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1 Introduction

In an age where gravitational waves in the Universe can be witnessed from black hole and

neutron star mergers [1, 2], an exciting particle physics theme is computation of relativistic

classical interactions from gravitational quantum scattering [3, 4]. Here modern amplitudes

techniques are handy [5-8], and adaptable for the provision of precision predictions in gravity

at relativistic velocities [9-26] (for some applications with spin see for instance [27-30]).



At heart of exploring classical general relativity from quantum scattering ampli-
tudes [31, 32] is the correspondence principle of quantum mechanics [33]. It stipulates the
emergence of classical observables when quantum numbers are large, and naturally, an ideal
application is gravitational quantum scattering amplitudes for superheavy black hole point
particles [34-37], in context of Weinberg’s [38] widely celebrated idea of general relativity
as a low-energy effective field theory [39-43].

Current applications revolve around obtaining low-energy quantum S-matrix elements
in an asymptotic Minkowskian flat background arranged in powers of Newton’s constant
O(Gy), O(G%), - ... Thus deriving L + 1 post-Minkowskian order classical physics require
L-loop scattering amplitudes [6, 7, 44, 45].

In such computations (and contrasting most other precision physics loop amplitude
computations), only long-distance (non-analytic) components with varying orders of Planck’s
constant i have to be computed [6, 7, 39, 40]. To compute a classical Hamiltonian
from a scattering amplitude, we can use either Born subtractions in the context of the
Lippmann-Schwinger equation [12, 14, 15], or equivalently an effective field theory matching
procedure [8, 9, 13, 18, 22]. At low orders in perturbation, this computational scheme is
very efficient, but each new loop order poses a challenge in part because of the new integrals
involved, but also since the number of amplitude pieces that have to be identified, discarded,
subtracted, and kept growing factorially with the perturbative order considered.

The purpose of this paper is to devise a refined computational technology that allows
focusing on exactly those amplitude integrand components that integrate to the classical
radial action. This work generalises to all loop orders the understanding of how classical
physics appear in such computations at one- and two-loop orders [23, 24]. The method uses
the velocity cuts formalism introduced in refs. [23, 24]. It was shown that reorganizing some
combination of propagators in the integrand (see for example eq. (3.4) and (3.6) in ref. [24])
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before integration, lead to considerable simplifications of the classical part of one- and
two-loop amplitude computations. We use a multi-soft graviton expansion to organize
the A — 0 expansion of the integrand. This allows us to collect terms in the integrand
according to unitarity relations in the exponential representation of the S-matrix of [26].
This organization of the multi-loop integrand combined with the velocity cut formalism
provides a direct identification of the classical radial action Ny, at each loop order.

As we will see this saves computational resources, and we will demonstrate efficiency by
direct calculation of the probe limit of the radial action until the fifth post-Minkowskian order.
We will verify calculations by deriving the scattering angle in the probe limit in arbitrary di-
mensions, and compare to known results derived from the Schwarzschild-Tangherlini metric.



The paper is organized as follows. First, we review needed background knowledge
for computations and the gravitational coupling of scalar massive fields in the context of
the Einstein-Hilbert Lagrangian. This is followed by the section 3 where we give compact
expressions for the scalar-graviton tree-level amplitudes, that will be used in the loop
amplitude computations. In section 4 we give a new organization of the tree-level scalar-
multi-graviton amplitude, and in section 4.4 we show how it is possible to manifest the
multi-soft behaviour in a way that allows us to devise a direct extraction scheme for classical
physics from loop-integrands using velocity cuts. In section 5 we evaluate the multi-loop
two-body scattering amplitudes in the probe limit up to the fifth post-Minkowskian order.
Section 6 contains our conclusion. Details of the numerators factors and tree-level amplitudes
are given in appendix B.

2 Classical physics from quantum amplitudes

We will focus on the minimal gravitational coupling of scalar fields (¢1, ¢2) — (b1, ¢2) with
masses m1 and me from the effective field theory Einstein-Hilbert Lagrangian,

R 1,
L= /d4$\/ — det(g) llGT(GN + 59“ (0,010, 01 + 0,20, ¢2) — midi — m3d3 | + Lerr

(2.1)

here Lypr denote effective field theory operators necessary to define a well-behaved low-
energy quantum gravity theory at any perturbative order, Gy is Newton’s constant, R is the
Ricci scalar, and the expansion of the metric is defined from g, () = nu + V327G by (2)
where 7, is the mostly minus Minkowskian metric.

To extract classical physics from quantum amplitudes, we consider scalar four-point L-
loop scattering processes. We derive such amplitudes from (L+1)-graviton generalised unitar-
ity cuts. Computations are organized in a perturbative expansion in Newton’s constant G .

p/1 P2

D
M(p1,p2, P1,ph) = D> Mr(p1,p2, vy, ph) =
L=0

p1 D2

where M denotes the L-loop scalar four-point scattering process of order G’%“. We will
suppress the Newton constant and only reinstate it in section 5 where we compute the probe
radial action. We have defined p; and pe and p} and p), as on-shell incoming and outgoing
momenta respectively, and p% = p’l2 = m%, p% = p’22 = m% The center-of-mass energy is

E%y =s=(p1+p2)? = () +h)?% and we introduce the relativistic factor o = PuP2 The
2
transfer momentum is ¢ = py — py = py — p2. We remark that ¢-p; = —¢q-p} = %



Figure 1. The bowtie diagram that arises at two loops.

We will consider L-loop integrands from generalised (L + 1) graviton unitarity cuts!
(We refer to [23] for the i factors in the loop amplitudes.)
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where M€ (p1, 0y, ..., 0142, —p;) and Mf{ieg‘ilt(pg, —ly, ..., —LL 19, —ph) are tree-level ampli-

tudes of multi-graviton emission from a massive scalar. We take the convention that all
graviton lines are incoming in the left tree-level factor and out-going in the right tree-level
factor, with the momentum conservation

L+42
q:pl—pﬁ:—z&. (2.4)
i=2

The multi-graviton cut is not enough for reconstructing the full classical L-loop am-
plitude. We need to add terms that are not contained in the cut in eq. (2.3). A first type
of contributions are multi-graviton cuts factorising the amplitude into a product of two
scalar-graviton amplitudes times graviton amplitudes

MEEE(py, Loy ..oy by —ph) X ME™ (Lo, Ly ity )
X Ml?{riegeht<p27_€n+17' "7£7TL7_p/2)T7 (25)

where M8 is a pure gravity amplitude. Such a contribution arises at two-loop order from
the bow-tie graph in figure 1 for which M#&™®": is a four-graviton tree amplitude. Since the
construction of the integrands presented in this paper is an organisation the scalar-graviton
tree-level amplitudes, there is no obstacle from including such contributions.

A second type of contributions are the self-energy ones (see section 4 of [24] and [19, 46]).
After cutting all the graviton lines these amplitudes factorise two tree-level scalar-graviton
amplitudes times possibly multi-graviton amplitudes. Again the manipulations of the
scalar-graviton tree amplitude presented in this paper can be applied to this case, but their
analysis is beyond the scope of the present paper.

1From now we will remove the polarisation label, and indicate it only when evaluating the cut in section 5.



3 Compact massive-scalar-graviton tree amplitudes

In this section, we give the tree-level multi-graviton emission from a scalar line. We use the
scattering equations formalism [47-50] which derives amplitudes for a large class of field
theories through moduli integrations over string-theory-like integrands in very compact
ways. Systematic algebraic construction of numerators for gluon in the scattering equation
framework was pioneered by Fu, Du, Huang, and Feng in [51] and in refs. [52, 53] developed
into diagrammatic methods.

Provided the scattering equation prescription for the colour-ordered multi-gluon amplitude
in [48, 54] and following the construction in [53] for tree-level amplitudes, the Yang-Mills
multi-gluon amplitude (with Yang-Mills coupling at unity) has the form

Apo(1,{2,cm— 1)y = [ L=z ﬁé’ Zn: i by !
M2 18 ’ vol(SL(2,C)) 11 = 2 212 Zn—1n
J#i
Ny o(1,8(2,...,n—1
% Z n 2( 7/8< 5 , )7”)’ (31)
BEG,_y “1B(2)FB(2)B(3) " ZB(n-1)n
where we have made use of the notation z;; = z; — z;, and N,_o(1,5(2,...,n—1),n) are

numerator expressions containing ¢th gluon polarisation vectors (; and momenta k;. In
contrast to the numerators developed in [51] we will as suggested in [53] average over
reference orderings since it provides a computational advantage. Integration over the
scattering equations can be done numerically but for arriving at analytic expressions one
can explore the one-to-one link between integration measures and integrands in scattering
equations and traditional string theory [55] and use it to formulate scattering equation
integration rules [56-59).

Following this analytic procedure, we arrive at the following expression for the amplitude

Ap2(1,8(2,...,n—1),n) =
> mP(L B(L,. ., n),n|1,v(2,...,n—1),n)Np_2(1,%(2,...,n — 1),n), (3:2)
VESH_2

where m™°(1,8(2,...,n — 2),n,n — 1/1,%(2,...,n — 2),n — 1,n) = S *(B|7)|p, can be
interpreted as the inverse momentum kernel as demonstrated in [48]. Plugging this in the
momentum kernel expression for gravity amplitudes [60-63] immediately yields

M™S(1,2,...,n—1,n) = (3.3)
(=" Z An2(1,B8(2,...,n—=2),n—1,n)S(B|7)|p, An—2(p1,n—1,7(2,...,n—2),n),

6776677‘73

leading to the following compact prescription for computing tree-level multi-graviton
amplitudes

M™eS(1,2 i Y Npa(1,B(2,---,n—1),n)An(1,5(2,...,n—1),n), (3.4)
5€6n 2



where A,,_2(1,7(2,...,n — 1),n) are the colour-ordered multi-gluon tree-level amplitudes.
As explained in [48, 53] we can derive numerators with gluons states replaced by massive
scalar states k; — p, k, — —p’ by dimensional reduction with p? = (p')?> = m?. This
has the effect of replacing the multi-gluon numerator factors N,_o(1,5(2,...,n —1),n) by
Np—2(p,8(2,...,n—1),—p') so that the amplitude for multi-gluon emission from a massive
scalar reads

Ano(p,B(2,...,n—1),—p') = (3.5)
Z mtree(p’/ﬁ(z?“ . 771—1):—]7/’1%7(27- . '7n_1)7_p,)Nn—2(p77(27' .. 7n_1)7_p/) .
V€6n72

Thus the amplitude for emission of gravitons from a massive scalar can be written

Mtree(p727" <N = 17_p/) =

n—2

{ Z an2(p7 B(Qa cees = 1)7 _p,)An72(p7 6(27 cees— 1)7 _p,) . (36)
BEG,

The numerator factors for the scalar multi-gluon amplitudes we will use here are constructed
using the method of ref. [53]. The expressions for the numerator factors and Yang-Mills
tree-level amplitudes are collected in appendix B. A consequence of the colour-kinematics
representation provided is that the numerator factors for gravity amplitudes are perfect
squares of linear combinations of Yang-Mills numerators. We summarise the required
amplitudes below.

e At three-point order we have

M{™®(p, ba, —p') = i N1(p, Lo, —p') A1 (p, b2, —p') = i N1(p, b2, —p')?, (3.7)

where the numerator is given in appendix B.1.

e At four-points order we have

M%ree(p7£2’£37 —p/) = iNz (p, 2; 37 —p/)AQ(p, 2737 —p’)+perm.{2,3}
_iNa(p 2,3, iNa(p3,2,-p) (NP9 (3)

(€2+p)2—m2+i£ (€3+p)2—m2+i€ (€2+€3)2+i€ ’

with Ny[23l = Na(p,2,3,—p') — Na(p,3,2,—p'). The numerator is given in ap-
pendix B.2.



e At five-point order we have

M5 (p, b2, 43, €4, —p') = i N3(p, 2, 3,4, —p') A3(p, 2,3, 4, —p) + perm.{2, 3,4}
i(N32,374)2
((p+L2)2 —m? +ie)((p+ Lo + €3)> — m? +ic)
. i(N3[2:314)2
2((p+ la + €3)2 — m? +ie)((by + 03)? + ie)
i(N3 23412
2((p+£2)? — m2 +ie)((l3 + £4)? + ie)
iV (23402
(2 + £4)2 +ie) (g + U3 + £4)2 + ic)
Z.(N3[[273]’4})2
((a + £3)2 +ie) (g + U3 + £4)2 + ic)

T

+ 1 + perm.{2,3,4},
(3.9)
where the numerator is given in appendix B.3.

o For six-point we have
M (p, b, b3, a, b5, —p') = i Nua(p, 2,3, 4,5, 1) Aa(p, 2,3, 4,5, 1)
+ perm.{2,3,4,5}, (3.10)
which gives
M (p, b, €3, Ly, U5, —p) =
i (N 23:45)2 . §(N, 23] . i(N,2345)2 . i(N,[23):4,5)2
82p5823pS234p 254552pS23p 283452p5234p  2823523pS234p
. i(N[2:34,3])2 . i(N 23415y . i(N23.405)2
4593545523p 459359345234p  453452345234p
. i(N,2 (341512 . i(N, 231502

4534834552p 4545834552p
n i(N4H273}7[475]])2 n Z.(N4[[[273]’4L5])2 n Z.(N4[[27[374H’5})2

852354552345 8523523452345 8534523452345
) T

+ perm.{2,3,4,5}, 3.11
8334334532345 8345534532345 { } ( )

where we have used the short-hand notations s;, ;. » = (p + 271 0;)? —m? +ie,
Siyoir = ( i1 &].)2 + ie. The Yang-Mills amplitude is given in appendix B.4.

With similar expressions for the seven-point amplitude, where the Yang-Mills amplitude is
given in the appendix B.5.

4 Unitarity and multi-graviton emission

We consider the amplitude in (2.3) with L 4 1 graviton generalised unitarity cuts. We will
make use of the notation

Mﬁg?g(p17€27 cee )g’b e 7£L+17€L+25 _p/l)v (41)



where we indicate the leg on which we have used momentum conservation by a hat

li=—q— > (4.2)

2<<L42
i
The tree-level amplitudes in (4.1) have two kinds of massive propagators. The propagators
containing a ‘hatted’ leg read

1
(p1 —liy — -+ — iy —q)* —m? +ic
-1
= —, 4.3
2p1 - (i + -+ i) — (biy + -+ 4y, +q)* — i (43)
while the propagators which do not involve the ‘hatted’ leg are
1 B 1 (4.4)
(p1+0liy+ -+ —m>+ic 2p1- (biy+ -+ 0i,) + (g + -+ 4,)> +ie
In the above equations we need to take 1 < 7 < L + 2.
Using the identity
1 1 21 N
lim ( - ) — lim ——— = §(n), (4.5)
e=0t \n—1& 1N +1e e—0t M +¢€
we rewrite propagators with a ‘hatted’ leg
1 N
=4 — by — =l —q)? —m?
(pl _ Eig . — gij _ C_[)2 —m2 4 e ((pl i2 ij Q) m )
1
+ — 4.6
(p1 —Liy — -+ = bi; — q)* —m? —ie (46)
where we have introduced the notation é(z) = —27id(z).
We denote by Mzrfl(—i_) (p1,€2 ..., lr+2,—D)) the tree-level amplitudes where all the

propagators of the type 2p; - (3, 4.) — (¢ + 3, £,)* — ic are flipped to 2p1 - (32, 4-) — (g +
>, 4 )% +ie. We denote Mzriel(_)(ph la, ..., L 12,—p)) the tree-level amplitudes where all the
propagators of the type 2p1 - (3, 4,) + (33, £-)? +ie are flipped to 2p1 - (3, £r) + (X, £,)% —ic.

In the next sections, we focus first on two- and three-graviton emission tree-level
amplitudes and the relations between the amplitudes M}fj‘i, Mzrfi(ﬂ and Mg_iel(_) with
L =1 and L = 2 followed by a generalisation to generic multi-graviton emission.

4.1 The four-point case

We write the four-point Feynman tree-level amplitude in the form

) "pi 4 Npy 42 n
Miree p1, 42,03, —p/ = _ p1tlo + p1+L3 . g
2 ) (pr +02)2 —m2 4ie  (pr+03)2 —mi+ic ¢

(4.7)

with generic (off-shell) numerator factors ny, 4¢,, 7p, ¢, and ng and where momentum
conservation is imposed on leg ¢o = —¢3 — q. Applying the relation (4.6) on the first
propagator only, the amplitude reads

MY (py, by, b3, —ph) = 8((p1 + £2)* = md)n, g + My (p1, by b5, —ph),  (4.8)



with

Mtree(+) 72 ?g - / B Npy—q—L3 + Tlpy+0s + @ 4.9
2 (Pt b —p) 2p1-(q+03) +ie  2py-la+ic ¢ (4.9)

Using the factorisation theorem on the pole (p; + f2)% —m? =0

i

Mgree(p17é\27€37_p/1)rv {ree(plaééy_pl_éQ) QMfree(p1+é\27€3’_p/1)7 (410)

(p1 +22)2—m1

implies that the support of the delta-function the numerator factor n factorises into

p1+Ea
the product of two tree-level amplitudes. The tree amplitude takes the form (with the cut

conditions /3 = ¢4 = 0)
M (py, ba, b5, —ph) = My (py, 0o, 63, —p}) (4.11)
+S((p1+g2)2—m%)Mfree(plag%—p1—£2)M1tree(p1+g2,f3,—plﬂ
Similarly, by flipping the other propagator we have

MEFee(py, by, 03, —p}) = M;ree(f) (p1, 02,3, —p}) (4.12)
+0((p1+€3)2—m3) M (py, b3, —p1 —€3) My (p1+La, b2, —p)),

with
Ngq

M) (o) Gy by ) = — Mpr—q—ts Mp1+3 . 4.13
2 (p17 2,43 pl) 2p1 ] (q +£3> — e + 2p1 . 63 — e q2 ( )
In the case the ‘hatted’ momentum enters the incoming momentum as in M3 (p; +

g4,€2,€3, —pll) with €4 = —q + ¢ + ¢35 we have

M3 (py Ly, b, b3, —ph) = Mgree(ﬂ (p1+La, 02,63, —p))
+6((pr4+L4+12)? —m%)MltreeH) (p14-La,la, —p1 —34—€2)Mfree(+) (pr4-La+La,03,—p))

+0((pr+0a+103)? —m%)MltreeH) (p14-La, 3, —p1 —E4—£3)M1tree(+) (pr4-La+103,02,—p)),
(4.14)

where we have made use of the notation 6(x) = —2mid(z), and we used that for the
three-point functions

M (py 4Ly + Lo, b3, —ph) = Mfree(ﬂ(pl +ly+ Lo, by, —p)) = Mfree(_)(pl g+ Lo, L3, —ph).
(4.15)

4.1.1 The multi-soft expansion of the four-point amplitude

We consider the following multi-soft scaling of graviton legs in the context of the two-scalar-
(L + 1)-graviton tree amplitudes described in the above sections. We take ¢; — |q]¢; with
|g] — 0, so that

q=p—p =—|ql(la + l3). (4.16)

For a conventional Feynman gravity amplitude (see appendix A for a derivation) we have

the universal results 1

lim My™(p, |10, |q1l3, —p') ~ = - (4.17)
|10 [



P1 7[/&%

by

Figure 2. The four-point relation graphically outlined. The red line symbolises a delta-function
constraint, the grey blob is Mémc(ﬂ.

We now derive explicitly the soft scaling behaviour for the four-point amplitude. The
four-point graviton amplitude reads (see section 3 for details)

. . (N, 1231)
ZN2(pv2>3, _p/)2 + ZNQ(pa3v2v _p/)2 + L (N2 )
(p+42)2—m2+ic  (p+403)2—m?+ic q? '

Performing the soft expansion of numerators (see appendix B.2 for their expressions) we

Mgree(pa 627 637 _p/) =

(4.18)

get for the amplitude the soft expansion (with ¢; = |¢| ; and |g| — 0)
2i(p - (2)*(p - G3)° 1 1
- [q (p-@—l—is_p-gg—ie)
4i(p- Fy - Fy.p)?
(p-02)?
where we defined the field strength E* = f#¢¥ — #¥¢*. This means that we have the

following soft expansion of the tree amplitudes
_An(p- &) (p- )*0(pla) | dilp- Fy- Fyp)®

MQtree(Z% g?a ZA37 _p,) =

+ O(|q1) (4.19)

Mg (p, 2, b3, —p') = +0(q),  (4.20)

gl (p- L2)?
so that Miree ~ (’)(%) as given in (4.17). The same derivation for the M;ree(ﬂ(p, lo, b3, —p)
amplitude in (4.9) on the other hand is

ree - 2i(p- 2)%(p- (3)? 1 1
M; (+)(p7€27€3,_pl) _ (p C2> (p <3) ( _ - _ : >
|q] p-ly+ic p-ly+tic
4a(p - F, - F p)?
0B BPE o), (421
(p-£2)

showing that
4i(p - Fy - Fy.p)?
(p-£2)?

Similar arguments imply that Mgree(_) ~ O(|q1°). Therefore the amplitude M;" have the
multi-soft behaviour

M) (p, o, by, —p') = +0(q) = 07" - (4.22)

. ree(+ = P
lim ]\4’2t et )(p7 |ﬂ£27 |Cﬂ£37 _p/) ~ ‘ﬂo . (423)
|g1—0
This behaviour generalises to the general case M;ree(i)(p, |02, ..., @2, D).

~10 -



4.2 The five-point case

For making the multi-soft behaviour at five points, we start by rewriting the tree amplitude
in the following form

5 Moy +0o,py+Lo+0:
Mtree 7£ ’£’€7_/ — p1+£2,p1+42+L3 :
3 (1 forts, b4, mp) (((p1+£2)2—m%+i€)((p1+£2+€3)2—m%+zs)
+ Pp1+bo b3 +E4 + Tpy+Lo+03,02+03
((pr402)2—m2+ie)(ls+04)2  ((p1+La+L3)2 —mi+ie)(lr+13)>
n A
p1+p2,l3+la ;
+7q2(€3+@4)2 ) +perm.{ls,03,04}, (4.24)
where we impose momentum conservation on f4 = —q — {5 — {3 and the cut condition

03 =103 = 2 =0. Flipping the propagators as in the four-point case, we get

M (py 0y, by, by, —p)) = ”p1+é4,p1+€2+f48((p1 +04)2=m3)d((p1+La+04)* —m?)

A tsnitas iy O (P1H0a)? =mD)o (p1+E3+04)" —m3)

n 5 n ~ ~ n A~ ~
p1+£2,p1+Ea+ly p1+04,p1+02+04 p1+lo+ia,01+0, \ ¢ - )
j ) T ; o((p1+La+Lly)"—m
n 5 n ~ - n o ~
p1+4€3,p1+03+04 p1+la,p1+i3+£ p1+03+04,05+04 3 P 5
j ) 5 p1+Ll3+L4)"—m
<(p1+£3)2_m%+w (p1+£4)? —mi +-ie (l3+04)? > ( : 1
n ; 5 n S A n .
p1+£4a,p1+l2+ls D14+-L4,p1+03+0s p1+balo+03 3 P 5
/ ) p1+L4)°—m
((p1+€2+€4)2—m%—i5 (p1+03+00)2—m2—ie (L2+03)? > (( ) 1)
+M§ree(+) (p17£2’£3,g4, _pll) (425)

With 6 (x) = —2mid(x). From the factorisation property of the tree-level amplitude we know
that the coefficient of the delta-function are products of tree-level amplitudes

(p1+f4)2—mf=(p1 +€2+g4)2—mf:0
M (pr, ba, =pr—La) MY (pr+0a, by, —pr—La— () MY (pr +Lat-La, s, —p)), - (4.26)

nPl +04,p1 40204

and

(p14+€4)2—m3=(p1+L3+04)>—m3=0
M{™®(py, Ly, —pr — L) M{™ (p1+La, b3, —p1 — L4 —L3) M{™ (p1 +-0a+ €3, 02, — ), (4.27)

npl +04,p1+E34+04

and
np1+42,p1+42+é4 np1+24,p1+42+é4 np1+52+é4,€2+é4 ‘
(p1+2)? —=mi +ie  (py +04)% — m} + ie (b2 +14)? ) rtta+la)?—mi=0
= M (py, lo, Ly, —p1 — bo — L) M (py + Ly + la, 03, —D}), (4.28)

- 11 -



,
P
64 ! P

Figure 3. The five-point relation graphically outline depicted. The red line symbolises a delta-
function constraint.

and

Mp1 43,91 +3+4 Tp1+04,p1 43+ T 03404 05+0, ‘

(1t 8)2—mitic  (p+0)2—mi+ic  (L5+01)? ) mrts+i)>-m2=0

= gree(pl’ {3, E4, —p1 — 3 — g4)Mfree(p1 + Z4 + U3, 0o, _pll)a (4.29)
and

Ty +hs,pr+la iy Pp1+04,p1 03+ Tpy iy lo+ts ‘

(p1+ L2 +04)2 —mi+ie  (p1+Ll3+04)2—m}+ic  (La+L3)2 Jl(pr+ia)>—mi=0
— Mfree(pla g47 —DP1 — 24)M£ree(p1 + Z4a Z27 637 _pll) (430)

The factorisation relations involve M3 (p; + 04, 0o, s, —p!) which is rewritten using (4.14).
This leads to the following expression suitable for the multi-soft expansion
M3®(py, Lo, b3, Ly, —p)) = 6((p1+04)* —m?)d ((p1+La+0s)* —m?)
x MY (py, 0y, —py —By) MY (py 40, b, —p1 — Dy — £2) MY (py - Ly 4, 03, — )
+0((p1+4)* —=m3)o((p1+L3+L4)* —m7)
x MY (py, by, —py — D) M) (py 4, £, —p1r —a— £3) MY (pr - Ly -5, 00, — )
+0((pr+ o002 =) My (pr, o, L4, —pr = Lo = E) My (o1 - -, €3, -1
+8((p1+3+02)2 —m3) My (1, £, 84, —p1 — b3 — L) M) (py 40443, €2, — )
+8((p1+00)2 —m2) My (p1, £y, —pr— ) My (py 04, 0, 05, )
+ My (py, o, 63,00, —11), (4.31)
tree(—)

with a similar expression involving M;
5(z) = —2mid(x).

after flipping the +ie poles and with

4.3 General (L 4+ 1) graviton case

The symbolic structure of the four-point amplitudes derived in the previous sections read

MEFee o (MU 25, ) 4 pree) (4.32)

- 12 —



and the five-point amplitudes read
2
M~ (M BT 6( ) + My oo s, () + pageet) (4.33)

Using the expression for the six- and seven-points amplitudes presented in section 3 we
have derived similar expressions, which take the symbolic form

3 2
M e (M ATT 00 ) + (M2 g TT ()
M) pptreet sy e (4.34)

4 3
M s (VO [T )+ QPO T ) o

+ Micree('i‘) Mzree("')&(' ) ) + Mgree(+). (435)

It follows on general grounds from the above examples that we have the following structure
for the general L point case organised by powers of unitarity cuts delta-functions
L L-1
Mirffi N (M;ree(-‘r))L—&-l H 6z( ) ) + (Mfree(-‘r))L—l(MQtree(-i-)) H 52( ) ) 4.
i i
tree(+) 5 rtree(+ tr
+ My e+ Myt (4.36)

with a similar expansion involving the Mzrfi(_) amplitudes.

4.4 Multi-soft graviton of the tree-level amplitudes

We consider now the following multi-soft scaling of graviton legs in the context of the two-
scalar-(L 4 1)-graviton tree amplitudes described in the above sections. We take £; — |G]¢;

with |¢] — 0, so that
L42

g=p—p =-1q1>_ b (4.37)
=2

We find the following results. For a conventional Feynman gravity amplitude (see appendix A
for a derivation) we have the universal results

%ﬂo M (P, |@1la, .- |@1lL o, —p/) ~ g (4.38)

In contrast to this, the amplitude MLi_H have the multi-soft behaviour

lim M (il a2, =) ~ 1 (4.30)

This is trivial for the three-point amplitude Mltree(ﬂ (p, |q)la, —p') as such amplitudes are

independent of the graviton momentum. The case of the four-point amplitude L = 2
has been shown in section 4.1.1. For higher-multiplicity amplitudes, this can be checked,
considering the explicit expressions of the tree-level amplitudes provided up to seven points.
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4.4.1 The multi-soft expansion of the generic gravity amplitude

By combining (4.39) with the scaling of the delta-function

2 ~ 1 -
5((p1+zez~) —m%) =0 (2alpr o+ 0al™) =6 (21 306) +0(al’), - (4.40)
we deduce that the amplitude M1 has the multi-soft scaling

oo N ~ A{HmsL+15_" L 1
ﬁlm M (ps |albo, - @12, —p') = M )\(I]L L) +O(‘q|L_1> - (4.41)

4.5 The classical part from the multi-soft graviton expansion

We will now explain how the above multi-soft expansions of the tree-level amplitude in the
multi-graviton cut imply a reorganisation of the computations of integrands, and allow us
to easily identify classical components in the amplitude.

In the limit 7 — 0, ¢ — 0 with ¢ = ¢/h fixed, the multi-loop amplitude has the following
h-Laurent expansion (see section 3 of [23] for details)

Mo o) = =i 3 ME (0.6 (bla) (4.49)

r>—2

We will now discuss how the organisation of the tree-level amplitudes across the cut in
section 4 allows us to identify the classical part of the integrand.

When plugging the delta-function expansion from (4.36) in the product of tree-level
amplitudes, the integrand of the cut integral in (2.3), becomes a sum of contributions

organised as follows

L k ree ree(—

M 2Zh3L+1 (d”0)" (8((p1 + 32 ba,)* = m3))" x (IT M) x ([T M)

L KrDL (02)L+1 :

(4.43)

Now in the soft-expansion |q| = hq with / = h|g|g for i — 0, the delta-function behaves at
leading order as

N 0@ 1)
‘5%5((19%) m?) ~ 8(2hlqlp - £) ~ na (4.44)

The multi-soft expansion of section 4.4 stipulates that the amplitudes M* are of order
O(|q|"), so the generic integrals in the multi-graviton cut behaves as

t hL 1-k
~Y ot (449
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We can have three type of contributions:

Terms with k = L delta-functions. Such contributions, behave as

1
hlg2~(D-3)L” (4.46)

which is of classical order and given by terms with » = L — 2 in (4.42). Thus in this case,

1M (0, ¢)

Me(a,q]) AR

(4.47)

classical

which implies that for computing the classical part of the amplitude, we can approximate the
unitarity delta-function constraint as a velocity cut 6((p+£)? —m?) ~ 6(2p-¥¢), which hugely
simplifies the integral computation. This classical term receives two kinds of contributions
discussed in section 5.2 of [24]: (1) disconnected graphs and (2) connected graphs as in
figure 7 and 8 of that paper. As a consequence of the unitarity relations between the
classical scattering matrix element and the radial action N derived in section 2 of [26],
such factorised contributions are cancelled by unitarity and do not contribute to the radial
action. We will see an explicit example in section 4.6 below.

Terms with k < L delta-functions. They are of order O(h°) and correspond to
quantum contributions.

Terms with k > L delta-functions. They correspond to contributions with —2 < r <
L — 3 in the Laurent expansion (4.42). It was shown in [23, 24] that these contributions to
the one-loop and two-loop amplitudes exponentiate and do not contribute to the classical
part. These products of unitarity delta-functions are precisely the ones arising from the
expansion of the exponential representation of the S-matrix, see ref. [26].

We note that the decomposition of the integrand in (4.43) as a sum of powers of
unitarity cut delta-functions realizes the expansion of the exponential representation of the
S-matrix given in [26]. The classical part of the amplitude is the radial action Nz,. We will
now develop this into a new practical tool for computation of post-Minkowskian physics.

4.6 The one-loop radial action

We will in this section illustrate how the considerations from the previous sections are useful
for computations of classical contributions from scattering amplitudes. We will start by
rederiving the classical contribution from the one-loop amplitude. The two-particle cut
along the two graviton lines reads,

dPly M (1, la, b3, —p) x (M) (pa, —la, L3, —ph)
2 (2m)2P @%E%

iMS™(a, ¢?) , (4.48)

where ?2 = —q—/{3.
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Using the expressions in (4.11) and (4.12) for the tree-level amplitude in the cut,
we obtain

A N dPls  §((p1+02)2—m3)d((pa—L2)? —m3)
iMj (0' )_2/(27r)2D2 535:2))

letree(Jr)(Pl’&,—Pl—é )Mfree(+)(p1+227€3’_p/1)
letree( i (p2,— 527—p2+€2)M1tree(_)T(p2_g2’_63’_])/2)

z/ APl 5((prtla)*—m?)
(

2 2m)2D-1 E?F

x MY (py, by, —p1 —Bo) ML) (py 4o, £, — ) My (py, — Ly, — 3, —ph)
+z’/ APl 5((pa—La)*—m3)

2.) (2m)2D-1 202
X]\4t1ree(—|—)(pl7£27€37 pl)Mtree( )T (p27 62, p2+€2) tree( )T(p2_22’_€37_p/2)

dD£ Mtree )(p17£27€37_p1)M2tree( ) (p27_£27_£37_p/2)
2 (2m)2P @%2% ’

(4.49)

In the first three lines we recognize the factorisation of the four-point tree-level amplitudes

Mo(p1,p2, —p1 — b1, —p2 — £1) and Mo(p1 + 41, p2 + £1, —p', —ph) on the massless graviton
pole. The contrlbutlon proportional to Mtree(+) (p1, 41,02, —p'l)MgreefT(pz, —l1, —lo, —ph)

on the last line can be neglected as it is of quantum order W ~ O(|q|P~*) which
is O(log(|q|)) in D = 4 dimensions. We thus have

iMS™ (o =5 @n)2 (l2+L3+)5((p1+62)° —mi)d((p2—L2)> —m3)

X Mo (p1,p2, —p1 — 2, —p2—l2) Mo(p1+L2, p2+ L2, —p', —ph)
3] G-+ -m)x

Mfree(+) (pl,ZZa —P1 _gl) ree(+) (pl +€A27 €37 _pll)Mgree(i) f (p?a _é\l, _€3a _p/2)

’a
dP s 5
2/ )2D— 70((pa—1)* =m3) x
Mfree(+)<p17ghg3,_pl)Mfree(_)T(pg, — 0y, —pa+0) My Y (py—y, — 13, —ph)
7202
1*3
O(lal*). (4:50)

This expression matches exactly the expansion in eq. (2.16) of ref. [26]. Using the unitarity
relation in eq. (2.10) of [26], we identify the first two lines as the product of tree-level
amplitudes from unitarity, while the rest can be associated with the one-loop contribution
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to the radial action (which is the classical eikonal exponent Ny).

dDEQ 2 \2 2
Nl(plap27 p17 - 2 27T 0. \2D—2 p1+€1) _ml)

o Mfree(+)(p1,€1,—p1 — )M tlree(ﬂ(ﬁh +€1,€2,—p1)Mtree( )T(pz,—él,—@,—pé)

GG
dPr, N
2_/ (2m)2D—2 50 ((p2 = £1)* —m3)
x Mgree(+) (p17 gla 627 _pII)M{Iree(i) T(p27 _€A17 —D2 + gl)M{IreE(i) T(p? - [17 _627 _p/Q)
203
1%2
O(lg|~*). (4.51)

5 Probe radial action

We will now see how the organisation of the integrand of the multi-graviton cut integral
gives a direct identification of the integrand of the classical part at L-loop in the probe
limit my > meo. This follows from the discussion in section 4.5 using that the classical part
of the multi-loop amplitude have the symbolic representation

L+1

Mclassmal /Z
L+1 L+1 dDg
X 0 <q +> £i> H : (5.1)
=1

L
( p+ Zﬁi)z _ m2)> « (Mtree(Jr))LJern % (Mtree(*)T)n

We see that the leading probe contribution arises from the term with n = 1 in the integrand
of the multi-graviton cut in (2.3)

(Mt MRight ") ZMzriel( )(P2, by, —lg, ..., —Lr 1, —Dh)

probe

L
X Mltree(Jr) (p1, 02, —p1—L2) [T 6 ((pl tly+ ) — m%)
J=3

Mfree(+)(p1 + EQ + -+ gjfla‘gj)_pl_éé -t EJ)7 (52)

evaluated on the cut E? =0 for 1 <¢ < L+ 1. This contribution is represented in figure 4.
The next-to-probe, contribution arises from the terms with n = 2 which is represented in
figure 5. The mth next-to-probe limit is the sum of the contributions with n = m + 1.

Beyond the probe regime we need to include other contributions from the soft expansion,
as well as other unitarity cuts (like the cut containing self-energy contributions). Including
these contributions is beyond the scope of the present paper, but we remark that the multiple
soft expansion of the tree amplitude lead to an efficient organisation of the integrand in
such cases as well.
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/ ! P2

b1

Figure 4. The contribution with n = 1 to compute the probe amplitude. The heavy mass m; is on
the left and the small mass my is on the right side.

b2

D1

Figure 5. An example of an integrand contribution at the next-to-probe order. The heavy mass

my is on the left and the small mass ms is on the right side.

5.1 Probe action from the multi-soft limits

Our first practical computational example of the formalism presented will be of the compu-
tation of the probe limit of the classical amplitude at various post-Minkowskian orders. In
the probe approximation with m; > ma, we consider the contribution with n =1 in (5.1)
which is represented on figure 4. We begin at the second post-Minkowskian order where
the part of the integrand Nj in (4.51), which correspond to the probe mass being msg is,

6(01 + la+ q)

mebe(g, 7= — (327TGN)2 / dP e dP e, 5((p1 + €1)2 _ m%)

9 (2)2D-2 0303
xS M, £,y — M) (py 4 0 2 )
hi,ho=%2
X M;ree(—) T(p2, _6}1“7 _6327 _p/Z)' (53)
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We know that the three-point tree-level amplitudes are given by
M (py, 1, —py — £1) = 209 s
My (o1 40, o, —ph) = 2001 + ) (0 + )Gy (5.4)

Now to carry out the polarisation sum for the intermediate gravitons in eq. (5.3) we use
the completeness identity

1 2
Z C;]}y(cgﬂ) D) (nuanuﬁ + NupMva — Hﬁ/uﬂ?gﬁ) ; (5.5)
h=%2 -

where we regulate the non-transverse polarization degrees of freedom by taking,
N =D =2+ Ds, (5.6)

and adjust the state counting parameter Dy to Ds = 2 to remove the dilaton [64]. In the
soft limit we can evaluate the leading soft term of O(|q|°) of M;ree(_ﬁ employing that

Mgree(_) T(p% _617 _el —q, _pl2)’i5~>0,soft = MgreeT(p% _617 _el —q, _pé)’isﬂo,soft (57)

Thus using the expression for Mi™® given in (3.8), we obtain the following expression of
the amplitude?

N{)robe(o_,q) _ 2(87TGN)2 <m2m1GZ((é_2)22)0'2_1)211(2’ 1 1)
2m1m2G(2D((_D2)—22)02—1)Il(0’17 1)+ 27%1(6;2_(;3)11(—2,1, 1)) (5.8)

Where we have introduced a family of integrals on which the L-loop probe amplitude are
expanded

Zr({aj}{bjt.{ci}) =

T R e T 7 merrme L
/ 27‘(‘ D—-1 (2]32-( i:lek)) JH%:]' ((Zﬁ:jer)g)bj, ((q-i-Zi;:lek)Q) j

This basis involves 3L + % different variables (including the ones in the delta functions).
Using LiteRed [65] we find that only one master integral contributes to the classical result
(we have checked this to four-loop order):

D D ) .
(@) = /d 0 ---dPeg 6(2p1-4)---0(2p1 - Lp) (5.10)

2m)LD=0) 203 (b + b+ -+ L+ q)?

2Up to three-loop order, we can directly use the expression of the amplitude derived in the previous
section. At higher-loop order, the size of integrand growths, and it is preferable to use the representation
in (3.4) and integrate each ordering since it leads to a more convenient generation of the integrand that is
easier to automate.
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where p? = m?, p;-q¢ =0 and ¢q = (0, 7). Evaluating the delta functions, the integral can be
put in Euclidean form

(5.11)

IL((T) _ (_1)L+l /dD-l[l . 'dD_lEL 1

S A S L N Sy

and becomes a I1,(¢) is a massless L-loop sunset integral. This master integral also arises in
the metric computation of ref. [21]. The fact that the same master integral arises in the two
computations is natural because the probe mass my is evolving the Schwarzschild metric
sourced by the mass mj. The master in (5.11) is readily evaluated using the method of sec-
tion 2.2 of [21], and remarking that I7(q) = (—1)*™J1)(¢%)/(2"¢*m{), we have the result

() e

IL(q) = =z X g : (5.12)
@)= 2l (4T (29

After reduction with LiteRed [65], the probe radial action at L-loop order is

(-4 (D -3)1 c¢p(o,D)
(L+1) (D—2)L+ (62 - 1)L

Ngrobe(o_’ Cf) _ IL(CT) m?(LJrl)mg(Sﬂ'GN)L—i-l_ (513)

At tree-level we have
co(o, D) = o*(D —2) — 1. (5.14)
Performing the integral reduction with LiteRed [65] we find at one-loop order
c1(o,D) = o*(2D — 5)(2D — 3) + ¢%(30 — 12D) + 3, (5.15)
at two-loop order
co(0, D) =20%(D—2)(3D—8)(3D—4)—300*(D—2)(3D—8)+300%(3D—8)—1,  (5.16)

at three-loop order

c3(0, D) = %08(413 —11)(4D — 9)(4D — 7)(4D — 5) — %&(41) —11)(4D — 9)(4D —7)

+ 7001 (4D — 11)(4D — 9) 4 ¢%(1540 — 560D) + 35, (5.17)
and finally four-loop order

ca(o, D) = galo(D —2)(5D — 14)(5D — 12)(5D — 8)(5D — 6)

—300%(D — 2)(5D — 14)(5D — 12)(5D — 8)
+4200%(D — 2)(5D — 14)(5D — 12) — 4200*(5D — 14)(5D — 12)
+ 63002 (5D — 14) — 126. (5.18)

We note that the dimension dependence of the probe coefficients are compatible with the
generic form is given in section 9 of [25].
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We further remark that in D = 4 dimensions the coefficients take the simpler factorised

form
ci(0,4) = 3(0* = 1) (50 — 1),
ca(0,4) = (640 —1200" + 6002 — 5)
c3(0,4) = 35(0% — 1) (3307 — 1802 + 1),
(0,4)

calo,4) = (1792010 57600° + 67200° — 33600 + 63002 — 21) . (5.19)

These results are in agreement with the probe limit of the two-body scattering amplitude
up to fifth post-Minkowskian order in four dimensions derived in [22, 24].

5.2 The probe amplitude from geodesic scattering

In this section, we will discuss how the results derived from scattering amplitudes above
can be put into the context of geodesic scattering. We derive the probe amplitude from the
geodesic scattering using the Schwarzschild-Tangherlini metric in D dimensions, using the
effective-one-body (EOB) formalism of the recent ref. [66]. We will show that the scattering
amplitudes obtained this way matches the ones obtained from unitarity.

The Schwarzschild-Tangherlini metric reads in an isotropic coordinate system?®

ds* = A(r)dt* + B(r) (dr2 + r2d29d_2) , (5.20)

where d?Q,_» is the metric on the D — 1 unit sphere where

_ 2

e e ) 2 Gymyr T (251)\ 77

A(r)= Y , B(r)={1+ :
22 Gymir3-PT (271 D-2

1+ D=2 ( )

5.21

Using the equation (29) of [66] we deduce the effective potential

T T 0'2
%;2; ) - J]f(_)l (A(T) 1) , (5.22)

with p2, = m3(0? — 1) + O(ma/m;) in the probe limit for ms < my. Using this we deduce

the scattering angle using the expression given in [15]

k
W)= X2 [ (du2> 1 (Veff(V“”b?)(“Q”Q))  (5.23)

2. 12 2
k>1 u® +0b Do

3The metric in spherical coordinates is given by ref. [67]

-1
ds® = (1 — 8ﬂfgin121;‘£g_; 1)> a? — (1 _ 8W?13VT12§£§_: 1)) dr® — 2P0,
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Using that

D31
J€a>( bu VAT (M (5,20

e b2)1+n(D 3) 2b”(D_3)F (W) )

the scattering angle has the post-Minkowskian expansion in D dimensions?

p—1\Lt! D—3)(L+1)+1

c1(0, D) oL+2T (Tl> T (( )(2 ) ) (GNm1>L+1
D—-3)(L+1)—1 —

(0-2 _ 1)L—|—1 (D _ 2)L+17T( )(2+ ) r ((D73)(2L+1)+2) pD-3

(o D) =

L>0

(5.25)

We can compare with the scattering angle derived from the scattering amplitude in the
previous sections. The Fourier transform of the probe radial action in (5.13) to b-space

dD2

rob b
4m1Tn2\/02 (2m)P—2 Ny (o, q)e. (5.26)

Using the Fourier tranform of the master integral
. dD 2 q—*
T — iq- 7-b
20)= [, Grypals(@e

(-1 )HF(M)L“F(W) |\ b O

2 <> . (5.27)

22+3LmL 7r7§+(L+1) = F ((D—S)Q(L—H)) 6’2

NErobe (0_’ b)

we obtain
21+L

probe 2 _
Ny (0,b) = maVo b—1+<D73)<L+1>
2

p1\Et! L ((D=3)(L+1)-1
ewlo,p) T(%5)  T(P )(GN”“)LH (5.28)

2 _ 1)L+1 D—3)(L+1)+2 D—3
(02 = FT (p gyt (LAE052) b

In the probe limit mo < m; the amplitude is related to the scattering angle by the linear

relation
1 8Npr°be(b, o)

_mQ\/02—1 0b ’

which leads to the angle at the L + 1 post-Minkowskian order in perfect agreement with

XPoP¢(0, D) = (5.29)

the geodesic computation in (5.25).

6 Conclusion

The scattering amplitude approach to the gravitational two-body scattering is a promising
avenue for performing post-Minkowskian calculations needed for the construction of wave-
forms and have already led to a renewed understanding of the connection between quantum

“The expression in (5.25) reproduces the results given in the appendix B of [11] to the third Post-
Minkowskian order n = 3. This was guaranteed because the effective potential Veg(r) in (5.22) is designed
to match the scattering angle [66]. We remark that the expression in (5.23) for the scattering angle leads to
a much simpler evaluation of the post-Minkowskian expansion than the derivation of the angle obtained by
solving Einstein’s geodesic equations as in [68, section 101] and in [11].
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scattering amplitudes and classical observables [5, 23, 31, 32, 44, 45]. Quantum scattering
amplitudes contain much more information than their classical parts and thus extracting clas-
sical physics from amplitudes becomes more and more challenging at each perturbative order.

In this work, combining unitarity and the concept of velocity cuts introduced in [24],
we have identified exactly those elements of integrands that lead to classical physics after
integration. Our approach uses an organisation of the integrand of the multi-loop amplitude
with unitarity cuts on the massive scalar propagator lines used together with detailed
knowledge of the correspondence between the multi-soft graviton expansion and A — 0
limit classical integrand matching the exponential representation of the S-matrix of [26]. In
the classical limit, this approach systematically relates the classical part in the scattering
amplitude to the matrix elements of the eikonal operator N , without having to perform the
subtractions needed for the exponentiation of the radial action.

We have exemplified our approach by computing the probe amplitude at second, third,
fourth, and fifth post-Minkowskian orders. These scattering amplitudes are obtained in
the D-dimension. We have verified the agreement with the results obtained by geodesic
scattering in the D-dimensional Schwarzschild-Tangherlini metric.

We would like to emphasize that our framework for computation is not restricted to the
probe integrands, but can be applied for deriving the complete post-Minkowskian scattering
potential. In ref. [25], a heavy mass expansion was used to extract post-Minkowskian
physics from amplitudes with applications for computing the probe limits. Although colour-
kinematic numerators are also used, numerators in ref. [25] are different from the ones used
here. It would be interesting to investigate further the connection between approaches.

We also note that the nature of the external lines plays a very little role in the multi-soft
scaling and localisation arguments we make — as expected from the universal behaviour
of gravitational interactions [6, 16, 20]. For instance, classical integrands in the post-
Minkowskian framework with elementary spinning external particles should be possible
to simplify as well using the presented formalism. Although it is interesting to study this
question further we will leave it for future research work.
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A Soft scaling from momentum kernel

We will here outline the soft scaling behaviour at generic multiplicity using the momentum
kernel given in eq. (2.20) of [63].

Miree(pl’g%‘."£L+1’7p/1):(71)L—1 Z S(O‘,’y)gL+1 (Al)
o,Y€ES,

x Ap(p1,0(2,...,L),L+1,—p)AL(p1, L+1,%(2,...,L),=p}),
where

L
S0, MVepe =0 ] 200 - €ty + D 00(@), 7(1)205) - L)) (A.2)
t=2 q<t

is the momentum kernel and where 6(i;, ;) equals 1 if the ordering of the legs i; and i, is
opposite in the sets {i1,...,it} and {j1,...,jx}, and 0 if the ordering is the same. This
representation is convenient as no massive momenta enter the momentum kernel.

The colour-ordered Yang-Mills amplitudes are Ay. Following the flipping convention, we
take ¢ L+1 = —q—ZJLZQ £, and know using the arguments of section 4 that the colour-ordered
amplitudes (we have only p; - k + ie propagators) satisfy

Ap(p1,0(2,...,L),L+1,—p,) = At (p1,0(2, ..., L), L+1, —p}), (A.3)

while

+Af (p1, L+1,0(2,...,L),—p}), (A.4)

where the product in the sum contains k tree-level amplitudes A;r . Hence we can write the
generic M[*® amplitude in the form

Mzree(phe% o ,£L+17_p/1) :Mzree(‘f')(phfg,. . .,£L+17_p/l)

L-1

SEDE Y S | D60 TI AR | A (o2 L) I, ),
o, v€SL_1 k=1 Zf;rll ij=L
(A.5)
where
Mzree(+) (pla é?v v 7é\L+11 _pll) = (_1)L_1 Z 5(07 7)5L+1
O’v’\fGGLfl

x Ap(pr,o(2,..., L), L+ 1, -p) A (pr, L+ 1,%(2,...,L),—p}).  (A.6)
Now considering the expression in (A.5) and picking the term

Ap(pi, L+ 1,L,...,2,—p}) x Ap(p1,2,..., L, L+1,—p}), (A.7)
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we have propagator products such as

1 1
~ o X 5 - (A.8)
(p1+lpv1+ L0+ +03)2—m? +ie  (p1+42)* —mi +ie
After flipping we have contributions with delta functions
2mi((pr — b2 — @) — m7) n 1 1 (A.9)
(p1 + £2)? — mi + ie (p1 = Lo — q)? —mi +ie (p1 + £2)? — m7 + i€’ '
and the following soft scaling
gl — )2 — m2 by —q- b 1
o 91— 4]t —q) i mi) [ 0Cpbma-b) (2> 7 (A.10)
@0 (p1 + |q1l2)* — mi + ie |q1°2p1 - L2 [

so that in the multi-soft limit ¢; = |¢|¢; and |¢| — 0, each delta function adds a % factor in
the soft expansion. Consequently, each term of the previous sum scales as

o 1 1 1 1
S(Uv’Y)KLH (6( c ))k H A:;AZF ~ |q 2h-2 2k L—1—k —1 79k (All)
k+1 |q1%* |q] |q] q
ijl i;=L
and the multiple soft behaviour for |¢| — 0 of the plus amplitude is (for & = 0)
lim Mzree(Jr) (pl,EQ, e ,EL+1, *pll)
lg| =0
=D > S0 AL(pro(2,..., L), L+1,—p)) .
o¥€GL_1
Jr —_— . /
X AL(p17L+17’Y(27--"L)7 pl)‘|‘ﬂ‘>0
~|q°. (A.12)

We arrive to the conclusion that the leading soft contribution of M®™e¢(+) is of order
|7]® and can be expressed as a product of leading soft Yang-Mills amplitudes. It means
that Mee(t) will have the same universality properties as the soft Yang-Mills amplitudes.
Mtee(=) sharing the same property, we conclude that the universality property will be
transmitted to all classical integrands.

B Yang-Mills amplitudes and numerator factors

Following the construction presented in [53] we can construct symmetric numerators for
scalar-gluon tree-level amplitudes.®

B.1 The three-point amplitude and numerator factors

For three-point scalar graviton amplitudes, we have,

Nl(pvg% _p/) = Z\/QCQ D, Al(pvg% _p/) = Nl(p7€27 _p/)7 (Bl)

5An alternative construction of the numerators can be done using the tree-level BCJ master numerators

derived from 10D pure-spinor formalism [69].

— 95—



B.2 The four-point amplitude and numerator factors

For the four-point amplitude and numerator factors we have

7
Na(p, b2, 43, —p) = 5(8219((2 “(3) —4(G2 - p)Gs (P+52)> : (B.2)
N 76767_/ N 76767_/ _N 7£7£7_/
Ag(p by, b, —p) = 2(p; £2, 03, —p') N 2(p, b2, 3, —p) — Na(p, €3, L2, —p')
52 523 (B.3)
_ NQ(p7€27€37 _p/) + NQ(pa [2>3]7 _p/)
S2p 593 '

2

)

inspired by the compact notation of [70], and where we have defined s;, = (p + £;)> —m
sij = (6; + £;)?, and

NQ(p7 [27 3]7 _p,) = NQ(pa £27€37 _p/) - NQ(pve?nng _p/)

1

- §i((32p —s3p)C2 - (3 —4(C3 - £2)(C2 - p) +4(C2 - £3)(G3-p)) . (B.4)

B.3 The five-point amplitude and numerator factors

For the five-point amplitude and numerator factors we have
—i (1
N3(p, b2, 03,04, —p') = 7 (3(C3 - Ca)(3(s23 + 53p) (C2 - p) — 282p(C2 - £3))

+ %8210((2 “Ca)(2(¢3 - €2) +3(¢3 - p)) + éSQp(CQ - (3)(2(Ca - £2) +4(Ca - £3) +3(Ca - p))

2 )G (fe + D)) (Ca- (b + L +p>>) , (B.5)

with the colour-ordered amplitude

N 2,3,4 N [2»3]94 N 27[374] N [27[374” N [[2a3}74]
A3(p7€27€37£47 _p/) == 3 + 3 + 3 -+ 3 + 3 , (B6)
S2pS23p  523523p 53452 5345234 5235234

where we have used the shorthand notation N3(p, lo,l3, 04, —p') = N§’3’4 and N334 =
Np234 _ G324 Np2BA = 234 1 Np243  NGl2314 = Nl2314 _ Nptl23] qng Ny 2340 =
N32BA — NyB342 - We have defined ;. j, = (p+Hli+---+4;)2—m?, sij = (li+---+4;)%

B.4 The six-point amplitude and numerator factors

We give the expression for the colour-ordered six-point amplitude (emission of four gluons

from a massive scalar) (the numerator factors are given in [71])

A4(p7 627 637 647 657 _p/)
N42,3,4,5) N42,3,[4,5] N42,[3,4],5) N4[2,3],4,5)

- - -
S2pS23pS234p  S4552pS23p  S3452pS234p  523523pS234p
N3850 p, (12,31,4],5) N, ZBALS) 2348 Ny, 2:08,[4.5]
+ +

+
523545523p 52352345234p 8§3452345234p 534534552p 545534552p

N3] 23S RBALS R34S 20348
+ = + = + = + + . (B
52354582345 523523452345 534523452345 534534552345 545534582345
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B.5 The seven-point amplitude and numerator factors

We give the expression for the colour-ordered seven-point amplitude (emission of five gluons
from a massive scalar) (the numerator factors are given in [71])

-A5 (p7 €2a 537 £47 £5a £67 _p,) =
N52,3,4,5,6 NEE2,3},4,5,6 Ng,[3,4},576 N52,3,[4,5],6

S52pS23pS234pS2345p 523523pS5234pS2345p S52pS5345234pS2345p S2pS45523pS2345p
2,3,4,[5,6 2,3],4,[5,6 2,[3,4],[5,6 2,3,((4,5],6
N2 N(23056] NEBABE N2l

S2pS56523pS234p  S23556523pS234p  S2pS345565234p  S2pS45523pS456
2,3,[4,[5,6 2,3],4,5],6 2,3],4],5,6 2,(3,4]],5,6
N57 7[ 7[ ) H NE[) ) ]7[ ) ]7 N5[[ ) ]7 }7 ) NEE 7[ ) ”7 )

S52pS556523pS456 523545523pS2345p  52352345234pS52345p  S3452345234pS2345p
2,1[3,4],5],6 2,[3,[4,5]],6 2,[13,4],[5,6 2,3],[4,5]],6
NE)VH ) L }7 N57[ 1[ ) ”7 N51[[ ’ ]7[ ’ ] NEE[ ) L[ ) ]]7

52p534534552345p 52p545534552345p 52p53455653456 5235455234552345p
2,3],(6,[5,4 2,3],(4,[5,6 2,3],4],[5,6 2,(3,4]],[5,6
NEZAOBA R3S L
- - + -

523545523pS456 523556523pS456 52355652345234p 53455652345234p
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5 5 + 5 + 5
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52352345234552345p 53452345234552345p 53453455234552345p  S4553455234552345p
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N340 N N[350 N N2A4316] N N2
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52354552345523456 53455653456523456 523523452345523456 534523452345523456
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