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1 Introduction

Chiral gauge theories are well motivated in physics within the Standard Model (SM) or
beyond the Standard Model (BSM). In the SM, the chiral electroweak gauge symmetry is
spontaneously broken by the Higgs mechanism, which can be analyzed within perturbation
theory. Beyond the SM, chiral gauge models are introduced to probe the potential compos-
ite structures of quarks and leptons [1], to dynamically break electroweak symmetry [2], or
to provide a composite dark matter candidate [3]. Different from the Higgs mechanism by
minimizing a scalar potential, there exists no robust theoretical tool to analyze all classes of
strongly-coupled chiral gauge theories. Unlike vector-like gauge theories, non-perturbative
tools from lattice QCD are far from mature enough to be applied to the chiral gauge theo-
ries [4–6]. One, therefore, relies on ’t Hooft anomaly matching [7], large Nc expansion [8],
most attractive channel (MAC) analysis [9], degree-of-freedom number inequalities [10, 11],
space compactification approaches [12], or softly-breaking supersymmetric (SUSY) gauge
theories [13–15] (see ref. [16] for a recent review).

Among the many possible gauge-anomaly-free chiral gauge theories, the Georgi-Glashow
model [17] with confining SU(5) gauge dynamics is especially interesting. The three forces
in the SM can be unified into a single grand unified theory (GUT) with an SU(5) gauge
group that is broken down to the SM gauge symmetry by a Higgs mechanism at the GUT

– 1 –



J
H
E
P
0
3
(
2
0
2
2
)
1
1
3

scale. The vacua obtained by examining the scalar potential may not cover all possible
cases. For the parameter region with no vacuum expectation value (VEV) for the scalar
fields, the SU(5) is expected to confine at a lower scale than the GUT scale. Understanding
the infrared (IR) spectrum of a confining SU(5) chiral gauge theory is then an interesting
question and potentially leads to phenomenological consequences.

The one-generation SU(5) Georgi-Glashow theory was first analyzed more than 40
years ago [1] and is expected to not spontaneously break any symmetries. In that case,
’t Hooft anomaly matching requires the existence of a massless composite fermion, and
this low energy behavior is supported by a large Nc analysis [8]. The three-generation
SU(5) theory, which is more relevant given the three generations of SM fermions, has
recieved signifiantly less attention. One possible vacuum was explored in section 8 of [18]
using MAC-like techniques, but there is no definitive answer in the literature about the IR
spectrum of this theory. It is the main goal of this paper to analyze this theory and attempt
to provide the correct IR spectrum using a variety of different theoretical approaches.

One simple guess is that the three-generation SU(5) model is similar to the one-
generation model and has no spontaneous breaking of the global symmetry SU(3)A ×
SU(3)F ×U(1)B. One just identifies the set of IR composite fermion states to match vari-
ous anomalies associated with the global symmetry. This can be done and will be shown
later. However, a large number of composite baryonic fermions is required to fulfill the goal
of anomaly matching, which makes this possibility an unlikely one. We then proceed to
consider the possible vacua with chiral symmetry breaking using both the MAC analysis
and the soft SUSY breaking approach.

The supersymmetric three-generation SU(5) gauge theory is known to be s-confining
(a smooth confinement without chiral symmetry breaking) in the IR with a known su-
perpotential [19, 20]. We can thus perturb that theory with soft SUSY-breaking terms
that are small compared to the confinement scale to get a more trustable IR spectrum.
Concentrating on the order parameter of the meson field (the composite with zero charge
under U(1)B) in the s-confining theory, we have found that several potential vacua could
exist for a general potential of the meson field. However, once we restrict the parameter
space to be around the one from the superpotential of the s-confining one plus the soft
SUSY-breaking terms, there are two vacua that appear more probable. The first has all
the fields stabilized at the origin and no global symmetry breaking. The ’t Hooft anomalies
are matched in the same way as the theory with unbroken SUSY.

The second interesting vacuum does have spontaneous global symmetry breaking with a
remnant global symmetry SO(3)V ×U(1)B in the IR. The SO(3)V is the vector combination
of the SO(3) subgroups of the two SU(3) global symmetries. The IR spectrum contains
one SO(3)V -triplet fermion and 13 Goldstone Boson (GB) states. We will later name this
vacuum “SUSY-I”. Although we present evidence that the low energy vacuum is one of
these two possibilities, we are not able to exclude other possible vacua, so we also list a
few other possibilities as well as their IR spectra.

Motivated by ref. [13], we have also tried to extrapolate to the case where SUSY
breaking is large and the non-supersymmetric theory can be recovered. If the vacuum in
the small soft SUSY breaking limit is “SUSY-I” with remnant symmetry SO(3)V ×U(1)B,
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then we find that a smooth transition is a consistent possibility, and SO(3)V × U(1)B
appears to be the most likely vacuum of the non-supersymmetric theory. If on the other
hand the vacuum in the small SUSY breaking region does not break any symmetries, then
there must be a phase transition. This is because it is impossible to satisfy the ’t Hooft
anomaly matching conditions in the same way as the nearly supersymmetric theory. Either
there must be symmetry breaking in the large SUSY breaking limit, or there must be a
completely different IR spectrum to satisfy the anomaly matching conditions. Two possible
phase diagrams for this extrapolation are shown schematically in figure 1.

The question of which vacuum the nearly supersymmetric theory has depends on the
relative size of two of the soft terms in the IR theory. These soft terms are formally
related to the soft terms in the UV theory, but this relationship is non-perturbative and in
general not calculable. It was recently pointed out however, that the UV insensitivity of
anomaly-mediated SUSY-breaking (AMSB) [21, 22] allows us to calculate the soft terms
and have more control of SUSY breaking [14, 23]. If the relative size of the SUSY-breaking
soft terms is indeed determined by anomaly mediation, we find that there is no global
symmetry breaking if SUSY breaking is small. If SUSY breaking is large to recover the
original non-supersymmetric theory, either global symmetry is broken or a different IR
spectrum from the SUSY one is expected. So, there is a phase boundary, contrary to the
conjecture made in [14, 23].

Our paper is organized as follows. In section 2, we briefly describe the IR spectrum
in the one-generation theory. In section 3.1, we provide examples of IR fermionic states
for the vacuum without global symmetry breaking that satisfy all the ’t Hooft anomaly
matching conditions, while in section 3.2 the traditional MAC analysis is performed and
a few possible vacua are presented. In section 3.3, we analyze the phases from minimiz-
ing a general potential for a SUSY-motivated order parameter field. Section 3.3.2 then
focuses on the potential that comes from softly breaking SUSY, while section 3.3.3 ap-
plies to the anomaly-mediated SUSY-breaking case, where no global symmetry breaking is
demonstrated. Section 4 contains our conclusions and some brief discussion for phenomeno-
logical applications. Appendix A includes some group theory formulas, while appendix B
shows gauge invariant fermionic bound states in terms of quarks. Appendix C contains
an additional proof of no symmetry breaking including U(1)B-breaking directions for some
potentials.

2 One-generation confining SU(5) theory

The one generation of SU(5) Georgi-Glashow model contains one fermion A in the two-
index anti-symmetric tensor 10 representation and one field F in the anti-fundamental 5̄
representation. This is a chiral gauge theory so mass terms are forbidden for both fermions,
and the only renormalizable interactions are those with the gauge bosons. This theory
possesses a non-anomalous U(1)B global symmetry whose charges are given in table 1.
This U(1)B does provide nontrivial ’t Hooft anomaly matching conditions. The standard
demonstration that this theory is gauge anomaly free and that the mixed gauge-global
anomaly cancels is shown in appendix A.
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[SU(5)] SU(3)A SU(3)F U(1)B

A 10 3 1 1

F 5 1 3 −3

Table 1. Matter content of the three-generation SU(5) chiral gauge theory. Here and throughout
we use square brackets [SU(5)] to denote gauge symmetries.

The gauge symmetry is asymptotically free and expected to confine. The IR theory
has been studied in ref. [1] and is very likely to have a unique vacuum with no spontaneous
global symmetry breaking. The ’t Hooft anomaly matching conditions are satisfied with
a massless fermionic gauge invariant bound state of the original fields given by AF F .
This vacuum is further supported by the large Nc analysis in ref. [8], which indicates that
the global baryon number symmetry (the only gauge-anomaly free global symmetry for
the one-generation theory) is not spontaneously broken, and also by an analysis using
anomaly-mediated SUSY breaking [14].

3 Three-generation confining SU(5) theory

The three-generation SU(5) chiral gauge theory with three flavors of A in 10 and F in 5 of
SU(5) has the gauge-anomaly-free global symmetry SU(3)A×SU(3)F ×U(1)B. The matter
content and representations under the global symmetry are listed in table 1.

3.1 Phase without any global symmetry breaking

Similar to the one-generation case, the IR vacuum could have no global symmetry breaking.
One looks for a consistent IR spectrum to match the ’t Hooft anomaly of the UV theory.
For the UV theory, there are six anomalies to be matched. They are

A(SU(3)A)3 = 10 , A(SU(3)
F

)3 = 5 , A(SU(3)A)2×U(1)B
= 10 ,

A(SU(3)
F

)2×U(1)B
= −15 , A(U(1)B)3 = −375 , Agrav.2×U(1)B

= −15 .

Our conventions for the generators as well as the anomaly coefficients of various represen-
tations are given in appendix A.

We attempt to construct an IR theory of massless gauge-invariant fermionic composites
that match the anomalies. There are an infinite number of such composites: AF F , A5,
A4F 3 etc., and one can also construct composites using Hermitian conjugate fields such as
A2F

†, A3(F †)4, etc. In appendix B, we will show that all fermionic gauge-invariant bound
states have U(1)B quantum number that is an odd integer. Given the infinite number
of possible bound states, there are infinitely many solutions to the anomaly matching
equations. We present two of the simplest solutions in tables 2 and 3. Note that for the
(F 5)† state in table 3, additional angular momentum among the constituents is required
to have a 3 representation under SU(3)F and a fully-anti-symmetric wave function. From
this analysis, we cannot rule out a low energy theory with no global symmetry breaking,
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[SU(5)] SU(3)A SU(3)F U(1)B

(AF F )† 1 3 3 5

AF F 1 3 6 -5

A5 1 6 1 5

F
5 1 1 15 -15

A3F
†4 1 1 6 15

A3F
†4 1 1 15 15

2× (A3F
†4)† 1 1 3 -15

Table 2. One possible solution to the anomaly matching conditions.

[SU(5)] SU(3)A SU(3)F U(1)B

(F 5)† 1 1 3 15

A5 or (A4F
3)† 1 6 1 5

F (A2)† 1 3 3 -5

(A3)†F 4 1 1 3 -15

Table 3. A second possible solution to the anomaly matching conditions. Note that the F 5 state
requires an orbital angular momentum among the constituents.

although the spectra of the IR baryonic states in table 2 and table 3 are quite complicated
and we consider this possibility somewhat unlikely.

3.2 Phases from MAC analysis

Another way to analyze the breaking pattern is to look for the most attractive channel
(MAC) using tree-level gauge boson exchange as a guide [9]. This is computed in terms of
the quadratic Casimir invariants C2 assuming a pair of fermions form a condensate with
definite gauge charge. The attractiveness of a channel with condensation in the pattern
r1 ⊗ r2 → rc is given by

∆C2 ≡ C2(r1) + C2(r2)− C2(rc) . (3.1)

C2 values for different representations are given in appendix A. The MAC for the theory
(for any number of generations) is 10× 10→ 5, with the next MAC is 10× 5→ 5. Under
both the gauge and global symmetry, the order parameter for the MAC is (5, 6, 1)2.

Motivated by the complimentary conjecture [24], the symmetry breaking can be equiva-
lently achieved by the Higgs mechanism with H† ∈ (5, 6, 1)2. We label the order parameter
field as Ha

ij with a = 1, · · · 5 as the gauge index and i, j = 1, 2, 3 as symmetric flavour
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indices. Unlike the one-generation case, there is no unique symmetry-breaking pattern.
One could write down the most general renormalizable potential for Ha

ij and vary the
parameters. Here, we list a few interesting possible vacua as well as the subsequent IR
spectra.

MAC-I: 〈Ha
ij〉 = δa5δij f , which leads to the unbroken symmetry as [SU(4)] × SO(3)A ×

SU(3)F ×U(1)B′ ,1 with U(1)B′ as a linear combination of the gauge group [U(1)T24 ]
and the global U(1)B symmetry. Under the unbroken symmetry, A decomposes as
(6, 3, 1)0 + (4, 3, 1)5/2, while F is (4, 1, 3)−5/2 + (1, 1, 3)−5. The fermion (6, 3, 1)0
has a Majorana mass and is heavy. For the remaining fermions and when [SU(4)]
gauge interaction becomes strong, the bi-fermion condensation from (4, 3, 1)5/2 and
(4, 1, 3)−5/2 further breaks the global symmetry to the diagonal SO(3)V ×U(1)B′ and
decouples this pair of fermions. In the IR theory, one has

global sym. : SO(3)V ×U(1)B fermion : (3)−5 boson : (5)0 + (5)0 + (3)0 , (3.2)

where we have listed the charges under the global U(1)B in the UV theory.

MAC-II: 〈Ha
ij〉 = δa5δi3δj3 f , which leads to the unbroken symmetry as [SU(4)]×SU(2)A×

SU(3)F ×U(1)B′ with U(1)B′ as a linear combination of the gauge [U(1)T24 ] and the
global U(1)B symmetries. One has A 3 (6, 2, 1)0 + (6, 1, 1)0 + (4, 2, 1)5/2 + (4, 1, 1)5/2
and F 3 (4, 1, 3)−5/2 + (1, 1, 3)−5. The fermion (6, 1, 1)0 is heavy and decoupled.
When the [SU(4)] gauge interaction becomes strong, the bi-fermion condensate con-
structed from (6, 2, 1)0 has (1, 3, 1)0 under symmetries, induces SU(2)A → U(1)A
breaking, and makes the (6, 2, 1)0 heavy. The remaining fermions in A are (4,±1, 1)5/2
and (4, 0, 1)5/2 under [SU(4)]×U(1)A×SU(3)F ×U(1)B′ . Those A fermions can also
form a condensate with (4, 1, 3)−5/2 in F to further break U(1)A×SU(3)F×U(1)B′ →
U(1)V × U(1)B′ . Note that [SU(4)] gauge symmetry is not broken by the later con-
densation. In the IR theory, one has

global sym. : U(1)V ×U(1)B fermion : (±1,−5) + (0,−5) boson : 15GB’s . (3.3)

MAC-III: 〈Ha
ij〉 = δai δij f , which leads to the unbroken symmetry as [SU(2)]× SU(3)F ×

U(1)2
A × U(1)B′ with U(1)2

A each being the linear combination of a gauge generator
and a generator from SU(3)A, and U(1)B′ being a linear combination of the global
U(1)B and a gauge generator. There are 6 chiral doublets under the gauge [SU(2)],
which is equivalent to 3 flavors for a vector-like [SU(2)] gauge theory. The [SU(2)]
gauge group confines at a lower scale such that all 6 chiral doublets become massive.
One plausible breaking pattern with the order parameter like FA has the non-Abelian
global SU(3)F symmetry breaking into SU(2)F with no additional broken generator
for the Abelian global symmetries. In the deep IR theory, there are 15 massless
fermions: 9 from [SU(2)] singlets inside F and 6 from the [SU(2)] singlets inside A,
plus 11 massless GB’s.

1As above, square brackets denote gauge symmetries.

– 6 –



J
H
E
P
0
3
(
2
0
2
2
)
1
1
3

MAC-IV: Ha
ij = δa1δi1δj1f+δa2δi2δj2f+δa3δi3δj3f+δa4δi1δj2f+δa4δi2δj1f+δa5δi1δj3f+

δa5δi3δj1f . This breaks the gauge group to nothing, and only leaves SU(3)F ×U(1)×
U(1) global symmetry, where both U(1)’s are linear combinations of generators from
the gauge group, the global SU(3)A, and U(1)B. In the IR theory, there are 2 massless
fermions from A and 15 from F , as well as 7 massless GB’s.

The model studied here was also analyzed in section 8 of ref. [18]. They considered the
next-MAC order parameter that has quantum numbers (5, 3, 3)−2 parameterized asHa

iα and
analyzed a potential vacuum of the form 〈Ha

iα〉 = δa5δiα f . This is quite similar to MAC-I,
breaking the symmetry down to [SU(4)]×SU(3)×U(1)B′ , where the SU(3) is the diagonal
combination of the two original SU(3) groups. The A decomposes as (6, 3)0 + (4, 3)5/2,
while F is (4, 3)−5/2 + (1, 3)−5, which allows two different condensates as in the MAC-I
case, and the 6 × 6 condensate breaks SU(3) → SO(3), but U(1) remains unbroken. The
low energy spectrum is thus identical to MAC-I.

While the MAC method gives the symmetry properties of a potential condensate, it
gives no guidance of the VEV of the condensate, and there are many possibilities when the
order parameter has complicated quantum numbers. We have explored several possibilities
here with different remnant gauge groups. These gives rise to distinct low energy theories,
but this is by no means a complete classification. If however, other methods to analyze
the theory give similar results, as we will see below for MAC-I, this lends plausibility to
those vaccua.

3.3 Phases from SUSY-motivated order parameter

Another way to potentially obtain an understanding of the dynamics of the theory is to
consider the supersymmetric analogue, and then add SUSY-breaking deformations in a
controlled way. Following refs. [19, 20], the three-generation SUSY GUT theory belongs to
the s-confining scenario (smooth confinement without chiral symmetry breaking), and the
low-energy theory can be fully described by three gauge-invariant composite superfields.
The field content of the UV and IR theories is shown table 4.

In addition to the SU(3)A×SU(3)F ×U(1)B global symmetry of the non-supersymmet-
ric theory, this theory also possesses a U(1)R theory. The additional symmetry along with
the constraint of holomorphy [19, 20] for low-energy dynamics gives a unique answer for
anomaly matched IR theory. The IR theory has a dynamical superpotential given by

Wdyn = 1
Λ9

[
M3 +B2M B1

]
, (3.4)

where M and Bi are the gauge invariant composites shown in table 4. For an s-confining
theory, the Kähler potential is expected to be regular at the origin. There are, however,
expected higher-dimensional Kähler operators suppressed by powers of the dynamical scale
Λ. For energies small compared to Λ, those effects are irrelevant and one can go to the
canonically normalized field basis and have the superpotential:

Wdyn = λM3 + ζ B2M B1 , (3.5)
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[SU(5)] SU(3)A SU(3)F U(1)B U(1)R
A 10 3 1 1 0

F 5 1 3 −3 2
3

Wα 24 1 1 0 1

M ≡ A3 F 8 3 0 2
3

B1 ≡ AF F 3 3 −5 4
3

B2 ≡ A5 6 1 5 0

Table 4. The anomaly-matched supersymmetric UV and IR theories. Wα is the gauge superfield
whose lowest component is a fermion (gaugino). The R charge is that of the lowest component of
the given superfield.

where λ and ζ are unknown coefficients. In the supersymmetric limit, the theory has a rich
moduli space which we do not further explore here.

In order to parameterize the vacuum with SUSY breaking effects, we assume that
U(1)B will not be spontaneously broken as is the case of SQCD Nf = Nc + 1 in ref. [23]
and also true in chiral gauge theories with a large number of colors [8]. Therefore, we
assume that the non-trivial vacuum happens in the meson direction M , while B1 and B2
do not get VEVs.2 The field Mai has a = 1, 2 · · · 8 for the SU(3)A adjoint index and
i = 1, 2, 3 for SU(3)F fundamental index, and we can write the superpotential as

Wdyn = 1
18 λ f

abc εijkMaiM bjM ck . (3.6)

The factor of 1/18 is chosen for later convenience.

3.3.1 General renormalizable potential of (8, 3)0

The most general renormalizable potential for M is

V =m2MaiM∗ai + κ

18
(
fabcεijkM

aiM bjM ck+ h.c.
)

+ λ1
4
(
MaiM∗ai

)2
+λ2

4
(
MaiMajM∗biM

∗
bj

)
+λ3

4
(
fab1c1f

ab2c2εij1k1M
b1j1M c1k1εij2k2M∗b2j2M

∗
c2k2

)
−λ4

4
(
fab1b2f

ac1c2M b1j1M c1k1M∗b2j1M
∗
c2k1

)
+λ5

4
(
dab1c1d

ab2c2M b1j1M c1k1M∗b2j1M
∗
c2k1

)
+λ6

4
(
i fab1b2d

ac1c2M b1j1M c1k1M∗b2j1M
∗
c2k1 + h.c.

)
. (3.7)

The SU(3)A adjoint index a, b, c · · · are real and we do not distinguish upper or lower in-
dexes. The third operator with a coefficient λ3 is identical to the supersymmetric potential

2We are not able to exclude the possibility of spontaneous breaking of U(1)B . In fact, the soft SUSY
potential studied later could be general enough to break U(1)B .
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VSUSY derived from the superpotential in eq. (3.6) with λ3 = |λ|2/9. We have checked that
the six quartic couplings are independent of each other. Useful identities for showing that
other quartics are redundant are given in appendix A.

The bounded from below (BFB) conditions for this potential are non-trivial. The
individual quartic terms can be classified into three types: i) positive definite (λ1) which is
positive for any non-zero field values, ii) semi-positive definite (λ2, λ3, λ4,3 λ5) which can
be zero for non-zero field values but cannot be negative, and iii) unbounded (λ6) which can
be made arbitrarily positive or negative. We will not do a full exploration of BFB here,
but note two different sufficient conditions for BFB. The first is λ1 > 0, λ6 = 0 and λi ≥ 0
for i = 2, . . . , 5, which will be stabilized from runaway in any non-trivial field direction
by λ1. The second is the expected potential from soft SUSY-breaking discussed further
in section 3.3.2. In that case the only non-zero quartic is λ3, and a sufficient condition is
m2 > 0 and λ3 > 0. The field configuration that makes the quartic vanish also makes the
trilinear κ term vanish as they both come from the superpotential in eq. (3.6), so in the
field directions where the quartic vanishes, the potential is stabilized by the mass term.

We now explore possible vacua: the simplest possibility is the origin in field space.
For example, if m2 > 0, λi > 0 for i = 1, . . . , 5 and κ2 � λim

2, then the origin is the
only vacuum and there is no symmetry breaking. The ’t Hooft anomalies for the global
symmetry group are matched by the fermions in the M , B1 and B2 superfields. If m2 < 0,
the origin will be unstable. Alternatively, if κ is sufficiently large, then the true vacuum
will be away from the origin regardless of the sign of m2. We have identified three possible
absolute minima (not a complete list) of this potential with distinct symmetry breaking
patterns. Labelling the vacua by the unbroken global symmetry:

SUSY-I: SO(3)V ×U(1)B. SO(3)V is the vector combination of the SO(3) subgroups of the
two SU(3) symmetries. This occurs if 〈Ma

i 〉 = f only for (a, i) = (2, 1), (5, 2), (7, 3).
Defining a single field φ to represent this direction, the potential becomes

VSUSY−I = 3m2 φ2 + κ

3φ
3 + 1

4

(
9λ1 + 3λ2 + 3λ3 + 5

2λ5

)
φ4 , (3.8)

which clearly shows that when m2 = 0, one has a non-trivial vacuum from the φ3

and φ4 terms. Beyond this direction in field space, we have checked that there exist
some values of λi such that this point in field space is a local minimum (for instance,
when κ2 � m2 > 0, λ3 > 0 with other λi = 0). Around this vacuum, the massless
spectrum contains

fermion : (3)−5 ⊂ B1 boson : (5)0 + (5)0 + (3)0 . (3.9)

The fermion is a component of B1 = AF F , and is thus a three-generation analogue
of the spectrum in the one-generation case. Note that all fermions in the meson
field M become massive and decouple in the IR theory. Also, this spectrum matches
the MAC-I analysis in eq. (3.2). We therefore conjecture this to be the most likely
vacuum for the non-supersymmetric theory.

3Note the minus sign on the definition of λ4 is chosen so that this term is semi-positive definite.
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SUSY-II: SU(2)V ×U(1)A×U(1)B. This occurs if 〈Ma
i 〉 = f for (a, i) = (1, 1), (2, 2), (3, 3).

SU(2)V is a vectorial combination of the SU(2) subgroup of SU(3)A and the SO(3)
subgroup of SU(3)F . U(1)A is proportional to the T8 generator of SU(3)A. Along
this specific direction, the potential is

VII = 3m2 φ2 + 2κ
3 φ3 + 1

4 (9λ1 + 3λ2 + 12λ3 + λ5)φ4 . (3.10)

Along other directions, we have checked that the nontrivial vacuum of the above
potential in φ could be a local minimum for some choices of potential parameters
(for instance, when κ2 � m2 > 0 and λ1 = λ5 > 0 with other λi zero). Around the
vacuum, the spectrum in the IR theory has

fermion : (4)1,−5 ⊂ B1 + (1)−4,5 ⊂ B2 + (3)0,0 ⊂M boson : (5)0,0 + (3)0,0 + (2)3,0 .

(3.11)

Note that (3)0,0 mesino is in a real representation of the unbroken global symmetry
and does not contribute to any ’t Hooft anomalies. There are a total of 12 massless
GB’s matching the number of broken symmetry generators.

SUSY-III: U(1)A3×U(1)A8×SU(2)F ×U(1)B. This occurs if 〈M3
3 〉 = f sin θ and 〈M8

3 〉 =
f cos θ, and the angle θ parameterizes a flat direction. While the vacuum energy at
the minimum is independent of θ, the spectrum does depend on θ. At θ = 0, there is
an enhanced global symmetry of SU(2)A×U(1)A8×SU(2)F ×U(1)B. For excitations
in the f direction, the potential can be written as

VIII = m2 φ2 + 1
4

(
λ1 + λ2 + 1

3λ5

)
φ4 . (3.12)

We have checked that there exist some potential parameters to have the vacuum be
a local minimum (for instance, m2 < 0, κ2 ∼ |m2|, λ3 � λ1 � −λ2 > 0 with other
λi = 0). Around this vacuum, the IR spectrum is (only listed the counting below)

fermion : 6 ⊂ B1 + 3 ⊂ B2 + 12 ⊂M boson : 12 . (3.13)

From the number of broken generators, the number of Goldstone Bosons is 11. How-
ever, there are 12 massless scalars based on the tree-level potential, so one is acciden-
tally massless at tree level and is expected to get a mass at one loop. At θ = 0, there
are six additional massless fermions, but the number of massless bosons remains the
same at tree level. Because at this point there are two fewer broken symmetries, we
expect two more of the bosons to be lifted by loop corrections.

3.3.2 Soft SUSY breaking

In this section, we take the approach of turning on small soft SUSY-breaking parameters
(see ref. [13] for the analysis for the vector-like SQCD models). In particular, we assume
that the soft terms are parametrically smaller than the dynamical scale Λ, so that we can
reliably perturb the s-confining theory. One could then hope to learn the structure of the
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non-supersymmetric theory by sending the soft masses to infinity. We will show, however,
that this extrapolation is not necessarily smooth.

In the SUSY limit, only λ3 from eq. (3.7) is non-zero. After adding the small SUSY-
breaking soft terms, other quartic terms could be non-zero, but are suppressed. Therefore,
at leading order, we only consider the potential with the soft terms proportional to m2

and κ as well as the supersymmetric λ3 term in the general meson potential in eq. (3.7).
Introducing an auxiliary field, Nck = fabcεijkM

aiM bj , the potential can be rewritten as

V = λ3
4 tr

[(
N + 2κ∗

9λ3
M∗

)(
N † + 2κ

9λ3
MT

)]
+
(
m2 − |κ|

2

81λ3

)
tr
[
MM †

]
. (3.14)

If κ2 ≤ 81λ3m
2, both terms are positive definite, so Mai = 0 is the global vacuum. Or,

|κ|2 ≤ 81λ3m
2 ⇒ Mai = 0 [no global symmetry breaking] . (3.15)

Since there is no spontaneous global symmetry breaking, the IR spectrum contains massless
fermion components of M , B1 and B2 in table 4. This method of proving that there is
no symmetry breaking in some parameter regions can be generalized to certain types of
theories with soft SUSY breaking as shown in appendix C.

Therefore, in order to determine the vacuum, we need to know the relative size of the
IR parameters. In the ultraviolet, the parameters of the potential are the gauge coupling
and the soft masses for the gaugino and the A and F scalars. These parameters can then
in principle be translated to the parameters of the low energy including those eq. (3.15),
but this translation is non-perturbative and difficult to calculate in general. Given specific
SUSY-breaking mechanisms such as gauge mediation [26] or anomaly mediation [14, 23]
(explored further in section 3.3.3), one can calculate the parameters in the IR potential.

We begin by assuming that the condition of eq. (3.15) is satisfied, as is the case for
anomaly mediation seen in the next section. If |m2|, |κ|2 � Λ2, perturbing about the s-
confining theory is reliable and there is no symmetry breaking. If we now extrapolate to
|m2| � Λ2 for the soft masses of all the IR fields (B1, M , and B2), the scalars will become
heavy and decouple. This can be further divided into two situations depending on the size of
gaugino mass m

W̃
. For a small gaugino mass m

W̃
→ 0, the IR spectrum contains massless

gauge-singlet fermions with global quantum numbers (8, 3)0,−1/3, (3, 3)−5,1/3 and (6, 1)5,−1
under the global symmetries of table 4,4 assuming there is no gaugino condensation so that
U(1)R is still a good symmetry. The ’t Hooft anomalies are all matched by this spectrum.
For the baryon-number-charged and fermionic composite states, B1 and B2, they can easily
be constructed by the fermionic constituents of A and F , since they contain odd-number of
quarks. For the fermionic state with (8, 3)0,−1/3, on the other hand, it contains only an even
number of quarks that cannot be used to make a fermionic bound state. One can simply
prove that there is no fermionic state with (8, 3)0 that is composed of A, A†, F and F † (see
appendix B for a proof). However, given the existence of the light gaugino, W̃ , one could
replace the fermionic quark A by AW̃ with the scalar contraction under spin, which is still
10 under [SU(5)] and has U(1)R charge zero. The fermionic state (AW̃ )3F has the right

4In a chiral superfield with R = r, the R charge of the fermion is r − 1.

– 11 –



J
H
E
P
0
3
(
2
0
2
2
)
1
1
3

●

●

●

●

Figure 1. Left panel: schematic plot to show the phase diagram of the theory in terms of the
squark mass m

q̃
and the gaugino mass m

W̃
for |κ|2 ≤ 81λ3m

2 (this condition is satisfied for
anomaly-mediated SUSY breaking.). A phase boundary separating the symmetry-breaking and
symmetry-preserving phases exists when both m

q̃
and m

W̃
are of order the confinement scale Λ.

The detailed parameter dependence for the phase boundary is unknown. The SUSY-I vacuum
with SO(3)V × U(1)B vacuum symmetry and described around eq. (3.8) is conjectured to be the
global vacuum for the non-supersymmetric theory in the upper right corner. Right panel: the same
as the left but for |κ|2 > 81λ3m

2. No phase transition is anticipated for this case.

quantum number (8, 3)0,−1/3. So, for the small gaugino mass limit, the global-symmetry-
unbroken vacuum is smoothly connected to the UV non-supersymmetric theory with an
additional massless fermion W̃α in the adjoint of [SU(5)]. This cross over is denoted at
the bottom right part of the left panel in figure 1. Note that the axes of the phase digram
are the soft terms in the UV theory, but the condition in eq. (3.15) is in terms of IR soft
terms. Because of non-perturbative strong dynamics, we do not know the exact relation
between UV and IR soft terms.

In the other corner of the parameter space (left and upper corner of the left panel in
figure 1) with mq̃/Λ � 1 and as we increase the gaugino mass m

W̃
, we also anticipate no

phase boundary because the IR spectrum can still contain (8, 3)0, (3, 3)−5 and (6, 1)5 and
has the anomaly matched without a good U(1)R symmetry. For this case, light scalars can
help constructing a fermionic state with the right quantum number as (8, 3)0.

Around the diagonal direction in the left panel of figure 1, when one increases both
m
W̃

and mq̃, the situation is different and a phase boundary must exist. The reason is
that when both gauginos and squarks decouple, there is no fermionic state with (8, 3)0
constructed from fermionic states A, A†, F and F

† (again see appendix B for a proof).
The IR spectrum will be different from the one based on the supersymmetric theory with
small soft masses. We do not have a good tool to determine this non-SUSY spectrum,
except to point out the various possibilities as in previous sections.
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For |κ|2 > 81λ3m
2 (for the right panel of figure 1), someMai develop non-zero VEV’s.

Since both the cubic and quartic terms in this potential have non-trivial field directions
where they simultaneously vanish, we require m2 > 0 to guarantee BFB.5 In that case, of
the possible vacua identified in section 3.3.1, SUSY-I with an unbroken SO(3)V × U(1)B
global symmetry has the lowest vacuum energy and is the only of the three vacua with
negative vacuum energy that is a local minimum. This hints that SUSY-I is in fact
the global minimum, a conclusion supported by numerical analysis of the full potential
in eq. (3.14) with κ2 � m2, but we cannot rule out a more complicated VEV with a
lower vacuum energy. Assuming SUSY-I is indeed the vacuum, it can be continuously
connected to the one in the non-supersymmetric theory since the massless states in eq. (3.9)
can be interpreted as composites of the non-supersymmetric UV theory. The schematic
plot for the phase diagram is shown in the right panel of figure 1. The light fermion
multiplet is a bound state of an odd number UV quarks, and the Goldstone Bosons in the
M representation can be built out of an even number of UV quarks.

3.3.3 Anomaly-mediated SUSY breaking

Another approach is, rather than parameterizing generic soft SUSY-breaking terms, we
can use anomaly-mediated SUSY breaking (AMSB) [21, 22] where the signs and relative
sizes of the different coefficients are predicted. It has recently been argued that because
of the UV insensitivity of AMSB, that the dynamics of QCD-like theories [23] and chiral
gauge theories [14, 15] can be better understood.

In anomaly mediation of supersymmetry breaking one introduces the Weyl compen-
sator Φ = 1 + θ2m3/2 with m3/2 as the gravitino mass. The SUSY-breaking Lagrangian
can be calculated as

L /susy =
∫
d4θΦ∗ΦK +

∫
d2θΦ3W + c.c. (3.16)

The tree-level scalar potential for M is

V = Vsusy + V /susy =
∑
ai

∣∣∣∣ ∂W∂Mai

∣∣∣∣2 −m3/2

(∑
ai

Mai ∂W

∂Mai
− 3W

)
. (3.17)

For the three-generation case, the superpotential in eq. (3.5) is classically conformal so
V /susy = 0, and the tree-level contribution is not enough to obtain a nontrivial vacuum.
The superpotential in index notation is given by:

Wdyn = 1
18 λ f

abc εijkMaiM bjM ck + ζ εαγδ Bβδ
2 Mai(T a)αβ B

γ
1 i , (3.18)

where Bβδ
2 = Bδβ

2 and T a are SU(3) fundamental generators.6

5BFB could be satisfied with m2 < 0 by the generation of other SUSY-breaking-induced quartic cou-
plings, possibly at loop-level. Alternatively, the potential could have a runaway direction which is stabilized
by physics at the confinement scale Λ.

6Here we are using tr[T aT b] = 1
2δ

ab which differs from our conventions in appendix A where we use the
notation ta for the generators.
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To include loop-level SUSY-breaking effects, we first calculate the anomalous dimension
for the fields in the low-energy theory. Using results found, for example, in ref. [27],7 we find:

γ(Mα i
β ) = − 1

16π2
1
2

(2
3 |λ|

2 + 3
2 |ζ|

2
)
, (3.19)

γ(Bα
1 i) = − 1

16π2
1
2
(
4 |ζ|2

)
, (3.20)

γ(Bαβ
2 ) = − 1

16π2
1
2
(
6 |ζ|2

)
. (3.21)

The global symmetries ensure that the anomalous dimension matrices are diagonal, namely
there is no field mixing. In order to compute the derivatives of the anomalous dimensions,
we also need the β functions for the Yukawa couplings which we find to be

βλ ≡
d

dt
λ = 1

32π2
λ

2
(
9 |ζ|2 + 4 |λ|2

)
, (3.22)

βζ ≡
d

dt
ζ = 1

32π2
ζ

2

(
23 |ζ|2 + 4

3 |λ|
2
)
, (3.23)

with t ≡ lnQ/Q0 where Q is the renormalization scale and Q0 is a reference scale. From
the β functions, we can compute the derivatives of anomalous dimensions:

γ̇(Mα i
β ) = − 1

(32π2)2

(8
3 |λ|

4 + 8 |ζ|2 |λ|2 + 69
2 |ζ|

4
)
, (3.24)

γ̇(Bα
1 i) = − 1

(32π2)2

(
92|ζ|4 + 16

3 |ζ|
2 |λ|2

)
, (3.25)

γ̇(Bαβ
2 ) = − 1

(32π2)2

(
138|ζ|4 + 8 |ζ|2 |λ|2

)
. (3.26)

From these formulas, we can then compute the loop-level anomaly-mediated SUSY-
breaking potential [27, 28]:

Vsoft = 1
18 λm3/2

(−3 γ(M)
2

)
fabc εijkM

aiM bjM ck + c.c.

+ζ m3/2

(−γ(M)− γ(B1)− γ(B2)
2

)
εαγδ Bβδ

2 Mai(T a)αβ B
γ
1 i + c.c. (3.27)

−|m3/2|2
γ̇(M)

4
∑
a,i

|Mai|2 − |m3/2|2
γ̇(B1)

4
∑
α,i

|Bα
1 i|2 − |m3/2|2

γ̇(B2)
4

∑
α≤β
|Bαβ

2 |
2 .

Matching the general potential in eq. (3.7) for the meson field, one has

m2 = −|m3/2|2
γ̇(M)

4 > 0 , λ3 = |λ|
2

9 , κ = λm3/2

(−3 γ(M)
2

)
, (3.28)

and all other quartic couplings are negligible. Since γ̇ < 0, all the fields get a positive soft
mass. The above relations satisfy the no-symmetry-breaking condition in eq. (3.15), so the
anomaly-mediated SUSY-breaking potential does not exhibit global symmetry breaking,

7Note that we are using the sign convention for the anomalous dimension of [14, 23], which is opposite
to that of [27].
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at least in the meson field direction. For B1 and B2, we have also proved that they do
not develop a nonzero VEV to break U(1)B in appendix C. Therefore, for AMSB with
m3/2 small compared to the dynamical scale Λ, the vacuum of the potential has no global
symmetry breaking.

At largem3/2, we can use UV insensitivity of AMSB and use the UV description. There
are no A-terms allowed by the symmetry, and the scalars all get positive mass squared
terms.8 The gaugino also gets a mass, leaving us with the spectrum of the original non-
supersymmetric theory. As noted above, it is impossible to match the fermion content of
the s-confining theory using only the states in the non-supersymmetric theory, particularly
there is no gauge-invariant bound state that can be used to make the fermions in the M
superfield. Thus it is impossible to match the anomalies in the same way as they are
matched in the small m3/2 regime. In the large m3/2 regime, either the anomalies are
matched using a complicated spectrum of the type described in section 3.1, or there must
be global symmetry breaking. Therefore, there must be a phase transition as m3/2 is
increased.

4 Discussion and conclusions

In this work we have studied a confining chiral SU(5) gauge theory with three generations
of 10+5̄ fermionic matter. The study of chiral gauge theories is interesting in its own right
as new field theory mechanisms can be explored, and this theory is particularly interesting
because it is the matter content of the simplest Grand Unified Theory for the Standard
Model [17]. While there is no way to precisely compute the dynamics of the theory, we
have applied a variety of techniques to attempt to get a handle on the low-energy behavior
of the theory.

Our best guess as to the low-energy vacuum of the theory is a spontaneous breaking
of the global symmetry SU(3)A × SU(3)F × U(1)B → SO(3)V × U(1)B with a low energy
spectrum of a fermion that is a (3)−5 and Goldstone Bosons that are (5)0+(5)0+(3)0 under
the remnant global symmetry. There are several pieces of evidence for this conjectured
vacuum:

• The ’t Hooft anomalies are matched by the massless fermion in the IR. Furthermore,
this fermion can be written as a bound state B1 = AF F , making this spectrum a
three-generation analogue of the one-generation model discussed in section 2.

• When considering a supersymmetric model and perturbing it with small SUSY-
breaking soft terms, this is the global vacuum as long as the trilinear term is suffi-
ciently large and the condition of eq. (3.15) is not satisfied. We have denoted this
vacuum SUSY-I in eq. (3.8).

• The method of the maximally attractive channel (MAC) [9] also gives this as a
possible vacuum which we have denoted as MAC-I in eq. (3.2).

8The soft mass is controlled by the running of the gauge coupling with m2 ∼ −gβg ∼ +g4.
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This is, of course, not a rigorous proof that this is the vacuum of the theory, and we have
explored other possibilities. One particularly interesting possibility explored in section 3.1
is that there is no global symmetry breaking at all. In that case, there are six non-trivial
’t Hooft anomaly matching conditions on the fermions of the low-energy theory. There
are infinitely solutions to these anomaly-matching equations, and we have listed two of the
simplest ones in tables 2 and 3. Even these simple ones are rather complicated, and we
thus view this no global symmetry breaking possibility as unlikely.

We have also explored the dynamics of the supersymmetric version of this SU(5) theory
with soft SUSY breaking. In the limit where the soft SUSY breaking is large, the squarks
and gauginos decouple and the original theory is recovered. The unbroken SUSY theory is
solvable exhibiting s-confinement in the low energy [19, 20] with the low-energy dynamics
describable as three different bound states of the UV fields and a dynamical superpoten-
tial. Adding SUSY breaking that is small compared to the dynamical scale allows for a
reliable description of the theory. We can then describe a phase diagram of this theory
when extrapolating to larger SUSY breaking. This phase diagram is shown schematically
in figure 1 for two possible soft-term relations (depending on whether the condition in
eq. (3.15) is satisfied or not).

The dynamics of the SUSY theory depend on the low energy soft parameters in the
potential, but these are in general not calculable from the UV soft parameters. One
interesting possibility, however, is to consider anomaly-mediated SUSY breaking which is
UV-insensitive and allows us to calculate the soft parameters in the IR [14, 23]. It has
been conjectured that the dynamics of the non-supersymmetric theory can be found by
extrapolating the AMSB dynamics to large SUSY breaking. We have shown, however,
that such an extrapolation does not work for this theory and the phase diagram looks
like the diagonal direction in the left panel of figure 1. At small m3/2, there is no global
symmetry breaking, while at large m3/2 either there is global symmetry breaking, or the
’t Hooft anomalies are satisfied in a completely different way, so there must be a phase
transition.

Finally, we comment on phenomenological applications of this work. We have not
found a method where the strong interactions have the SM breaking pattern for the gauge
symmetry SU(5)→ SU(3)× SU(2)× U(1), so this cannot be used in simple GUT realiza-
tions. One option, however, is that there is some non-standard cosmology such that in the
early universe, the Higgsing of SU(5) to the SM group is somehow delayed in the spirit
of [29]. If the delay mechanism is in place until the confinement scale of the SU(5), then
this theory will temporarily be in the vacuum of the confining SU(5) theory considered
here. Another phenomenological possibility is if there is a hidden or twin sector which has
a similar structure to the SM GUT, but with very different scalar mass parameters in the
spirit of [30]. In that case, the SM sector could contain a traditional SU(5), and the hidden
sector would contain an SU(5) theory that confines as in the model considered here.

In both of the above scenarios, one can use measurements of the gauge couplings at low
energy to predict the GUT scale MG and the coupling αG(MG) at that scale, assuming a
particle content at scales between the weak scale and the GUT scale. For example, assuming
only the SM [MSSM at the TeV scale] spectrum, we get MG ∼ 1014 GeV, αG(MG) ∼ 0.025
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[MG ∼ 1016 GeV, αG(MG) ∼ 0.04]. We can then estimate the dynamical scale of the
theory. For example, in the case where the low-energy field content is the SM [MSSM],
the SU(5)-confining scale is Λ ∼ 107 GeV [Λ ∼ 109 GeV]. Below that scale, there will be
massless states: the fermions that are required to satisfy the ’t Hooft anomalies of the
unbroken global symmetries, and the Goldstone Bosons of the broken global symmetries.
These states interact via non-renomalizable operators suppressed by powers of the scale
Λ. In the limit that the UV SU(3)2 × U(1) global symmetry is exact, these states are
exactly massless. There may, however, be non-renormalizable operators that explicitly
break this global symmetry. For example, if there is a GUT Higgs charged under SU(5),
even if it does not get a VEV, its Yukawa couplings would generate symmetry breaking
non-renormalizable operators suppressed by mass of the Higgs or the GUT scale. This may
lead to a rich cosmological history, but we leave further exploration to future work.
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A Group theory results

In this section we present standard group theory results that we have used in our
study. These results can mostly be found in the literature, for example using the LieART
Mathematica program [31]. In order to compute anomaly coefficients, we need to define
the index of a representation C(r) and the normalization such that

tr[tartbr] = C(r)δab , C(N) = 1 , (A.1)

where N is the fundamental representation of SU(N), and we have chosen the same nor-
malization of the index of the fundamental of SU(N) as [20]. We also need the anomaly
coefficient of a representation

tr[tar{tbr, tcr}] = A(r)dabc , A(N) = 1 , (A.2)

where dabc are the fully symmetric group invariants. Finally, in computing the MAC we
need the quadratic Casimir invariant

tart
a
r = C2(r) 1 , C2(N) = N2 − 1

N
. (A.3)

For a representation that is the complex conjugate r̄ of the representation r, we have
C(r) = C(r), C2(r) = C2(r), and A(r) = −A(r), so a real representation has zero anomaly
coefficient.

In table 5, we show the two SU(5) representations that make up our theory. From these
numbers we see why (10+5̄) is anomaly free, and why the choice of U(1)B charges in table 1

– 17 –



J
H
E
P
0
3
(
2
0
2
2
)
1
1
3

d(r) C(r) A(r) C2(r)

5 1 1 24/5

10 3 1 36/5

Table 5. Properties for some representations of SU(5).

d(r) C(r) A(r)

3 1 1

6 5 7

8 6 0

10 15 27

15 20 14

Table 6. Properties for some representations of SU(3). Note that the 8 is the adjoint.

has no mixed gauge-global anomaly. In table 6 we present various SU(3) representations
used for matching ’t Hooft anomalies.

Another result that relates the symmetric (d) and asymmetric structure constants (f):

fab1c1f
ab2c2εij1k1M

b1j1M c1k1εij2k2M∗b2j2M
∗
c2k2

= 2 fab1b2f
ac1c2εij1k1M

b1j1M c1k1εij2k2M∗b2j2M
∗
c2k2

= 2 fab1c1f
ab2c2M b1j1M c1k1M∗b2j1M

∗
c2k1 . (A.4)

and

dab1b2d
ac1c2M b1j1M c1k1M∗b2j1M

∗
c2k1 =−2

3
(
MaiM∗ai

)2
+ 2

3
(
MaiMajM∗biM

∗
bj

)
+1

2
(
fab1c1f

ab2c2εij1k1M
b1j1M c1k1εij2k2M∗b2j2M

∗
c2k2

)
−
(
fab1b2f

ac1c2M b1j1M c1k1M∗b2j1M
∗
c2k1

)
+
(
dab1c1d

ab2c2M b1j1M c1k1M∗b2j1M
∗
c2k1

)
, (A.5)

which are useful to prove the completeness of the dimension-4 terms in eq. (3.7).

B Gauge invariant fermionic bound states

The general bound states of the SU(5) gauge theory can be constructed as

m︷ ︸︸ ︷
AA · · ·A

n︷ ︸︸ ︷
F F · · ·F

k︷ ︸︸ ︷
A†A† · · ·A†

l︷ ︸︸ ︷
F
†
F
† · · ·F † . (B.1)
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Requiring it to be a fermionic state, one has

fermion : m+ n+ k + l = 2Z1 + 1 , (B.2)

with Z1 as an integer. Requiring it to be [SU(5)]-singlet, one need to have

[SU(5)] singlet : 2m+ 4n+ 3k + l = 5Z2 , (B.3)

Before we proceed, one can also check the U(1)B charge of the state, which is

QB = m− 3n− k + 3l = 2(Z1 − 2n− k − l) + 1 = odd , (B.4)

which demonstrates that one can not obtain an (8, 3)0 fermionic composite states from A,
F , A† and F †. Of course the charges of the U(1)B can be rescaled without changing the
physics, but this will not change the fact that they cannot have a vanishing U(1)B charge.

To construct a finite list of composite fermionic states, we further impose conditions
on m,n, k, l:

0 ≤ m,n, k, l ≤ 5 , min(m, k) = 0 , min(n, l) = 0 . (B.5)

The solutions to eqs. (B.2) and (B.3) that satisfy the conditions of eq. (B.5) are

F
5
, AF F , A4F

3
, A5 , AAF

†
, A3F

†4
, (B.6)

as well as the complex conjugated states. All the states in tables 2 and 3 are taken from this
list. If one relaxes the conditions of eq. (B.5), then there are more possible states allowing
one to construct more complicated solutions to satisfy the ’t Hooft anomaly matching
conditions.

C No symmetry breaking

In this appendix, we derive conditions that guarantee there will be no global symmetry
breaking for certain types of supersymmetric theories without gauge interactions with soft
SUSY-breaking terms. We consider two cases. The first case has three conditions:

1. The superpotential is classically conformal, namely it only consists of Yukawa cou-
plings.

2. The trilinear soft-terms are aligned with the superpotential terms, namely aijk =
Ayijk.

3. The soft masses are diagonal, (m2)ji = m2
i δ

j
i .

These conditions are satisfied for the potential considered in section 3.3.2. To set the
notation, the superpotential is given by

W = 1
6y

ijkφiφjφk (C.1)
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and then the scalar potential is given by

V = 1
4y

ijny∗klnφiφjφ
∗kφ∗l +

(
A

6 y
ijkφiφjφk + c.c

)
+m2

i φ
∗iφi . (C.2)

This potential can be rewritten as:

V =
(1

2y
ijnφiφj + 1

3A
∗φ∗n

)(1
2y
∗
klnφ

∗kφ∗l + 1
3Aφn

)
+
(
m2
i −

1
9 |A|

2
)
φ∗iφi . (C.3)

Thus if m2
i − 1

9 |A|
2 ≥ 0 for all i, both terms in the potential are positive definite, and there

can be no symmetry breaking. This is a generalization of eq. (3.15) with slightly different
notation.

We can also do a similar analysis for the potential in section 3.3.3. That theory violates
condition 2 above because there are two different coefficients that relate the trilinear terms
to the Yukawa couplings, but we can use a similar construction. The superpotential is

W = Wλ +Wζ ,

Wλ = 1
18 λ f

abc εijkMaiM bjM ck ,

Wζ = ζ εαγδ Bβδ
2 Mai(T a)αβ B

γ
1 i . (C.4)

The SUSY preserving F -terms and the SUSY breaking A-terms can both be written in
terms of the derivatives of the superpotential with respect to the fields:

dWλ

dMai
= 3

18λ f
abcεijkM bjM ck ,

dWζ

dMai
= ζεαγδ Bβδ

2 (T a)αβ B
γ
1 i ,

dWζ

dBβδ
2

= ζ εαγδMai(T a)αβ B
γ
1 i ,

dWζ

dBγi
1

= ζ εαγδ Bβδ
2 Mai (T a)αβ . (C.5)

The supersymmetric potential is

Vsusy =
(
dWλ

dMai
+ dWζ

dMai

)(
dWλ

dMai
+ dWζ

dMai

)∗
+ dWζ

dBγi
1

(
dWζ

dBγi
1

)∗
+ dWζ

dBβδ
2

(
dWζ

dBβδ
2

)∗
. (C.6)

The soft terms are

V /susy =
(
A1
18 λ f

abc εijkMaiM bjM ck +A2 ζ ε
αγδ Bβδ

2 Mai(T a)αβ B
γ
1 i + h.c.

)
+m2

1
∑
γi

|Bγ
1 i|

2 +m2
2
∑
βδ

|Bβδ
2 |

2 +m2
3
∑
ai

|Mai|2 (C.7)

=
(

1
3A1M

ai dWλ

dMai
+A2B

βδ
2
dWζ

dBβδ
2

+ h.c.
)

+m2
1
∑
γi

|Bγ
1 i|

2 +m2
2
∑
βδ

|Bβδ
2 |

2 +m2
3
∑
ai

|Mai|2 ,
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where the Ai andmi parameters can be read from eq. (3.27). The sum of the two potentials
can be rewritten as

Vsusy+V /susy =
∣∣∣∣ dWλ

dMai
+ dWζ

dMai
+ 1

3A
∗
1M

ai∗
∣∣∣∣2 +

∣∣∣∣∣ dWζ

dBβδ
2

+ (A∗2 −
1
3A
∗
1)Bβδ∗

2

∣∣∣∣∣
2

+
∣∣∣∣∣ dWζ

dBγi
1

∣∣∣∣∣
2

+m2
1
∑
γi

|Bγ
1 i|

2+
(
m2

2−
∣∣∣∣A2 −

1
3A1

∣∣∣∣2
)∑
βδ

|Bβδ
2 |

2 +
(
m2

3 −
∣∣∣∣13A1

∣∣∣∣2
)∑

ai

|Mai|2 .

(C.8)

The sufficient condition for no symmetry breaking is then

m2
1 ≥ 0 ,

m2
2 −

∣∣∣∣A2 −
1
3A1

∣∣∣∣2 ≥ 0 ,

m2
3 −

∣∣∣∣13A1

∣∣∣∣2 ≥ 0 . (C.9)

Plugging in the formulae for m1,2,3 and A1,2 from eqs. (3.19)–(3.21) and (3.24)–(3.26),
the inequalities in eq. (C.9) can be written in terms of the unknown couplings in the
superpotential. We get:

69|ζ|4 + 4|ζ|2|λ|2 ≥ 0 ,
19|ζ|4 + 4 |ζ|2|λ|2 ≥ 0 ,

1161|ζ|4 + 216|ζ|2|λ|2 + 80|λ|4 ≥ 0 , (C.10)

which are all satisfied for any values of ζ and λ. This completes the proof that potential
in the AMSB scenario cannot have global symmetry breaking including U(1)B or the B1
and B2 directions.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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