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1 Domain walls in 4d N = 1 SYM

4d N = 1 super Yang-Mills (SYM) — Yang-Mills theory with a massless adjoint fermion —
is believed to share with QCD nonperturbative phenomena such as confinement, existence
of a mass gap, and chiral symmetry breaking. 4d N = 1 SYM with simple and simply-
connected gauge group G has h trivial vacua arising from the spontaneously broken Z2h
chiral R-symmetry down to Z2, where h is the dual Coxeter number of G (see table 1).
The vacua are distinguished by the value of the gluino condensate [1–3]

〈trλλ〉 = Λ3e2πia/h , a = 0, 1, . . . , h− 1 . (1.1)
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Figure 1. Vacua of 4d N = 1 SYM realized as the h roots of unity in the 〈trλλ〉-plane, where
Z2h acts by a 2π/h rotation. Wn denotes the domain wall interpolating between vacua separated
by n steps counterclockwise, and Wn the domain wall connecting the same vacua but with its
orientation reversed. Clearly, Wn = Wh−n.

A supersymmetric domain wall that interpolates between two arbitrary vacua a and b at
x3 → ±∞ can be defined. The Z2h symmetry implies that the domain wall theory depends
only on the difference between vacua, on n ≡ a − b mod h. We denote the resulting 3d
low energy theory on the wall by Wn (see figure 1).

While the n-wall tension is fixed by the supersymmetry algebra [4], it is a nonpertur-
bative problem to determine the low energy (i.e. E � Λ) effective theory on the domain
wall. A supersymmetric domain wall preserves 3d N = 1 supersymmetry and therefore
a universal 3d N = 1 Goldstone multiplet describes the spontaneously broken translation
and supersymmetry. The nontrivial dynamical question is whether anything else remains
in the infrared, a topological quantum field theory (TQFT) or gapless modes and, if so,
which one(s).

In this paper we put forward a detailed answer to this question for all the n-domain
walls for G = SU(N), Sp(N), Spin(N) and G2, and for n = 1 for arbitrary gauge group G.1
The proposal for G = SU(N) was put forward long ago by Acharya-Vafa [7] motivated by
brane constructions.2 We provide nontrivial new evidence for the SU(N) proposal and for
all the new proposals in this paper. The case G = Spin(N) is particularly subtle and rich.

We conjecture that the infrared of the n-domain wall theory in 4d N = 1 SYM with
gauge group G is the infrared phase of 3d N = 1 SYM with gauge group G and Chern-

1Vacua of 4d N = 1 SYM when G is not simply connected can be nontrivial [5, 6]. The presence of a
4d TQFT means that there is no purely 3d wall theory.

2The Sp(N) case was mentioned in [8, 9]. For a partial list of references on domain walls in 4d gauge
theories see e.g. [10–21].
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Simons level
k = 1

2h− n . (1.2)

In other words, we propose the infrared description

Wn in 4d N = 1 SYM with G ←→ 3d N = 1 SYM with Gh/2−n . (1.3)

Since the n and h− n domain walls are related by time-reversal (see figure 1), consistency
of this proposal requires that the corresponding infrared phases must also be related by
time-reversal, that is, by sending k → −k in the 3d theory. This requirement is indeed
fulfilled by the identification between n and k in (1.2).

Determining the infrared phase of 3d N = 1 SYM is also a nonperturbative problem.
In [22] it was proposed that this theory flows in the infrared to a nontrivial TQFT. The
domain wall theories, we conjecture, are the “quantum phases” put forward in [22–24].
This predicts the following domain wall theories:3

• G = SU(N). The n-domain wall theory is Wn = U(n)N−n,N Chern-Simons theory.
This reproduces the proposal in [7].

• G = Sp(N). The n-domain wall theory is Wn = Sp(n)N+1−n Chern-Simons theory.

• G = Spin(N). The n-domain wall theory is Wn = O(n)1
N−2−n,N−n+1 Chern-Simons

theory. We review the construction of this TQFT in section 4.3.

• G = G2. The theory has h = 4 vacua and two independent walls: n = 1, 2. The
2-domain wall theory is W2 = SO(3)3 × S1, with SO(3)3 Chern-Simons theory and
S1 the 3d sigma model on the circle. For the n = 1 wall see below.

The expectation is that the n and (h−n)-domain walls are related by time-reversal, that is
Wh−n = Wn (see figure 1). This is realized by virtue of the level-rank dualities of Chern-
Simons theories [23, 25, 26] and time-reversal flipping the sign of the Chern-Simons levels:

U(N − n)n,N ←→ U(n)−(N−n),−N

Sp(N + 1− n)n ←→ Sp(n)−(N+1−n)

O(N − 2− n)1
n,n+3 ←→ O(n)1

−(N−2−n),−(N−n+1) .

(1.4)

The domain walls with n = h/2 are nontrivially time-reversal invariant. These TQFTs
emerge in the infrared of 3d N = 1 SYM G0, with vanishing Chern-Simons level, which is
time-reversal invariant.

We also conjecture that:

• Arbitrary group G. The n = 1 domain wall theory connecting neighboring vacua is
W1 = G−1 Chern-Simons theory. This is consistent with the proposals put forward
above due to the level-rank dualities U(1)N ↔ SU(N)−1, Sp(1)N ↔ Sp(N)−1 and
O(1)1

N−3,N = (Z2)N ↔ Spin(N)−1.
3The notation Gk for Chern-Simons theories refers to Chern-Simons theory with gauge group G at level

k ∈ Z. The Chern-Simons theory U(n)k,k′ ≡
SU(n)k×U(1)nk′

Zn has two levels, and the theory based on O(n)
has three levels (see section 4.3).
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We subject the conjecture (1.3) to a number of nontrivial quantitative tests. We exactly
match renormalization-group invariant partition functions computed in the 4d N = 1
domain walls with the corresponding partition functions computed in the proposed infrared
3d TQFTs. This lends nontrivial support for our domain wall proposals in 4d N = 1 SYM.
We stress that one computation is performed using the 4d degrees of freedom, and the
other using the proposed 3d TQFT degrees of freedom.

The most basic partition function of the n-domain wall is the Witten index [27, 28]

In = trWn(−1)F , (1.5)

where trWn denotes the trace over the torus Hilbert space of Wn with periodic bound-
ary conditions, and (−1)F fermion parity. This partition function was first computed by
Acharya and Vafa in [7] using the 4d N = 1 SYM fields.

We introduce and compute additional partition functions on the domain wall theory
where the Witten index is twisted by a global symmetry of SYM. 4d N = 1 SYM with
gauge group G can have charge conjugation zero-form symmetry C and one-form symmetry
Γ [29].4 Γ is the center of G, since the fermion in 4d N = 1 SYM is in the adjoint
representation of the gauge group. The symmetries C and Γ do not commute when acting
on Wilson lines, and combine into S = Γ o C (see table 1). C acts on local operators and
Wilson lines, and Γ on the Wilson lines of the theory. These symmetries are unbroken in
each of the h vacua of 4d N = 1 SYM. S is the unbroken symmetry at each vacuum, while
Z2h is spontaneously broken to Z2. This allows us to define the following twisted Witten
indices on the n-domain wall theory5

Ic
n = trWn(−1)F c , (1.6)

where c ∈ C, and
Ig
n = trWn(−1)F g , (1.7)

where g ∈ Γ. Consistency of our conjecture requires that these partition functions, com-
puted on either side of (1.3), match. We compute the Witten indices in terms of the 4d
degrees of freedom in section 2, and in the 3d TQFTs in section 4.

Computing the domain wall Witten indices on the 3d side of the proposal requires
understanding the Hilbert space of spin TQFTs, and not merely counting the number of
states on the torus, as has been often stated in the literature. We delve into the details of
constructing the Hilbert space of spin TQFTs and determining the fermionic parity of the
states in section 3. The (twisted) Witten indices (1.5), (1.6), (1.7) map to twisted partition
functions in the infrared spin TQFT. Importantly, the dimension of the Hilbert space and
the index differ in general, as we shall see. In particular, the index sometimes vanishes in
theories of interest. While the index can vanish, the twisted indices are non-vanishing, and
supersymmetry on the domain wall is unbroken.

4C is the outer automorphism group of the Dynkin diagram g of G while S is the outer automorphism
group of the extended Dynkin diagram g(1) of the affine Lie algebra associated to G. The group Γ is defined
as the quotient S/C, i.e., the symmetries of g(1) that are not symmetries of g.

5One could also twist by any element cg ∈ S.
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G SU(N) Sp(N) Spin(2N + 1) Spin(4N) Spin(4N + 2) E6 E7 E8 F4 G2

h N N + 1 2N − 1 4N − 2 4N 12 18 30 9 4

C Z2 · · Z2 Z2 Z2 · · · ·

Γ ZN Z2 Z2 Z2 × Z2 Z4 Z3 Z2 · · ·

S DN Z2 Z2 D4 D4 S3 Z2 · · ·

Table 1. Lie data for the simple Lie groups G. Here h denotes the dual Coxeter number (defined
as tr(tadjt

′
adj) ≡ 2h(t, t′), where (·, ·) denotes the Killing form on g, normalized so that the highest

root has (θ, θ) = 2). C, Γ are the zero-form and one-form symmetry groups of 4d N = 1 SYM
with gauge group G, and S = Γ o C. DN denotes the dihedral group with 2N elements, and SN

the symmetric group with N ! elements. For SU(2) the zero-form symmetry group is trivial, and for
Spin(8) the zero-form symmetry group is enhanced to S3 and the total symmetry group to S4. The
DN symmetry of pure SU(N) YM was considered in [30].

We summarize here the results of our computations, performed both in terms of the
4d fields and the conjectured 3d topological degrees of freedom, for which we find perfect
agreement. We find it convenient to organize the results into master partition functions,
which are defined as the generating functions for the twisted Witten indices. In other
words, we sum the (twisted) partition functions over all n-walls:

Zs(q) :=
h∑

n=0
Is
nq
n , (1.8)

where q is a fugacity parameter, and where s ∈ S is an element of the unbroken symmetry
group. These partition functions have an elegant interpretation as twisted partition func-
tions of a collection of free fermions in 0 + 1 dimensions with energies determined by the
Lie data of G (see section 2). Interestingly, the twisted partition function can be expressed
as the untwisted partition function of an associated affine Lie algebra, whose extended
Dynkin diagram is obtained by the “folding procedure” introduced in [31].

The master partition functions take a rather simple form:

• SU(N):

Z(q) = (1− q)N (1.9)

Zc(q) =

(1− q)(1− q2)(N−1)/2 N odd,

(1− q)2(1− q2)(N−2)/2 N even,
(1.10)

Zg(q) =
N−1∏
i=0

(1− giq) , (1.11)

where c denotes the non-trivial element of C = Z2, and g is any element of Γ = ZN ,
thought of as an N -th root of unity.
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• Sp(N):

Z(q) = (1− q)N+1 (1.12)

Zg(q) =

(1− q)(1− q2)N/2 N even,

(1− q2)(N+1)/2 N odd,
(1.13)

where g denotes the non-trivial element of Γ = Z2.

• Spin(N), N odd:

Z(q) = (1− q)3(1− q2)(N−1)/2−2 (1.14)

Zg(q) = (1 + q)(1− q)2(1− q2)(N−1)/2−2 , (1.15)

where g denotes the non-trivial element of Γ = Z2.

• Spin(N), N even:

Z(q) = (1− q)4(1− q2)N/2−3 (1.16)

Zc(q) = (1− q)2(1− q2)N/2−2 , (1.17)

where c denotes the non-trivial element of C = Z2.

– N = 0 mod 4: Γ = Z2 × Z2 = {1, g1, g2, g1g2}

Zg1(q) = (1− q2)N/2−1

Zg2(q) = Zg1g2(q) = (1− q2)3(1− q4)N/4−2 .
(1.18)

– N = 2 mod 4: Γ = Z4 = {1, g, g2, g3}

Zg(q) = Zg3(q) = (1− q4)(N/2−1)/2

Zg2(q) = (1− q2)N/2−1 .
(1.19)

• G2:
Z(q) = (1− q)2(1− q2) . (1.20)

Expanding these formulas in a series in q yields Is
n (see section 2). See also section 2.6 for

the n = 1 domain wall twisted Witten indices for arbitrary simply-connected G.
The plan of the rest of the paper is as follows. In section 2 we review the calculation

of the untwisted Witten index for general domain walls in 4d N = 1 SYM, develop the
necessary tools to study the twisted indices, and present a detailed calculation thereof, for
all the classical Lie groups. In section 3 we explain how the Hilbert space of a spin Chern-
Simons theory is constructed and, in particular, how to determine the fermion parity (−1)F
of the different states. In section 4 we use this refined understanding of spin Chern-Simons
theories to compute the twisted partition functions of the 3d TQFTs that, conjecturally,
describe the infrared dynamics of the domain walls, and show exact agreement. We end
with some forward-looking comments in section 5. We delegate to appendices some techni-
cal details that are needed in the computation of the twisted partition functions in section 4
and some additional material.
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2 Twisted Witten indices

In this section we study the twisted Witten indices on the 3d N = 1 domain walls, as
computed in terms of the ultraviolet 4d degrees of freedom, namely the gluons and gluinos.
This requires considering 4d N = 1 SYM on a two-torus and quantizing the space of zero
energy states. This leads to a 2d N = (2, 2) sigma model on the moduli space of flat G-
connections on a two-torus, which is the weighted projective space WCPr

a∨0 ,a
∨
1 ,...,a

∨
r
, where

a∨i is the comark for the i-th node in the extended Dynkin diagram g(1) of the affine Lie
algebra associated to G and r = rank(G) [32, 33]. Just as 4d N = 1 SYM, this 2d theory
also has h quantum vacua. A supersymmetric domain wall in 4d N = 1 SYM corresponds
to a supersymmetric soliton in the 2d N = (2, 2) sigma model [7].

Using the 2d N = (2, 2) sigma model, Acharya and Vafa argued that the Witten index
of the domain wall is encoded in the Hilbert space of r+1 free fermions in 0+1 dimensions.
Each fermion ψi is associated to the i-th node of the extended Dynkin diagram g(1) of G
and the energy of each fermion is a∨i . The fermion Hilbert space is graded by the energy
of the states

HF =
h⊕

n=0
HnF , (2.1)

where the maximal energy is h since h = ∑r
i=0 a

∨
i . HnF denotes the subspace of energy n,

that is, the configurations such that
r∑
i=0

λia
∨
i = n , (2.2)

where λi ∈ {0, 1} is the occupation number of the i-th fermion. The Witten index for the
n-domain wall (1.5), with the Goldstino multiplet contribution removed, is the trace over
the fermion Hilbert space HnF [7]

In = trWn(−1)F ≡ trHnF(−1)F . (2.3)

The Witten index of all n-domain walls is encoded in the partition function of the fermions
with periodic boundary conditions on a circle, corresponding to a sum over all states
weighted by the energy:

Z(q) = trHF(−1)F qH =
h∑

n=0
Inq

n . (2.4)

This partition function is readily evaluated

Z(q) =
r∏
i=0

(1− qa∨i ) , (2.5)

which implies, in particular, that the Witten index for the n and h− n wall are the same
(In = (−1)r+1Ih−n) since the fermionic Hilbert space for the n and h− n walls are related
by particle-hole symmetry. This beautifully reproduces the expectation that the n domain
wall and the h− n domain wall (cf. figure 1) are related to each other by time-reversal!

– 7 –
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A symmetry s ∈ S of 4d N = 1 SYM acts in a simple way on the Wilson lines of
the gauge theory. A Wilson line is labeled by a representation of G with highest weight
λ ≡ λ1ω1 + λ2ω2 + · · · + λrωr, where ωi is the fundamental weight associated to the i-th
node of the Dynkin diagram g. The Wilson line Wi labeled by the fundamental weight ωi
transforms under c ∈ C as

c : Wi 7→ Wc(i) , (2.6)

where ωc(i) is the fundamental weight which is charge conjugate to ωi. An element g ∈ Γ
acts by

g : Wi 7→ αg(ωi)Wi , (2.7)

where αg(ωi) ∈ Γ∗ is the charge of ωi under the center Γ of G. The action of a symmetry
on the fundamental Wilson lines Wi induces an action on the fermions ψi, which are
labeled by a node in the extended Dynkin diagram g(1). We recall that C acts as an outer
automorphism of g, S acts as an outer automorphism of g(1) and Γ = S/C.

We now proceed to compute the Witten index on the domain wall twisted by the
symmetries of the system, S. This group is identified with the group of symmetries of the
extended Dynkin diagram g(1), i.e., a given s ∈ S can be thought of as a permutation of the
nodes i 7→ s(i) that leaves the diagram g(1) invariant. The induced action on the effective
0 + 1 system of fermions is

s : ψi 7→ ψs(i) , (2.8)

where ψi is the fermion associated to the i-th node of g(1). This means that the symmetry
s lifts to a map HF → HF which, by definition, commutes with the Hamiltonian,

[H, s] = 0 , (2.9)

inasmuch as a∨i ≡ a∨s(i). Thus, s restricts to a well-defined action on HnF, i.e., it preserves
the grading (2.1). The twisted Witten index is

Is
n = trWn(−1)F s ≡ trHnF(−1)F s . (2.10)

Similarly, the twisted partition function computes the generating function of twisted
indices:

Zs(q) = trHF(−1)F s qH =
h∑

n=0
Is
nq
n . (2.11)

An efficient way to compute this partition function is as follows. Take the i-th fermion,
and consider its orbit under s:

ψi 7→ ψs(i) 7→ ψs2(i) 7→ · · · 7→ ψsNi (i) ≡ ψi , (2.12)

where Ni denotes the length of the orbit of the i-th node under the symmetry s, i.e., the
minimal integer such that sNi(i) ≡ i. In the trace (2.10), the only configurations that
contribute are those where the occupation number λi in (2.2) is constant along the orbit:

λi = λs(i) = λs2(i) = · · · = λsNi−1(i) . (2.13)

– 8 –
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This means that we may restrict the sum over HnF in (2.2) to those configurations where
this identity is satisfied. We enforce this by dropping all but one of these labels, and
multiplying its energy by Ni, i.e., we replace (2.2) by

r′∑
i=0

λia
′
i
∨ = n , (2.14)

where the sum is over one representative for each orbit, r′ is the number of orbits of s, and
a′i
∨ = Nia

∨
i is the combined energy of all the elements of the orbit of λi. With this, the

twisted Witten index (1.6) on the domain wall can be computed as the untwisted partition
function of r′ + 1 free fermions with energies a′i∨:

Zs(q) =
r′∏
i=0

(1− qa′i∨) . (2.15)

Since h = ∑r′
i=0 a

′∨
i we see that Is

n = (−1)r′+1Is
h−n, as required by time-reversal.

Diagrammatically, twisting by a symmetry folds the Dynkin diagram g(1) according
to the action of s on the nodes [31]. This yields a new affine Dynkin diagram, which has
r′ + 1 < r + 1 nodes, and comarks a′i∨ = Nia

∨
i . The twisted Witten index is identical to

the untwisted Witten index of the folded diagram.
A quick remark is in order. Let λ′i be a node in the folded diagram, and let Ni be the

number of nodes in the original diagram that folded into λ′i. The node λ′i is therefore a
bound state of Ni fermions, and thus has fermion parity (−1)F = (−1)Ni . Moreover, the
symmetry s permutes these fermions, which generates an extra sign corresponding to the
signature of the permutation. When the permutation is cyclic, which is the case relevant to
this paper, the signature is just Ni−1. All in all, the contribution of λ′i to the twisted trace
is (−1)F s = (−1)(Ni+Ni−1) = −1. Therefore, in the folded diagram the node behaves as a
regular fermion, just with more energy, and so (2.15) is correct as written: the fermionic
signs are all taken care of automatically by the folding.

The twisted Witten index can also be computed by diagonalizing the action of s (2.12)
by a direct sum of unitary transformations, one for each orbit, which is a symmetry of the
collection of fermions. In this basis, s acts with eigenvalue si on the i-th fermion, where si is
an Ni-th root of unity. The twisted partition function can, therefore, also be expressed as

Zs(q) =
r∏
i=0

(1− si qa
∨
i ) . (2.16)

This also makes the action of time-reversal symmetry on the domain walls manifest, cf. Is
n =

(−1)r+1 det(s)Is
h−n, where det(s) = s0s1 · · · sr = (−1)r+r′ is the parity of the permutation

induced by s. We now discuss zero-form symmetries and one-form symmetries in turn.

Zero-form symmetries. 4d N = 1 SYM has charge conjugation symmetry C if and
only if the (unextended) Dynkin diagram g of the Lie algebra of G has a symmetry. This
corresponds to an outer automorphism of the Lie algebra of G (see table 1). Such sym-
metry is present for the Ar, Dr, E6 algebras, where C acts as a transposition (order-two
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permutation) on the nodes of the Dynkin diagram (with low-rank exceptions A1, D4). In
this case, folding the diagram by C gives rise to what is usually called the twisted affine
Dynkin diagram g(2) [34, 35], which is constructed by identifying the nodes of g that are
permuted by C (and adding the extending node).

As C = Z2, the eigenvalues in (2.16) are trivial to determine: if a node i is fixed by
c ∈ C, then its eigenvalue is ci = +1. On the other hand, if the pair of nodes i, j are
swapped, then the eigenvalues are ±1, which can be assigned as ci = +1 and cj = −1 (or
vice-versa).

One-form symmetries. As discussed in section 1, 4d N = 1 has a one-form symmetry
group Γ given by the center of the gauge group G. Here, the eigenvalues si in (2.16) have
a very natural interpretation. An element g ∈ Γ acts as an outer automorphism of g(1), a
permutation of the r + 1 nodes. Diagonalizing this permutation results on an eigenvalue
gi on the fermion ψi associated to the i-th node, which is the charge of the element of the
center g ∈ Γ on the i-th fundamental weight of g [36–40], that is

gi = αg(ωi) . (2.17)

Note that this is precisely how g ∈ Γ acts on the ultraviolet Wilson loops Wi (cf. (2.7)).
We now proceed to compute the twisted Witten indices for G = SU(N), Sp(N),

Spin(N), and G2 respectively.

2.1 G = SU(N)

Consider the algebra AN−1 = suN . The symmetries of this algebra are as follows:

• The group SU(N) has a Z2 zero-form symmetry, which corresponds to complex con-
jugation. It acts by interchanging the i-th node with the (N − i)-th node in g. The
associated diagonal action can be chosen as follows: take c0 = +1 for the extended
node, and ci = +1 for the first half of the unextended nodes, and ci = −1 for the
second half.

• The group SU(N) has a ZN one-form symmetry, whose associated charge is the N -
ality (the number of boxes in the Young diagram modulo N). If g denotes a primitive
root of unity, then a generic element gt ∈ ZN acts on the extended diagram g(1) as a
cyclic permutation by t units, λi 7→ λi+t mod N . The center acts on a representation
with highest weight λ as follows:

αg(λ) ≡
N−1∏
i=0

giλi , (2.18)

which means that the eigenvalues in (2.16) are gi = gi.

Let us begin by computing the untwisted partition function. The comarks are all
a∨i = 1. Plugging this into equation (2.5) we obtain the untwisted partition function

Z(q) = (1− q)N , (2.19)
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and, expanding, the Witten index

In = (−1)n
(
N

n

)
. (2.20)

This result was also obtained, by an entirely different method, in [41].
We now move on to the twisted indices. Charge conjugation acts on the extended

Dynkin diagram A
(1)
N−1 as follows:

1

1 1 1 1 1 1
· · ·

(2.21)

where the blue node denotes the affine root, and the integers denote the comarks a∨i . The
automorphism folds the diagram in half.6 The result is

A
(1)
2m−1 7→ A

(2)
2m−1 : 22

· · ·
121 2

A
(1)
2m 7→ A

(2)
2m :

22
· · ·

221 2

(2.22)

where the folded diagrams both have m + 1 = bN/2c + 1 nodes. From this we conclude
that the folded diagram has r′ + 1 = (N + 1)/2 and r′ = (N + 2)/2 nodes for N odd and
N even, respectively. In the first case, one node has comark equal to 1, and the rest equal
to 2; while in the second case, there are two nodes with comark 1, and the rest equal to 2.
Using (2.15), the c-twisted partition function is7

Zc(q) =

(1− q)(1− q2)(N−1)/2 N odd,

(1− q)2(1− q2)(N−2)/2 N even,
(2.23)

and, expanding, the c-twisted Witten indices are

Ic
n =



(−1)n/2
(

(N − 1)/2
n/2

)
N odd, n even,

(−1)(n+1)/2
(

(N − 1)/2
(n− 1)/2

)
N odd, n odd,

(−1)n/2
[((N − 2)/2

n/2

)
−
(

(N − 2)/2
n/2− 1

)]
N even, n even,

2(−1)(n+1)/2
(

(N − 2)/2
(n− 1)/2

)
N even, n odd.

(2.24)

6For N odd, the (N ± 1)/2-th nodes would naively fold into a loop, which does not yield a valid Dynkin
diagram. The correct folding is given by the theory of twisted Kač-Moody algebras [34, 35]. We henceforth
fold the diagrams following [34, 35]. The only information we need from the diagram are the comarks.

7In SU(2) the action of c is a gauge transformation and c is not a symmetry; indeed, Zc(q) = Z(q).
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One can also compute the partition function in the diagonal basis, where ci = +1 for the
first half of the nodes, and ci = −1 for the second half. Plugging this into (2.16) yields the
same expression for the twisted partition function.

Let us now consider the partition function twisted by the Γ = ZN one-form symmetry.
If g denotes a primitive N -th root of unity, then a generic element gt ∈ ZN acts on the
extended diagram as follows:

1

1

1

1

1

1

1

1

7→ N
gcd(N,t)

N
gcd(N,t)

N
gcd(N,t)

N
gcd(N,t)

N
gcd(N,t)

N
gcd(N,t)

(2.25)
where the folded diagram has gcd(N, t) nodes, each with energy N/ gcd(N, t). In other
words, gt folds the diagram into the affine diagram of SU(gcd(N, t)), with comarks
N/ gcd(N, t). This immediately yields the twisted partition function as (2.15)

Zgt(q) = (1− qN/ gcd(N,t))gcd(N,t) . (2.26)

The twisted index reads

Igt
n =


(−1)n gcd(N,t)/N

(
gcd(N, t)

n gcd(N, t)/N

)
N |n gcd(N, t),

0 otherwise.

(2.27)

Naturally, for t = 0 this reduces to the untwisted result.
Alternatively, we may compute the same partition function in the diagonal basis. Using

equations (2.16) and (2.18), the twisted partition function is given by

Zg(q) =
N−1∏
i=0

(1− giq) ≡ (q; g)N , (2.28)

the so-called q-Pochhammer symbol, essentially defined by this product. One may prove
that this is in fact identical to (2.26). Expanding the product, the twisted index becomes

Ig
n = (−1)ng

1
2n(n−1)

(
N

n

)
g
,

(
N

n

)
g

:= (g; g)N
(g; g)n(g; g)N−n

, (2.29)

where the term in parentheses denotes the so-called q-binomial coefficient. This is again
identical to (2.27).
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2.2 G = Sp(N)

Consider the algebra CN = spN . The symmetries of this algebra are as follows:

• The group Sp(N) has no zero-form symmetry.

• The group Sp(N) has a Z2 one-form symmetry, whose charged representations are
the pseudo-real ones. The non-trivial element g ∈ Z2 acts on the extended diagram
by reversing the nodes λi 7→ λN−i. The center acts on a representation λ as follows:

αg(λ) ≡ (−1)
∑b(N−1)/2c

i=0 λ2i+1 , (2.30)

which means that the eigenvalues in (2.16) are gi = (−1)i.

Let us begin by computing the untwisted partition function. The comarks for Sp(N)
are all equal to one, i.e. a∨i = 1 for i = 0, 1, . . . , N . Plugging this into equation (2.5) we
obtain the untwisted partition function

Z(q) = (1− q)N+1 , (2.31)

and, expanding, the Witten index

In = (−1)n
(
N + 1
n

)
. (2.32)

4d Sp(N) N = 1 SYM has no charge conjugation symmetry. We can consider instead
the index twisted by the Γ = Z2 one-form center symmetry, which acts on the extended
Dynkin diagram as follows:

1 1 1 1 1 1
· · ·

(2.33)

where the blue node denotes the affine root, and the integers denote the comarks a∨i . The
automorphism folds the diagram in half (see footnote 6). The result is

C
(1)
2m 7→ A

(2)
2m :

22
· · ·

122 2

C
(1)
2m−1 7→ C

(1)
m−1 : 22

· · ·
222 2

(2.34)

where the folded diagrams have m+ 1 = bN/2c+ 1 nodes.
From this we learn that the folded diagram has r′+1 = (N+2)/2 and r′+1 = (N+1)/2

nodes, for N even and N odd, respectively. In the first case, one of these nodes has energy
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equal to 1, and the rest equal to 2; while in the second case, they are all of energy 2.
Plugging this into (2.15) the one-form twisted partition function is

Zg(q) =

(1− q)(1− q2)N/2 N even,

(1− q2)(N+1)/2 N odd,
(2.35)

and, expanding, the twisted Witten index

Ig
n =



(−1)(n+1)/2
(

N/2
(n− 1)/2

)
N even, n odd,

(−1)n/2
(
N/2
n/2

)
N even, n even,

0 N odd, n odd,

(−1)n/2
(

(N + 1)/2
n/2

)
N odd, n even.

(2.36)

One can also compute the partition function in the diagonal basis, where gi = +1 for
the even nodes, and gi = −1 for the odd ones. Plugging this into (2.16) yields the same
expression for the twisted partition function.

2.3 G = Spin(2N + 1)

Consider the algebra BN = so2N+1. The symmetries of this algebra are as follows:

• The group Spin(2N + 1) has no zero-form symmetry.

• The group Spin(2N +1) has a Z2 one-form symmetry, whose charged representations
are the spinors. The non-trivial element g ∈ Z2 acts on the extended diagram by
permuting the zeroth and first nodes, λ0 ↔ λ1. The center acts on a representation
λ as follows:

αg(λ) ≡ (−1)λN (2.37)

which means that the eigenvalues in (2.16) are gi = (−1)δi,N .

Let us begin by computing the untwisted partition function. The comarks for
Spin(2N + 1) are a∨i = 1 for i = 0, 1, N , and a∨i = 2 for i = 2, 3, . . . , N − 1. Plugging this
into equation (2.5) we obtain the untwisted partition function

Z(q) = (1− q)3(1− q2)N−2 , (2.38)

and, expanding, the Witten index

In =


(−1)n/2

[(
N − 2
n/2

)
− 3

(
N − 2
n/2− 1

)]
n even,

(−1)(n−1)/2
[(

N − 2
(n− 1)/2− 1

)
− 3

(
N − 2

(n− 1)/2

)]
n odd.

(2.39)
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Note that the index vanishes for N = 1 mod 4 and n = (N − 1)/2 and by time-reversal
for n′ = h − n = (3N − 1)/2. This clearly illustrates the crucial difference between the
dimension of the Hilbert space and the index.

4d Spin(2N + 1) N = 1 SYM has no charge conjugation symmetry. We can consider
instead the index twisted by the Γ = Z2 one-form center symmetry. The non-trivial element
g ∈ Z2 acts on the extended Dynkin diagram as follows:

B
(1)
N : 121

1

222
· · · 7→ A

(2)
2N : 2 2 2 1

· · ·
2

(2.40)
where the blue node denotes the affine root, and the integers denote the comarks a∨i .

From this we learn that the folded diagram has r′ + 1 = N nodes, one of which has
energy equal to 1, and the rest all energy equal to 2. Plugging this into (2.15) the one-form
twisted partition function is

Zg(q) = (1− q)(1− q2)N−1 , (2.41)

and, expanding, the Witten index

Ig
n =


(−1)n/2

(
N − 1
n/2

)
n even,

(−1)(n+1)/2
(

N − 1
(n− 1)/2

)
n odd.

(2.42)

One can also compute the partition function in the diagonal basis, where gi = +1 for all
the nodes except for the last one, which has gN = −1. Plugging this into (2.16) yields the
same expression for the twisted partition function.

2.4 G = Spin(2N)

Consider the algebra DN = so2N . The symmetries of this algebra are as follows:

• The group Spin(2N) has a Z2 zero-form symmetry. The corresponding charge is the
chirality of the representation. This symmetry acts by permuting the last two nodes
in the unextended Dynkin diagram. The associated diagonal action can be chosen as
follows: take ci = +1 for all but the last two nodes, and cN−1 = +1 and cN = −1.

• The group Spin(2N) has a Z2 × Z2 one-form symmetry if N is even, and Z4 if
odd. They act on the extended Dynkin diagram as follows: one of the Z2’s for N
even, and the Z2 subgroup of Z4 for N odd, acts as the permutation λ0 ↔ λ1 and
λN−1 ↔ λN , while fixing the rest of Dynkin labels in the extended diagram. The
other Z2 factor reverses the order of the extended Dynkin labels, while Z4 acts as
λ0 7→ λN 7→ λ1 7→ λN−1 7→ λ0, and it reverses the order of the rest of Dynkin labels.
For N even, let (g1, g2) ∈ Z2×Z2; and, for N odd, let g ∈ Z4; all thought of as roots
of unity. The center acts on a representation λ as follows:

αg1,g2(λ) ≡ gλN−1+λN
1 g(N/2−1)λN−1+(N/2)λN+

∑N/2−2
i=0 λ2i+1

2

αg(λ) ≡ g−(N−2)λN−1−NλN+2
∑(N−3)/2

i=0 λ2i+1 .

(2.43)
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Therefore, the eigenvalues in (2.16) are

(g1, g2)2i = 1, i ∈ [0, N/2− 1)
(g1, g2)2i+1 = g2, i ∈ [0, N/2− 1)

(g1, g2)N−1 = g1gN/2−1
2

(g1, g2)N = g1gN/2
2

g2i+1 = g2, i ∈ [0, (N − 1)/2)
g2i = 1, i ∈ [1, (N − 1)/2)

gN−1 = gN−2

gN = gN .

(2.44)

Let us begin by computing the untwisted partition function. The comarks of Spin(2N)
are a∨i = 1 for i = 0, 1, N − 1, N , and a∨i = 2 for i = 2, 3, . . . , N − 2. Plugging this into
equation (2.5) we obtain the untwisted partition function

Z(q) = (1− q)4(1− q2)N−3 , (2.45)

and, expanding, the Witten index

In =


(−1)n/2

[(
N − 3
n/2

)
− 6

(
N − 3
n/2− 1

)
+
(
N − 3
n/2− 2

)]
n even,

4(−1)(n−1)/2
[(

N − 3
(n− 1)/2− 1

)
−
(

N − 3
(n− 1)/2

)]
n odd.

(2.46)

Note that the index vanishes when N is even and n corresponds to the time-reversal
symmetric wall n = h/2 = N − 1. It also vanishes for the exceptional pairs (N,n) such
that 2 + 4n+ 2n2 − 3N − 4nN +N2 = 0.

Let us now consider the index twisted by charge conjugation. Its action on the extended
Dynkin diagram, and the resulting folded diagram, are as follows:

D
(1)
N : 1

1

22
· · ·

21

1

2
7→ D

(2)
N : 22

· · ·
221

1

2

(2.47)
where the folded diagram has N nodes. From this we learn that the folded diagram has
r′ + 1 = N nodes, two of which have energy equal to 1, and the rest all energy equal to 2.
Plugging this into (2.15) the zero-form twisted partition function is

Zc(q) = (1− q)2(1− q2)N−2 (2.48)

and, expanding, the twisted Witten index

Ic
n =


(−1)n/2

[(
N − 2
n/2

)
−
(
N − 2
n/2− 1

)]
n even,

2(−1)(n+1)/2
(

N − 2
(n− 1)/2

)
n odd.

(2.49)
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One can also compute the partition function in the diagonal basis, where ci = +1 for all
the nodes except for the last one, which has cN = −1. Plugging this into (2.16) yields the
same expression for the twisted partition function.

Let us now consider the one-form-twisted partition functions. The symmetry depends
on whether N is even or odd, which we consider in turn.

N even. Here the symmetry is Z2 × Z2. g1 and g2 act as follows:

1

1

1

1

2 2
· · ·

2 2 1

1

1

1

2 2
· · ·

2 2
(2.50)

The folded diagrams are

C
(1)
N−2 : B

(1)
N/2 :

22 2 2
· · ·

2 2 2

2

4 4
· · ·

4 2
(2.51)

which have N − 1 and N/2 + 1 nodes, respectively. The folding by g1g2 is in fact identical
to that of g2, i.e., the second diagram.

The twisted partition functions read

Zg1(q) = (1− q2)N−1

Zg2(q) = (1− q2)3(1− q4)N/2−2 ,
(2.52)

and, expanding, the twisted Witten indices

Ig1
n =


(−1)n/2

(
N − 1
n/2

)
n even,

0 n odd.

Ig2
n =



(−1)n/4
[(
N/2− 2
n/4

)
− 3

(
N/2− 2
n/4− 1

)]
n ≡ 0 mod 4,

(−1)(n−2)/4
[(

N/2− 2
(n− 2)/4− 1

)
− 3

(
N/2− 2
(n− 2)/4

)]
n ≡ 2 mod 4,

0 n odd,

(2.53)

while Ig1g2
n = Ig2

n .

N odd. Here the one-form symmetry is Z4, whose action on the extended Dynkin dia-
gram, and the corresponding folded diagram, are as follows:

1

1

1

1

2 2
· · ·

2 2
7→ · · · (2.54)
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where the comarks are all 4 if we fold by a generator of Z4, and all 2 if we fold by a
generator squared. The number of nodes is (N − 1)/2 in the first case, and N − 1 in the
second case. The folded diagram corresponds to C(1)

(N−1)/2 and C(1)
N−1, respectively.

If we let g denote a generator of Z4, the twisted partition function is

Zg(q) = Zg3(q) = (1− q4)(N−1)/2 ,

Zg2(q) = (1− q2)N−1 ,
(2.55)

and, expanding, the twisted Witten indices

Ig
n = Ig3

n =


(−1)n/4

(
(N − 1)/2

n/4

)
n ≡ 0 mod 4,

0 otherwise,

Ig2
n =


(−1)n/2

(
N − 1
n/2

)
n even,

0 n odd.

(2.56)

As usual, one may also compute these partition functions in the diagonal basis. Using
the phases (2.44) in (2.16) yields the same expressions for the twisted partition functions,
as expected.

2.5 G = G2

G2 has no zero-form or one-form symmetry. The comarks for G2 are a∨0 = a∨2 = 1 and
a∨1 = 2. Plugging this into equation (2.5) we obtain the untwisted partition function

Z(q) = (1− q)2(1− q2) , (2.57)

and, expanding, the Witten indices
I1 = −2
I2 = 0
I3 = 2 .

(2.58)

Note that I3 = −I1, as expected from the action of time-reversal on domain walls.

2.6 Minimal wall for arbitrary gauge group

The domain wall theory for n = 1 admits a uniform description for all simply-connected
groups, including the exceptional ones. Indeed, the only fermion configurations with total
energy equal to 1, that is the solutions to (2.2)

r∑
i=0

λia
∨
i = 1 , (2.59)

are clearly of the form λi = 1 for one i such that a∨i = 1, and λj = 0 for all j 6= i.
In other words, in each configuration there is only one excited fermion, which moreover
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necessarily has energy a∨i = 1. All these configurations have the same fermion number,
namely (−1)F = −1, which means that the index is

I1 ≡ −m1 (2.60)

where m1 denotes the number of nodes in the extended Dynkin diagram g(1) with comark
equal to 1. The values of m1 are given in the following table:

G SU(N) Sp(N) Spin(2N + 1) Spin(2N) E6 E7 E8 F4 G2

m1 N N + 1 3 4 3 2 1 2 2
(2.61)

Note that, for simply-laced G, m1 is the order of Γ.
The index twisted by a symmetry s ∈ S is

Is
1 ≡ −ms

1 , (2.62)

where ms
1 denotes the number of nodes in the extended Dynkin diagram g(1) with comark

equal to 1 that are fixed by s. ms
1 has already been computed for the classical groups

SU(N), Sp(N), Spin(2N + 1) and Spin(2N). For the exceptional groups, only E6 and E7
have non-trivial symmetry group S (see table 1). In E6, the zero-form charge-conjugation
symmetry leaves invariant the extended node, which has comark 1, and permutes the other
two nodes with comark 1. In E6 and E7, the one-form center symmetry permutes all the
nodes with comark 1. Therefore, letting c denote the non-trivial element of C, and g any
non-trivial element of Γ, the indices are

E6 : Ic
1 = −1, Ig

1 = 0 g ∈ Γ = Z3
E7 : Ig

1 = 0 g ∈ Γ = Z2 .
(2.63)

The (twisted) indices for the exceptional groups E6, E7, E8, F4 and arbitrary n have
been included in appendix B for completeness.

This concludes our discussion of the twisted Witten indices of the domain walls, as
computed in terms of the 4d ultraviolet degrees of freedom. A rather nontrivial consistency
test of our proposal is that the Witten indices on the domain walls we just computed
are reproduced by the corresponding partition functions of our conjectured 3d TQFTs.
Computing the image of the (twisted) Witten indices in these TQFTs is nontrivial and
requires understanding in detail the Hilbert space of spin TQFTs and the action of (−1)F
on it, a subject to which we now turn.

3 Hilbert space of spin TQFTs

The domain wall theory preserves 3d N = 1 supersymmetry and observables depend on
the choice of a spin structure. Therefore, the TQFT that emerges in the deep infrared of
the domain wall must also depend on a choice of a spin structure, that is, it must be a spin
TQFT [42].

The data of a TQFT in 3d includes the set of anyons A (or Wilson lines) and the
braiding matrix B : A×A → U(1) encoding their braiding. A spin TQFT is a TQFT that
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has an abelian8 line ψ that braids trivially with all lines in A and has half-integral spin.9
Transparency of ψ implies that it fuses with itself into the vacuum, that is ψ × ψ = 1.
Since ψ is transparent and has half-integral spin, the observables of a spin TQFT depend
on the choice of a spin structure.

A spin TQFT can be constructed from a parent bosonic TQFT which has an abelian,
non-transparent fermion ψ with ψ×ψ = 1, that is, a bosonic TQFT that has a Zψ2 one-form
symmetry generated by a fermion [43–47]. The bosonic parent theory defines a spin TQFT
upon gauging its Zψ2 one-form symmetry generated by ψ

spin TQFT = bosonic TQFT
Zψ2

. (3.1)

This procedure is an extension of the notion of bosonic “anyon condensation” [48–50].10

Upon gauging, the fermion ψ in the parent bosonic theory becomes the transparent fermion
ψ in the spin TQFT. The gauged one-form symmetry Zψ2 of the parent bosonic theory gives
rise to an emergent zero-form symmetry Z2 in the spin TQFT that is generated by the
fermion parity operator (−1)F , and which acts on the “twisted sector”. We will discuss the
action of (−1)F on the Hilbert space of spin TQFTs shortly.

The lines of the parent bosonic theory A can be arranged as the disjoint union of two
sets A = ANS ∪ AR according to their braiding with ψ. Lines in ANS, by definition, braid
trivially with ψ while lines in AR have braiding −1 with ψ. This partitions the lines of
the bosonic TQFT according to their Zψ2 quantum number. The lines in each set can be
organized into orbits of Zψ2 , generated by fusion with ψ. The orbits can be either two- or
one-dimensional. The lines in one-dimensional orbits are referred to as “Majorana lines”
in that they can freely absorb the fermion ψ:

ψ ×m = m. (3.2)

The Majorana lines, if any, are necessarily in AR.11 The lines of the bosonic parent theory
thus split as

ANS = {{a, a× ψ} | B(ψ, a) = +1}
AR = {{x, x× ψ}, {m} | B(ψ, x) = B(ψ,m) = −1} .

(3.3)

8An abelian line is one that yields a single line in its fusion with any line in A.
9A TQFT that has a line with half-integral spin which braids nontrivially with at least one line in the

theory is not spin. There is no unambiguous way to assign a sign to the fermion as we move it around a
circle since the phase it acquires depends on which lines link with the circle, unlike when the fermion is
transparent.

10More precisely, the parent bosonic TQFT must be attached to a suitable 4d SPT phase so that the
combined system is non-anomalous, and the symmetry can be gauged.

11To prove this we compute the braiding of ψ with a Majorana line m and show that it necessarily has
braiding −1 with ψ

B(ψ,m) = e2πi(hψ+hm−hψ×m) = e2πhψ = −1 , =⇒ m ∈ AR ,

where h denotes spin of lines and in the second equality we have used the defining relation for a Majorana
line (3.2). See also [47].
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The first set, referred to as the Neveu-Schwarz (NS) lines, is what is usually regarded as
the set of Wilson line operators in the spin TQFT. The second set, the Ramond (R) lines,
change the spin structure background. This decomposition will be useful shortly in the
construction of the Hilbert space of the spin TQFT.

The Hilbert space of the spin TQFT on the spatial torus depends on the choice of
spin structure. There are two equivalence classes of spin structures on the torus (or, more
generally, on any Riemann surface): even and odd spin structures. Consider the even
and odd spin structure Hilbert spaces HNS-NS and HR-R. HNS-NS correspond to choosing
antiperiodic boundary conditions on the two circles while HR-R corresponds to periodic
boundary conditions. The other two even spin-structure Hilbert spaces HNS-R and HR-NS
can be obtained from HNS-NS by the action of the mapping class group. This group is a
non-trivial extension of the modular group SL2(Z) by the Z2 fermion parity symmetry. It is
known as the metaplectic group Mp1(Z). It does not preserve the individual spin structures
but it does preserve their equivalence class. The Hilbert spaces of spin TQFTs realize a
unitary representation of this group.

The states in the Hilbert space HB of a bosonic TQFT are constructed from the path
integral on a solid torus by inserting lines M ∈ A along the non-contractible cycle [51].
This defines conformal blocks on the torus. We represent this pictorially by

|M〉 =
M

∈ HB . (3.4)

The Hilbert space of the spin TQFT can be constructed from its definition as a quotient
of the bosonic parent TQFT (3.1).12 The states in HNS-NS are labeled by a ∈ ANS, and
are represented as

|a〉spin = 1√
2

(
a

+
)

a× ψ
∈ HNS-NS . (3.5)

The states in HR-R are constructed from conformal blocks of the bosonic parent TQFT
on the torus and, in the presence of Majorana lines (3.2), from the once-punctured torus
conformal blocks of the bosonic parent TQFT. By virtue of m being a Majorana line
obeying the fusion rule ψ ×m = m, the one-point conformal block on the torus with m

along the cycle and ψ at the puncture is nontrivial, as it is allowed by the fusion rules.
The states in HR-R are labeled by x,m ∈ AR, and are represented as13

|x 〉spin = 1√
2

(
x

−
)

x× ψ
∈ HR-R ,

|m〉spin =
m

ψ

∈ HR-R .

(3.6)

12More details of the explicit construction of the Hilbert space of spin TQFTs will appear elsewhere [52].
13Unlike in bosonic anyon condensation, where a fixed line in the parent theory yields multiples states

in the quotient theory, a Majorana line is in an irreducible representation of Cliff(1|1) and yields a unique
state in the quotient (spin) TQFT.
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Modular transformations preserve the odd spin structure, i.e., they map HR-R into itself.
The negative sign in (3.6) guarantees that under modular transformations the states in
HR-R are mapped into themselves.

Note that the pair of lines a and a×ψ in the bosonic parent descend to a pair of lines
in the spin TQFT, because these are distinct anyons, being distinguishable by their spin.
On the other hand, the pair of states |a〉 and |a× ψ〉 descend to a single state in the spin
TQFT. Thus, while in a bosonic TQFT the number of states is the same as the number of
lines, in a spin TQFT there are twice as many lines as there are states.

Our next task is to compute the action of fermion parity, i.e. (−1)F , on the Hilbert
space of the spin TQFT. The Z2 symmetry generated by (−1)F is the emergent zero-
form symmetry that appears upon quotienting the parent bosonic theory by Zψ2 in (3.1).
The charged states are therefore those constructed from the once-punctured torus in the
bosonic theory

(−1)F |m〉spin = −|m〉spin ,

(−1)F | a 〉spin = +| a 〉spin ,

(−1)F |x 〉spin = +|x 〉spin .

(3.7)

(−1)F acts nontrivially on the ψ puncture in the once-punctured torus.
Depending on the choice of spin structure on the “time” circle we can define the

following 23 = 8 partition functions for spin TQFTs:14

tr−,−(O) ≡ trHNS-NS(O) ,
tr−,+(O) ≡ trHNS-R(O) ,
tr+,−(O) ≡ trHR-NS(O) ,
tr+,+(O) ≡ trHR-R(O) ,

(3.8)

and
tr−,−((−1)FO) ≡ trHNS-NS((−1)FO) ,
tr−,+((−1)FO) ≡ trHNS-R((−1)FO) ,
tr+,−((−1)FO) ≡ trHR-NS((−1)FO) ,
tr+,+((−1)FO) ≡ trHR-R((−1)FO) ,

(3.9)

where O is an operator in the theory. We will be interested in the case when O is a
symmetry of the TQFT. We note that (−1)F is only non-trivial in the R-R sector, because
this is the only Hilbert space that may contain Majorana states. This is the most subtle
and rich sector, and the one of interest as far as the twisted Witten indices is concerned.

3.1 Partition function of spin TQFTs

The twisted Witten index of the domain wall theory is computed by considering the odd
spin structure on the spatial torus and periodic boundary condition on the time circle.
This implies that the twisted Witten indices, computed via the 4d ultraviolet fields, must
be reproduced by appropriate odd-spin-structure partition functions of our conjectured

14− represents antiperiodic boundary condition while + period boundary conditions.
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infrared 3d spin TQFTs. In other words, a nontrivial check that our proposed infrared spin
TQFTs describe the n-domain wall theories is proving that

Is
n ≡ trHR-R(−1)F s (3.10)

for symmetries s ∈ S. This requires, in particular, identifying the image of the symmetries
s ∈ S in the infrared TQFT.

Let us begin by considering the untwisted partition function. Given the construction
of the Hilbert space HR-R in (3.6) and the action of (−1)F in (3.7) we can compute the
desired partition function as follows

trHR-R(−1)F = Nx −Nm . (3.11)

This requires determining in the bosonic parent theory the number Nx of two-dimensional
orbits and the number Nm of one-dimensional orbits (the number of Majorana lines) in AR
(see (3.3)) under fusion with ψ.

Let us illustrate this in a simple example. The simplest spin TQFT is SO(N)1 Chern-
Simons theory, which is a trivial, invertible spin TQFT with lines {1, ψ}. The bosonic
parent theory is Spin(N)1 Chern-Simons theory:

• For N odd, Spin(N)1 is the Ising category, which has three lines {1, σ, ψ}: the
vacuum 1, the spin operator σ, and the energy operator ψ. These primaries have
spins h = 0, N16 ,

1
2 , and fusion rules σ2 = 1 + ψ, ψ2 = 1, ψ × σ = σ.

• For N even, Spin(N)1 has four lines, with spins h = 0, N16 ,
N
16 ,

1
2 , and which we denote

by {1, e,m, ψ}, which correspond to the trivial representation, the two fundamental
spinor representations, and the vector representation, respectively. The theory for
N ≡ 0 mod 4 has Z2

2 fusion rules, with e2 = m2 = ψ2 = 1 and e×m = ψ. For N ≡ 2
mod 4 the fusion ring is Z4, with e2 = m2 = ψ, and ψ2 = e×m = 1.

The theory SO(N)1 is obtained by condensing ψ, that is SO(N)1 = Spin(N)1/Zψ2 . Using
the fusion rules and the spins we see that 1, ψ are neutral under Zψ2 and e,m and σ are
charged. In other words, the Neveu-Schwarz sector is

ANS = {1, ψ} , (3.12)

while the Ramond sector is

AR =

{σ} N odd,
{e,m} N even.

(3.13)

This implies that Na = 1 in the NS sector. On the other hand, in the R sector, (Nx, Nm) =
(0, 1) for odd N and (Nx, Nm) = (1, 0) for even N . Thus there is a unique state in each
spin structure, and all states are bosonic except in HR-R, where (−1)F = (−1)N , since
there is a Majorana line for odd N . The (−1)F odd state is created by the well-known
once-punctured torus conformal block in the Ising category with the insertion of σ, and ψ
at the puncture.
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For a second example let us now consider the spin TQFT SO(3)3 Chern-Simons theory,
which is the simplest non-trivial spin TQFT. The bosonic parent theory is SU(2)6 since

SO(3)3 = SU(2)6

Zψ2
, (3.14)

where the abelian line ψ is the line in SU(2)6 with j = 3 and spin h = 3/2. The lines in
A = {j = 0, 1

2 , 1, . . . , 3} which have braiding −1 with ψ are those with half-integral isospin:
AR = {j = 1

2 ,
3
2 ,

5
2}. Under fusion with ψ we have the following Zψ2 orbits

3× 1
2 = 5

2
3× 3

2 = 3
2 .

(3.15)

Therefore, in the R-R sector of SO(3)3 there is a length-2 orbit with (j = 1
2 ,

5
2) and a

Majorana line with j = 3
2 . Thus, Nx = Nm = 1. There are Nx +Nm = 2 states, but one of

them is a boson and the other is a fermion, which means that the partition function with
periodic boundary conditions vanishes

trHR-R(−1)F = Nx −Nm ≡ 0 . (3.16)

The vanishing of this trace will be important when discussing the 2-domain wall theory
in 4d N = 1 SYM with gauge group G2 (cf. section 4.4). This example clearly illustrates
the importance of looking at the appropriate partition function and not merely at the
dimension of the Hilbert space.

We now discuss a different way to compute the partition function that does not rely
on computing Nx and Nm directly. The basic idea is to gauge the emergent zero-form
Z2 symmetry generated by (−1)F in the spin TQFT to obtain the bosonic parent theory
back [45, 46, 53–55]

spin TQFT
Z2

= bosonic TQFT . (3.17)

Gauging this Z2 amounts to summing the spin TQFT over all spin structures of the three-
manifold M . Taking M to the three-torus, and summing over the 23 = 8 spin structures,
corresponding to either periodic or antiperiodic boundary conditions around each of the
three circles, we find that

1
2
∑
±,±

(tr±,±(1) + tr±,±(−1)F ) = trHB (1) . (3.18)

tr±,± (see (3.8)–(3.9)) denotes the trace over the Hilbert space on the spatial torus with
boundary conditions ±,±, and trHB the trace over the torus Hilbert space of the bosonic
parent theory.

Using the fact that the dimension of the torus Hilbert space is the same in all spin
structures and that (−1)F acts nontrivially only in HR-R (see (3.7)), we find the formula

trHR-R(−1)F = 2 dim(HB)− 7 dim(HF ) , (3.19)
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where dim(HB) is the dimension of the torus Hilbert space of the bosonic parent TQFT
and dim(HF ) the dimension of the torus Hilbert space in any one spin structure of the
spin TQFT. This formula offers a significant advantage in that it requires computing the
total number of states dim(HF ) = Nx + Nm, and not separately Nx and Nm, as in for-
mula (3.11). Even simpler, one may compute dim(HF ) = Na in the NS-NS sector directly,
where all orbits are of length-2: the number of states is just half the number of lines of the
spin TQFT.15

As a consistency check, consider the case where GF is the product of a bosonic theory
G̃ times a trivial/invertible spin TQFT

GF = G̃× SO(N)1 , (3.20)

whose bosonic parent is GB = G̃ × Spin(N)1. As SO(N)1 is a trivial spin TQFT, we
get dim(HF ) = dim(HG̃). Similarly, using that Spin(N)1 has a four-dimensional Hilbert
space if N is even, and a three dimensional Hilbert space if N is odd, we get dim(HB) =
1
2(7 + (−1)N ) dim(HG̃). Plugging this into (3.19), we get

trHGFR-R
(−1)F = (−1)N dim(HG̃) , (3.21)

which is precisely what one would expect, given the tensor product structure of GF and
the fact that the trace over SO(N)1 is (−1)N . Put differently, in the Hilbert space of
GF = G̃× SO(N)1 we have Na = Nx and Nm = 0 for N even, and Na = Nm and Nx = 0
for N odd. That is, in the R-R sector, either no states are Majorana or all are, depending
on the parity of N . This implies that

trHGFR-R
(−1)F =

+Na N even
−Na N odd ,

(3.22)

which indeed equals (3.21).
There are spin TQFTs which factorize in a nontrivial fashion into the product of a

bosonic TQFT and a trivial spin TQFT by virtue of a level-rank duality, as for example
U(1)k ↔ SU(k)−1×{1, ψ}. In these theories trHR-R(−1)F also just measures the dimension
of the Hilbert space (up to possibly a sign).

More generally, stacking a TQFT, spin or bosonic, with a trivial spin TQFT defines

TQFT× SO(N)1 . (3.23)

This theory has the same number of states as the original TQFT but SO(N)1 can change
the global sign of the action of (−1)F on all states in HR-R. The partition functions are
the same up to possibly a sign

trHTQFT×SO(N)1
R-R

(−1)F = (−1)N trHTQFT
R-R

(−1)F . (3.24)

15In the SO(3)3 example dim(HB) = 7 and dim(HF ) = 2, and using (3.19) the partition function indeed
vanishes.
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Indeed, the single state of SO(N)1 in HR-R is a Majorana state and thus has odd fermion
parity for N odd only. Therefore, when comparing the spin TQFT partition function with
the Witten index of the domain wall, we will match their absolute values, as if those match,
the signs can be also be matched by stacking a suitable trivial spin TQFT, which can be
thought of as a purely gravitational counterterm [56].16

The generalization to twisted indices is straightforward. Given a symmetry s ∈ STQFT
of the TQFT, which acts s : HR-R → HR-R, the partition function

trHR-R((−1)F s) (3.25)

counts the number of bosons fixed by s, minus the number of fermions fixed by s. That
being said, there are some subtleties that must be kept in mind. A state fixed by s does not
necessarily contribute with s = +1 to the trace — it might contribute with s = −1 instead,
the reason being that the symmetry s might be realized projectively in the Hilbert space.

The most common example where this may happen is charge-conjugation c. We can
illustrate this in U(1)1 Chern-Simons theory, the simplest theory where this phenomenon
occurs. This is an invertible spin TQFT, which means that it has a unique state on any
spin structure. This state is clearly fixed by c but, interestingly, it has c = −1 in the
odd-spin-structure Hilbert space HR-R. We can show this as follows. The bosonic parent
theory is U(1)4 Chern-Simons theory, which has four states, labeled by q = 0, 1, 2, 3. The
U(1)1 theory is obtained by condensing the fermion ψ, which has q = 2. The Ramond
lines are easily checked to be q = 1, 3, and they are paired by fusion with ψ into a single
two-dimensional orbit, since 1×2 = 3. Thus, the unique state in the R-R sector is (cf. (3.6))

|1〉spin = 1√
2

(|1〉 − |3〉) . (3.26)

This indeed satisfies c|1〉spin = −|1〉spin, inasmuch as c : q 7→ −q mod 4 in the bosonic
parent, which exchanges |1〉 and |3〉.

4 Domain wall TQFT partition functions

In this section we calculate partition functions twisted by a symmetry s ∈ STQFT

trHR-R(−1)F s (4.1)

of the Chern-Simons TQFTs we proposed emerge in the infrared of the domain wall theories
(see section 1). Our calculations beautifully reproduce the results obtained in section 2.
Namely, we will now demonstrate that the trace (4.1) agrees with the twisted Witten index
on the n-domain wall Wn (cf. (2.10)) as computed in terms of the original 4d fields

trHR-R(−1)F s ≡ Is
n . (4.2)

We identify each symmetry s ∈ S in 4d N = 1 SYM with a symmetry s ∈ STQFT in the
infrared TQFT.

16Staking SO(N)1 for odd N to a 3d theory has the same effect as stacking to a 2d theory the trivial spin
TQFT known as the Arf-invariant, which changes the sign of the partition with odd spin structure.
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In 4d N = 1 SYM with gauge group Sp(N) our proposed domain wall theory corre-
sponds to a Chern-Simons theory based on a group that is simple, connected, and simply-
connected, whereas for SYM with SU(N), Spin(N) and G2 gauge groups, the proposed
infrared Chern-Simons theories are based on a group that is neither. We discuss both cases
in turn.

Chern-Simons theory Gk, with G simple, connected and simply-connected is always
a bosonic TQFT. These theories are made spin by tensoring with the trivial spin TQFT
SO(N)1. It follows from our discussion in section 3 that

tr
HGk×SO(N)1

R-R
(−1)F = (−1)N trGk(1) , (4.3)

since all states have the same fermion parity — all bosonic, or all fermionic, depending on
the parity of N . Therefore the partition function of Gk×SO(N)1 in (4.3) is, up to possibly
a sign, the dimension of the Hilbert space of Gk Chern-Simons theory on the two-torus.

The states in the torus Hilbert space of Gk Chern-Simons theory are conformal blocks
on the torus, which are labeled by the integrable representations of the corresponding
affine lie algebra g(1) at level k [51, 57]. By definition, the representations of G that are
integrable are those whose highest weight λ satisfies (λ, θ) ≤ k, with θ the highest root of
G. Expanding the latter in a basis of simple coroots, and introducing an extended label
λ0 := k − (λ, θ), integrability can be expressed as

r∑
i=0

λia
∨
i = k, λi ∈ Z≥0 . (4.4)

The dimension of the Hilbert space trGk(1) is equal to the number of solutions to this
equation.

Much like the discussion in section 2, where the Witten index on the domain wall was
computed through an auxiliary system of free fermions, trGk(1) has a nice combinatorial
interpretation in terms of a system of free bosons in 0 + 1 dimensions. Indeed, the number
of integrable representations trGk(1) is the number of ways of creating a state of energy k
from r + 1 free bosons, each with energy a∨i . Each boson is associated with a node in the
extended Dynkin diagram g(1), and λi ∈ {0, 1, 2, . . . } in (4.4) corresponds to the occupation
number of the i-th boson. Introducing a fugacity parameter q defines a generating function,
which is the partition function of the bosons on the circle

Z(G, q) ≡
∑
k≥0

trGk(1) qk . (4.5)

The partition function is thus

Z(G, q) =
r∏
i=0

(1− qa∨i )−1 . (4.6)

The Chern-Simons trace trGk(1) is the coefficient of qk in (4.6).
In a similar fashion, we define the trace twisted by a symmetry s ∈ STQFT of Gk

Chern-Simons theory:
trGk(s) . (4.7)
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When s = c is a zero-form symmetry, this corresponds to inserting a surface operator, i.e.,
the symmetry defect is supported on the whole spatial torus. On the other hand, if s = g
denotes a one-form symmetry, the symmetry defect is a line operator, and one must specify
a homology cycle on the torus on which it is supported. The states of Gk Chern-Simons
are created by wrapping on a cycle Wilson lines labeled by integrable representations λ; if
g is supported on the same cycle, it acts on the states via fusion:

λg =

g × λ

(4.8)

Conversely, if g is supported on the dual cycle, it acts on the states via braiding:

λ

g

= αg(λ)

λ

(4.9)

where αg(λ) is the charge of λ under the center ofG (cf. (2.7)). More generally, one can wrap
a pair of symmetry defects on both cycles, but one can always conjugate such configuration
via a modular transformation to either of the two options above. This operation, being a
similarity transformation, does not affect the value of the trace. In other words, the value
of trGk(g) is independent of which cycle we define g on.

When s is a symmetry of the classical action of Gk Chern-Simons theory, it is induced by
an outer automorphism of the extended Dynkin diagram g(1), and it acts as a permutation
of the nodes thereof. In that case, s induces an action on the system of bosons, which
permutes them in the same way it permutes the nodes of the Dynkin diagram. As in the
system of free fermions, the trace above can be obtained from the partition function of
these bosons

Zs(G, q) ≡
∑
k≥0

trGk(s)qk , (4.10)

where Zs(G, q) denotes the bosonic partition function twisted by the permutation s. One
can evaluate this partition function by the same methods as in section 2, i.e., by diagram
folding or directly in the diagonal basis

Zs(G, q) =
r∏
i=0

(1− siqa
∨
i )−1 , (4.11)

where si are the eigenvalues of the permutation. Note that, for s = g a one-form symmetry,
diagram folding naturally corresponds to g acting as a permutation, i.e. (4.8), while the
diagonal action corresponds to g acting via braiding, i.e. (4.9). Indeed, it is a well-known
fact that an S modular transformation — which interchanges the two cycles — diagonalizes
the fusion rules.

It should be noted that Chern-Simons theories can have “quantum symmetries”. These
are symmetries of the entire TQFT data that are not symmetries of the Lagrangian. Many
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explicit examples of these symmetries have been found in [58]. These symmetries permute
the Wilson lines of the theory, in a way that does not necessarily correspond to a permu-
tation of their Dynkin labels. As such, the free boson representation cannot be used to
evaluate the twisted trace, but it must be computed from the action of the symmetry on
the Hilbert space of the TQFT. That being said, we find that the symmetries S in the
ultraviolet domain wall map to classical symmetries of the infrared Chern-Simons theories,
and we can compute the twisted index using (4.11).

Some of our proposed domain wall TQFTs are Chern-Simons theory with a group G

that is not connected and/or simply-connected, in which case the theory Gk (with k a set
of integers that defines the Chern-Simons action) may depend on the spin structure of the
underlying manifold. There are four distinct Hilbert spaces corresponding to the four spin
structures on the spatial torus (see section 3), but our interest here is in the Hilbert space
HR-R. Now Gk can have fermionic states, which correspond to once-punctured conformal
blocks of the parent bosonic theory, and (−1)F is in general a non-trivial operator. Our
goal is to compute

trHGkR-R
((−1)F s) ≡ trGk((−1)F s) , (4.12)

where we use the latter to simplify notation.
We shall next compute the twisted traces for all the Chern-Simons theories of interest.

We begin by considering the simply-connected group Sp(n), and then we move on to the
more subtle and interesting cases U(n),O(n). We finally make a few remarks concerning
the exceptional groups. The remaining simply-connected groups SU(n), Spin(n) as well as
SO(n) are studied in appendix A.

4.1 G = Sp(n)

The n-domain wall theory for 4d N = 1 SYM with G = Sp(N) is proposed to be
Sp(n)N+1−n Chern-Simons theory. Let us proceed to study the partition functions of
Sp(n)k.

Consider the algebra Cn = spn. The comarks are all a∨i = 1. Plugging this into (4.11)
we obtain the generating function as

Z(Sp(n), q) = (1− q)−(n+1) , (4.13)

and, by expanding, the untwisted trace

trSp(n)k(1) =
(
n+ k

k

)
. (4.14)

This is the number of integrable representations of Sp(n)k, that is, the dimension of the
torus Hilbert space of this Chern-Simons theory.

Let us also compute the partition function twisted by the one-form symmetry Γ = Z2.
This symmetry reverses the order of the extended labels, and the charged representations
are the pseudo-real ones. Denoting by g the non-trivial element of Z2, and using (4.11)
and (2.30), we get the twisted partition function

Zg(Sp(n), q) = (1− q)−bn/2c−1(1 + q)−dn/2e , (4.15)
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and by expanding

trSp(n)k(g) =



0 n odd, k odd,

(
(n+ k − 1)/2

k/2

)
n odd, k even,

(
(n+ k − 1)/2

(k − 1)/2

)
n even, k odd,

(
(n+ k)/2
k/2

)
n even, k even.

(4.16)

Note that Zg is nothing but the untwisted partition function associated to the Dynkin
diagram given by folding the original diagram by the one-form symmetry (2.33).

We are now ready to test our proposal. Recall that the conjectured infrared theory
corresponding to the n-domain wall of Sp(N) SYM was Wn = Sp(n)k, with k = N + 1−n.
Using this value of the level in (4.14) and (4.16) indeed reproduces the (twisted) Witten
indices computed in the ultraviolet, cf. (2.32) and (2.36).

4.2 G = U(n)

The n-domain wall theory for 4dN = 1 SYM withG = SU(N) is proposed to be U(n)N−n,N
Chern-Simons theory. Let us proceed to study the partition functions of U(n)k,n+k.

The Chern-Simons gauge group is not simply connected. The theory is defined as

U(n)k,n+k :=
SU(n)k ×U(1)n(n+k)

Zn
, (4.17)

where Zn is the one-form symmetry generated by the line ψ = [0, k, 0, . . . , 0] ⊗ (n + k).
Here and in what follows, [λ0, λ1, . . . , λn−1] denotes the Dynkin labels of an SU(n)k repre-
sentation, and (q) ∈ Z the charge of a U(1)n(n+k) representation. The spin of the generator
is easily computed to be hψ = k(n−1)

2n + n+k
2n = k+1

2 . This theory is spin if and only if k is
even.

We now proceed to compute the relevant traces. As the theory can be a spin TQFT,
the theory may contain fermionic states, and (−1)F will in general be a non-trivial operator,
which we need to understand to compute tr((−1)F s). In other words, we have to identify
which of the states of this Chern-Simons theory are bosons, and which are fermions.

Note that, unlike the general discussion of section 3, this theory is more conveniently
presented as a Zn quotient rather than a Z2 quotient, so let us slightly generalize the
discussion in that section to such quotients. In section 3 we argued that the bosonic states
after a Z2 fermionic quotient are the length-2 orbits, while the fermions are the fixed-points.
We now claim that the general statement for Zn fermionic quotients is that the bosonic
states are the orbits of even length, while the fermions are the orbits of odd length.

To prove this claim, consider a general spin TQFT that can be written as

GF = GB
Zn

, (4.18)
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where GB is some bosonic TQFT, and where Zn is a one-form symmetry generated by a
fermion ψ. Since hψp = phψ, ψp is a fermion if p is odd, and a boson if p is even. This
means that n is necessarily even, because ψn = 1 is a boson.

The braiding phase with respect to ψ is always an n-th root of unity, it is the charge
with respect to the Zn symmetry. This fact allows us to partition the lines of GB into n
equivalence classes according to their n-ality j, i.e., the value of braiding B(α,ψ) = e2πij/n,
j = 0, 1, . . . , n − 1. The lines with j = 0 are the NS lines (so that B(α,ψ) = +1), and
those with j = n/2 are the R lines (so that B(α,ψ) = −1). The rest of lines are projected
out by the Zn quotient (unless we turn on a suitable background for the dual Zn zero-form
symmetry). Furthermore, in each sector the lines are organized into Zn orbits,

{α,ψα, ψ2α, . . . , ψ|α|−1α}, (4.19)

where |α| ∈ [1, n] denotes the length of the orbit — the minimal integer such that ψ|α|×α =
α. An orbit is Majorana if and only if its length is odd, for then and only then it may
absorb a fermion. Indeed, the conformal block with puncture ψ|α| is non-vanishing only if
ψ|α| × α = α. In conclusion, the fermionic states in the R-R sector of the quotient theory
GF correspond to the orbits of GB R-lines with an odd number of elements, as claimed.

We are now in position to study the theory U(n)k,n+k. The discussion above has
taught us how to identify fermionic states in the Hilbert space of the theory. Rather
anticlimactically, we shall now argue that this theory has, in fact, no fermionic states at
all! This means that the trace tr(−1)F actually just counts the number of states of the
theory, much like in a bosonic theory. This explains why the counting of states in [7]
matched the domain wall index — because all states are bosonic. This, importantly, is not
always the case for other spin TQFTs, such as O(n) (see below, section 4.3).

Let us prove that the theory has no fermionic states. U(n)k,n+k is level-rank dual to
U(k)−n,−(n+k) as a spin TQFT. Therefore, if either k or n is odd, the theory factorizes as a
bosonic theory times an invertible spin TQFT, and so the theory clearly has no Majorana
states. The only non-trivial case is, therefore, that of n, k both even, which we assume in
what follows.

The theory in the numerator of the quotient description of U(n)k,n+k in (4.17) is
bosonic (recall that U(1)K is spin for K odd and bosonic for K even; here K = n(n+ k),
which is even). The states of U(n)k,n+k are Zn orbits of SU(n)k × U(1)n(n+k) representa-
tions. If we manage to prove that there are no orbits of odd length, we succeed in proving
that the theory has no Majorana states. In fact, we show that, more generally, all orbits
have length-n, i.e., all orbits are long. This implies that the states correspond to conformal
blocks with no punctures, i.e., all states are bosonic, (−1)F ≡ +1.

Write α = (R, q), where R is an SU(n)k representation, and q ∈ [0, n(n+ k)) labels a
U(1)n(n+k) representation. The abelian part of the condition ψ|α| × α = α reads

q + |α|(n+ k) = q mod n(n+ k) , (4.20)

which can be written as |α| = 0 mod n, i.e., |α| = n, as claimed. This proves that all
orbits are long, which indeed implies the absence of Majorana lines.
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Let us now use this information to compute the different U(n)k,n+k partition functions.
The untwisted trace is the number of conformal blocks (in any of the 23 spin structures).
Counting this is a straightforward exercise in combinatorics: we have a factor of n(n+ k)
due to U(1)n(n+k), times a factor of

(n+k−1
k

)
due to SU(n)k (cf. (A.2)), and a factor of 1/n2

due to the quotient Zn (one factor of n is due to the projecting out of lines, and the other
one because the neutral lines are organized into length-n orbits). All in all, the number of
states — the untwisted trace — is

trU(n)k,n+k(1) = n(n+ k)
n2

(
n+ k − 1

k

)
≡
(
n+ k

k

)
. (4.21)

This standard argument was already used in [7]. An important aspect of this computation,
much overlooked in the literature, is that this equals tr(−1)F only because all the states
have trivial fermion parity, which is nontrivially true in this theory. This shall not be the
case in the orthogonal group O(n), where tr(−1)F does not just count the total number of
states, but rather the bosons minus the fermions, both sets being typically nonempty.

Recall that the conjectured infrared TQFT corresponding to the n-domain wall of
SU(N) is Wn = U(n)k,n+k, with k = N − n. Using this value of the level in (4.21) indeed
reproduces the Witten index computed in the ultraviolet, cf. (2.20).

We now proceed to computing the trace twisted by the charge conjugation symmetry
c of U(n)k,n+k. Consider first the case of odd k, where the theory is naturally bosonic. In
this case, computing the trace amounts to counting the real representations of U(n)k,n+k.
A representation of U(n)k,n+k can be labeled by the pair (R, q), where R is an SU(n)k
representation, and q ∈ [0, n(n + k)), subject to |R| = q mod n, where |R| denotes the
number of boxes in the Young diagram of R. Representations (R, q) and (σ` ·R, q+`(n+k)),
with σ` ·R the SU(n) representation with Dynkin labels (σ` ·λ)i = λi−` mod n, are identified
by Zn spectral flow.

The abelian charge q is correlated with the SU(n) representation. Indeed, if n is even
and R is real modulo σ`, there is a single charge q ∈ [0, n(n + k)) that makes (R, q) real;
if n is odd, there are two such charges.17 Therefore, the number of real representations in
U(n)k,n+k is the number of representations of SU(n)k that are real up to the action of σ,
divided by n (the length of the orbits), and multiplied by 2 if n is odd. Let us now count
the SU(n)k representations.

An SU(n)k representation [λ0, λ1, . . . , λn−1] is real up to the action of σ if λi =
λ`−i mod n for some `. The number of such representations is the number of integer solu-
tions to

2λ0 + 2λ1 + · · ·+ 2λb(`−1)/2c +
{

0 ` odd
λ`/2 ` even

}

+ 2λ`+1 + · · ·+ 2λb(n+`−1)/2c +
{

0 n+ ` odd
λ(n+`)/2 n+ ` even

}
= k .

(4.22)

17Namely, we are looking for solutions to 2q = `(n + k) mod n(n + k). These are q = `
2 (n + k) and

q = `+n
2 (n+k) (except for (n, `) = (even, odd), where there is no solution; see also (4.23)). For n even, only

one of these two solutions is valid, depending on the parity of |R| (recall that we require q = |R| mod n).
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The number of solutions to this equation is

N` =



(
(n+ k)/2− 1

(k − 1)/2

)
n odd, k odd,

0 n even, ` odd, k odd,

2
(

(n+ k − 1)/2
(k − 1)/2

)
n even, ` even, k odd,

(
(n+ k)/2
k/2

)
+
(

(n+ k)/2− 1
k/2− 1

)
n even, ` even, k even,

(
(n+ k)/2− 1

k/2

)
n even, ` odd, k even,

(4.23)

where, for future reference, we have also included the case of k even.
We now sum over all ` = 0, 1, . . . , n− 1. For n odd, this just multiplies

((n+k)/2−1
(k−1)/2

)
by

n. If n is even, it multiplies 2
((n+k−1)/2

(k−1)/2
)
by n/2, because half the cases yield no solutions.

Next, we divide by n (due to the quotient), and multiply by 2 if n is odd. This yields the
number of real representations of U(n)k,n+k with k odd as18

trU(n)k,n+k(c) =



2
(

(n+ k)/2− 1
(k − 1)/2

)
n odd, k odd,

(
(n+ k − 1)/2

(k − 1)/2

)
n even, k odd.

(4.24)

By plugging k = N − n in (4.24), the partition function reproduces the Witten index
twisted by charge conjugation computed in the ultraviolet, cf. (2.24).

The case of k even is slightly more complicated because the theory is naturally spin.
For n odd we can obtain the twisted trace from the k odd case by using level-rank duality
U(n)k,n+k ↔ U(k)−n,−(n+k). But for n, k both even, the theory is spin, and cannot be
written as a bosonic theory times a trivial spin theory — at least not using the standard
level-rank duality. Thus, we have to explicitly compute the trace of c in the R-R sector.
This is non-trivial because, among other things, c may act as −1 on some states (see the
discussion around (3.26)), and thus it is not enough to just count real representations.

A shortcut to compute the trace of c over the odd spin structure, for k, n both even,
is to sum over all spin structures:

1
2

(∑
σ

trσ c + trσ(−1)F c
)

= trB c , (4.25)

where trB denotes the trace over the bosonic parent. From this expression, and noting that
(−1)F is trivial in U(n)k,n+k theories (due to the lack of Majorana lines), we can solve for

18Note that the expression for n odd is invariant under n↔ k, as required by level-rank duality.
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the trace we are after:
trR-R c = trB c− 3 trNS-NS c . (4.26)

Let us begin with the first term. As this is a trace over a bosonic Hilbert space, we
are just to count real representations of SU(n)k ×U(1)n(n+k). The first factor corresponds
to ` = 0 in (4.23), while the second factor has two real representations (namely, q = 0 and
q = n(n+ k)/2). The end result is

trB c = 2
[((n+ k)/2

k/2

)
+
(

(n+ k)/2− 1
k/2− 1

)]
. (4.27)

Let us now compute the second term in (4.26). This is a trace over a fermionic Hilbert
space, but over the NS-NS sector, and so we only have to count fixed-points, as they all
contribute with c = +1. In other words, the trace is just the number of real representations
of U(n)k,n+k, that is, the number of solutions to (4.22), summed over ` = 0, 1, . . . , n − 1,
and divided by n due to the quotient. Using (4.23), we get

trNS-NS c ≡ 1
n

(
n

2

[((n+ k)/2
k/2

)
+
(

(n+ k)/2− 1
k/2− 1

)]
+ n

2

(
(n+ k)/2− 1

k/2

))

= 1
2

(
(n+ k)/2
k/2

)
+ 1

2

(
(n+ k)/2− 1
k/2− 1

)
+ 1

2

(
(n+ k)/2− 1

k/2

)
.

(4.28)

Plugging these two traces into (4.26), the twisted index, for n, k even, becomes

trU(n)k,n+k(c) =
(

(n+ k)/2− 1
n/2

)
−
(

(n+ k)/2− 1
k/2

)
. (4.29)

Note that this is invariant under n↔ k, as required by level-rank duality.19 This expression
for the twisted partition function of U(n)k,n+k with k = N −n matches the twisted Witten
index computed in the ultraviolet, cf. (2.24).

Finally, we briefly sketch the computation of the trace twisted by the one-form sym-
metry gt ∈ Zn+k of U(n)k,n+k, where g denotes a primitive root of unity, and t ∈ [0, n+k).
The states of U(n)k,n+k are orbits of the form

{(σ` ·R, q + `(n+ k))} , (4.30)

where ` ranges from 0 to n − 1. All the orbits are of length-n. The theory has a Zn+k
one-form symmetry that acts as q 7→ q + tn, where t ∈ [0, n + k). A state is invariant
if and only if this transformation cyclically permutes the elements of the orbit, i.e., if a
representative (R, q) is mapped into itself up to spectral flow,

(R, q + tn) ≡ (σ` ·R, q + `(n+ k)) . (4.31)

It is clear that if tn is not of the form `(n + k) for some ` ∈ Z, then no state is
invariant, and the twisted trace vanishes. So let us assume that such an ` exists; it is

19That is, invariant up to a sign. This is due to the fact that c = −1 in the R-R sector of U(1)1 (cf. (3.26)),
and the level-rank pair has a difference in their framing anomaly equal to nk + 1 ≡ 1 mod 2, cf. [25].
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clear that it is unique, so counting invariant orbits reduces to counting appropriate SU(n)k
representations. More specifically, the number of invariant states is

trU(n)k,n+k(gt) = n(n+ k)
n2 N̂` , (4.32)

where n(n+ k) denotes the number of states in U(1)n(n+k), and the factor of n2 is due to
the Zn quotient. N̂` denotes the number of SU(n)k representations that satisfy R = σ` ·R,
with ` := tn/(n+ k) ∈ Z.

Counting such SU(n)k representations is easy, because this is a simply-connected group,
so the states are labelled by the Dynkin labels, λ0, λ1, . . . , λn−1, which can be thought
of a collection of independent bosons (cf. (4.11)). The most efficient way to count the
representations that are invariant under σ` is to recall that the associated diagonal phase
is just the charge under the center (2.18), which is a multiplicative phase, so the partition
function factorizes:

n−1∏
j=0

(1− e2πij`/nq)−1 ≡
∑
k≥0

N̂`q
k , (4.33)

and therefore
N̂` =

(
n+ k − 1

k

)
e2πi`/n

. (4.34)

Recall that the q-binomial coefficient at a root of unity can be expressed as a regular
binomial coefficient, cf. (2.29) and (2.27).

Putting everything together, the one-form symmetry twisted trace reads

trU(n)k,n+k(gt) =
(
n+ k

n

)
gt

≡


(

gcd(n+ k, t)
n gcd(n+ k, t)/(n+ k)

)
tn ≡ 0 mod n+ k,

0 otherwise.

(4.35)

It is easily checked that, if we plug k = N − n in (4.35), the twisted trace for U(n)k,n+k
exactly reproduces the twisted Witten index of the n-domain wall of SU(N) computed in
the ultraviolet, cf. (2.27).

4.3 G = O(n)

The n-domain wall theory for 4d N = 1 SYM with G = Spin(N) is proposed to be
O(n)1

N−2−n,N−n+1 Chern-Simons theory. Let us proceed to study the partition functions
of O(n)1

k,L.
The O(n)1

k,L Chern-Simons theory is defined as [23]

O(n)1
k,L :=

O(n)1
k,0 × (Z2)L
Z2

, (4.36)

where (Z2)L ↔ Spin(L)−1 denotes a Z2 gauge theory with twist L, and the quotient
denotes the gauging of a diagonal Z2 one-form symmetry. The value of the level we shall
be interested in is L = k + 3. On the other hand, the first factor is given by the following:
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• If n is even, the theory O(n)1
k,0 is defined as the CM-orbifold of SO(n)k. Here C

denotes the charge-conjugation Z2 zero-form symmetry that acts by permuting the
last two Dynkin labels in SO(n), and M is the magnetic Z2 zero-form symmetry
that is dual to the gauged one-form Z2 symmetry in the denominator of SO(n)k ≡
Spin(n)k/Z2. As such, it permutes the lines that split in the quotient, i.e., the lines
of Spin(n)k that are fixed by fusion with the extending simple current.

• If n is odd, the group O(n) is a direct product of SO(n) and Z2. The Chern-Simons
theory O(n)1

k,0 itself does not necessarily factorize, because of the convention of which
Z2 subgroup the reflection represents. The choice in [23] was

O(n)1
k,0 :=


Spin(n)k × (Z2)(k−2)(n−1)

Z2
n odd, k even,

SO(n)k × (Z2)(k−2)(n−1) n odd, k odd.

(4.37)

Let us compute the different traces in this theory. As above, the details depend
sensitively on the parity of n and k, so we consider each case separately.

Even/Even. We begin with the theory Spin(2n)2k. Its integrable representations satisfy

λ0 + λ1 + 2(λ2 + · · ·+ λn−2) + λn−1 + λn = 2k , (4.38)

which has trSpin(2n)2k(1) solutions (cf. (A.12)).
We now construct SO(2n)2k, i.e., we gauge a Z2 one-form symmetry, which acts as

λ0 ↔ λ1 and λn−1 ↔ λn. This is a bosonic quotient. The neutral representations satisfy
λn−1 + λn = even, which has

N :=
(
n+ k

k

)
+ 2

(
n+ k − 1
k − 1

)
+
(
n+ k − 2
k − 2

)
, (4.39)

solutions. These are divided into length-2 orbits, and fixed points. The former satisfy
λ0 6= λ1 ∨ λn−1 6= λn, and the latter λ0 = λ1 ∧ λn−1 = λn. The number of fixed points is

F :=
(
n+ k − 2

k

)
, (4.40)

and the number of length-2 orbits is 1
2(N − F). Finally, the number of representations of

SO(2n)2k is

trSO(2n)2k(1) = 2F + 1
2(N− F) ≡ 2

(
n+ k − 2

k

)
+
(
n+ k − 2
k − 1

)
+ (n↔ k) , (4.41)

which is invariant under n ↔ k, as expected by level-rank duality. This also agrees with
expression (A.15).

We now orbifold by CM, which acts by swapping the lines in 2F pairwise, and as
λn−1 ↔ λn. The representations that are fixed under CM are the subset of the length-2
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orbits that satisfy either λ0 6= λ1 ∧ λn−1 = λn or λ0 = λ1 ∧ λn−1 6= λn. In other words, the
lines that satisfy either of

λ0 + λ1 + 2(λ2 + · · ·+ λn−2 + λn−1) = 2k, λ0 6= λ1 ,

2(λ1 + λ2 + · · ·+ λn−2) + λn−1 + λn = 2k, λn−1 6= λn .
(4.42)

By symmetry, both conditions have the same number of solutions. In total,

A := 2
[(
n+ k − 1

k

)
+
(
n+ k − 2
k − 1

)
−
(
n+ k − 2

k

)]
(4.43)

solutions. Note that these are length-2 orbits of Spin(2n)2k, so the number of lines is A/2.
The representations that are interchanged under CM are all of F, plus the subset of

the length-2 orbits that satisfy λn−1 + λn = even and λn−1 6= λn, minus the solutions to
the second line in (4.42). The latter are

B :=
(
n+ k

k

)
+ 2

(
n+ k − 1
k − 1

)
+
(
n+ k − 2
k − 2

)

−
(
n+ k − 1

k

)
−
(
n+ k − 2
k − 1

)
− 1

2A

= 4
(
n+ k − 2
k − 2

)
.

(4.44)

Note that F are fixed points of Z2, while B are length-2 orbits, so the number of lines is
2F+B/2. Adding the lines in A we get 1

2(A+B)+2F ≡ trSO(2n)2k(1), as one would expect.
Putting all these results together, we see that the number of twisted and untwisted

lines in the orbifold is [59]
Ntwisted = A ,

Nuntwisted = A + 1
4B + F ,

(4.45)

and so the theory has

trO(2n)1
2k,0

(1) = Ntwisted +Nuntwisted

= −9
8

(
n+ k − 2

k

)
+ 4

(
n+ k − 2
k − 1

)
+ 17

8

(
n+ k − 2
k − 2

)
+ (n↔ k)

(4.46)

lines. This expression agrees with [23].
We now move on to O(2n)1

2k,2k+3. This is obtained by taking the theory we just
constructed, O(2n)1

2k,0, tensoring with Spin(2k+3)−1, and gauging a diagonal Z2 one-form
symmetry:

O(2n)1
2k,2k+3 =

O(2n)1
2k,0 × Spin(2k + 3)−1

Z2
, (4.47)

where the quotient is fermionic.
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Take the states of O(2n)1
2k,0 as above, i.e., Ntwisted and Nuntwisted, and tensor by

Spin(2k + 3)−1 = {1, σ, χ}. The NS and R lines are as follows:

NS : Nuntwisted ⊗ 1, Ntwisted ⊗ σ, Nuntwisted ⊗ χ
R : Ntwisted ⊗ 1, Nuntwisted ⊗ σ, Ntwisted ⊗ χ .

(4.48)

We now quotient by the Z2 one-form symmetry. This symmetry maps 1↔ χ, and it fixes
σ; and, also, it permutes lines in A pairwise, a↔ a′, and it fixes those in 1

4B+F. Therefore,
in the NS sector it acts as

A⊗ 1↔ A′ ⊗ χ(1
4B + F

)
⊗ 1↔

(1
4B + F

)
⊗ χ

A⊗ σ ↔ A′ ⊗ σ

(4.49)

which are all length-two orbits (recall that there are never fixed-points in the NS sector).
Thus, the dimension of the Hilbert space is

dim(O(2n)1
2k,2k+3) = A +

(1
4B + F

)
+ 1

2A

≡ 1
2Ntwisted +Nuntwisted .

(4.50)

This corresponds to the trace of 1 over the Hilbert space on any of the spatial spin
structures.

Consider now the R sector. The one-form symmetry acts as

A⊗ 1↔ A′ ⊗ χ(1
4B + F

)
⊗ σ ↔

(1
4B + F

)
⊗ σ

A⊗ σ ↔ A′ ⊗ σ ,

(4.51)

and so all of A are in length-two orbits, while all of 1
4B + F are fixed-points. Thus, the

number of fermions and bosons is

Nboson = A + 1
2A ≡

3
2Ntwisted ,

Nfermion = 1
4B + F ≡ Nuntwisted −Ntwisted .

(4.52)

Note that Nboson +Nfermion agrees with the dimension of the Hilbert space as computed
in the NS sector (cf. (4.50)). On the other hand, the trace in the odd spin structure,
weighted by fermion parity, is Nboson −Nfermion:

trO(2n)1
2k,2k+3

(−1)F ≡ 5
2Ntwisted −Nuntwisted . (4.53)

As a consistency check, recall that one can also express the fermionic trace as
trHR-R(−1)F = 2 dim(HB)− 7 dim(HF ) (cf. (3.19)). The dimension of the bosonic Hilbert
space is

dim(O(2n)1
2k,0 × Spin(2k + 3)−1) ≡ 3(Nuntwisted +Ntwisted) , (4.54)
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while the dimension of the fermionic Hilbert space is half the number of lines, i.e.,
1
2(2Nuntwisted +Ntwisted). Thus,

trO(2n)1
2k,2k+3

(−1)F = 6Ntwisted + 6Nuntwisted −
7
2Ntwisted − 7Nuntwisted , (4.55)

which indeed matches the expression above.
Recall that the conjectured infrared theory corresponding to the n-domain wall of

Spin(N) was Wn = O(n)1
k,k+3, with k = N − 2− n. Using this value of the level in (4.53)

indeed reproduces the Witten indices computed in the ultraviolet, cf. (2.46).

Odd/Odd. We consider

O(2n+ 1)1
2k+1,2k+4 = SO(2n+ 1)2k+1 × (Z2)2(n+k) . (4.56)

As the theory is a tensor product, the traces factorize:

trO(2n+1)1
2k+1,2k+4

(O1 ⊗O2) ≡ trSO(2n+1)2k+1(O1) · tr(Z2)2(n+k)(O2) . (4.57)

For example, the Z2 gauge theory has four states, all bosonic, tr(Z2)2(n+k)(−1)F ≡ 4,
which means that the untwisted index is

trO(2n+1)1
2k+1,2k+4

(−1)F = 4
[(
n+ k

k

)
− 2

(
n+ k − 1

k

)]
, (4.58)

where we have used the trace of SO(2n+ 1)2k+1 as given in (A.10).
Similarly, the index twisted by the zero-form symmetry c has tr(Z2)2(n+k)(c) ≡ 2, where

c acts by permuting the two spinors (this is the only zero-form symmetry of this Z2 gauge
theory, cf. [58, 60]; it fixes both the identity and the vector). On the other hand, the only
zero-form symmetry of SO(2n + 1)2k+1 is fermion parity,20 and there is in fact a natural
identification c = (−1)F (cf. [23]). Thus, the c-twisted trace weighted by fermion parity
actually computes the untwisted trace, with antiperiodic (NS) boundary conditions on the
time circle:

trSO(2n+1)2k+1((−1)F c) ≡ trSO(2n+1)2k+1(1) ≡
(
n+ k

k

)
, (4.59)

where we have used (A.9). All in all, the twisted trace of O(2n+ 1)1
2k+1,2k+4 is

trO(2n+1)1
2k+1,2k+4

((−1)F c) = 2
(
n+ k

k

)
. (4.60)

The index twisted by the one-form symmetry is also straightforward. This symmetry
is Z2

2 for O(4n+ 1)4k+1 and O(4n+ 3)4k+3, and Z4 for O(4n+ 1)4k+3 and O(4n+ 3)4k+1.
20The Dynkin diagram of SO(N) for N odd has no reflection symmetries, i.e., its outer automorphism

group is trivial. Thus, the zero-form symmetries of SO(N), if any, must be due to the global structure of
the group, as its algebra has no symmetries. Indeed, the zero-form symmetry comes from π1(SO(N)) = Z2,
but this is just the magnetic dual to the gauged Z2 one-form symmetry, which means that the magnetic
symmetry is formally just (−1)F . If we were to gauge this symmetry, we would recover Spin(N).
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These correspond to fusion with the abelian anyons of Spin(L)−1, with L = 0 mod 4 and
L = 2 mod 4 respectively, which indeed have a Z2

2/Z4 fusion algebra. As abelian fusion
has no fixed-points, all the twisted traces vanish:

trO(2n+1)1
2k+1,2k+4

((−1)F g1g2) ≡ 0 ,

trO(2n+1)1
2k+1,2k+4

((−1)F g) ≡ 0 ,
(4.61)

where (g1, g2) ∈ Z2
2 and g ∈ Z4, respectively.

Recall that the conjectured infrared theory corresponding to the n-domain wall of
Spin(N) was Wn = O(n)1

k,k+3, with k = N − 2 − n. Using this value of the level
in (4.58), (4.60), (4.61) indeed reproduces the Witten indices computed in the ultravio-
let, cf. (2.46), (2.49), (2.53), (2.56).

Odd/Even & Even/Odd. We only need to consider one; the other follows by the level-
rank duality. Take

O(2n+ 1)1
2k,0 =

Spin(2n+ 1)2k × (Z2)4n(k−1)
Z2

, (4.62)

where the gauged one-form symmetry is generated by a⊗ e, where a = [0, 2k, 0, . . . , 0] and
e is the electric line of the toric code. This is a bosonic quotient.

The one-form symmetry acts as λ0 ↔ λ1 and e : m ↔ em. The neutral lines are of
the form

λ⊗ 1, λ⊗ e, λn = even
λ⊗m, λ⊗ em, λn = odd .

(4.63)

Note that there are no fixed points, and all orbits are of length 2:

{λ⊗ 1, (a× λ)⊗ e}, {λ⊗m, (a× λ)⊗ em} . (4.64)

Therefore, a set of representatives can be taken as λtensor⊗1 and λspinor⊗m. In what
follows we drop the second label, as it is correlated with λ in a unique way. The number
of tensors and spinors is (cf. (A.5))

Ntensor =
(
n+ k − 1
k − 1

)
+
(
n+ k

k

)
, Nspinor = 2

(
n+ k − 1
k − 1

)
. (4.65)

We now tensor the theory by a factor of Spin(2k + 3)−1 = {1, σ, χ}, and gauge the
fermionic one-form symmetry generated by f = a⊗χ. The Ramond sector requires hα×f =
hα mod 1, which means that the lines are

(λtensor, σ), (λspinor,1 or χ) . (4.66)

Note that only the former can be a fixed-point under the fermionic quotient, inasmuch as
χ× σ = σ while χ : 1↔ χ. In particular, the fixed-points are

λtensor, λ0 = λ1 , (4.67)
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while the rest of lines are all in length-2 orbits. The fixed-points satisfy λ1 + λ2 + · · · +
λn−1 + λn/2 = k, which has

F :=
(
n+ k − 1

k

)
, (4.68)

solutions. Thus, finally

trO(2n+1)1
2k,2k+3

(−1)F = Nspinor + 1
2(Ntensor − F)− F

= 5
2

(
n+ k − 1
k − 1

)
+ 1

2

(
n+ k

k

)
− 3

2

(
n+ k − 1

k

)
.

(4.69)

The trace over O(2n)1
2k+1,2k+4 can be obtained by using the orthogonal level-rank

duality O(2n)1
2k+1,2k+4 ↔ O(2k + 1)1

−2n,−(2n+3).
One can similarly compute the index twisted by the Z2 one-form symmetry, which acts

via fusion with the electric line e. The charged states are those that include the magnetic
line m, to wit, the spinors. In other words, the one-form symmetry correlates (gauge)
spin and (spacetime) statistics, so that the states with (−1)F e = +1 are the tensor bosons
and spinor fermions, and states with (−1)F e = −1 are the spinor bosons and the tensor
fermions. With this,

trO(2n+1)1
2k,2k+3

((−1)F e) = −Nspinor + 1
2(Ntensor − F)− F

= −
(
n+ k

k

)
.

(4.70)

As above, the trace for O(2n)1
2k+1,2k+4 is obtained by level-rank duality.

Recall that the conjectured infrared theory corresponding to the n-domain wall
of Spin(N) was Wn = O(n)1

k,k+3, with k = N − 2 − n. Using this value of the
level in (4.69), (4.70) indeed reproduces the Witten indices computed in the ultraviolet,
cf. (2.39), (2.42).

4.4 G = G2

The 2-domain wall theory for 4d N = 1 SYM with G = G2 is SO(3)3×S1, where S1 denotes
then nonlinear sigma model with S1 target space. We already proved in section 3.1 that
the theory SO(3)3 has vanishing Witten index, and since there is a unique vacuum of
the S1 sigma model on the torus, the infrared index vanishes. This matches the Witten
index computed in the ultraviolet, which is given by the coefficient of q2 in (1.20). Indeed,
expanding this polynomial one finds that the index vanishes.

The domain wall with n = 1 (and n = 3, which is the anti-wall of n = 1) is addressed
below.

4.5 Minimal wall for arbitrary gauge group

The n = 1 domain wall theory for 4d N = 1 SYM with arbitrary G is proposed to be G−1
Chern-Simons theory.
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As G is simply-connected, the theory is naturally bosonic, and the trace trG−1(−1)F
computes the dimension of the Hilbert space, that is, the number of integrable representa-
tions at level 1. In other words, the trace is the number of solutions to (4.4) with k = 1,
namely

r∑
i=0

λia
∨
i = 1 , (4.71)

which, as in (2.59), requires λi = 1 for some i with a∨i = 1, and λj = 0 for all j 6= i.
Therefore, the trace is

trG−1(−1)F = m1 (4.72)

where m1 denotes the number of nodes in the Dynkin diagram of G that have comark equal
to 1. This clearly reproduces the ultraviolet index (2.60), as required.

For simply-laced G, G−1 Chern-Simons theory is in fact an abelian TQFT, and all
the lines generate one-form symmetries. The number of lines is the number of one-form
symmetries, that is, the order of Γ, which indeed agrees with m1. Equivalently, it is known
that simply-laced theories at level 1 admit a K-matrix representation, where one can take
K as the Cartan matrix of g. The number of states is indeed det(K) ≡ |Γ|.21

One can define a zero-form twisted index for (E6)−1. The only node with comark 1
preserved by the charge conjugation symmetry of this theory is the extended node, and thus

tr(E6)−1(−1)F = 1 . (4.73)

Since (E6)−1 and (E7)−1 are abelian, twisting by a one-form symmetry has no fixed
points and

tr(E6)−1((−1)F g) = 0 g ∈ Γ = Z3

tr(E7)−1((−1)F g) = 0 g ∈ Γ = Z2 .
(4.74)

These reproduce the twisted Witten indices on the walls (2.63).

5 Concluding remarks and open questions

In this paper we have proposed explicit 3d topological field theories on the domain walls
of 4d N = 1 SYM with gauge group G. We have found precise agreement between compu-
tations carried out in terms of the ultraviolet 4d degrees of freedom (gluons and gluinos)
and the conjectured infrared topological 3d degrees of freedom. We have highlighted the
importance in identifying the infrared of the domain wall theories of studying the Hilbert
space of spin TQFTs, in particular the partition function in the R-R sector and identify-
ing the fermionic states in the Hilbert space, as opposed to merely counting states. The
nontrivial matching of the twisted Witten indices provides strong support for our proposal.

A heuristic argument can be made in favor of our proposal that the n-domain wall
in 4d N = 1 SYM with gauge group G is the infrared of 3d N = 1 Gh/2−n SYM (see
equation (1.3)).22 Consider 4d SYM on R3 × S1 with the YM θ-angle linear in the S1

21Note that abelian systems typically have a very large number of zero-form symmetries [58], most of which
are emergent in our picture, inasmuch as the ultraviolet theory only has C as its zero-form symmetry group.

22We would like to thank D. Gaiotto for an interesting discussion regarding this point.
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coordinate and winding number n around the circle. This theory can be defined while
preserving half of the supersymmetry.23 When the radius of the circle is large one can
expect the theory to be gapped everywhere except at the location of the wall Wn. For
small radius, the theory reduces to 3d N = 1 G−n SYM with an adjoint real multiplet
(the scalar is compact, as it arises from reducing the gauge field along a circle). It was
argued in [61] that with a suitable superpotential for the real multiplet, the multiplet gaps
out and flows to 3d N = 1 Gh/2−n SYM, where the shift is induced by integrating out the
massive fermion in the real multiplet. Assuming that there is no phase transition as the
size of the circle is reduced leads to the proposal (1.3). However, the lack of control over
the superpotential upon reduction makes the argument suggestive but heuristic.

The n > 1 domain wall theories for the groups G = F4, E6, E7 and E8 remain to be
discovered. Equivalently, the phase diagram of the corresponding 3d N = 1 Gk SYM with
k < h/2 − 1 remains elusive. We collect in appendix B the twisted partition functions
computed in the ultraviolet for future reference. One strategy towards the identification
of the infrared domain wall theory is to search for novel level-rank dualities in Gk Chern-
Simons theories that go beyond the ones that follow from conformal embeddings. In general,
level-rank dualities follow from embeddings into holomorphic theories (theories with only
one state), and this approach could lead to suitable level-rank dualities and in turn to
explicit proposals for the remaining 3d N = 1 Gk SYM phase diagrams (and associated 4d
domain walls).

In this paper we have made an intriguing connection between the Hilbert space of
Chern-Simons theories on the torus and the Hilbert space of fermions in 0 + 1 dimensions
labeled by the extended Dynkin diagram g(1) corresponding to a Lie group G. That is, the
fermionic Hilbert space HnF with energy n is isomorphic as super-vector spaces to the R-R
Hilbert space of a suitable spin TQFT, which we denote by TQFTn

HnF ' H
TQFTn
R-R . (5.1)

Consequently, the partition functions with periodic and antiperiodic boundary conditions
on the time circle also match. Specifically we have established the correspondence (the
A

(1)
N−1 case was studied by Douglas in [62])24

A
(1)
N−1 ←→ U(n)N−n,N
B

(1)
N ←→ O(n)1

2N−1−n,2N−n+2

C
(1)
N ←→ Sp(n)N+1−n

D
(1)
N ←→ O(n)1

2N−2−n,2N−n+1

G
(1)
2 ←→ U(2)3n,2−n .

(5.2)

23The Lagrangian of this theory can be written as L =
∫
d2ϑ XWαW

α, where X is a background chiral
multiplet and Wα the chiral gauge field strength. Re(X) determines the gauge coupling and Im(X) the θ-
angle. The background Im(X) ∝ nx3 with FX ∝ in preserves half of the supersymmetries. The background
for FX induces a mass term for the gaugino ∝ inλ̄γ(5)γ

3λ, where λ is Majorana.
24In writing this we use the duality (G2)1 ↔ U(2)3,1 and the notation U(2)6,0 ≡ SO(3)3 × S1.
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Another route to constructing the domain walls for G = F4, E6, E7 and E8 is to identify
the TQFT whose R-R Hilbert space on the torus is that of the collection of free fermions
based on the corresponding affine Dynkin diagram g(1).
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A Chern-Simons with unitary and orthogonal groups

In this appendix we compute several traces on the torus Hilbert space of Chern-Simons
theories over simply-connected Lie groups. These traces are useful when studying more
complicated theories over non-simply-connected groups.

A.1 G = SU(n)

Consider the algebra An−1 = sun. The comarks are all a∨i = 1. Plugging this into (4.11)
we get the generating function as

Z(SU(n), q) = (1− q)−n , (A.1)

and, by expanding, the untwisted trace

trSU(n)k(1) =
(
n+ k − 1

k

)
. (A.2)

This is the number of integrable representations of SU(n)k, that is, the dimension of
the torus Hilbert space of this Chern-Simons theory. This result will be useful when we
discuss the Chern-Simons theory over the unitary group U(n), see section 4.2.

A.2 G = Spin(2n + 1)

Consider the algebra Bn = so2n+1. The comarks are a∨i = 1 for i = 0, 1, n, and a∨i = 2 for
i = 2, . . . , n− 1. Plugging this into (4.11) we get the generating function as

Z(Spin(2n+ 1), q) = (1− q)−3(1− q2)−(n−2) , (A.3)

and, by expanding, the untwisted trace

trSpin(2n+1)2k(1) =
(
n+ k

k

)
+ 3

(
n+ k − 1
k − 1

)
,

trSpin(2n+1)2k+1(1) =
(
n+ k − 1
k − 1

)
+ 3

(
n+ k

k

)
.

(A.4)
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This is the number of integrable representations of Spin(2n+1)k, that is, the dimension
of the torus Hilbert space of this Chern-Simons theory. For future reference, it is also useful
to break up the states into the tensors and spinors. In other words, we shall be interested in
knowing how many of the states of Spin(2n+1) are tensorial representations, and how many
are spinorial representations. These are defined by λn = even and λn = odd, respectively,
which yields the following:

N
Spin(2n+1)2k
tensor =

(
n+ k

k

)
+
(
n+ k − 1
k − 1

)
,

N
Spin(2n+1)2k
spinor = 2

(
n+ k − 1
k − 1

)
,

N
Spin(2n+1)2k+1
tensor = 2

(
n+ k

k

)
,

N
Spin(2n+1)2k+1
spinor =

(
n+ k

k

)
+
(
n+ k − 1
k − 1

)
,

(A.5)

so that

trSpin(2n+1)k(1) ≡ NSpin(2n+1)k
tensor +N

Spin(2n+1)k
spinor . (A.6)

For a more interesting example, let us now compute the partition function of SO(2n+
1)k = Spin(2n + 1)k/Z2, which corresponds to the algebra so2n+1 extended by the simple
current χ = [0, k, 0, . . . , 0]. This current has spin hχ = k/2, and so the extension is
fermionic for odd k. The current acts on a given representation [λ0, λ1, . . . , λn] as λ0 ↔ λ1.

Consider first the case of even k, so that SO(2n+ 1)k makes sense as a bosonic theory.
The extension has two effects: first, it projects out all the spinors, and second, it organizes
the tensors into Z2-orbits. Such an orbit may have length two or one; the latter corresponds
to a fixed-point under spectral flow, i.e., to a tensor with λ0 = λ1, which splits into
two primaries in the quotient. The number of fixed-points corresponds to the number of
solutions to λ0 +λ1 +2(λ2 + · · ·+λn−1)+λn = k with λ0 = λ1 and λn even, i.e.,

(n+k/2−1
k/2

)
.

Therefore, the number of conformal blocks is

trSO(2n+1)2k(1) = 1
2

(
N

Spin(2n+1)2k
tensor −

(
n+ k − 1

k

))
+ 2

(
n+ k − 1

k

)
. (A.7)

Let now k be odd, which makes SO(2n + 1)k a spin theory. The total number of
states is the same on every spin structure, so we shall count the bosons and fermions in the
Ramond sector (which is the richest case, as only this sector may contain fermions). The
total number of states is the sum, while the Witten index is the difference. In the Ramond
sector, the quotient projects out the tensors, and it organizes the spinors into Z2-orbits.
The bosons are the length-two orbits, and the fermions are the fixed-points. The latter are
the representations with λ0 + λ1 + 2(λ2 + · · ·+ λn−1) + λn = k with λ0 = λ1 and λn odd,
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which has
(n+(k−1)/2−1

(k−1)/2
)
solutions. Thus, the number of bosons and fermions is

N
SO(2n+1)2k+1
boson = 1

2

(
N

Spin(2n+1)2k+1
spinor −

(
n+ k − 1

k

))
,

N
SO(2n+1)2k+1
fermion =

(
n+ k − 1

k

)
,

(A.8)

from where it follows that

trSO(2n+1)2k+1(1) = trSO(2n+1)2k+1(−1)F = N
SO(2n+1)2k+1
boson +N

SO(2n+1)2k+1
fermion

=
(
n+ k

k

)
,

(A.9)

for all spatial spin structures, except for the odd structure for which

trSO(2n+1)2k+1(−1)F = N
SO(2n+1)2k+1
boson −NSO(2n+1)2k+1

fermion

=
(
n+ k

k

)
− 2

(
n+ k − 1

k

)
.

(A.10)

We see that tr(1) is invariant under n↔ k, as required by level-rank duality. Similarly,
tr(−1)F is invariant up to a sign, which is due to the difference in the framing anomalies
(i.e., the precise level-rank duality [26] is SO(2n+ 1)2k+1 ↔ SO(2k + 1)−2n−1 × SO((2n+
1)(2k+1))1, with the invertible factor contributing with a global factor of (−1)(2n+1)(2k+1) ≡
−1 to the trace, cf. (3.24)).

A.3 G = Spin(2n)

Consider the algebra Dn = so2n. The comarks are a∨i = 1 for i = 0, 1, n− 1, n, and a∨i = 2
for i = 2, . . . , n− 2. Plugging this into (4.11) we get the generating function as

Z(Spin(2n), q) = (1− q)−4(1− q2)−(n−3) , (A.11)

and, by expanding, the untwisted trace

trSpin(2n)2k(1) =
(
n+ k

k

)
+ 6

(
n+ k − 1
k − 1

)
+
(
n+ k − 2
k − 2

)
,

trSpin(2n)2k+1(1) = 4
(
n+ k

k

)
+ 4

(
n+ k − 1
k − 1

)
.

(A.12)

This is the number of integrable representations of Spin(2n)k, that is, the dimension of
the torus Hilbert space of this Chern-Simons theory. For future reference, it is also useful
to break up the states into the tensors and spinors. In other words, we shall be interested
in knowing how many of the states of Spin(2n) are tensorial representations, and how many
are spinorial representations. These are defined by λn−1 +λn = even and λn−1 +λn = odd,
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respectively, which yields the following:

N
Spin(2n)2k
tensor =

(
n+ k

k

)
+ 2

(
n+ k − 1
k − 1

)
+
(
n+ k − 2
k − 2

)
,

N
Spin(2n)2k
spinor = 4

(
n+ k − 1
k − 1

)
,

N
Spin(2n)2k+1
tensor = N

Spin(2n)2k+1
spinor = 2

(
n+ k

k

)
+ 2

(
n+ k − 1
k − 1

)
,

(A.13)

so that
trSpin(2n)k(1) ≡ NSpin(2n)k

tensor +N
Spin(2n)k
spinor . (A.14)

For a more interesting example, let us now compute the partition function SO(2n)k =
Spin(2n)k/Z2, which corresponds to the algebra so2n extended by the simple current χ =
[0, k, 0, . . . , 0]. This current has spin hχ = k/2, and so the extension is fermionic for odd
k. The current acts on a given representation [λ0, λ1, . . . , λn] as λ0 ↔ λ1 and λn−1 ↔ λn.

Consider first the case of even k, so that SO(2n)k makes sense as a bosonic theory. The
extension has two effects: first, it projects out all the spinors, and second, it organizes the
tensors into Z2-orbits. Such an orbit may have length two or one; the latter corresponds
to a fixed-point under spectral flow, i.e., to a tensor with λ0 = λ1 and λn−1 = λn, which
splits into two primaries in the quotient. The number of fixed-points corresponds to the
number of solutions to λ0 + λ1 + 2(λ2 + · · · + λn−2) + λn−1 + λn = k with λ0 = λ1 and
λn−1 = λn, i.e.,

(n+k/2−2
k/2

)
. Therefore, the number of conformal blocks is

trSO(2n)2k(1) = 1
2

(
N

Spin(2n)2k
tensor −

(
n+ k − 2

k

))
+ 2

(
n+ k − 2

k

)
. (A.15)

Let now k be odd, which makes SO(2n)k a spin theory. The number of states is the
same on every spin structure, so we shall count the bosons and fermions in the Ramond
sector (which is the richest case, as only this sector may contain fermions). The total
number of states is the sum, while the Witten index is the difference. In the Ramond
sector, the quotient projects out the tensors, and it organizes the spinors into Z2-orbits.
The bosons are the length-two orbits, and the fermions are the fixed-points. Note that
the spinors have λn−1 + λn = odd, which is incompatible with the fixed-point condition
λn−1 = λn, and so there are no fixed-points. Thus, the number of bosons and fermions is

N
SO(2n)2k+1
boson = 1

2N
Spin(2n)2k+1
spinor ,

N
SO(2n)2k+1
fermion = 0 ,

(A.16)

from where it follows that

trSO(2n)2k+1(1) = trSO(2n)2k+1(−1)F = N
SO(2n)2k+1
boson , (A.17)

for all spatial spin structures. Note that the equality of tr(1), tr(−1)F on all spin struc-
tures was in fact expected from the level-rank duality SO(2n)2k+1 ↔ SO(2k + 1)−2n, the
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r.h.s. being fermionic only due to a trivial SO(2n(2k+1))1 = {1, ψ} factor (which contains
an even number of fermions, so not even the sign of tr(−1)F may depend on the spin
structure).

B The exceptional groups

In this appendix we gather the different indices for the exceptional groups, whose domain
wall theory is yet to be identified. Any given proposal for the dynamics of such walls ought
to be consistent with the indices below. By particle-hole symmetry, the indices satisfy
Is
n = ±Is

h−n, and therefore we only show the first dh/2e indices, so as to avoid repetition.
We compute the untwisted indices, and the indices twisted by the zero-form and one-

form symmetries (see table 1). The symmetries c ∈ C = Z2 and g ∈ Γ = Z3 act on the
Dynkin diagram of E6 as follows:

E
(1)
6 :



7→ E
(2)
6 :

7→ G
(1)
2 :

1 2 3

2

1

2

1

1 2 3 4 2

1 2 3

2

1

2

1

3 6 3

(B.1)

The symmetry g ∈ Γ acts on E7 as follows:

E
(1)
7 : 7→ F

(1)
4 :

1 2 3

4

3 2 1

2

2 4 6 4 2

(B.2)

Using these diagrams we find:

• E6:
Z(q) = 1− 3q + 7q3 − 3q4 − 6q5 + · · ·
Zc(q) = 1− q − 2q2 + q3 + q4 + 2q5 + · · ·
Zg(q) = 1− 2q3 + · · ·

(B.3)
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• E7:
Z(q) = 1− 2q − 2q2 + 4q3 + 3q4 − 7q6 − 4q7 + 5q8 + 4q9 + · · ·
Zg(q) = 1− 2q2 − q4 + 3q6 + q8 + · · ·

(B.4)

• E8:
Z(q) = 1− q − 2q2 + q4 + 4q5 + q6 − 3q8

− 6q9 − q10 + 4q12 + 5q13 + 5q14 + · · ·
(B.5)

• F4:
Z(q) = 1− 2q − q2 + 3q3 + q4 + · · · (B.6)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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[39] G. Felder, K. Gawȩdzki and A. Kupiainen, Spectra of Wess-Zumino-Witten models with
arbitrary simple groups, Commun. Math. Phys. 117 (1988) 127 [INSPIRE].

[40] C.-r. Ahn and M.A. Walton, Field identifications in coset conformal theories from projection
matrices, Phys. Rev. D 41 (1990) 2558 [INSPIRE].

[41] A. Ritz, M. Shifman and A. Vainshtein, Counting domain walls in N = 1 super-Yang-Mills,
Phys. Rev. D 66 (2002) 065015 [hep-th/0205083] [INSPIRE].

[42] R. Dijkgraaf and E. Witten, Topological gauge theories and group cohomology, Commun.
Math. Phys. 129 (1990) 393 [INSPIRE].

[43] Z.-C. Gu, Z. Wang and X.-G. Wen, Lattice model for fermionic toric code, Phys. Rev. B 90
(2014) 085140 [arXiv:1309.7032] [INSPIRE].

[44] A. Beliakova, C. Blanchet and E. Contreras, Spin modular categories, Quant. Topol. 8 (2014)
459 [arXiv:1411.4232].

[45] D. Gaiotto and A. Kapustin, Spin TQFTs and fermionic phases of matter, Int. J. Mod.
Phys. A 31 (2016) 1645044 [arXiv:1505.05856] [INSPIRE].

[46] L. Bhardwaj, D. Gaiotto and A. Kapustin, State sum constructions of spin-TFTs and string
net constructions of fermionic phases of matter, JHEP 04 (2017) 096 [arXiv:1605.01640]
[INSPIRE].

[47] D. Aasen, E. Lake and K. Walker, Fermion condensation and super pivotal categories, J.
Math. Phys. 60 (2019) 121901 [arXiv:1709.01941] [INSPIRE].

[48] G. Moore and N. Seiberg, Taming the conformal zoo, Phys. Lett. B 220 (1989) 422.

[49] F.A. Bais and J.K. Slingerland, Condensate induced transitions between topologically ordered
phases, Phys. Rev. B 79 (2009) 045316 [arXiv:0808.0627] [INSPIRE].

[50] I.S. Eliëns, J.C. Romers and F.A. Bais, Diagrammatics for Bose condensation in anyon
theories, Phys. Rev. B 90 (2014) 195130 [arXiv:1310.6001] [INSPIRE].

[51] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121
(1989) 351 [INSPIRE].

[52] D. Delmastro, D. Gaiotto and J. Gomis, Global anomalies on the Hilbert space,
arXiv:2101.02218.

[53] A. Kapustin and R. Thorngren, Fermionic SPT phases in higher dimensions and
bosonization, JHEP 10 (2017) 080 [arXiv:1701.08264] [INSPIRE].

– 51 –

https://doi.org/10.1142/S0217751X90001367
https://inspirehep.net/search?p=find+J%20%22Int.J.Mod.Phys.%2CA5%2C2903%22
https://doi.org/10.1016/0550-3213(83)90256-0
https://doi.org/10.1016/0550-3213(87)90231-8
https://doi.org/10.1016/0550-3213(87)90231-8
https://doi.org/10.1007/BF01228414
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C117%2C127%22
https://doi.org/10.1103/PhysRevD.41.2558
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD41%2C2558%22
https://doi.org/10.1103/PhysRevD.66.065015
https://arxiv.org/abs/hep-th/0205083
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0205083
https://doi.org/10.1007/BF02096988
https://doi.org/10.1007/BF02096988
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C129%2C393%22
https://doi.org/10.1103/PhysRevB.90.085140
https://doi.org/10.1103/PhysRevB.90.085140
https://arxiv.org/abs/1309.7032
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1309.7032
https://doi.org/10.4171/QT/95
https://doi.org/10.4171/QT/95
https://arxiv.org/abs/1411.4232
https://doi.org/10.1142/S0217751X16450445
https://doi.org/10.1142/S0217751X16450445
https://arxiv.org/abs/1505.05856
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.05856
https://doi.org/10.1007/JHEP04(2017)096
https://arxiv.org/abs/1605.01640
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.01640
https://doi.org/10.1063/1.5045669
https://doi.org/10.1063/1.5045669
https://arxiv.org/abs/1709.01941
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.01941
https://doi.org/10.1016/0370-2693(89)90897-6
https://doi.org/10.1103/PhysRevB.79.045316
https://arxiv.org/abs/0808.0627
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0808.0627
https://doi.org/10.1103/PhysRevB.90.195130
https://arxiv.org/abs/1310.6001
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1310.6001
https://doi.org/10.1007/BF01217730
https://doi.org/10.1007/BF01217730
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C121%2C351%22
https://arxiv.org/abs/2101.02218
https://doi.org/10.1007/JHEP10(2017)080
https://arxiv.org/abs/1701.08264
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.08264


J
H
E
P
0
3
(
2
0
2
1
)
2
5
9

[54] R. Thorngren, Anomalies and bosonization, Commun. Math. Phys. 378 (2020) 1775
[arXiv:1810.04414] [INSPIRE].

[55] P.-S. Hsin and S.-H. Shao, Lorentz symmetry fractionalization and dualities in (2 + 1)d,
SciPost Phys. 8 (2020) 018 [arXiv:1909.07383] [INSPIRE].

[56] E. Witten and N. Seiberg, Gapped boundary phases of topological insulators via weak
coupling, PTEP 2016 (2016) 12C101.

[57] S. Elitzur, G. Moore, A. Schwimmer and N. Seiberg, Remarks on the canonical quantization
of the Chern-Simons-Witten theory, Nucl. Phys. B 326 (1989) 108.

[58] D. Delmastro and J. Gomis, Symmetries of abelian Chern-Simons theories and arithmetic,
JHEP 03 (2021) 006 [arXiv:1904.12884] [INSPIRE].

[59] R. Dijkgraaf, C. Vafa, E.P. Verlinde and H.L. Verlinde, The operator algebra of orbifold
models, Commun. Math. Phys. 123 (1989) 485 [INSPIRE].

[60] A. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303 (2003) 2
[quant-ph/9707021].

[61] V. Bashmakov, J. Gomis, Z. Komargodski and A. Sharon, Phases of N = 1 theories in 2 + 1
dimensions, JHEP 07 (2018) 123 [arXiv:1802.10130] [INSPIRE].

[62] M.R. Douglas, Chern-Simons-Witten theory as a topological Fermi liquid, hep-th/9403119
[INSPIRE].

– 52 –

https://doi.org/10.1007/s00220-020-03830-0
https://arxiv.org/abs/1810.04414
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.04414
https://doi.org/10.21468/SciPostPhys.8.2.018
https://arxiv.org/abs/1909.07383
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.07383
https://doi.org/10.1093/ptep/ptw083
https://doi.org/10.1016/0550-3213(89)90436-7
https://doi.org/10.1007/JHEP03(2021)006
https://arxiv.org/abs/1904.12884
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.12884
https://doi.org/10.1007/BF01238812
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C123%2C485%22
https://doi.org/10.1016/S0003-4916(02)00018-0
https://arxiv.org/abs/quant-ph/9707021
https://doi.org/10.1007/JHEP07(2018)123
https://arxiv.org/abs/1802.10130
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.10130
https://arxiv.org/abs/hep-th/9403119
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9403119

	Domain walls in 4d N=1 SYM
	Twisted Witten indices
	G=SU(N)
	G=Sp(N)
	G=Spin(2N+1)
	G=Spin(2N)
	G=G(2)
	Minimal wall for arbitrary gauge group

	Hilbert space of spin TQFTs
	Partition function of spin TQFTs

	Domain wall TQFT partition functions
	G=Sp(n)
	G=U(n)
	G=O(n)
	G=G(2)
	Minimal wall for arbitrary gauge group

	Concluding remarks and open questions
	Chern-Simons with unitary and orthogonal groups
	G=SU(n)
	G=Spin(2n+1)
	G=Spin(2n)

	The exceptional groups

