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1 Introduction

Fracton lattice models [1–5] have forced a rethinking of some of the longest held believes
about quantum field theories. Standard lore would posit that, at very long distances, any
quantum field theory should either flow to a gapped system, potentially described by a
non-trivial topological field theory (TFT), or a gapless system described by a conformal
field theory (CFT). Fractonic lattice models do not fit into either of these frameworks; their
limited mobility excitations as well as their system size dependent groundstate degeneracy
is not describably by any standard TFT or CFT.

A genuine continuum field theory framework capable of describing fractonic physics
has been laid out in [6–8]. The major new ingredient in these field theories are subsystem
symmetries: global symmetries that do not act on the entire system but only on degrees
of freedom localized along certain sub-manifolds. Such subsystem symmetries are often
present in fractonic lattice models; for the exotic field theories constructed in [6–8] they
become a definining feature. While some of these new field theories don’t even exhibit
genuine fractonic excitations, they all have some kind of subsystem symmetry.

At face value these exotic field theories look somewhat conventional. The simplest
examples are free field theories; in fact for many examples the symmetries prevent any
relevant or marginal interactions. On the surface the only new features are unusual kinetic
terms. For example, in the simplest 2+1 dimensional model of [7] based on a single real
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scalar, the standard (∂xφ)2 + (∂yφ)2 kinetic term gets replaced with (∂x∂yφ)2. This is the
lowest dimension kinetic term consistent with a subsystem shift symmetry demanding the
action be invariant under shifts of φ that can depend on either x or y, δφ = fx(x) + fy(y).
This kinetic term, however, leads to dramatic consequences. Field configurations with ar-
bitrary large discontinuities in the x direction have low energy, and are hence unsuppressed
in the path integral, as long as they are smooth in y, and vice versa. The presence of these
discontinuous field configurations gives rise to a surprising interplay between UV and IR
physics which was originally observed in [7, 8], and later expanded on in [9–11]. Most
notably, many quantities in the continuum theory remain sensitive to the lattice spacing
of the underlying discrete model, that is to UV scale physics.

One place where this UV/IR mixing becomes important is when trying to understand
whether the subsystem symmetries are spontaneously broken. Already in the original
examples of [6–8] the issue of symmetry breaking turned out to be quite subtle. The
theory has a large number of classical zero energy modes, carrying a large momentum in one
direction but no momentum in the other. One could identify these modes with Goldstone
modes of a putatively broken subsystem symmetry. However, quantum mechanically these
modes get pushed to energies of order the UV cutoff. The symmetry is in fact restored.
Closely related is the fact that the lightest states charged under the subsystem symmetry
that could detect any breaking get pushed to UV scale energies as well.

A very good probe of symmetry breaking are correlation functions of charged operators.
One thing we do in this work is to calculate these correlation functions directly in the
continuum theories of [6–8] and verify that the subsystem symmetries do, in fact, remain
unbroken as suggested by the spectrum. This same conclusion has also been recently
obtained in [11], where the same correlation functions were obtained by carefully taking
the limit of the discretized theory.

Given these results, one may wonder whether and when spontaneous breaking of sub-
system symmetries in a continuum field theory can happen. As in ordinary quantum field
theories, where the Mermin-Wagner-Coleman theorem forbids breaking of a continuous
symmetry in 1+1 dimensions and below, spontaneous symmetry breaking should not al-
ways be allowed. A theorem due to Batista and Nussinov [12] shows that the criteria of
whether a subsystem symmetry acting on a n dimensional submanifold can be broken or
not are the same as for an ordinary symmetry for a field theory living in an n dimensional
spacetime. For sufficiently high n there is nothing that forbids breaking and so one may
wonder how to realize this phenomenon in exotic field theories.

One option to analyze the spontaneous breaking of subsystem symmetries is to work
directly with the lattice models. Indeed, one of the early studies of fractons showed that the
spontaneous breaking of a discrete subsystem symmetry accounts for the large ground state
degeneracy in the X-cube model [13]. More recently progress has been made in studying the
phase transition between the broken and unbroken phase of discrete subsystem symmetries
in lattice models [10, 14–18]. The breaking of the continuous subsystem symmetry of [7, 8]
can also be achieved by taking a different limit of the lattice model, namely an infinte
volume limit at finite lattice spacing [11]. While this limit does give rise to a broken phase,
it does not seem to be amendable to continuum field theory language.
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In contrast to these lattice constructions, in this work we present some novel continuum
field theories that do exhibit subsystem symmetry breaking. Interestingly enough, all these
theories are free theories, just like the original work of [6–8], and so our results are exact.
Additionally, we find that whenever the theorem of [12] does allow symmetry breaking, our
models indeed do lead to spontaneously broken subsystem symmetries.

The outline of this work is as follows. In section 2 we will review why we chose
correlations of charged operators to detect symmetry breaking and show that our methods
reproduce the known results for the theories of [6–8], consistent with the recent paper [11].
In section 3 we introduce the classical XY-plaquette model as one example of a field theory
that does in fact lead to a spontaneously broken symmetry in dimensions where this is not
prohibited by the theorem of [12]. In section 4 we generalize our model to a large class
of closely related theories that all follow the same pattern. We end with a discussion and
future directions in section 5.

2 Diagnosing the spontaneous breaking of subsystem symmetries

Let us consider a field theory living in d spacetime dimensions with a subsystem symme-
try acting on n dimensional submanifolds. According to the modified Mermin-Wagner-
Coleman theorem [12], the rules for whether spontaneous breaking of these subsystem
symmetries can or can not occur are equivalent to the standard considerations for a quan-
tum field theory living in n dimensions. In particular, spontaneous breaking of a continuous
global subsystem symmetry can only happen if n ≥ 2. However this theorem in and of
itself does little to predict if a specific subsystem symmetry is spontaneously broken, or
even how to diagnose if such a breaking occurs.

The classical approach to diagnosing a spontaneously broken symmetry is to define a
local order parameter that is charged under the symmetry, and then calculate if this order
parameter acquires an expectation value in the vacuum state. This computation is delicate
as the expectation value of a charged operator vanishes for any finite size system which
obeys the symmetry. Hence the correct procedure is to calculate the expectation value of
the order parameter in the presence of a symmetry breaking background field, which is
then taken to zero.1

The canonical example of this procedure is to consider a complex field in d dimensions,
φ, and a Lagrangian with a Mexican hat potential

S =
∫
ddx

[
∂µφ

†∂µφ+ g
(
φ†φ− v2

)2
]
. (2.1)

This theory has a continuous U(1) symmetry which shifts φ by a phase, so φ is a natural
order parameter for this theory. Notice that the minimum of the potential is not invariant
under this symmetry, so classically we would expect that the vacuum expectation of φ to
be | 〈φ〉 | = v. However this may not be the case in the quantum field theory. To compute
the true expectation value of φ we need to introduce a symmetry breaking term to the

1For a modern mathematical description of spontaneous symmetry breaking see [19].
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action
δSh =

∫
ddx hφ, (2.2)

and then compute the expectation value of φ in the presence of this term. The true
expectation value of φ will be given by the limit

〈φ〉 = lim
h→0
〈φ〉h = lim

h→0

∫
DφDφ† φ e−S−δSh . (2.3)

Though this approach was used to prove the Mermin-Wagner-Coleman theorem for
subsystem symmetries in a lattice theory [12], it not clear how to define an order parameter
for a subsystem symmetry in a continuum field theory, or how to introduce a symmetry
breaking term that only breaks the desired subsystem symmetry.

A different approach to diagnosing spontaneous symmetry breaking is to compute the
long range correlation functions of charged operators, and see if they vanish. This approach
is used in the context of higher form symmetries to diagnose if a p-form symmetry is
spontaneously broken [20, 21]. For the above example of the complex scalar field φ, one
can compute the two point function 〈

φ†(0)φ(r)
〉
. (2.4)

If the field theory is local then the expectation values of a product of distant operators
should factorize, and thus

lim
r→∞

〈
φ†(0)φ(r)

〉
=
〈
φ†
〉〈
φ
〉

=
〈
φ
〉†〈
φ
〉
. (2.5)

Hence if limr→∞
〈
φ†(0)φ(r)

〉
= 0 then the symmetry is not spontaneously broken, while if

limr→∞
〈
φ†(0)φ(r)

〉
6= 0 then φ acquires an expectation value and the symmetry is spon-

taneously broken. We note that the local charged operator φ may need to be renormalized
to give a finite answer. In such a case the UV renormalization needs to be distinguished
from the IR behavior of the 2-point function.

This same method can be used to identify spontaneous symmetry breaking of subsys-
tem symmetries, though we must ensure that the long distance correlation functions used
to diagnose symmetry breaking is uncharged under the symmetry. Thus, for a subsystem
symmetry, the correlation functions used to identify symmetry breaking will not be 2-point
functions, but rather higher point correlation functions. We present an example of such a
correlation function in the following subsection.

2.1 Symmetry breaking in the XY-plaquette model

As simple example of identifying spontaneous symmetry breaking of subsystem symmetries,
we shall look at continuum field description of the XY plaquette model [1, 7, 8]. In [7, 8]
it was claimed that no spontaneous symmetry breaking happens, even in 3 + 1 dimensions
where spontaneous symmetry breaking is permitted. We would like to verify this result
using our diagnostic for spontaneous symmetry breaking.
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The original XY-plaquette model in d + 1 dimensions has a continuum field theory
formulation consisting of a compact scalar field φ, and the action (in Euclidean signature)

L = µ0
2 ∂0φ∂0φ+ 1

2µ
∑

1≤i<j≤d
∂i∂jφ∂i∂jφ. (2.6)

This model has the global subsystem shift symmetry which acts on the primary 1 + (d− 1)
dimensional planes and is given by

φ→ φ+
d∑
i=1

fi(xi), (2.7)

where fi(xi) is an arbitrary function of the i’th coordinate.
To diagnose if this symmetry is spontaneously broken we should compute a long-range

correlator of charged operators, which for this theory is the operator eiφ (as φ is not a
good operator in the continuum field theory [7]). Furthermore, we need the correlator
we compute to be uncharged under the global subsystem shift symmetry. The simplest
correlator that meets this criteria is the equal time correlator of four e±iφ operators inserted
on one of the spatial planes〈

ei[φ(0,0,0)−φ(0,x1,0)−φ(0,0,x2)+φ(0,x1,x2)]
〉
, (2.8)

where without loss of generality we took the operators to lie in x1–x2 plane, and where the
remaining spatial coordinates are equal.

As this is a Gaussian theory, we can take the functional integral directly, and we
find that 〈

ei[φ(0,0,0)−φ(0,x1,0)−φ(0,0,x2)+φ(0,x1,x2)]
〉

= e
− 2
µ0
Kd(x1,x2)

, (2.9)

where
Kd(x, y) =

∫
dω

2π

∫
ddk

(2π)d
(1− cos(k1x))(1− cos(k2y))

ω2 + 1
µµ0

∑
i 6=j k

2
i k

2
j

=
√
µµ0
2

∫
ddk

(2π)d
(1− cos(k1x))(1− cos(k2y))√∑

i 6=j k
2
i k

2
j

(2.10)

Starting with the case d = 2, we have that

K2(x, y) =
√
µµ0

8π2

∫
d2k

(1− cos(k1x))(1− cos(k2y))
|k1k2|

. (2.11)

This integral is UV divergent, and so must be regulated. As the integral factorizes, it is
natural to introduce independent cutoffs in the x and y directions so that this integral
becomes2

K2(x, y) =
√
µµ0

2π2

∫ Λx

0
dk1

(1− cos(k1x))
k1

∫ Λy

0
dk2

(1− cos(k2y))
k2

=
√
µµ0

2π2 (γ + log(xΛx) +O(1/Λx)) (γ + log(yΛy) +O(1/Λy)) .
(2.12)

2We note that the form of (2.12) should not depend on the particular regularization scheme. For
example on can compute K2(x, y) using the standard spherical momentum cutoff of k2

1 + k2
2 ≤ Λ2 and

find that K2(x, y) =
√
µµ0

2π2 (γ + log(xΛ)) (γ + log(yΛ))−
√
µµ0
48 +O(1/Λ), which agrees with (2.12) up to an

additive constant.
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This UV divergence cannot be regulated by a renormalization of the operators (or equiva-
lently by local counter term) due to the presence of the terms proportional to log(x) log(Λy)
and log(y) log(Λx). Not only do these terms make the result unregularizable, their presence
indicates a UV-IR mixing in the charged states of this model, as observed in [7, 8]. This
same correlation function was computed in the lattice theory in [1] and [11], and both
found the same result.3

We can do a similar calculation in d = 3, where we can take the k3 integral by
introducing a cutoff, so

K3(x,y) =
√
µµ0

16π3

∫
d3k

(1−cos(k1x))(1−cos(k2y))√
k2

1k
2
2 +k2

3(k2
1 +k2

2)

=
√
µµ0

16π3

∫
d2k

(1−cos(k1x))(1−cos(k2y))√
k1

1 +k2
2

(
2 log(Λz)+log

(
4(k2

1 +k2
2)

k2
1k

2
2

)
+O(Λ−1

z )
)
.

(2.13)
As before, this integral will include mixed terms of the form f(x, y) log(Λz) which cannot
be regularized by a local counter term.

In both these instances this diagnostic of spontaneous symmetry breaking agrees with
the results in [7, 8, 11], namely that the symmetry is not spontaneously broken. Fur-
thermore, these results confirm that the charged states have energies of order the lattice
spacing and so correlation functions involving charged operators cannot be regularized to
give a consistent IR result.

We would like to construct theories with a spontaneously broken continuous subsystem
symmetry, as the IR physics of such theories would be described by the Goldstone modes
of the broken symmetry. Finding such theories would be a first step to studying the phase
transition between the broken and unbroken phases, a new type of critical phenomena that
has yet to be considered in the literature. In the next two section we will analyze a family of
statistical models inspired by the XY-plaquette model which do indeed have spontaneously
broken subsystem symmetries.

3 The classical XY-plaquette model

To realize a theory with spontaneously broken subsystem symmetries, we can try to start
from the lattice model related to the XY Plaquette model in d-dimensions [1]. Consider
a square lattice in d dimensions with an angular variable φi on each lattice site. In the
original XY model we consider the classical statistical mechanics model where the energy
of each configuration of spins is given by

EXY(φ) = −J
∑
〈i,j〉

cos(φi − φj), (3.1)

where the sum runs over all sites i, j which are nearest neighbors on the lattice. The
partition function of this model is given by the path integral

Z(β) =
∏
i

∫ 2π

0
dφi e−βEXY(φ). (3.2)

3One can directly compare (2.12) to equation (66) in [1] and equation (5.33) in [11].
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As the partition function is given by a Euclidean path integral, we can consider this
model as a quantum mechanical model with a Euclidean action SE = E, while the d − 1
dimensional Hamiltonian will be related to this action by a Legendre transform.

We can follow the exact same procedure to construct an XY-plaquette model by taking
the interactions to be on plaquettes rather than between nearest neighbor sites. This will
result in the energy

EXY-plaquette(φ) = −J
∑
S

cos(∆Sφ), (3.3)

where the sum runs over all square plaquettes S containing the sites {s1, s2, s3, s4} in cyclic
order, ∆Sφ = φs1−φs2 +φs3−φs4 , and J is the interaction strength. The partition function
of the statistical theory is described by the Euclidean path integral

Z(β) =
∏
i

∫ 2π

0
dφi e−βEXY-plaquette(φ). (3.4)

This model is similar to the XY-plaquette model considered in [1] and [7], as the
plaquette interaction term is the same, though in our case EXY-plaquette(φ) is the Euclidean
action of the quantum model rather than the Hamiltonian, and it does not contain a kinetic
term.

This XY-plaquette model has the subsystem symmetry of shifting all φi’s on any d−1
dimensional hyper-plane in the lattice by a constant angle. Similar to the original XY
model, we would expect this model to be in a broken phase at low energy if the dimension
allows for such a phase to exist. The continuum limit of this broken phase should correspond
to taking the continuum limit of the of the Euclidean action on the lattice. This was done
carefully in [7], and the resulting model is a compact scalar field φ in d dimensions with
the Lagrangian

L = 1
2g

∑
1≤i<j≤d

∂i∂jφ∂i∂jφ. (3.5)

This Lagrangian has the global dipole symmetry of shifting φ by any arbitrary function
of a single variable

φ→ φ+
d∑
i=1

fi(xi). (3.6)

As φ is 2π periodic, these functions are defined up to an integer multiple of 2π. Thus neither
φ nor ∂iφ are good operators in the continuum limit, while ∂i∂jφ is a good operator so long
as i 6= j, as is eiφ, similar to the analysis of [7]. Furthermore, we will only focus on field
configurations that have a finite action in the continuum limit. This excludes any winding
modes that have infinite action (due to a computation that is identical to the computation
done in section 4.2 of [7]).4

The spontaneous breaking of this dipole symmetry is what we are interested in ana-
lyzing. As this subsystem symmetry acts on d− 1 dimensional hyper-planes, the minimal

4In this model the momentum modes have finite action, as will be shown bellow, and so we can con-
sistently exclude the winding modes from the continuum field theory. In [7] both momentum and winding
modes had infinite action in the continuum limit, and so one needs to keep both.
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dimension we can hope to have a spontaneously broken symmetry is d = 4, and indeed
we will see that this is the case. However before we analyze the breaking of the dipole
symmetry we present an analysis of the spectrum of the model. We note that a further
study the correlation functions of uncharged operators is presented in appendix A.

3.1 Spectrum

To understand the spectrum of the model, we start from the equation of motion for φ∑
1≤i<j≤d

∂2
i ∂

2
jφ = 0. (3.7)

Then we can expand φ in terms of Fourier modes, which leads to the dispersion relation∑
1≤i<j≤d

k2
i k

2
j = 0. (3.8)

If we consider the theory in Lorentzian signature, that is take one of the d spatial
coordinates and Wick rotate it, then the dispersion relation becomes

ω2 =
∑
i 6=j k

2
i k

2
i

k2 . (3.9)

We note that this dispersion relation is continuous around k = 0, and indeed ω → 0 as
|k| → 0 from any direction.

Next we quantize the Lorenzian theory on a d− 1-torus of equal length `, so that the
momenta are quantized ki = 2π ni` . In terms of the momentum modes

φn = 1
(2π)d−1

∫
dd−1x φ(x)e2πin·x

` (3.10)

the Lagrangian becomes

L = `d−3(2π)2

2g
∑

n∈Z3

|n|2∂0φ−n∂0φn −
(2π)2

`2

∑
i<j

n2
in

2
jφ−nφn

 . (3.11)

Each of these modes for generic values on n behaves as a simple harmonic oscillator with
ground state energy

En = 1
2ωn = π

`

(∑
i 6=j n

2
in

2
i

n2

)1/2

, (3.12)

where ω given by the dispersion relation (3.9). The rest of the states are built via the
generic Fock space construction on these ground states. If, however, all but one of the
integers in n are zero then ωn = 0 and these fields have no harmonic potential. We
may need to quantize these modes more carefully, as they can have large momenta in the
remaining direction.

To quantize the Lagrangian for the modes where all but one of the n’s are zero, we
follow [8] and write these modes in position space by writing the field as

φ(x0, xi, . . . , xd−1) = φ1(x0, x1) + φ2(x0, x2) + . . .+ φd−1(x0, xd−1) + . . . (3.13)
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Then the Lagrangian for these modes is

L = 1
2g

d−1∑
i=1

(∂0∂iφi)2 . (3.14)

We see that unlike in [8] these modes are decoupled, and the “gauge” symmetry that
connects these modes is just a subset of the global symmetry of the Lagrangian φ→ φ+f(t).
Overall these modes behave just like the zero modes of a standard periodic free scalar field,
and do not acquire a mass of the order of the lattice spacing, which is very different than
the theories considered in [7, 8].

This analysis shows that the even for the modes where all but one of the n’s are zero
the Lagrangian in (3.11) is the correct Lagrangian, and the Hamiltonian for these modes
in the i’th direction is

Hi = `d−3(2π)2

2g
∑
n 6=0

1
n2πi,−n, πi,n. (3.15)

The conjugate momenta of these modes, denoted by πi,n, are the generators of the global
symmetry φ→ φ+ fi(xi). These conjugate momenta do indeed commute with the Hamil-
tonian, as expected for a global symmetry, though their spectrum is continuous. Choosing
a ground state for the system is the same as choosing the eigenvalues of these modes, and
so the πi,n’s shift us from one ground state to another, in analogy to typical Goldstone
modes. Thus this picture looks like a spontaneously broken symmetry, with the φ being
an analogous Goldstone boson.

There is also the special mode n = 0, for which the Lagrangian vanishes and so is not a
physical mode. This is very different than in [8] where this mode is the unique ground state
of the system. The reason this mode disappears from the theory is the time translation
symmetry φ→ φ+ f(t), which is generated by this zero mode.

Finally we note is that the resulting Hamiltonian is non-local in space for all of the
modes. Indeed for the continuum theory the conjugate variable to φ is

π = ∂L

∂(∂0φ) = 1
g
∂0∇2φ, (3.16)

so the Hamiltonian of the system is

H =
∫
dd−1x

 1
2gπ∇

−2π + 1
2g

∑
1≤i<j≤d−1

(∂i∂jφ)2

 , (3.17)

which has a non-local kinetic term. This Hamiltonian still has a fine expansion in terms of
Fourier modes, as seen above, and so can be quantized in the standard way.

It is interesting that a local Lagrangian gave rise to a non-local Hamiltonian, which
raises the question which is more fundamental. From an effective field theory prospective,
one writes down the most general local Lagrangian that obeys the desired symmetries.
Then one keeps only the renormalizable terms, which are found by computing the scaling
dimensions. Based on this philosophy a local Lagrangian is more fundamental to under-
standing the IR physics, as it contains the relevant information about the symmetries and
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scaling dimensions. The model we presented fits nicely into this picture, as it is the sim-
plest Lagrangian that obeys the desired subsystem symmetry, and indeed it seems that the
resulting quantum field theory is local and well defined.

There is however the alternate bottom up approach where one starts from a local UV
Hamiltonian, say on a lattice, and then tries to infer the physics at large distances. In this
case one assumes that the Hamiltonian is local, and so it does not seem that the classical
XY model can describe the IR physics that emerge from such a construction. This raises
many interesting questions relating to the existence of phases of matter that fit into an
effective field theory picture, but that cannot be described by a local lattice Hamiltonian.

There is also the possibility that certain phases of matter may arise from a local lattice
Hamiltonian that has a non-local Lagrangian. For example one can introduce a nearest
neighbor interaction of the conjugate momenta variables to a lattice Hamiltonian, which
would keep the Hamiltonian local but result in a non-local Lagrangian. Such systems
have been considered in the condensed matter literature, for example [22] studied similar
Hamiltonians with subsystem symmetries, though it is not clear to us how such models fit
into the canonical picture of Wilsonian quantum field theory.

3.2 Spontaneous subsystem symmetry breaking

To identify if the subsystem symmetry (3.6) is spontaneously broken, we will look at
long range correlation functions of the charged local operator eiφ.5 The 1, 2, and 3-point
functions of these operators must vanish by the global dipole symmetry. Hence the simplest
nonzero correlation function of such operators is the 4-point rectangle function, similar to
what was considered in (2.8). This correlator is〈

ei[φ(0,0)−φ(x1,0)−φ(0,x2)+φ(x1,x2)]
〉
, (3.18)

where we have chosen the rectangle to lie in the (x1, x2) plane, and suppressed the depen-
dence on the remaining d− 2 coordinates.

Taking the Gaussian functional integral we can write this expectation value as〈
ei[φ(0,0)−φ(x1,0)−φ(0,x2)+φ(x1,x2)]

〉
= e−2gId(x1,x2), (3.19)

where
Id(x, y) =

∫
ddk

(2π)d
(1− cos(k1x))(1− cos(k2y))∑

i 6=j k
2
i k

2
j

. (3.20)

Notice that this integral is well defined in the IR, as around k1, k2 � 1 this integral behave
as (k2

1k
2
2)/(

∑
i 6=j k

2
i k

2
j ), which is finite around zero for a fixed angle.

For d = 2 we can take this integral analytically, and we find

I2(x, y) = |xy|4 . (3.21)

This grows as we take x and y to be large, hence the full correlator (3.18) vanishes, and
thus the subsystem symmetry is unbroken.

5We explore the correlation functions of uncharged operators and their consequences in appendix A.
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For d = 3 this integral evaluates to

I3(x, y) = 1
4π

[
|y| log

(
|x|+

√
x2 + y2

|y|

)
+ |x| log

(
|y|+

√
x2 + y2

|x|

)]

= 1
4π |xy|

1/2
{
α−1/2 log

(
α+

√
1 + α2

)
+ α1/2 log

(
1 +
√

1 + α2

α

)}
,

(3.22)

where α ≡ |x||y| . Again the integral grows as x or y (or both) are taken to be large, implying
that the subsystem symmetry is still unbroken. This is expected as the minimal dimension
allowed for spontaneous symmetry breaking in this model is d = 4.

For d = 4 we can write the rectangular function as

I4(x, y) = 1
8π3

∫
dk1 dk2

(1− cos(k1x))(1− cos(k2y))
k2

1 + k2
2

K

(
1− k2

1k
2
2

(k2
1 + k2

2)2

)
, (3.23)

where K(m) is the complete elliptic integral of the first kind. Notice that I4(x, y) is only
a function of the ratio x/y, and so we expect it to be a constant for large rectangles with
the ratio x/y fixed. However this integral is logarithmically divergent in the UV, and this
UV divergence neads to be regularized. Moving to polar coordinates and introducing a UV
cuttoff, we can take the radial integral to find

I4(x, y) = 1
8π3

∫ Λ

0
dr

∫ 2π

0
dθ

(1− cos(xr cos θ))(1− cos(yr sin θ))
r

K
(
1− cos2 θ sin2 θ

)
= 1

8π3

∫ 2π

0
dθ K

(
1− cos2 θ sin2 θ

) [
log Λ + γ + 1

2 log
(

x2y2 cos2 θ sin2 θ∣∣x2 cos2 θ − y2 sin2 θ
∣∣
)]

+O(Λ−1).
(3.24)

Notice that the angular integral multiplying the log Λ term is finite, hence we can renormal-
ize the operator by a local counterterm to cancel the logarithmic UV divergence, leaving
the remaining integral finite and cutoff independent. Canceling the UV cutoff does how-
ever make the integral logarithmically diverge as the area of the rectangles is taken to be
large while fixing the ratio of the two sides. However this term approaches a constant if
only one side of the rectangle is taken to be large while the other is kept fixed (notice
that this is not the case for I2 and I3 which both diverge even in this limit, though slower
than the divergence for fixed ratio). This implies that the subsystem symmetry is indeed
spontaneously broken for d = 4.

We expect a similar behavior in dimensions d > 4, where an operator renormalization
can take care of the UV divergence, while no IR divergent will exist at all. This is in
alignment with the previous discussions of spontaneously breaking subsystem symmetries
based on [12]. For completeness we present plots of I3(x, y) and I4(x, y) in figures 1 and 2.

4 Other classical XY models with subsystem symmetries

The classical XY-plaquette model can be generalized to a family of models in d dimensions
that has a subsystem symmetry which acts on d − m + 1 dimensional hyperplanes. As
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Figure 1. A surface plot of I3(x, y), as well as a plot of I3(x, y) for fixed values of y. We also
compare I3(x, y) at fixed y to the asymptotic behavior at large x denoted by the dotted lines. The
asymptotic behavior is I3(x, y) ≈ y

4π
(
log(2x/y) + 1 +O(1/x2)

)
.

Figure 2. A surface plot of I4(x, y), as well as a plot of I4(x, y) for fixed values of y. We also
compare I4(x, y) at fixed y to the asymptotic value at infinite x denoted by the dotted lines.

before we start with a square lattice in d dimensions with an angular variable φi on each
lattice site, though now the energy of each configuration is given by

E(φ) = −J
∑
Cm

cos(∆Cmφ). (4.1)

This the sum runs over all hyper-cubes Cm containing the sites {cs+∑m

j=1 ijej
}, where s

is any lattice site, ij ∈ {0, 1}, and em are m orthogonal unit vectors on the lattice. The
classical XY model is the case m = 1, while the classical XY-plaquette model is the
case m = 2.
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The next class of models is the case m = 3, which is a classical version of the XY-
cube model considered in [15, 23]. We present a brief analysis of this model below, before
considering the general m case.

4.1 The classical XY-cube model

The classical XY-cube model has the subsystem symmetry of shifting all φi’s on any d− 2
dimensional hyper-plane in the lattice by a constant angle. Similar to the previous model,
we would expect this model to be in a broken phase at low energy if the dimension allows
for such a phase to exist, which for this model is d > 4. The continuum limit of this broken
phase should correspond to taking the continuum limit of the of the Euclidean action on
the lattice. This was done carefully in [23], and the resulting model is a compact scalar
field φ in d dimensions with the Lagrangian

L = 1
2g

∑
1≤i<j<k≤d

∂i∂j∂kφ∂i∂j∂kφ. (4.2)

This Lagrangian has the global dipole symmetry of shifting φ by any arbitrary function
of any two variables

φ→ φ+
∑

1≤i<j≤d
fi,j(xi, xj). (4.3)

As φ is 2π periodic, these functions are defined up to an integer multiple of 2π. Thus
neither φ nor ∂iφ or ∂i∂jφ are good operators in the continuum limit, while ∂i∂j∂kφ is a
good operator so long as i 6= j 6= k, as is eiφ, similar to the analysis of [23]. As before,
we will only focus on field configurations that have a finite action in the continuum limit,
excluding any winding modes that have infinite action.

To find the spectrum of the theory, we can expand φ in terms of Fourier modes, which
leads to the dispersion relation ∑

1≤i<j<l≤d
k2
i k

2
jk

2
l = 0. (4.4)

If we consider the theory in Lorentzian signature, that is take one of the d spatial coordi-
nates and Wick rotate it, then the dispersion relation becomes

ω2 =
∑
i<j<l k

2
i k

2
kk

2
l∑

i<j k
2
i k

2
j

. (4.5)

As before, this dispersion relation is continuous around k = 0.
We can quantize the Lorenzian theory on a d − 1-torus of equal length `, so that the

momenta are quantized ki = 2π ni` . In terms of the momentum modes given in (3.10), the
Lagrangian becomes

L = `d−5(2π)4

2g
∑

n∈Z3

∑
i<j

n2
in

2
j

 ∂0φ−n∂0φn −
(2π)2

`2

∑
i<j<k

n2
in

2
jn

2
kφ−nφn

 . (4.6)
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Each of these modes for generic values on n behaves as a simple harmonic oscillator with
ground state energy

En = 1
2ωn = π

`

(∑
i<j<k n

2
in

2
jn

2
k∑

i<j n
2
in

2
j

)1/2

, (4.7)

with ω given by the dispersion relation (4.5). The rest of the states are built via the generic
Fock space construction on these ground states. If, however, all but two of the integers
in n are zero then ω = 0 and these modes have no harmonic potential. As before, these
modes behave just like the zero modes of a standard periodic free scalar field, and do not
acquire a mass of the order of the lattice spacing, which is very different than the theories
considered in [7, 8, 23].

This analysis shows that, even for the modes where all but two of the n’s are zero,
the Lagrangian in (4.6) is correct. The momenta conjugate to these modes, denoted by
πi,j,n,m, are the generators of the global symmetries φ → φ + fij(xi, xj). These conjugate
momenta do indeed commute with the Hamiltonian, as expected for a global symmetry.
Choosing a ground state for the system is the same as choosing the eigenvalues of these
operators, and so the πi,j,n,m’s shift us from one ground state to another, just as the zero
modes for the usual Goldstone boson. The modes corresponding to where all but one of
the n’s are zero now have vanishing action, and correspond to the symmetries involving
the time direction φ → φ + f0j(x0, xj). Finally we note that the resulting Hamiltonian is
non-local in space, and the discussion regarding this non-locality from section 3.1 applies
to this model as well.

As in the XY-Plaquette model, to check for which dimensions the symmetry is spon-
taneously broken we need to compute correlation functions of charged operators. In this
model the simplest invariant correlation function is the cubic correlator of eight eiφ given by

〈
exp

i ∑
i,j,k∈{0,1}

(−1)i+j+kφ(ix, jy, kz)

〉 . (4.8)

As this theory is Gaussian, we can take the path integral directly resulting in

〈
exp

i ∑
i,j,k∈{0,1}

(−1)i+j+kφ(ix, jy, kz)

〉 = e−4gJd(x,y,z) (4.9)

where

Jd(x, y, z) =
∫

ddk

(2π)d
(1− cos(k1x))(1− cos(k2y))(1− cos(k3z))∑

i<j<l k
2
i k

2
jk

2
l

. (4.10)

For d = 3, the lowest dimension for which the model makes sense, we have that

J3(x, y, z) = 1
8 |xyz| (4.11)

As before, this implies that the symmetry is not broken as the long range correlation
functions grows.
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For d = 4 this integral is

J4(x, y, z) =
∫

d3k

16π3
(1− cos(k1x))(1− cos(k2y))(1− cos(k3z))

|k1k2k3|
√
k2

1k
2
2 + k2

2k
2
3 + k2

1k
2
3

. (4.12)

This integral is completely convergent for any finite values of x, y, z, though a closed
form expression for the integrand is beyond our reach. We can however take various large
distance limits of this function. Just via scaling arguments it is clear that if we take x, y
and z to be large while keeping their ratios fixed then

J4(x→∞, y →∞, z →∞) = |xyz|2/3f(x/y, x/z), (4.13)

where

f(a, b) =
∫

d3k

16π3
(1− cos(k1))(1− cos(k2))(1− cos(k3))

|k1k2k3|
√
a2/3b−4/3k2

1k
2
2 + a2/3b2/3k2

2k
2
3 + a−4/3b2/3k2

1k
2
3

. (4.14)

If we take only x and y to be large while keeping z and the ratio x/y fixed then

J4(x→∞, y→∞, z) = 1
4 |xy|

1/2|z|
∫

d2k

(2π)2
(1−cosk1)(1−cosk2)

|k1k2|
√

(y/x)k2
1 +(x/y)k2

2

= |z||xy|
1/2

8π

{
α−1/2 log

(
α+

√
1+α2

)
+α1/2 log

(
1+
√

1+α2

α

)}
,

(4.15)
where α ≡ |x/y|.

Finally, taking x→∞ while keeping y and z fixed we see that the integral scales as

J4(x→∞, y, z) = 1
8π |yz|

(
log |x|+O(1)

)
, (4.16)

so even in this limit the cube correlation function diverges. As this symmetry acts on d−2
dimensional hyper-planes, it cannot be spontaneously broken in dimensions d ≤ 4, so this
analysis does in fact make sense.

For this symmetry to be spontaneously broken we need to be in at least d = 5, where
the integral evaluates to

J5(x,y, z) =
∫

d4k

2(2π)4
(1−cos(k1x))(1−cos(k2y))(1−cos(k3z))√(∑

i<j<l
k2
i k

2
jk

2
l

)(∑
i<j

k2
i k

2
j

)
=
∫

d3k

(2π)4
(1−cos(k1x))(1−cos(k2y))(1−cos(k3z))

|k1k2k3|
√
k2

1 +k2
2 +k2

3
K

(
1−

(
k2

1k
2
2 +k2

1k
2
3 +k2

2k
2
3
)2

k2
1k

2
2k

2
3 (k2

1 +k2
2 +k2

3)

)
.

(4.17)
This integral is still UV finite, and converges for any values of x, y and z, though it has
no known closed form expression. We can however do the same limit analysis to how it
behaves when we take the cube to be large. If we take x→∞ while keeping y and z fixed
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then the integral approximates as6

J5(x→∞, y, z) = 2π
∫
d3k

(1− cos(k2y))(1− cos(k3z))

|k1k2k3|
√
k2

1 + k2
2 + k2

3

K

(
1−

(
k2

1k
2
2 + k2

1k
2
3 + k2

2k
2
3
)2

k2
1k

2
2k

2
3
(
k2

1 + k2
2 + k2

3
) ) ,

(4.18)
which is a constant value independent of x. Hence this symmetry is indeed broken in d = 5,
as expected.

4.2 Classical XY-hypercube models

We now turn our attention back to the general m case, the classical XY-hypercube model
of degree m, with the energy given by (4.1). This model has a subsystem symmetry which
acts on d −m + 1 dimensional hyperplanes. The continuum field theory of these models
consists of a periodic scalar field φ with the Lagrangian

L = 1
2g

d∑
i1<i2<...<im=1

∂i1∂i2 . . . ∂imφ ∂i1∂i2 . . . ∂imφ. (4.19)

This model has the subsystem shift symmetry given by

φ→ φ+ fi1,i2,...,im−1(xi1 , xi2 , . . . , xim−1) (4.20)

which acts on d−m+ 1 dimensional hyperplanes.
The spectrum of the model with arbitrary m has many of the same features as the spec-

trum of the plaquette and cubic models. The dispersion relation in Lorentzian signature
will be given by

ω2 =
∑
i1<...<im k

2
i1 . . . k

2
im∑

i1<...<im−1 k
2
i1
. . . k2

im−1

. (4.21)

The quntization of the theory on a torus follows the same procedure as was done for
the plaquette and cubic models. Generic modes will behave like Harmonic oscillators with
ground state energy E = 1

2ω, where ω is given by the dispersion relation (4.21). Modes
where all but m−1 of the k’s have zero harmonic potential but a non-zero kinetic term, and
so are the zero modes of the theory. These modes generate the subset of shift symmetries
in (4.20) that do not involve the time direction. Similarly, the modes where all but m−2 of
the k’s are zero have a vanishing Lagrangian and generate the symmetries that do involve
the time direction.

The dimensions for which the subsystem symmetry (4.20) can be spontaneously broken
is d > 1 +m (by the generalized Merman-Wagner-Coleman theorem [12]). We have shown
that the symmetry is indeed spontaneously broken when d = 2+m for m ≤ 3,7 and expect
this trend to continue for arbitrary m.

6We can write J5 =
∫
dk1(1− cos(k1))f(k1), and as f(k1) is an integrable function its Fourier transform

decays at infinity. Thus the integral
∫
dk1 cos(k1x)f(k1) vanishes as x → ∞ and we are left with the

remaining finite integral.
7We considered m = 2, 3 in this paper, while the case m = 1 is just a free compact scalar field which is

known to exhibit spontaneous symmetry breaking in d = 3.
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To diagnose whether the subsystem symmetry (4.20) is spontaneously broken, one
would need to compute a correlation function of e±iφ operators placed on the corners of
a m-dimensional hypercube, as this is the simplest correlation function of charged oper-
ators that is uncharged under the subsystem symmetry. Calling this correlation function
Fm(x1, x2, . . . , xm), one can preform the Gaussian path integral to find that

Fm(x1, x2, . . . , xm) = e−2m−1g Im,d , (4.22)

where
Im,d(x1, x2, . . . , xm) =

∫
ddk

(2π)d

∏m
i=1(1− cos(kixi))∑
i1<...<im k

2
i1
. . . k2

im

. (4.23)

The behavior of Im,d(x1, x2, . . . , xm) at large separations determines the spontaneous break-
ing of the subsystem symmetry; if Im,d grows at large separation then the symmetry is
unbroken while if it approaches a constant then the symmetry is spontaneously broken.
We have shown that I2,4 and I3,5 approach a constant when one of the coordinates is taken
to be large, and expect Im,m+2 to behave the same way for arbitrary m.

We can actually compute this limit directly from (4.23). Notice that Im,m factorizes,
and thus we can directly compute

Im,m(x1, x2, . . . , xm) = 2−m|x1x2 . . . xm|. (4.24)

Hence the symmetry is not spontaneously broken for d = m.
For d = m + 1 we can take the limit x1 → ∞ while keeping the rest of the variables

fixed,8 and we find that

Im,m+1(x1 →∞, x2, . . . , xm) = 2−mπ−1|x2 . . . xm| log(x1), (4.25)

again implying the symmetry is not spontaneously broken.
For d = m+2 the integral Im,m+2 is UV finite assumingm > 2, so we can take the same

limit x1 →∞ while keeping the rest of the variables fixed, resulting in the finite value9

Im,m+2(x1 →∞, x2, . . . , xm) =
∫

dmk

(2π)m+1

∏m
i=2(1− cos(kixi))∏m

i=1 |ki|
(∑

i1<...<im−2 k
2
i1
. . . k2

im−2

)1/2

×K

1−

(∑
i1<...<im−1 k

2
i1 . . . k

2
im−1

)2

∏m
i=1 k

2
i

(∑
i1<...<im−2 k

2
i1
. . . k2

im−2

)
 .

(4.26)
As in this limit Im,m+2 approaches a constant (i.e. is independent of x1) the symmetry
is indeed spontaneously broken. Hence the subsystem symmetry (4.20) is spontaneously
broken when d = m + 2 for arbitrary m, but not when d ≤ m + 1. This is in agreement
with the expectations based on the generalized Merman-Wagner-Coleman theorem [12].

8The simplest way to do this calculation is to first take both x1 and x2 to be large, when the limit
reduces to an integral similar to (4.15). Then one can take the limit x1 → ∞ while keeping x2 fixed and
obtain (4.25).

9This limit is obtained in the same way as (4.18).
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5 Discussion and future directions

Our main goal in this paper was to discuss spontaneous breaking of subsystem symme-
tries, and to construct well behaved continuum quantum field theories that model the
spontaneously broken phase. Though we successfully built field theories that exhibit a
spontaneous broken subsystem symmetry, there are still many open questions relating to
these models, and to quantum field theories with subsystem symmetries in general. In this
section we discuss in further detail two general areas of study that we find most inter-
esting. The first is to study the unbroken phase and the phase transition in the classical
XY-plaquette model we constructed in section 3. The second is to analyze generalizations
and interacting theories built upon the classical XY-plaquette model.

There are however many other interesting aspects to keep investigating with regards
to the models we constructed. One natural question to ask is whether the subsystem
symmetries are still spontaneously broken at finite temperature, assuming such breaking
is allowed by the number of dimensions. As our models have no free parameters, the
symmetry is either broken or unbroken at all finite temperatures. To understand which
is the case, we need to compute the same 4-point correlation functions of exponential
operators we considered when taking one of the spatial dimensions to be compact. Though
one can evaluate the sum over the Matsubara frequencies in the compact direction, the
resulting integrals over the momenta in the remaining directions are unwieldy, and must
be UV regularized for the classical XY-plaquette model. Hence we decided to leave this
problem for a future endeavour.

Another interesting observation is that the Lagrangian (3.5) in d = 2 is similar to
the Lagrangian of a zero velocity chiral boson, L = α∂0φ∂1φ. The chiral boson also
possesses the same subsystem symmetry (3.6), which is not spontaneously broken in d = 2.
One can try to generalize the chiral Lagrangian to higher dimensions, namely consider
the Lagrangian L = α

∑
i 6=j ∂iφ∂jφ which also possesses the same subsystem symmetry.

However this Lagrangian breaks the reflection symmetry of the lattice, and also has a
Hamiltonian that is unbounded from below. One can overcome some of the difficulties
in quantizing the d = 2 theory using the conformal symmetry, and perhaps in higher
dimensions there is a different conformal symmetry which emerges, similar to the ones
studied in [24], which may be worth studying.

5.1 The unbroken phase and phase transition

Up to now we have focused on the symmetry broken phases of the classical XY models we
considered. However, just like the standard XY model, the lattice models have a phase
where the symmetry is unbroken, and a phase transition between the two phases. To model
the phase transition and the unbroken phase, we would like to construct a Lagrangian for
a complex scalar field Φ that has the desired U(1) subsystem symmetry. Then tuning the
potential of Φ in this Lagrangian would (at least classically) give Φ a vacuum expectation
value, and thus take us between the spontaneously broken and unbroken phases.

This Lagrangian can be built in a similar manner to the Lagrangian’s with global
dipole symmetries constructed in [25, 26]. Focusing on the classical XY-plaquette model,
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the lowest order terms in this effective Lagrangian are

L =
∑

1≤i<j≤d
|Φ∂i∂jΦ− ∂iΦ∂jΦ|2 + V (|Φ|2). (5.1)

In the symmetry broken phase we would choose the potential in (5.1) to be a Mexican
hat. We can then expand the Lagrangian around one of the minima of the potential, and
to leading order in the fields we would arrive at the continuum Lagrangian for the XY-
plaquette model given in equation (3.5). This is a simple check that the Lagrangian we
wrote down has the desired symmetry broken phase that we analysed in section 3.

To access the unbroken phase one would need to choose a generic potential with a
minimum at |Φ|2 = 0. Around this minimum the Lagrangian to lowest orders reads

L =
∑

1≤i<j≤d
|Φ∂i∂jΦ− ∂iΦ∂jΦ|2 +m2|Φ|2 + λ|Φ|4. (5.2)

Unfortunately this effective Lagrangian is non-Gaussian even at lowest order due to the
kinetic term containing 4 Φ fields. Hence an analytic or even perturbative description of
the dynamics in the unbroken phase is beyond our reach (as was also the case in [25].) This
phase can still be studied numerically, either on the lattice using (3.3) or in the continuum
field theory (5.2). This phase may also be accessible analytically using non-perturbative
techniques, like perhaps taking some sort of large N limit.

It would also be of great interest to study the phase transition between broken and
unbroken phases. However, as the effective Lagrangian (5.2) is non-Gaussian and strongly
coupled in the vicinity of the phase transition, even a mean field approximation of the
transition is not possible. It is not even clear if the phase transition is continuous or first
order, and the literature on phase transitions in similar models is uncertain.

For example the plaquette Ising model [27], which is the Z2 version of the classical
XY-plaquette model (3.3), has been shown to undergo a weakly first order phase transi-
tion [28, 29]. On the other hand a recent study of the phase transition in models related
to the ZN versions of the X-cube model indicated that the transition is continuous for
N > 4 [17]. As the plaquette Ising model is dual to the Z2 X-cube model [13], these two
results are in agreement. One may then think of the XY-plaquette model as a N → ∞
limit of ZN models, in which case the phase transition is likely continuous, though more
numerical or analytical evidence is needed to confirm this conjecture.

5.2 Generalizations and interacting theories

Aside from modelling the unbroken phase and the phase transition, it would also be inter-
esting to construct interacting continuum field theories based on the classical XY-plaquette
model. We present two general systematic constructions of such theories: the first method
is to gauge the U(1) subsystem symmetry to a tensor gauge theory in the spirit of [25],
while the second idea is to promote a global U(1) symmetry to a subdimentional symmetry.

The most straightforward generalization of the classical XY-plaquette model is to gauge
the symmetry (3.6). This can be done by starting with the generalized Lagrangian (5.1),
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and then replacing the derivative term Φ∂i∂jΦ−∂iΦ∂jΦ with a “covariant” derivative term
similar to [25],

Dij [Φ,Φ] = Φ∂i∂jΦ− ∂iΦ∂jΦ− iAijΦ2. (5.3)

Here Aij is a symmetric U(1) tensor gauge field with the transformation properties Aij →
Aij + ∂i∂jα, while Φ→ eiαΦ under a gauge transformation.

We would also need to add a kinetic term for this gauge field, and in general we
one could investigate this tensor gauge theory in its own right. The gauge invariant field
strength of this theory would be [8]

F[ij]k = ∂iAjk − ∂jAik, (5.4)

and the kinetic term takes the form F[ij]kF
[ij]k. We note that such a theory only makes

sense in d ≥ 3, similar to how standard gauge theory only makes sense in d ≥ 2. From here
one can continue studying conservation laws, defects, and dynamics, similar to the gauge
theories considered in [7, 8, 25, 30].

A different approach to systematically construct interacting theories from the classical
XY-plaquette model is by promoting a global U(1) symmetry to a subsytem symmetry.
This procedure is reminiscent of the gauge principle, where one promote a global symmetry
to a local one.

For example we can start out with a field theory involving a single complex scalar field
ψ which is charged under a global U(1) symmetry, and a Lagrangian

L = ∂µψ
†∂µψ + V (ψ†ψ). (5.5)

Then we would like to partially gauge the global symmetry into a subsystem symmetry.
This can be done by introducing a “covariant” derivative

Dµψ = (∂µ − ig∂µφ)ψ, (5.6)

where φ acts as the analog of a gauge field. Under the subsystem symmetry φ transforms
as (3.6), while ψ → e

ig
∑

µ
fµ(xµ)

ψ. The full action of this theory would then become

L = Dµψ
†Dµψ + V (ψ†ψ) +

∑
µ 6=ν

∂µ∂νφ∂
µ∂νφ. (5.7)

The resulting theory is an interacting field theory with a subsystem symmetry.
In essence one can partially gauge any theory with a conserved U(1) charge, resulting

in a whole new family of theories to play with. It would be interesting to investigate how
these partially gauged theories behave, how to generalize them to non-Abelian symmetries,
and perhaps to understand if they have analogous Coulomb and Higgs phases. Finally, we
note that this partial gauging procedure can also be used to construct interacting theories
coupled to the XY-plaquette models of [7, 8], which would also be interesting to investigate.
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A Correlation functions in the classical XY-plaquette model

The structure of correlation functions of simple uncharged operators is very non-standard in
models with subsystem symmetry. In particular these correlation functions tend to diverge
even when the operators are far apart, but one of the spatial variables is close [11]. Such UV
divergences in IR correlation functions has been considered a hallmark of UV/IR mixing.
As such, we are interested in computing the correlation functions of the simple operators
∂i∂jφ, and to observe any patterns of UV/IR mixing in the classical XY-plaquette model.
We will focus our analysis on the theory in two and three dimensions for simplicity, and
we think this also provides a general qualitative idea of the structure of the correlation
functions even in higher dimensions.

2 dimensions. For d = 2 we can compute the correlation function directly as

〈∂1∂2φ(x)∂1∂2(0)φ〉 = g

∫
d2k

(2π)2 e
i(k1x1+k2x2) = gδ(x1)δ(x2). (A.1)

This correlation function is somewhat simplistic, but does contain some interesting
features. Notice that the correlation function is indeterminate when x1 or x2 are zero,
which resembles the UV/IR mixing of correlation functions in [11]. However, unlike in
the XY plaquette model of [7, 11], this divergent behavior cannot be regularized by an IR
regulator (say by putting the system on a torus,) but rather requires a UV regulator. A
similar picture appears in 3 dimensions, though there the correlation functions have more
structure.

3 dimensions. In three dimension we can compute the 2-point correlation function of
∂1∂2φ to be

〈∂1∂2φ(x)∂1∂2(0)φ〉 = g

∫
d3k

(2π)3
k2

1k
2
2

k2
1k

2
2 + k2

1k
2
3 + k2

2k
2
3
ei(k1x1+k2x2+k3x3)

= g

2

∫
d2k

(2π)2
|k1||k2|√
k2

1 + k2
2

e
i(k1x1+k2x2)− |k1||k2||x3|√

k2
1+k2

2

= g

8π2

∫
dθdrr2| sin θ cos θ|eir(cos θx1+sin θx2)−r| sin θ cos θ||x3|

= g

4π2

∫ 2π

0
dθ
x3 sin2 θ cos2 θ

(
x2

3 sin2 θ cos2 θ − (x1 cos θ + x2 sin θ)2
)

(
x2

3 sin2 θ cos2 θ + (x1 cos θ + x2 sin θ)2)3
(A.2)
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This result is finite if xi 6= 0 for i = 1, 2, 3, but diverges when the two operators share
one of the same coordinates. We can expand this integral around these limits to see how
it diverges. If we take x3 → 0 then we see that

〈∂1∂2φ(x1, x2, x3 → 0)∂1∂2(0)φ〉 =
g
√
x2

1 + x2
2

8π|x1x2|
· x−2

3 +O(1). (A.3)

On the other hand if we take x1 → 0 then

〈∂1∂2φ(x1 → 0, x2, x3)∂1∂2(0)φ〉 = g

8πx2
3
· |x1|−1 +O(1), (A.4)

and taking x2 → 0 results in a similar expression with x2 replacing x1.
We can also work in cylindrical coordinates, defining x1 = ρ cos(δ), x2 = ρ sin(δ), in

which case the 2-point function becomes

〈∂1∂2φ(x)∂1∂2(0)φ〉 = ‘ g

4π2x3
3

∫ 2π

0
dθ

sin2 θ cos2 θ
(
sin2 θ cos2 θ − ρ2

x2
3

cos2(θ − δ)
)

(
sin2 θ cos2 θ + ρ2

x2
3

cos2(θ − δ)
)3 , (A.5)

where the integral is only a function of ρ/x3. In the limit x3 � ρ we get

〈∂1∂2φ(x)∂1∂2(0)φ〉 ≈ g

4π| sin(2δ)|x2
3ρ
, (A.6)

while in the limit ρ� x3 the integral evaluates to

〈∂1∂2φ(x)∂1∂2(0)φ〉 ≈ g| sin δ|+ | cos δ|
4π| sin(2δ)|x2

3ρ
. (A.7)

In all these limits the 2-point function diverges even though the operators are separated.
This is similar to the divergence of correlation functions as two operators are brought close
together, only in this case the operators stay separated and only the separation in one of
their coordinates is taken to be close. This behavior is similar to the one obsercved in [11].

However, unlike in [7, 11], this divergence must be regulated by a UV regulator, and
cannot be regulated by an IR regulator (i.e. putting the system in a finite volume.) To see
this, we can take space to be a 3-Torus with equal lengths `, so that the momenta take the
discrete values ki = 2πni/`. Now the 2-point function becomes

〈∂1∂2φ(x)∂1∂2(0)φ〉 = g

`3

∑
n1,n2,n3∈Z

n2
1n

2
2

n2
1n

2
2 + n2

1n
2
3 + n2

2n
2
3
ei2π(n1x1+n2x2+n3x3)/` (A.8)

Taking x1 = 0 it is clear that the sum over n1 at fixed n2, n3 does not converge, as is the
case when taking x2 = 0. If we take x3 = 0 then we can still sum over n3, giving us

〈∂1∂2φ(x1, x2, 0)∂1∂2(0)φ〉 = g

`3

∑
n1,n2,n3∈Z

n2
1n

2
2

n2
1n

2
2 + n2

1n
2
3 + n2

2n
2
3
ei2π(n1x1+n2x2)/`

= πg

`3

∑
n1,n2∈Z

|n1n2|√
n2

1 + n2
2

ei2π(n1x1+n2x2)/` coth

 π|n1||n2|√
n2

1 + n2
2

 ,
(A.9)

but now the sum over n1 and n2 is not convergent, and it still requires a UV regulator.
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As this divergence cannot be regulated by IR regulator, it is unclear to us how these
correlation functions fit into the picture of UV/IR mixing. Furthermore, one can define a re-
normalized operator O12 ∼ Λ3/2∂x∂yφ, where Λ is some UV scale. Then this renormalized
operator would have a finite 2-point function of the form

〈O12(x1, x2, x3)O12(y1, y2, y3)〉=
{
C, x3−y3 = x1−y1 = 0, or x3−y3 = x2−y2 = 0,
0, otherwise,

(A.10)
where C is some constant that depends on the re-normalization scheme. This renormalized
operator has restricted mobility as it can only correlate along lines of fixed x1 and x2 in
the x1–x2 plane, and in terms of these renormalized operators the theory would have no
knowledge of the UV physics.

However we are unconvinced that this is the correct way to describe the IR theory, and
are skeptical if this divergence of the 2-point function should be regulated at all. Rather,
we think this divergence is contains important information about the IR physics, and the
causal structure of the theory. An analogous situation arises in relativistic quantum field
theory, where it is common for propagators diverge on the light cone. This light cone
singularity is a genuine property of the IR physics and the structure of space-time, and
not something which is needs to be regulated away. In any case it would be interesting to
further understand the consequences of these divergences, and to fit them more squarely
into the picture of UV/IR mixing.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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