kCSNondTo3KIQ2C2Vg0owg79MwpyUIUetW/rq9BTJBJWWcDSmHQapjcaoLSOcToqdzNAUyRD7tO2oREFNNJ5dO/FPndLzE6VdSevP1N8TYxTGjETsOgXagVn0puJ/XjuzyVU0ZjLNLJVkvijJuG+VP33d7zFNieUjR5Bo5m71yQA1EusCKroQwsWXl0njvBIGlfD+oly9zuMowDGcwBmEcAlVuIMa1IHAIzzDK7x5ynvx3r2PeeuKl88cwR94nz9V6471</latexit><latexit sha1_base64="xXeP4fWvUDKmvgl18vZjV9Y7J+c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYhA8hV0R9Bj0oMcI5gHJEnons8mYeSwzs0II+QcvHhTx6v9482+cJHvQxIKGoqqb7q445czYIPj2VlbX1jc2C1vF7Z3dvf3SwWHDqEwTWieKK92K0VDOJK1bZjltpZqiiDltxsObqd98otowJR/sKKWRwL5kCSNondTo3KIQ2C2Vg0owg79MwpyUIUetW/rq9BTJBJWWcDSmHQapjcaoLSOcToqdzNAUyRD7tO2oREFNNJ5dO/FPndLzE6VdSevP1N8TYxTGjETsOgXagVn0puJ/XjuzyVU0ZjLNLJVkvijJuG+VP33d7zFNieUjR5Bo5m71yQA1EusCKroQwsWXl0njvBIGlfD+oly9zuMowDGcwBmEcAlVuIMa1IHAIzzDK7x5ynvx3r2PeeuKl88cwR94nz9V6471</latexit><latexit sha1_base64="xXeP4fWvUDKmvgl18vZjV9Y7J+c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYhA8hV0R9Bj0oMcI5gHJEnons8mYeSwzs0II+QcvHhTx6v9482+cJHvQxIKGoqqb7q445czYIPj2VlbX1jc2C1vF7Z3dvf3SwWHDqEwTWieKK92K0VDOJK1bZjltpZqiiDltxsObqd98otowJR/sKKWRwL5kCSNondTo3KIQ2C2Vg0owg79MwpyUIUetW/rq9BTJBJWWcDSmHQapjcaoLSOcToqdzNAUyRD7tO2oREFNNJ5dO/FPndLzE6VdSevP1N8TYxTGjETsOgXagVn0puJ/XjuzyVU0ZjLNLJVkvijJuG+VP33d7zFNieUjR5Bo5m71yQA1EusCKroQwsWXl0njvBIGlfD+oly9zuMowDGcwBmEcAlVuIMa1IHAIzzDK7x5ynvx3r2PeeuKl88cwR94nz9V6471</latexit><latexit sha1_base64="xXeP4fWvUDKmvgl18vZjV9Y7J+c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYhA8hV0R9Bj0oMcI5gHJEnons8mYeSwzs0II+QcvHhTx6v9482+cJHvQxIKGoqqb7q445czYIPj2VlbX1jc2C1vF7Z3dvf3SwWHDqEwTWieKK92K0VDOJK1bZjltpZqiiDltxsObqd98otowJR/sKKWRwL5kCSNondTo3KIQ2C2Vg0owg79MwpyUIUetW/rq9BTJBJWWcDSmHQapjcaoLSOcToqdzNAUyRD7tO2oREFNNJ5dO/FPndLzE6VdSevP1N8TYxTGjETsOgXagVn0puJ/XjuzyVU0ZjLNLJVkvijJuG+VP33d7zFNieUjR5Bo5m71yQA1EusCKroQwsWXl0njvBIGlfD+oly9zuMowDGcwBmEcAlVuIMa1IHAIzzDK7x5ynvx3r2PeeuKl88cwR94nz9V6471</latexit>

d�̂

dQ2
<latexit sha1_base64="dv+9Otw18Ri2sxxOG/6+Mp2DjIA=">AAACD3icbVDLSsNAFJ34rPUVdelmsCiuSlIEXRbduGzBPqCJZTKZtEMnD2ZuxBLyB278FTcuFHHr1p1/47QNoq0HLhzOuZd77/ESwRVY1pextLyyurZe2ihvbm3v7Jp7+20Vp5KyFo1FLLseUUzwiLWAg2DdRDISeoJ1vNHVxO/cMal4HN3AOGFuSAYRDzgloKW+eeIEktDMAXYPmZ87QwKO4oOQ5D9a87aW982KVbWmwIvELkgFFWj0zU/Hj2kasgioIEr1bCsBNyMSOBUsLzupYgmhIzJgPU0jEjLlZtN/cnysFR8HsdQVAZ6qvycyEio1Dj3dGRIYqnlvIv7n9VIILtyMR0kKLKKzRUEqMMR4Eg72uWQUxFgTQiXXt2I6JDog0BGWdQj2/MuLpF2r2lbVbp5V6pdFHCV0iI7QKbLROaqja9RALUTRA3pCL+jVeDSejTfjfda6ZBQzB+gPjI9vGTCd8A==</latexit><latexit sha1_base64="dv+9Otw18Ri2sxxOG/6+Mp2DjIA=">AAACD3icbVDLSsNAFJ34rPUVdelmsCiuSlIEXRbduGzBPqCJZTKZtEMnD2ZuxBLyB278FTcuFHHr1p1/47QNoq0HLhzOuZd77/ESwRVY1pextLyyurZe2ihvbm3v7Jp7+20Vp5KyFo1FLLseUUzwiLWAg2DdRDISeoJ1vNHVxO/cMal4HN3AOGFuSAYRDzgloKW+eeIEktDMAXYPmZ87QwKO4oOQ5D9a87aW982KVbWmwIvELkgFFWj0zU/Hj2kasgioIEr1bCsBNyMSOBUsLzupYgmhIzJgPU0jEjLlZtN/cnysFR8HsdQVAZ6qvycyEio1Dj3dGRIYqnlvIv7n9VIILtyMR0kKLKKzRUEqMMR4Eg72uWQUxFgTQiXXt2I6JDog0BGWdQj2/MuLpF2r2lbVbp5V6pdFHCV0iI7QKbLROaqja9RALUTRA3pCL+jVeDSejTfjfda6ZBQzB+gPjI9vGTCd8A==</latexit><latexit sha1_base64="dv+9Otw18Ri2sxxOG/6+Mp2DjIA=">AAACD3icbVDLSsNAFJ34rPUVdelmsCiuSlIEXRbduGzBPqCJZTKZtEMnD2ZuxBLyB278FTcuFHHr1p1/47QNoq0HLhzOuZd77/ESwRVY1pextLyyurZe2ihvbm3v7Jp7+20Vp5KyFo1FLLseUUzwiLWAg2DdRDISeoJ1vNHVxO/cMal4HN3AOGFuSAYRDzgloKW+eeIEktDMAXYPmZ87QwKO4oOQ5D9a87aW982KVbWmwIvELkgFFWj0zU/Hj2kasgioIEr1bCsBNyMSOBUsLzupYgmhIzJgPU0jEjLlZtN/cnysFR8HsdQVAZ6qvycyEio1Dj3dGRIYqnlvIv7n9VIILtyMR0kKLKKzRUEqMMR4Eg72uWQUxFgTQiXXt2I6JDog0BGWdQj2/MuLpF2r2lbVbp5V6pdFHCV0iI7QKbLROaqja9RALUTRA3pCL+jVeDSejTfjfda6ZBQzB+gPjI9vGTCd8A==</latexit><latexit sha1_base64="dv+9Otw18Ri2sxxOG/6+Mp2DjIA=">AAACD3icbVDLSsNAFJ34rPUVdelmsCiuSlIEXRbduGzBPqCJZTKZtEMnD2ZuxBLyB278FTcuFHHr1p1/47QNoq0HLhzOuZd77/ESwRVY1pextLyyurZe2ihvbm3v7Jp7+20Vp5KyFo1FLLseUUzwiLWAg2DdRDISeoJ1vNHVxO/cMal4HN3AOGFuSAYRDzgloKW+eeIEktDMAXYPmZ87QwKO4oOQ5D9a87aW982KVbWmwIvELkgFFWj0zU/Hj2kasgioIEr1bCsBNyMSOBUsLzupYgmhIzJgPU0jEjLlZtN/cnysFR8HsdQVAZ6qvycyEio1Dj3dGRIYqnlvIv7n9VIILtyMR0kKLKKzRUEqMMR4Eg72uWQUxFgTQiXXt2I6JDog0BGWdQj2/MuLpF2r2lbVbp5V6pdFHCV0iI7QKbLROaqja9RALUTRA3pCL+jVeDSejTfjfda6ZBQzB+gPjI9vGTCd8A==</latexit>

i

Q2 �M2 + iM�
<latexit sha1_base64="t+Bs+MaWPrc+x30NgQsEojYVMMw=">AAACBXicbVDLSgMxFM3UV62vUZe6CBZBEMtMEXRZdKGbQgv2AZ1pyaSZNjTJDElGKEM3bvwVNy4Uces/uPNvTNtZaPXAhcM593LvPUHMqNKO82XllpZXVtfy64WNza3tHXt3r6miRGLSwBGLZDtAijAqSENTzUg7lgTxgJFWMLqe+q17IhWNxJ0ex8TnaCBoSDHSRurZh14oEU7pJK13y2fVbvmUwir0bhDnaNKzi07JmQH+JW5GiiBDrWd/ev0IJ5wIjRlSquM6sfZTJDXFjEwKXqJIjPAIDUjHUIE4UX46+2ICj43Sh2EkTQkNZ+rPiRRxpcY8MJ0c6aFa9Kbif14n0eGln1IRJ5oIPF8UJgzqCE4jgX0qCdZsbAjCkppbIR4iE4s2wRVMCO7iy39Js1xynZJbPy9WrrI48uAAHIET4IILUAG3oAYaAIMH8ARewKv1aD1bb9b7vDVnZTP74Besj2+oLpdf</latexit><latexit sha1_base64="t+Bs+MaWPrc+x30NgQsEojYVMMw=">AAACBXicbVDLSgMxFM3UV62vUZe6CBZBEMtMEXRZdKGbQgv2AZ1pyaSZNjTJDElGKEM3bvwVNy4Uces/uPNvTNtZaPXAhcM593LvPUHMqNKO82XllpZXVtfy64WNza3tHXt3r6miRGLSwBGLZDtAijAqSENTzUg7lgTxgJFWMLqe+q17IhWNxJ0ex8TnaCBoSDHSRurZh14oEU7pJK13y2fVbvmUwir0bhDnaNKzi07JmQH+JW5GiiBDrWd/ev0IJ5wIjRlSquM6sfZTJDXFjEwKXqJIjPAIDUjHUIE4UX46+2ICj43Sh2EkTQkNZ+rPiRRxpcY8MJ0c6aFa9Kbif14n0eGln1IRJ5oIPF8UJgzqCE4jgX0qCdZsbAjCkppbIR4iE4s2wRVMCO7iy39Js1xynZJbPy9WrrI48uAAHIET4IILUAG3oAYaAIMH8ARewKv1aD1bb9b7vDVnZTP74Besj2+oLpdf</latexit><latexit sha1_base64="t+Bs+MaWPrc+x30NgQsEojYVMMw=">AAACBXicbVDLSgMxFM3UV62vUZe6CBZBEMtMEXRZdKGbQgv2AZ1pyaSZNjTJDElGKEM3bvwVNy4Uces/uPNvTNtZaPXAhcM593LvPUHMqNKO82XllpZXVtfy64WNza3tHXt3r6miRGLSwBGLZDtAijAqSENTzUg7lgTxgJFWMLqe+q17IhWNxJ0ex8TnaCBoSDHSRurZh14oEU7pJK13y2fVbvmUwir0bhDnaNKzi07JmQH+JW5GiiBDrWd/ev0IJ5wIjRlSquM6sfZTJDXFjEwKXqJIjPAIDUjHUIE4UX46+2ICj43Sh2EkTQkNZ+rPiRRxpcY8MJ0c6aFa9Kbif14n0eGln1IRJ5oIPF8UJgzqCE4jgX0qCdZsbAjCkppbIR4iE4s2wRVMCO7iy39Js1xynZJbPy9WrrI48uAAHIET4IILUAG3oAYaAIMH8ARewKv1aD1bb9b7vDVnZTP74Besj2+oLpdf</latexit><latexit sha1_base64="t+Bs+MaWPrc+x30NgQsEojYVMMw=">AAACBXicbVDLSgMxFM3UV62vUZe6CBZBEMtMEXRZdKGbQgv2AZ1pyaSZNjTJDElGKEM3bvwVNy4Uces/uPNvTNtZaPXAhcM593LvPUHMqNKO82XllpZXVtfy64WNza3tHXt3r6miRGLSwBGLZDtAijAqSENTzUg7lgTxgJFWMLqe+q17IhWNxJ0ex8TnaCBoSDHSRurZh14oEU7pJK13y2fVbvmUwir0bhDnaNKzi07JmQH+JW5GiiBDrWd/ev0IJ5wIjRlSquM6sfZTJDXFjEwKXqJIjPAIDUjHUIE4UX46+2ICj43Sh2EkTQkNZ+rPiRRxpcY8MJ0c6aFa9Kbif14n0eGln1IRJ5oIPF8UJgzqCE4jgX0qCdZsbAjCkppbIR4iE4s2wRVMCO7iy39Js1xynZJbPy9WrrI48uAAHIET4IILUAG3oAYaAIMH8ARewKv1aD1bb9b7vDVnZTP74Besj2+oLpdf</latexit>

l
<latexit sha1_base64="RXFmeCFAFLWm6A2HPHJ7FvtnIgg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/UCYzw</latexit><latexit sha1_base64="RXFmeCFAFLWm6A2HPHJ7FvtnIgg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/UCYzw</latexit><latexit sha1_base64="RXFmeCFAFLWm6A2HPHJ7FvtnIgg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/UCYzw</latexit><latexit sha1_base64="RXFmeCFAFLWm6A2HPHJ7FvtnIgg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/UCYzw</latexit>

l̄
<latexit sha1_base64="T0tQ2FsqROI4BuD0aEK2qm1SA5k=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROZpMxszPLzKwQQv7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVpyhpUCaXbERomuGQNy61g7VQzTCLBWtHodua3npg2XMkHO05ZmOBA8phTtE5qdiPURPTKFb/qz0FWSZCTCuSo98pf3b6iWcKkpQKN6QR+asMJasupYNNSNzMsRTrCAes4KjFhJpzMr52SM6f0Say0K2nJXP09McHEmHESuc4E7dAsezPxP6+T2fg6nHCZZpZJulgUZ4JYRWavkz7XjFoxdgSp5u5WQoeokVoXUMmFECy/vEqaF9XArwb3l5XaTR5HEU7gFM4hgCuowR3UoQEUHuEZXuHNU96L9+59LFoLXj5zDH/gff4AIoyO0w==</latexit><latexit sha1_base64="T0tQ2FsqROI4BuD0aEK2qm1SA5k=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROZpMxszPLzKwQQv7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVpyhpUCaXbERomuGQNy61g7VQzTCLBWtHodua3npg2XMkHO05ZmOBA8phTtE5qdiPURPTKFb/qz0FWSZCTCuSo98pf3b6iWcKkpQKN6QR+asMJasupYNNSNzMsRTrCAes4KjFhJpzMr52SM6f0Say0K2nJXP09McHEmHESuc4E7dAsezPxP6+T2fg6nHCZZpZJulgUZ4JYRWavkz7XjFoxdgSp5u5WQoeokVoXUMmFECy/vEqaF9XArwb3l5XaTR5HEU7gFM4hgCuowR3UoQEUHuEZXuHNU96L9+59LFoLXj5zDH/gff4AIoyO0w==</latexit><latexit sha1_base64="T0tQ2FsqROI4BuD0aEK2qm1SA5k=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROZpMxszPLzKwQQv7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVpyhpUCaXbERomuGQNy61g7VQzTCLBWtHodua3npg2XMkHO05ZmOBA8phTtE5qdiPURPTKFb/qz0FWSZCTCuSo98pf3b6iWcKkpQKN6QR+asMJasupYNNSNzMsRTrCAes4KjFhJpzMr52SM6f0Say0K2nJXP09McHEmHESuc4E7dAsezPxP6+T2fg6nHCZZpZJulgUZ4JYRWavkz7XjFoxdgSp5u5WQoeokVoXUMmFECy/vEqaF9XArwb3l5XaTR5HEU7gFM4hgCuowR3UoQEUHuEZXuHNU96L9+59LFoLXj5zDH/gff4AIoyO0w==</latexit><latexit sha1_base64="T0tQ2FsqROI4BuD0aEK2qm1SA5k=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROZpMxszPLzKwQQv7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVpyhpUCaXbERomuGQNy61g7VQzTCLBWtHodua3npg2XMkHO05ZmOBA8phTtE5qdiPURPTKFb/qz0FWSZCTCuSo98pf3b6iWcKkpQKN6QR+asMJasupYNNSNzMsRTrCAes4KjFhJpzMr52SM6f0Say0K2nJXP09McHEmHESuc4E7dAsezPxP6+T2fg6nHCZZpZJulgUZ4JYRWavkz7XjFoxdgSp5u5WQoeokVoXUMmFECy/vEqaF9XArwb3l5XaTR5HEU7gFM4hgCuowR3UoQEUHuEZXuHNU96L9+59LFoLXj5zDH/gff4AIoyO0w==</latexit>

Figure 1. Schematic depiction of the Drell-Yan process and its factorisation into the production
probability of a virtual gauge boson and the subsequent decay to final-state leptons.

This paper is organised as follows: in section 2 we review the structure of the QCD
corrections to the NCDY process. In section 3 we present the main ingredient of our
computation, namely the cross section for axial-vector production at N3LO in QCD, and we
discuss our treatment of the γ5 matrix in dimensional regularisation and the non-decoupling
top-mass contributions. In section 4 we discuss the phenomenological implications of our
results. In section 5 we draw our conclusions.

2 The neutral-current Drell-Yan process

The Neutral-Current Drell-Yan (NCDY) process describes the production of a pair of
(massless) leptons as the result of the collision of (anti-) protons:

P(P1) + P(P2)→ l l̄(Q) +X . (2.1)

Here, P1 and P2 are the momenta of the scattering protons, Q is the invariant mass of the
lepton pair l l̄, and X collectively denotes additional QCD radiation. The goal of this paper
is to compute this process to third order in the strong coupling constant and to discuss
the associated phenomenology. More precisely, we want to compute the cross section for
the process in eq. (2.1) differentially in the invariant mass Q. The production cross section
is mediated by a virtual photon or Z-boson which subsequently decay to the final-state
leptons. Our formalism is accurate up to corrections that are suppressed in the electroweak
coupling constant αEW :

Q2 dσP P→ll̄+X
dQ2 =

∑
B,B′∈{γ∗,Z}

Q2 dσP P→B/B′+X→ll̄+X
dQ2 +O

(
α3
EW

)
. (2.2)

Figure 1 schematically shows the NCDY process for the production of a lepton pair
via an intermediate vector boson. The cross section can be written in a factorised form,

Q2 dσP P→B/B′+X→l l̄+X
dQ2 = Q2 dσP P→B/B′+X

dQ2 ×ΓB/B′→l l̄(Q
2)×BW(Q2,mB,mB′) . (2.3)

We now describe the factors in the right-hand side of eq. (2.3) in detail.
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The propagation of the virtual gauge bosons is described by the Breit-Wigner distri-
bution,

BW(Q2,mB,m
′
B) = Q3

π
Re

[
1

(Q2 −m2
B) + imBΓB

1
(Q2 −m2

B′)− imB′ΓB′

]
. (2.4)

The decay of the gauge bosons into leptons is captured by the interference contributions
to the width:

ΓB/B′→ll̄(Q,ml,ml̄) = (2.5)

= 1
6Q

∫ ddpl
(2π)d−1 δ+(p2

l −m2
l )

ddpl̄
(2π)d−1 δ+(p2

l̄
−m2

l̄
)(2π)dδd(q − pl − pl̄)MB→ll̄ · M

∗
B′→ll̄ ,

We use the notationM1 ·M∗2 to indicate that the interferences are summed over the colours
and spins of all external particles. Equation (2.5) describes the interferences of the decay
amplitudes of gauge bosons into two final-state particles with masses ml and ml̄ at Born
level. It is chosen such that if the formula is evaluated on-shell, Q = mB and B = B′, then
it corresponds to the partial width ΓB→ll̄ of the gauge boson B in its rest-frame. Since
we are working to leading order in the electroweak coupling, we only need to consider the
tree-level contributions to the decay. For massless leptons, we find:

ΓB/B′→ll̄(Q
2) := ΓB/B′→ll̄(Q

2, 0, 0) = Qm2
W

3πv2

[
QBV,lQ

B′
V,l +QBA,lQ

B′
A,l

]
. (2.6)

The charges in the above equation for a Z boson or photon are defined as:

Qγ
∗

V,f = Qf

√
1− m2

W

m2
Z

, Qγ
∗

A,f = 0 , (2.7)

QZV,f = mZ

2mW

[
T 3
f − 2Qf

(
1− m2

W

m2
Z

)]
, QZA,f = mZ

2mW
T 3
f .

Here, mW and mZ are the masses of theW and Z bosons. In the SM we have the following
charge assignments for up-type and down-type quarks and electrically-charged leptons:

u d l

Qf
2
3 −1

3 −1
T 3
f

1
2 −1

2 −1
2

(2.8)

Finally, the first factor in eq. (2.3) describes the production cross section for the inter-
ference of two off-shell gauge bosons B and B′:

Q2 dσP P→B/B′+X
dQ2 = τ

∫ 1

0
dx1 dx2 dz δ(τ − x1x2z)

∑
i,j

fi(x1) fj(x2) η ij→B/B′+X(z) . (2.9)

In the previous equation we introduced the parton distribution functions fi(x) that are con-
voluted with the partonic coefficient functions η ij→B/B′+X . We suppress the dependence
of all quantities on the factorisation scale to improve the readability. The variables x1,2
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f̄

Figure 2. Feynman rule coupling a Z boson to fermions.

represent the fraction of the momenta of the protons carried by the initial-state partons.
We introduce the variables

S = (P1 + P2)2, τ = Q2

S
. (2.10)

The partonic coefficient functions are given by

η ij→B/B′+X = Nij2Q2

∑
Xi

∫
dΦB/B′+Xi

Mij→B+Xi · M∗ij→B′+Xi
, (2.11)

where the factor Nij represents a process-dependent averaging over initial-state spins and
colours, dΦB/B′+Xi

is the phase space measure for a particular final state, andMij→B+Xi

is the scattering matrix element for the production of this final state. In order to compute
the partonic coefficient functions to a given order in perturbation theory, we consider a
perturbative expansion of the product of matrix elements truncated at a fixed order in
the coupling constant. The partonic coefficient functions are the main ingredients to our
computation, as they incorporate the entirety of the higher-order QCD corrections. We
will study their structure in more detail in the remainder of this section.

The coupling of the Z-boson to fermions involves a vector and an axial-vector part
(see figure 2). Accordingly, we may split the partonic coefficient function into two terms
accounting for the coupling to the vector and axial-vector parts separately:

η ij→B/B′+X = σ̂
[
ηVij→B/B′+X + ηAij→B/B′+X

]
, σ̂ = 4πm2

W

ncQ2v2 . (2.12)

The inclusive cross section does not contain any non-zero partonic coefficient functions that
depend on both a vector and an axial-vector coupling. We are interested in the perturbative
coefficient functions computed up to a fixed order in the expansion in the strong coupling
constant:

ηYij→B/B′+X =
∞∑
i=0

as(µ)iηY, (i)ij→B/B′+X , Y ∈ {V,A} , as(µ) = αS(µ)
π

, (2.13)

where αS(µ) denotes the strong coupling constant in the MS scheme. At leading order in
perturbation theory only the partonic coefficient functions with a quark — anti-quark pair
in the initial state are non-vanishing:

η
Y, (0)
qq̄→B/B′ = QBY,qQ

B′
Y,qδ (1− z) , Y ∈ {V,A}. (2.14)

– 5 –



J
H
E
P
0
3
(
2
0
2
2
)
1
1
6

(a) QB
Y,iQ

B′
Y,jδij . (b) QB

Y,iQ
B′
Y,i. (c) QB

Y,iQ
B′
Y,j .

(d) QB
Y,j

∑
f
QB′

Y,f . (e) δijQ
B
Y,i

∑
f
QB′

Y,f . (f)
∑

f
QB

Y,fQ
B′
Y,f .

Figure 3. Representative diagrams for different charge structures appearing in the NCDY cross
section. The diagrams show interference diagrams where the vertical dashed line represents the
final state phase space cut. Solid, wavy and curly lines represent propagating quarks, gauge bosons
and gluons respectively.

The partonic coefficient functions for the production of an electroweak gauge boson
can be split into 9 different contributions, corresponding to particular combinations of the
charges associated with different ways of coupling the electroweak gauge bosons to the
quarks. For the purpose of simplicity, we write ηij = ηYij→B/B′+X . We then have the
following decomposition:

ηij = η1
ij

∑
f

QBY,f

∑
f

QB
′

Y,f

+η2
ij

∑
f

QBY,fQ
B′
Y,f +η3

ijQ
B
Y,i

∑
f

QB
′

Y,f +η4
ijQ

B
Y,j

∑
f

QB
′

Y,f

+η5
ijQ

B
Y,iQ

B′
Y,i+η6

ijQ
B
Y,jQ

B′
Y,j +η7

ijQ
B
Y,iQ

B′
Y,jδij +η8

ijQ
B
Y,iQ

B′
Y,j +η9

ijδijQ
B
Y,i

∑
f

QB
′

Y,f . (2.15)

Figure 3 shows representative diagrams that illustrate how the different charge structures
arise. Figure 3a shows the tree-level diagram where the initial-state qq̄-pair annihilates
and produces the gauge boson. The flavors of the initial-state quarks are connected by the
gauge boson. This is made manifest by the Kronecker delta symbol δij multiplying the
corresponding partonic coefficient function η7

ij . In contrast, there are classes of diagrams
with a quark and anti-quark of the same flavor, but the quark lines are not identical. In such
diagrams the gauge boson may or may not connect the different quark lines, as is illustrated
in figure 3b and figure 3c. Their contributions are included in η5

ij , η6
ij and η8

ij respectively.
Figures 3d and 3e show contributions, denoted by η3

ij , η4
ij and η9

ij , where the gauge boson
is connected only to one quark line of an initial-state quark. Furthermore, it is possible
that the gauge boson couples to quark lines that are disconnected from the initial state, as
shown for example in figure 3f. These contributions are taken into account by η1

ij and η2
ij .

The partonic coefficient functions ηVij→B/B′+X and ηAij→B/B′+X begin to differ starting
from NNLO in QCD perturbation theory. At this order, it is for the first time possible
to connect two different quark lines with the produced electroweak gauge boson. As long
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as the gauge boson is twice connected to the same quark line and all quarks are treated
as massless, helicity conservation dictates that vector and axial-vector partonic coefficient
functions will be identical. In particular, η2

ij , η5
ij , η6

ij , η7
ij are identical for vector and

axial-vector production at all orders in perturbation theory.
The partonic coefficient functions for the production of a vector boson ηVij→B/B′+X were

computed at N3LO in QCD perturbation theory in refs. [2–9, 23, 45]. The computation of
the partonic coefficient functions for an axial-vector boson ηAij→B/B′+X through N3LO in
perturbative QCD is one of the main results of this article. We present analytic formulæ for
these partonic coefficient functions in terms of ancillary files in the supplementary material
of this article. In the next section we discuss in detail the computation and the structure
of the partonic coefficient functions for axial-vector production in QCD.

3 Axial-vector production at N3LO in QCD

Let us consider N3LO corrections to the production cross section for a color-singlet axial-
vector state ZA. In broad terms, our computational strategy is similar to the computation
of the N3LO corrections to the inclusive Higgs boson production cross sections in gluon
fusion [24, 46] and bottom-quark fusion [26], and the charged-current and photon-only DY
processes [23, 33]. More precisely, we generate Feynman diagrams using QGRAF [47] and
perform the spinor and color algebra based on custom C++ algorithms using GiNaC [48]
and FORM [49]. We generate all required integrands for interferences of matrix elements for
this cross section up to N3LO. We then reduce all real and virtual interference diagrams
to a set of so-called master integrals using IBP identities [50–52] and the framework of
reverse unitarity [13, 53–56]. The master integrals were computed using the method of
differential equations [57–61] in refs. [46, 62–65]. We work in dimensional regularisation,
and compute all matrix elements in D = 4 − 2ε dimensions. After inserting the master
integrals into our partonic coefficient functions, we renormalise UV divergences in the MS
scheme. Furthermore, we remove collinear initial-state singularities via mass factorization
counterterms comprised of DGLAP [66–68] splitting functions [69–73]. Finally, we arrive
at fully analytic formulæ for our finite partonic coefficient functions for the production of
an axial-vector boson through N3LO in perturbative QCD. The functions are expressed in
terms of the class of iterated integrals introduced in ref. [46]. While the general strategy is
the same as for the N3LO cross section considered in refs. [24, 26, 33, 46], there are several
technical steps that distinguish axial-vector production from those other processes, due to
the ambiguities in how to treat γ5 in dimensional regularisation. In the remainder of this
section we discuss our treatment of γ5 in detail.

Consider the operator describing the coupling of an axial current in QCD to the axial-
vector ZA:

OA = gA ZA,µ

Nf∑
f=1

Af J
µ
A,f , JµA,f = iq̄fγ

µγ5qf , (3.1)

where Nf is the number of quark species. In the SM we have gA = 2mW
v cos θW

, Af = 1
2T

3
f

and Nf = 6. Since the coupling of ZA to the axial current involves the γ5 matrix, which
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is only well-defined in four dimensions, care is needed how this operator is analytically
continued to arbitrary dimensions when working in dimensional regularisation. Moreover,
it is well-known that the singlet axial current JµA,S =

∑Nf

f=1 J
µ
A,f is anomalous in QCD and

satisfies the Adler-Bell-Jackiw (ABJ) anomaly equation [35–37] (see also ref. [74]). In four
dimensions γµ and γ5 anticommute, as one can easily verify by writing γ5 as in refs. [40, 41]:

γ5 = − i

4! ε
µνρσ γµγνγργσ . (3.2)

However, if the spacetime dimension is extended to D-dimension this no longer holds true.
Here we work in the Larin-scheme [42–44] and define the axial-vector current explicitly as

JµA,f = 1
3!ε

µνρσ q̄fγνγργσqf . (3.3)

For D = 4, this definition is identical to the one of eq. (3.1) as on can easily see by
computing the anti-commutation relation

γµγ5 = 1
2{γ

µ, γ5} = − i

3!ε
µνρσγνγργσ. (3.4)

In our computation the γµ matrices are interpreted as D-dimensional objects, and the
Dirac algebra is performed in D-dimensions. Any Feynman diagram in the Drell-Yan
process mediated by an axial-vector current will involve two insertions of the axial-vector
current of eq. (3.3). We use the identity

εµ1µ2µ3µ4εν1ν2ν3ν4 = det


gµ1ν1 gµ1ν2 gµ1ν3 gµ1ν4

gµ2ν1 gµ2ν2 gµ2ν3 gµ2ν4

gµ3ν1 gµ3ν2 gµ3ν3 gµ3ν4

gµ4ν1 gµ4ν2 gµ4ν3 gµ4ν4

 , (3.5)

which is valid in strictly D = 4 dimensions, to contract Lorentz indices of the Levi-Civita
tensors, and we treat the metric tensors in the above equation as D-dimensional. The above
extension to D space-time dimensions modifies the computed cross sections at sub-leading
order in the dimensional regulator. In the presence of divergences, these modifications
are propagated into finite and singular terms of the bare partonic cross sections and their
renormalisation below.

It is well-known that the axial current JµA,f is anomalous in QCD and develops a UV-
divergence starting from one-loop order. This UV-divergence cancels in the complete SM,
due to the relation

Nf =6∑
f=1

Af = 0 . (3.6)

In variants of the SM with an odd number Nf of fermion species, however, eq. (3.6) is
violated, and the UV-divergence does not cancel. The UV-divergence can be removed by
renormalising the axial current by the equation (valid through at least three loops)

[
JµA,f

]
R

= Zns J
µ
A,f + Zs

Nf∑
f ′=1

JµA,f ′ = Zns J
µ
A,f + Zs J

µ
A,S , (3.7)
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where
[
JµA,f

]
R

is the renormalised axial current. We see that the renormalisation mixes
the axial currents for different flavors. The non-singlet and singlet counterterms Zns and
Zs are not pure MS counterterms, but they also include finite terms whose purpose is to
ensure that the renormalised singlet axial current computed in the Larin-scheme satisfies
the all-order ABJ anomaly equation [35–37]:

∂µ
[
JµA,S

]
R

= αS(µ2)
8π Nf

[
FF̃

]
R
, (3.8)

with FF̃ = εµνρσ Tr
(
FµνF ρσ

)
, and the renormalised singlet axial current is[

JµA,S
]
R

= ZS J
µ
A,S , with ZS = Zns +Nf Zs . (3.9)

Both the non-singlet and singlet counterterms are known to three loops in QCD [43, 75–77]:

Zns = 1− as(µ)CF + as(µ)2CF

[11CA − 2Nf

24ε + 1
144 (−107 CA + 198CF + 2Nf )

]
+ as(µ)3CF

{
− (11CA − 2Nf )2

432ε2 + 1
2592ε

(
− 416CANf − 2574CACF + 1789C2

A

+ 360CFNf + 4N2
f

)
+ 1

5184
[
(4536ζ3 − 6441)C2

A + (17502− 12960ζ3)CACF

+ (864ζ3 + 356)CANf + (7776ζ3 − 9990)C2
F − (864ζ3 + 186)CFNf + 52N2

f

]}
+O(as(µ)4) , (3.10)

Zs = as(µ)2CF

( 3
16ε + 3

32

)
+ as(µ)3CF

{
2Nf − 11CA

96ε2 + 109CA − 162 CF + 2Nf

576ε

+ 1
3456

[
(1404ζ3 − 326)CA + (−1296ζ3 + 621)CF + 176Nf

]}
+O(as(µ)4) .

We have computed the partonic coefficient functions in the Larin-scheme in a variant
of the SM with only Nf = 5 massless active quark flavors, and the top quark is considered
infinitely-heavy and thus absent from the computation. If only the strong coupling con-
stant is UV-renormalised, then the partonic coefficient functions still exhibit poles in the
dimensional regulator ε even after mass factorisation. However, all these poles cancel once
the axial current is renormalised as in eq. (3.7), and we obtain finite results for all partonic
coefficient functions. Besides the explicit analytic cancellation of all ultraviolet and infrared
poles, we performed several additional checks to validate our results. In particular, we find
agreement with our previous computation of ref. [23] of partonic coefficient functions for
vector boson production for the part of the partonic coefficient functions that are identi-
cal between vector and axial-vector production. Moreover, purely virtual corrections were
computed in refs. [76, 78–81] and we find agreement. Finally, we also checked that our
results have the expected dependence on the perturbative scale µ = µF = µR. This check,
however, involves a subtle point, which we discuss in detail in the remainder of this section.

Our goal is to compute the coefficient functions ηAij , which correspond to the axial-
vector contribution from Z-boson exchange in the limit where we drop all power-suppressed
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terms in the top-quark mass. If we denote the partonic coefficient functions obtained from
our procedure by ηA,5ij , we find that generically ηA,5ij 6= ηAij . To see this, consider the
dependence of the coefficient functions on the perturbative scale µ := µF = µR. In the
SM, this dependence is governed by the well-known Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equation [66–68]:

d
d logµ2 η

A
ij = −Pik ⊗ ηAkj − Pjk ⊗ ηAik − β as

∂

∂as
ηAij , (3.11)

where β = −
∑∞
n=0 βn a

n+1
s denotes the QCD β-function and Pkl is the DGLAP splitting

kernel, and we introduced the convolution:

(f ⊗ g)(z) =
∫ 1

0
dx1 dx2 δ(z − x1x2) f(x1) g(x2) . (3.12)

The coefficient functions that we computed, however, satisfy the evolution equation

d
d logµ2 η

A,5
ij = −Pik ⊗ ηA,5kj − Pjk ⊗ η

A,5
ik − β as

∂

∂as
ηA,5ij

−NA γJ
∑

1≤f1,f2≤Nf

(Af1 +Af2) ηA,5ij,f1f2
,

(3.13)

where we defined implicitly

ηA,5ij =
∑

1≤f1,f2≤Nf

Af1 Af2 η
A,5
ij,f1f2

, (3.14)

and we find it useful to introduce the quantity NA =
∑Nf

f=1Af . Note that NA = 0 in
the complete SM with Nf = 6 quark species. γJ is the anomalous dimension of the
(renormalised) axial current [43, 76]:

(−ε+ β) as(µ) Z−1
5

d
d logµ2 Z5 = γJ ENf

+O(ε) . (3.15)

Here we defined the matrix
Z5 = Zns INf

+ Zs ENf
, (3.16)

where INf
is the Nf × Nf unit matrix and ENf

is the Nf × Nf matrix whose entries are
all 1. We have

γJ = −as(µ)2NA
3CF

8 − as(µ)3NA
CF
8

(
71
12 CA −

9
4 CF −

Nf

6

)
+O(as(µ)4) . (3.17)

Clearly, the term proportional to γJ in eq. (3.13) is absent in the complete SM, and so ηA,5ij

cannot be identified with the large-mt limit of the SM. Note that in the complete SM we
have NA = 0, and so γJ = 0.

The interpretation and resolution of this puzzle is as follows: if we start from the
complete SM, with Nf = 6 andmt <∞, the UV-divergences from the axial anomaly cancel.
Naively, one would expect that by making the top quark infinitely heavy, it decouples from
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the theory and we land on an effective field theory with Nf = 5 massless quarks, defined
by simply ignoring operators involving the top quark. This naive expectation, however, is
wrong: since the UV divergences from the axial current do not cancel for Nf = 5, our EFT
is anomalous and the top quark does not naively decouple (see, e.g., ref. [39]). We include
non-decoupling effects in the form of a Wilson coefficient CA,f (µ) = Af +O(a2

s):

Af J
µ
A,f = iAf q̄fγ

µγ5qf → JµA,f,eff = iCA,f (µ) q̄fγµγ5qf . (3.18)

The Wilson coefficient satisfies a renormalisation group equation which precisely cancels
the contribution from the anomalous dimension γJ in eq. (3.13):

d
d logµ2CA,f (µ) = −γJ

Nf∑
f ′=1

CA,f ′(µ) . (3.19)

We see that the partonic coefficient functions ηAij in the large-mt limit of the SM are
obtained from ηA,5ij by the replacement Af → CA,f (µ) (cf. eq. (3.14)):

ηAij =
∑

1≤f1,f2≤Nf

CA,f1(µ)CA,f2(µ) ηA,5ij,f1f2
. (3.20)

The Wilson coefficient admits the perturbative expansion:

CA,f (µ) = Af +NA

∞∑
n=2

n−1∑
k=0

as(µ)nc(n,k)
A logk m

2
t

µ2 . (3.21)

It is easy to check that by combining the evolution equations (3.13) and (3.19), the function
ηAij defined in eq. (3.20) satisfies the SM evolution equation (3.11).

The Wilson coefficient depends explicitly on the (on-shell) top-quark mass, making
the non-decoupling of the top quark manifest. It was recently computed through three
loops in refs. [77, 82]. We have independently obtained all the coefficients except for
the non-logarithmic three-loop coefficient c(3,0)

A , and we find full agreement. Indeed, the
coefficients of the logarithms, i.e., the c(n,k)

A with k 6= 0, are determined from the evolution
equation (3.19). The non-logarithmic terms c(n,0)

A are not constrained by the evolution
equation and need to be computed explicitly. We have recalculated the two-loop coefficient
c

(2,0)
A by taking the large-mt limit on the known NNLO cross section in the full SM, including
all finite quark-mass effects [10–12]. The two-loop coefficients are:

c
(2,1)
A = −3

8 CF and c
(2,0)
A = − 3

16 CF . (3.22)

At three-loops, we have [77, 82]:

c
(3,2)
A = 3

8 CF β0 = CF
32 (11CA − 2Nf ) ,

c
(3,1)
A = −CF96 (38CA − 27CF + 4Nf ) ,

c
(3,0)
A = CF

1152
[
CA (1649− 1512 ζ3) + 27CF (48ζ3 + 17)− 374Nf − 328

]
.

(3.23)
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α−1
EW αS(mZ) v [GeV] mZ [GeV] ΓZ [GeV] mW [GeV] mt [GeV]

132.186 0.118 246.221 91.1876 2.4952 80.379 172.9

Table 1. Numerical values of the SM input parameters used for our phenomenological predictions.

Q [GeV] ΣN3LO [pb] KN3LO δ(PDF+αS) δ(PDF-TH)
30 531.7+1.53%

−2.54% 0.952 +3.7%
−3.8% 2.8%

60 112.636+0.97%
−1.29% 0.97 +2.8%

−2.5% 2.5%
91.1876 21756.4+0.7%

−0.86% 0.977 +2.2%
−2.1% 2.5%

100 458.473+0.66%
−0.79% 0.979 +2.0%

−1.8% 2.5%
300 1.24661+0.26%

−0.29% 0.992 +1.9%
−1.6% 1.7%

Table 2. Cross section values for a selection of representative invariant mass Q for the choice of
central scale µF = µR = Q, together with the corresponding QCD K-factors and uncertainties (see
main text for a detailed description).

4 Phenomenological results

In this section we present for the first time phenomenological results for the invariant-mass
distribution of a massless lepton pair at N3LO in QCD,

ΣNkLO(Q2) = Q2 dσNkLO

dQ2 . (4.1)

We work in the five-flavour scheme with Nf = 5 active massless quark flavors. The top-
quark is considered infinitely heavy, though the non-decoupling effects are included through
the Wilson coefficient CA,f . We mention that finite quark-mass effects have been calcu-
lated through NNLO and are known to be very small [10–12]. We therefore expect our
computation to give a very good estimate of the QCD corrections in the full SM where
the full finite top-mass effects are retained. Our choice for the numerical values of the SM
input parameters is summarized in table 1. The strong coupling constant is evolved from
αS(mZ) to the renormalisation scale µR using the four-loop QCD beta function [83–86]
in the MS-scheme using Nf = 5 active massless quark flavors. Unless stated otherwise,
all results are obtained for a proton-proton collider with

√
S = 13TeV using the zeroth

member of the combined PDF4LHC15_nnlo_mc set [87], and bands correspond to varying
the perturbative scales µF and µR by a factor of two around the central scale µF = µR = Q

while respecting the constraint
1
2 ≤

µR
µF
≤ 2. (4.2)

Commonly, this is referred to as 7-point variation.
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Figure 4. The invariant-mass distribution Σ(Q2) at the LHC with
√
S = 13TeV at different orders

in perturbation theory.

4.1 Scale dependence and perturbative convergence

In table 2 we show values for a selection of representative invariant masses Q2 for the choice
of central scale µF = µR = Q, together with the corresponding QCD K-factors:

KN3LO(Q2) = ΣN3LO(Q2)
ΣNNLO(Q2) . (4.3)

We include an estimate of the residual perturbative uncertainty based on seven point vari-
ation of the factorization and renormalisation scale, as well as the uncertainties from PDFs
and the value of the strong coupling constant (see below). We observe that the perturbative
K-factor tends towards one with increasing invariant mass Q. Simultaneously, the residual
perturbative uncertainty estimated here via scale variations shrinks with increasing Q.

In figure 4 we show the inclusive cross section for the production of a massless lepton
pair as a function of Q2.

In figures 5 and 6 we show the NCDY cross section normalized to its value computed
at N3LO as a function of the invariant mass Q. We observe qualitatively the same features
as for the photon-only [23, 31] and the charged-current DY processes [33]. Specifically,
we observe that in the range of invariant masses between ∼ 40GeV and ∼ 400GeV, the
scale variation bands from NNLO and N3LO do not overlap, indicating that conventional
scale variation at NNLO underestimated the true size of the N3LO corrections. We note,
however, that the size of the bands at NNLO was particularly small for the NCDY process,
often at the sub-percent level depending on the invariant masses considered.

In figure 7 we show the dependence of the cross section for Q = 100GeV on one of the
two perturbative scales with the other held fixed at some value in the interval [Q/2, 2Q]. We
observe a reduction of the factorization scale dependence as we increase the perturbative
order, with only a very mild scale dependence at N3LO. The dependence of the cross section
at N3LO on the variation of the renormalisation scale is mild compared to predictions at
LO or at NLO but is of the same or even larger size as at NNLO. Moreover, the bands from
NNLO and N3LO do not overlap.1 The same pattern was already observed in the case of

1The leading order cross section does not depend on the strong coupling constant and consequently does
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Figure 5. The K-factors ΣNkLO/ΣN3LO as a function of invariant masses 10GeV≤ Q ≤150GeV
for k ≤ 3. The bands are obtained by varying the perturbative scales by a factor of two around the
central µcent. = Q.
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Figure 6. The K-factors ΣNkLO/ΣN3LO as a function of invariant masses Q ≤1.800GeV for k ≤ 3.
The bands are obtained by varying the perturbative scales by a factor of two around the central
µcent. = Q.

the inclusive photon-only and W Drell-Yan cross section and refer to further discussion in
this references [23, 31, 33].

4.2 Ratios of K-factors

In the previous section we have seen that the NCDY process shows relatively good per-
turbative stability as we increase the order. This behavior is very reminiscent of the
photon-only and charged-current DY processes considered in refs. [23, 33]. To investigate
if and to what degree QCD corrections differ among different DY-type processes, we study
ratios of K-factors between the NCDY process and the photon-only and charged-current
DY processes. In particular, in this section we refer to the ratio of the NnLO cross section
to its LO counter part as the NnLO K-factor, K(n). In contrast, ratios of cross sections
rather than K-factors involving the W and γ∗ cross sections were considered in ref. [33].

also not change with variation of the renormalisation scale. As a result the right panel of figure 7 does not
show any band for the leading order cross section.
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Figure 7. Dependence of the invariant-mass distribution through N3LO on one of the two per-
turbative scales with the other held fixed. The bands are obtained by varying the other scale by a
factor of two around the central scale Q = 100GeV.

Before we discuss these ratios, we need to make a comment. Whenever one studies
ratios of cross sections, there is an ambiguity in how to choose the perturbative scales. For
example, if one believes that QCD corrections should be similar between W , γ∗ and Z pro-
duction (as motivated for example by the universality of certain limits, like the threshold
limit), it is natural to vary the scales in the numerator and the denominator in a correlated
way. Alternatively, one may choose the scales in an uncorrelated way (e.g., because differ-
ent partonic channels are weighted differently by the PDFs for these processes, breaking
the universality of the QCD corrections), typically leading to larger scale variation bands.
In ref. [33] it was shown that for the W and γ∗ cross sections the correlated prescription
leads to a vanishingly small scale dependence at the sub-permille level at N3LO, while the
uncorrelated prescription produces excessively large scale variation bands at N3LO (much
larger than the absolute shift from NNLO to N3LO). As a consequence, neither the corre-
lated nor the uncorrelated prescriptions are expected to give reliable estimates for missing
higher-order terms for these ratios at N3LO. Therefore, in ref. [33] a new prescription
was considered, which uses the relative size of the last considered order compared to the
previous one as an estimator of the perturbative uncertainty:

δ(pert.) = ±
∣∣∣∣∣1− K(n)

X /K(n)
Y

K(n−1)
X /K(n−1)

Y

∣∣∣∣∣× 100% . (4.4)

In the following we use this prescription to obtain uncertainty bands for the ratios.
In figures 8–11 we show the ratios of the K-factors as a function of the invariant mass Q.

In all cases we observe a remarkable similarity of the K-factors, which agree among them-
selves within at worst 2% for all ratios considered. In particular, we see from figure 11 that
the K-factors agree within 1% for the NCDY process computed with or without including
the contributions from the Z boson. At the same time, we observe that there is a depen-
dence of the shape of the QCD corrections on the invariant mass, and different invariant-
mass regions may receive slightly different QCD corrections. This shows that, if we want
to reach a level of precision of 1%, care is needed when using K-factors obtained from one
process in one region of phase space to reweight other processes or other regions of phase
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Figure 8. Ratio of the K-factors for W+ and W− production as a function of Q2 at different
orders in perturbation theory.
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Figure 9. Ratio of the K-factors for NCDY and W− production as a function of Q2 at different
orders in perturbation theory.
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Figure 10. Ratio of the K-factors for NCDY and W+ production as a function of Q2 at different
orders in perturbation theory.

space. However, our results also demonstrate that shape differences mainly introduced at
lower orders in perturbation theory and higher order corrections are remarkably similar.
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Figure 11. Ratio of the K-factors for NCDY and γ∗ production as a function of Q2 at different
orders in perturbation theory.

4.3 Uncertainties related to PDFs

In order to assess the dependence of our predictions on the methodology of how the PDFs
are extracted, we follow the prescription of ref. [87] for the computation of PDF uncer-
tainties δ(PDF) using the Monte Carlo method. The PDF set PDF4LHC15_nnlo_mc uses
αS = 0.118 as a central value and two additional PDF sets are available that allow for
the correlated variation of the strong coupling constant in the partonic cross section and
the PDF sets to αupS = 0.1195 and αdownS = 0.1165. These sets allow us to deduce an
uncertainty δ(αS) on our cross section following the prescription of ref. [87]. We combine
the PDF and strong coupling constant uncertainties in quadrature to give

δ(PDF + αS) =
√
δ(PDF)2 + δ(αS)2 . (4.5)

Currently there is no available PDF set extracted from data with N3LO accuracy, and
so we are bound to use NNLO PDFs in our predictions. We estimate the potential impact
of this mismatch on our results using the prescription introduced in ref. [25]. The PDF
theory (PDF-TH) uncertainty is then obtained by studying the variation of the NNLO
cross section as NNLO- or NLO-PDFs are used:

δ(PDF-TH) = 1
2

∣∣∣∣∣ΣNNLO, NNLO-PDFs(Q2)− ΣNNLO, NLO-PDFs(Q2)
ΣNNLO, NNLO-PDFs(Q2)

∣∣∣∣∣ . (4.6)

Here, the factor 1
2 is introduced as it is expected that this effect becomes smaller at N3LO

compared to NNLO.
In figure 12 we show the combined uncertainty from PDFs, the value of the strong

coupling constant αS and the missing N3LO PDFs. The size of these uncertainties is
comparable to the uncertainties obtained in refs. [23, 33] for the photon-only and charged-
current DY processes.

Figures 13 and 14 show the impact of evaluating the NCDY cross section with dif-
ferent PDF sets. PDF4LHC15 is a combination of the CT14 [88], MMHT14 [89] and
NNPDF3.0 [90] PDF sets and we show in figure 13 predictions based on these individual
sets relative to the prediction based on the PDF4LHC15_nnlo_mc set. The red band in fig-
ure 13 reflects the δ(PDF) uncertainty of PDF4LHC15 and we observe that the predictions
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Figure 13. Dependence of the NCDY process at N3LO on the choice of the PDF set relative to
the combined PDF4LHC15_nnlo_mc set. The red band corresponds to the δ(PDF) uncertainty.

based on the individual PDF sets are contained within this band and that their spread is
comparable in size to this band. Since the publication of the PDF4LHC15 combination a
plethora of developments and the inclusion of LHC data into global PDF fits has led to
updated PDF. In figure 14 we study in particular the PDF sets ABMP16 [91], CT18 [92],
MSHT20 [93], NNPDF3.1 [94] and NNPDF4.0 [95]. With the exception of NNPDF4.0 we
observe, that the spread among the newer sets is less than the spread of their predecessors.
In particular, in the range where Q is comparable to the Z andW -boson masses the different
PDF sets seem to agree nicely. We observe furthermore that NNPDF4.0 leads to a signifi-
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Figure 14. Dependence of the NCDY process at N3LO on the choice of the PDF set relative to
the combined PDF4LHC15_nnlo_mc set. The red band corresponds to the δ(PDF) uncertainty.
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Figure 15. Decomposition of the invariant-mass distribution into the absolute value of contri-
butions from photon and Z exchange and their interference as a function of Q at third order in
perturbations theory.

cant enhancement of the NCDY cross section at values of Q larger than ∼ 70GeV. It would
be interesting to study the impact of new PDF sets on high precision processes in further
detail in the future and we are looking forward to an updated version of PDF4LHC [96].

4.4 Contributions from interferences

We conclude this phenomenological study by investigating some properties of the NCDY
cross section at N3LO and how it receives contributions from the photon, the Z-boson and
their interference.

In figures 15 and 16 we show the relative size of the three contributions. We see that, as
expected, the photon-only contribution dominates below the Z-threshold. Above threshold
the photon-photon and Z-Z contributions are of similar size, while the interference contri-
bution remains significantly smaller. Close to the threshold the cross section is dominated
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Figure 16. Relative contributions to the invariant-mass distribution from photon and Z exchange
and their interference as a function of Q at third order in perturbations theory.

entirely by the Z boson, and the interference changes sign when the threshold is crossed,
as expected. The observed pattern is hardly modified by perturbative corrections.

Computations with γ5 matrices are technically more involved than for purely vectorial
couplings. For this reason, the axial-vector contribution is frequently approximated by
simply using the same partonic coefficient functions as for the vector contribution and
simply changing the coupling of the quarks in an appropriate fashion. While this is correct
for contributions from Dirac traces with an even number of γ5 matrices, a mismatch is
introduced starting from NNLO for contributions involving traces with an odd number of
γ5 matrices. Moreover, effects from the axial-anomaly and the resulting non-decoupling of
the top-quark are neglected in this way.

In figure 17 we study the impact of replacing the axial-vector coefficient functions
ηA,iij→A+X in eq. (2.15) by their vector counterparts ηV,iij→Z+X (while keeping the correct
charges associated with the axial-vector). The figure displays the ratio of the contribution
to the DY cross section due to the axial-vector current based on these ‘fake’ partonic
coefficient functions ΣFake relativ to their correct contribution ΣA. We observe that at
NNLO the mismatch introduced is negligible, and it is well below the permille level for
the whole range of invariant masses considered. At N3LO instead, the mismatch increases
for small invariant masses, reaching the percent-level at invariant masses below 50GeV.
However, the numerical impact grows with decreasing Q as the relative contribution of the
Z-boson diminishes and the photon exchange contribution dominates the DY production
cross section, as can be seen from figure 16. We would like to point out that sufficiently
differential DY-type cross sections are afflicted by differences of the vector and axial-vector
contributions (see for example ref. [97]) that integrate to zero in the inclusive cross section.

In figure 18 we investigate the relative size of the non-decoupling of the top-quark, i.e.,
the effect of including or not the Wilson coefficient CA,f (µ). To this end we introduce Σmt
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Figure 18. Relative contribution from the non-decoupling top-mass effects as a function of Q up
to different order in perturbations theory.

to be

Σmt(Q2) = Σ(Q2)− Σ(Q2)
∣∣∣∣∣
CA,f =Af

, (4.7)

and show its ratio to the total cross section. In particular, we truncate the perturbative
expansion of the cross section at NNLO and N3LO in order to see the impact of including
the third order corrections to the Wilson coefficient. We see that for the whole range of
invariant masses considered, the effect of including the Wilson coefficient is well below the
permille level.
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5 Conclusions

In this paper we have computed for the first time the complete inclusive N3LO corrections
in the strong coupling constant for the production of a massless lepton pair. This result
has been made possible by combining our computation for the N3LO corrections to vector
production from ref. [23] with the computation of the axial-vector production cross section.
A main ingredient in our computation is the use of the Larin scheme to treat the γ5 matrix
in dimensional regularisation. Our computation has passed several non-trivial checks: apart
from the explicit cancellation of all ultraviolet and infrared poles, we have checked that our
implementation of the Larin scheme reproduces the contributions to the axial-vector cross
section where both γ5 matrices appear in the same Dirac trace, and that our final result
satisfies the expected DGLAP renormalisation group equation once the non-decoupling top-
mass effects are included. We include all partonic coefficient functions for the Drell-Yan
production cross section as described by eq. (2.15) as ancillary files in the supplementary
material of this article.

We have studied the phenomenological impact of our computation. We find that the
complete N3LO corrections to the NCDY process, including the axial-vector contributions,
has the same features as for the photon-only and W cases of refs. [23, 33]. We find that the
dependence of the complete NCDY process on the perturbative scales is similar to the pro-
duction of a γ∗ or W . In particular, the bands obtained by varying the perturbative scales
by a factor of two do not overlap when going from NNLO to N3LO, showing once more
the importance of considering N3LO corrections for precision LHC observables. We have
also considered ratios of K-factors between γ∗, W and the complete NCDY process, and
we find that, while the K-factors are very similar, the ratio depends on the invariant mass
of the lepton pair, reaching a few percent depending on the invariant masses considered.
This shows that care is needed when taking K-factors from one process and to apply it to
another process, especially when aiming for precision results. Finally, we have also studied
the impact of the choice of the PDF on our results. In particular, we have analysed how
the missing N3LO impact our predictions, which is one of the main bottlenecks to further
improve theoretical predictions for LHC observables. Since the NCDY process is one of the
main measurements used to constrain PDFs from LHC data, we expect that our computa-
tion will play an important role in the future to determine precisely the proton structure.
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