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1 Introduction

It has been known for more than 20 years that our universe is in a period of accelerated
expansion. This observation has led to many efforts to obtain de Sitter (dS) space from
string theory. The first successful attempt was the KKLT scenario [1] in which the
introduction of antibranes in type IIB flux compactifications is a crucial ingredient to
stabilise all moduli in a metastable de Sitter vacuum. These flux compactifications lead
to the string theory realisation of a landscape of vacua that is at the moment the main
approach towards explaining the smallness of the cosmological constant [2].

Given the magnitude of the problem of fixing all moduli at a positive vacuum energy,
the scenario naturally requires several non-trivial ingredients of string compactifications:
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fluxes, orientifolds, non-perturbative effects, antibranes, etc. The combination of all these
ingredients in a consistent way should be subject to close scrutiny since the physical im-
plications are so important. This is precisely what has been happening during the past
15 years. Several criticisms have been pointed out to this approach, ranging from the ex-
plicitness of the scenario to the proper use of effective field theory (EFT), consistency of
the antibrane together with non-perturbative effects, etc. This has led to perspectives as
different as the claims that there is an almost infinite discrete number of solutions to the
ones that there are no solutions at all. So far, antibrane uplift has survived all challenges
which is helping to the robustness of the scenario. Our goal in this paper is to add to this
robustness by constructing a concrete model exhibiting all the ingredients of the scenario
and, expanding on [3], explicitly stabilising the moduli with positive vacuum energy.1

In the KKLT scenario the anti D3-brane is typically placed at the tip of a highly
warped throat, so that its contribution to the vacuum energy is just a perturbation of the
supergravity potential of N = 1 4d compactification (not spoiling the moduli stabilisation
present already without the anti D3-brane). In particular we are interested in an anti
D3-brane on top of an O3-plane at the tip of a warped throat with (2,1) three-form fluxes.
In this case, in fact, the goldstino is the only low-energy degree of freedom. This justifies
the use of a nilpotent superfield X to describe the EFT [16].

In [3] this problem was addressed in a geometry obtained by orientifolded conifolds,
refining and generalising the analysis in [16]. Already the standard conifold singularity can
support an orientifold involution necessary to produce an O3-plane at the tip of the throat.
Deforming the conifold singularity leads to two O3-planes placed at the north and south
poles of the blown up S3. The interesting limit is when the two O3-planes come close (but
not on top of each other); this is controlled by the complex structure modulus giving the
size of the S3. If in this region an imaginary self dual 3-form flux is present, a warped
throat is generated [17, 18] and the O3-planes sit at the bottom of the throat. In [3], a
procedure to pick up CY threefolds was outlined and used to find explicit models with the
desired throat and involution. We apply the method of [3] to construct an explicit model
with two O3-planes at the tip of a warped throat. Including the contribution of the anti
D3-brane to the scalar potential, we stabilise the moduli, finding a de Sitter minimum with
large volume as in LVS [19, 20].

Before constructing the model, we study moduli stabilisation for type IIB orientifold
compactifications on CY’s with two Kähler moduli and a Klebanov-Strassler (KS) [17]
throat. Following [21, 22] we consider a three-moduli potential, where the third scalar is
the complex structure modulus controlling the size of the S3 and the warp factor at the
tip of the throat (the remaining complex structure moduli are assumed to be stabilised
by fluxes at higher scales). This inclusion turns out to be unnecessary: our results do not
deviate much from what found in [23], where the authors assumed that the warped factor
was fixed at the KS value, like in [18].

1Previous concrete examples of de Sitter uplift in type IIB orientifold compactification have been obtained
in which the uplift is not due to the presence of antibranes but to other sources, such as T-branes, α′-
corrections or D-term generated racetrack potrential [4–11]. For previous proposals to obtain de Sitter
space in string theory see for instance [12–15].
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From our analysis, it turns out that stabilising the moduli in such setups is not easy
at all, as several constraints must be satisfied.2 In this paper we present a generic analysis
that shows a tension between the several requirements. These come from asking control
over approximations and the presence of a de Sitter minimum realized by an D3 at the
tip of a warped throat. The example we discuss at the end of the paper fulfills all the
consistency conditions.

One example of such a condition was recently discovered in [21, 22, 25]: a runaway may
appear if the flux number M (that is F3 3-form flux along the S3 at the tip of the throat)
is not sufficiently large; they found the bound gsM

2 & 47. Actually, we stress that the
requirement of control over the Klebanov-Strassler approximation of the warped throat,
i.e. gs|M | � 1, imposes a much larger lower bound on M in the perturbative regime.3

This bound on M translates to a condition on the D3-tadpole. In fact, the fluxes M
and K along the throat contribute by MK to the total positive D3-charge. Since the warp
factor (∼ e−8πK/3gsM ) should be small, a lower bound on M puts also a lower bound on
K and then on MK. Having a large positive D3-charge is potentially problematic, since
the negative contribution is fixed by the geometry of the D7-brane and O7-planes in the
setup (and possible O3-planes). Moreover further (positively contributing) fluxes should
be added to fix the complex structure moduli à la GKP [18]. This means that a large
lower bound on MK is a serious issue in type IIB compactifications.4 However it is also
important to stress that large negative D3-charge objects are available also in perturbative
regime (like Whitney branes [28]). We will in fact show in the explicit example that such
objects allow to satisfy D3-tadpole cancellation condition also for large MK satisfying
the bound.

The paper is organised as follows. In section 2 we present the background material
for flux compactifications, LVS and KKLT warped antibrane uplift, including the role of
nilpotent superfields; we also review the different challenges that have been raised over time
for antibrane uplift. In section 3 we analyse in detail the stabilisation of the Kähler moduli
and the complex structure modulus of the warped throat: we write the explicit three-
moduli scalar potential and we derive the minimum conditions. In section 4 we discuss
the consistency conditions the minima have to fulfill to correspond to a consistent string
model and also for the validity of the corresponding EFT; we also explain their impact on
the D3-tadpole. In section 5 we show a concrete CY compactification that produces a de
Sitter minimum of the type considered in section 3 and that fulfills all the requirements
listed in section 4. We write our conclusions in section 6.

2See [24] for a classical analysis of consistency constraints in a different context.
3One may improve the bound on M by making gs larger (still remaining in the perturbative regime).

However in LVS [19, 20], at the minimum gs is related to the volume of the compactification manifold, that
for larger gs tends to be not so large, risking a violation also of the sugra approximation.

4Recently a further tension between D3-tadpole cancellation and complex structure moduli stabilisation
has been discussed in [26] (and observed in a specific example in [27]).
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2 Type IIB moduli stabilisation with anti D3-branes

Compactifying type IIB string theory on a Calabi-Yau (CY) X in presence of O-planes,
one obtains a low energy effective field theory described by an N = 1 four dimensional
(4d) supergravity (sugra).

If no further ingredients are added to the compactification, there are several massless
scalars, called moduli, coming from reducing the 10d type IIB fields g10 (metric), C0, C2, C4
(RR p-form potentials), the NSNS two-form B2 and the dilaton φ. The orientifold pro-
jection separates each cohomology group Hp,q(X) into an even and an odd part with
dimensions respectively hp,q+ and hp,q− . There are also moduli coming from the open string
spectrum, that will not be analysed in this paper. The closed string moduli are:

• The axio-dilaton: S = e−φ − iC0.

• h1,1
− complex scalars coming from C2 − iS B2.

• h1,1
+ complex scalars Ti(x), called Kähler moduli, corresponding to deformations of

the Kähler form J (τi) and of the RR C4 (θi).5

• h1,2
− complex scalars Zα(x), called complex structure moduli, corresponding to defor-

mations of the complex structure of X.

There are also h1,2
+ 4d massless vectors coming from the reduction of C4 over three-forms.

In this paper we will consider models with h1,1
− = 0, hence the scalars from B2, C2 will not

play a role.
The N = 1 4d effective theory is described by the Kähler potential

K0(Ti, Zα, S) = −2 ln(V)− ln(S + S̄)− ln
(
−i
∫

Ω ∧ Ω̄
)

(2.1)

where the volume V of the CY depends on the Kähler moduli Ti and the holomorphic
(3,0)-form Ω depends only on the complex structure moduli Zα.

2.1 Fluxes, complex structure stabilisation and D3-tadpole

The axio-dilaton S and all the complex structure moduli Zα can be stabilised at the
classical level, by turning on a non-zero vev for the field strength G3 = F3 − iSH3 of the
RR and NSNS 2-form potential C2, B2. The three-forms F3, H3 have quantised fluxes over
the integral three-cycles ΣA (A = 1, . . . , b3) of the CY threefold X:

1
(2π)2α′

∫
ΣA

F3 = MA; 1
(2π)2α′

∫
ΣA

H3 = −KA with MA,KA ∈ Z . (2.2)

These fluxes induce a D3-charge

Qflux
D3 = 1

(2π)4α′2

∫
F3 ∧H3 . (2.3)

5They also depend on the periods of B2 and C2 on odd two-cycles. However, in this paper we will
consider models with h1,1

− = 0.
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The equation of motion implies the 3-form G3 to be imaginary self dual [18, 29]; this
implies the corresponding Qflux

D3 to be positive. The total D3-charge must be zero in order
to cancel the D3-tadpole. In a CY orientifold compactification of type IIB string theory
there are negative sources of D3-charge: O3-planes, O7-planes and D7-branes [18]. The
contribution of the last two is captured in the F-theory description by the famous χ

24 , where
χ is the Euler characteristic of the fourfold. This contribution can actually be large, also
in perturbative type IIB compactifications, as we will see in the explicit model in section 5.

The flux G3 induces a non-zero superpotential in the 4d N = 1 effective theory [30]:

Wflux(Zα, S) =
∫
G3 ∧ Ω . (2.4)

The corresponding F-term potential is,

V = eK0
[
KIJ̄

0 DIWfluxDJWflux

]
(2.5)

where I, J = Zα, S and DIW0 ≡ ∂IW0 + (∂IK)W0. This makes the potential be positive
semi-definite; hence it has a minimum at V = 0, corresponding to DS,ZαW0 = 0. The
contribution of the Kähler moduli vanishes due to the no-scale structure. At the minimum
of V the Kähler moduli are flat directions.

2.2 LVS Kähler moduli stabilisation

In order to stabilise the Kähler moduli, one needs to include quantum effects. There
are mainly two scenarios in which this has been achieved: KKLT [1] and LVS [19, 20].
There are also mixed situations [31–33]. In this paper we will concentrate on the Large
Volume Scenario (LVS). Here, the α′ corrections to the Kähler potential compete with
non-perturbative corrections to the superpotential to stabilise the Kähler moduli.

After including the α′ corrections, the Kähler potential for the Kähler moduli reads:

K = −2 ln
[
V + ξ

g
3/2
s

]
, (2.6)

where ξ ≡ −χ(X)ζ(3)
4(2π)3 . χ(X) is the Euler characteristic of the CY threefold, ζ(3) ∼ 1.202.

In [34], contributions coming from the O7/D7 sector have been claimed to modify the
constant ξ by replacing χ(X) 7→ χ(X) + 2

∫
X D

3
O7.

The superpotential is
W = W0 +

∑
i

Aie
−aiTi , (2.7)

whereW0 is a constant term, that is the vev of the tree-level superpotentialWflux generated
by the background fluxes F3, H3, and the second term is the non-perturbative contribution.
The real part of the modulus Ti is the volume of an internal four-cycle wrapped either by
an euclidean D3-brane (E3) (in which case ai = 2π) or by a stack of D7-branes supporting a
condensing gauge theory (ai = 6π/b0 with b0 the coefficient of the one- loop beta function).
In the following we consider only two values for a: a = 2π when the superpotential is
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generated by an E3 instanton;6 a = π
3 when it is generated by gaugino condensation for

an SO(8) gauge group. In perturbative string theory, SO(8) is the only condensing gauge
group on a D7-brane stack with no (chiral and non-chiral) matter; this happens if it wraps
a rigid cycle with h1,0 = 0. All SU(N) gauge group, that would have a = 2π

N , must have
non-zero intersections with other D7-branes, having at best vector-like matter that may
spoil gaugino condensation.7

In this paper we consider situations in which only a single non-perturbative effect is
allowed, giving a superpotential

W = W0 +Ae−aTs . (2.8)

Notice that the perturbative correction violate the no-scale condition.
Let us consider a CY threefold X with h1,1 = 2 and a Swiss cheese form of the

volume, i.e.
V = κbτ

3/2
b − κsτ3/2

s (2.9)

where τb and τs are the volumes of two 4-cycles of X; κb, κs are constants depending on
the detailed intersection form on X. We will set κb equal to 1 in the following (by an
appropriate rescaling of the modulus τb). The LVS scalar potential is then8

VLVS = 8gsA2a2√τse−2aτs

3κsV
+ cos (aθs)

4gsAaW0τse
−aτs

V2 + 3W 2
0 ξ

2g1/2
s V3

. (2.10)

It has a non-supersymmetric minimum at

θs = π

a
, (2.11a)

τ
3/2
b = 3W0κs

√
τse

aτs

aA

(1− aτs)
(1− 4aτs)

'
3W0κs

√
τse

aτs

4aA , (2.11b)

τ3/2
s = ξ

16aτsκsg3/2
s

(1− 4aτs)2

(aτs − 1) '
ξ

g
3/2
s κs

, (2.11c)

where the approximated results on the r.h.s. are obtained under the assumption aτs �
1, that must be assumed to ignore higher instanton corrections to the non-perturbative
superpotential, as we have done (the sugra approximation requires moreover τs to be much
bigger than 1). We see that τb � τs and that the volume V ' τ

3/2
b is exponentially large.

The value of the potential at the minimum is

Vmin = −12gsW 2
0 κsτ

3/2
s (aτs − 1)

τ
9/2
b (4aτs − 1)2 ' −3gsW 2

0 κsτ
1/2
s

4aτ9/2
b

< 0 . (2.12)

Hence, the minimum is Anti-de Sitter (AdS).
6One may also consider situations where the leading contribution is given by an E3 that is effectively

wrapping n-times the non-perturbative divisor (see [35]). In this case a = 2πn.
7We are grateful to Luca Martucci for a detailed discussion on this point.
8By generality argument, we have taken eKc.s. ' 1.
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2.3 Anti D3-branes, uplift term and nilpotent Goldstino

The three-form fluxes, that stabilise the complex structure moduli, back-react to the ge-
ometry by inducing a warp factor e2D in the 4d metric as well as a conformal factor in
front of the CY internal space:

ds2 = e2Dds2
4 + e−2Dds2

CY , (2.13)

where D depends on the internal coordinates. The regions of the internal metric where
e−2D is very large are called warped throats. Correspondingly the warp factor is very small
and the 4d scales are strongly redshifted. One can write e−4D = 1 + e−4A

V2/3 . A large warped
throat is then a region where e−2A � V1/3. The warp factor depends on the complex
structure of the CY threefold.

These throats typically arise in correspondence with deformed conifold singulari-
ties [18]. The blown up S3 that deforms the conifold singularity sits at the tip of the
throat. Its volume is controlled by the complex structure modulus Z, that is the period of
the holomorphic (3,0)-form over the S3. The factor e4A at the tip of a long warped throat
depends on the stabilised value of Z. If one switches on a flux M of F3 over the S3 at the
tip and a flux K of H3 over the dual cycle, then the leading contribution to the warp factor
is [18]:

e4A0 ' e−8πK/3gsM . (2.14)
Tuning M,K such that e4A0 � 1, produces at the same time a small warp factor (high
redshift) and a long throat. When the supergravity description is a valid approximation,
i.e. when the size of the S3 at the tip of the conifold is larger than the string length, then
the metric in the throat can be approximated by the Klebanov-Strassler (KS) solution [17].
Requiring a large volume for the S3 at the tip is equivalent to asking

gs|M | � 1 . (2.15)

In the KS solution, the three-form flux G3 along the throat is imaginary-self dual. It
contributes to the D3-tadpole by

Q
(KSflux)
D3 = M K (2.16)

that is necessarily a positive number for an imaginary self dual flux (without loss of gener-
ality, in the following we will always consider positive values for M and K). Notice that,
since the total G3 = Gthroat

3 + Grest
3 must be imaginary self dual, then the flux Grest

3 in
the bulk must be imaginary self dual as well (and then it also contribute positively to the
D3-charge).

Without any further ingredient, the LVS vacuum would be AdS. To have a dS minimum
one needs to introduce a source giving a positive contribution to the scalar potential. In
this paper we will follow [1] and add an anti D3-brane (D3) at the tip of a throat. Its
contribution to the vacuum energy will be redshifted by the warp factor. The contribution
to the energy of the D3-brane is [36] (see also [22, 25] for a recent review in the context of
dS moduli stabilisation)

VD3 = 2T3e
4D(0) ' e4A0

V4/3M
4
p �M4

s , (2.17)
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where V is the volume of the extra dimensions and Ms and Mp are the string and Planck
scale respectively.

The imaginary self dual 3-form flux gives mass to some of the D3 modes, leaving
only a U(1) gauge field and one single fermion (goldstino) in the massless spectrum. By
introducing an orientifold projection, one can project out the gauge field and keep only
the goldstino in the spectrum. In [3, 16], it has been found how to choose an orientifold
involution, such that there is an O3-plane at the tip of the throat. When an D3-brane
is placed on top of such an O3-plane, one can describe the D3 degrees of freedom by a
nilpotent superfield X (i.e. X2 = 0). The nilpontency condition implies a constraint on
the components of the chiral superfield X, where

X = X0(y) +
√

2ψ(y)θ + F (y)θθ̄ , (2.18)

with, as usual, yµ = xµ + iθσµθ̄. In fact, imposing X2 = 0 implies X0 = ψψ
2F .

The representation in terms of a nilpontent superfield X is very convenient since it
allows to treat the effect of an D3-brane in terms of standard supergravity couplings of
matter and moduli superfields to the nilpotent goldstino (see for instance [16, 23, 37–43]).
Notice that the lowest component of X has zero vev. In particular, when the D3-brane is
on top of the O3-plane, the modulus describing its motion is absent, contrary to D3-branes
in the bulk. This fits with the fact that the scalar component of X is not a propagating
field. Moreover, in calculating the scalar potential, there is no contribution from X0: it is
consistently set to zero when looking for Lorentz preserving vacuum configurations as we
set all fermions to zero.

The Kähler potential and the superpotential describing the EFT (after integrating the
complex structure moduli and the axiodilaton) are then modified by adding the following
terms

KX = XX̄

V2/3 and WX = η X . (2.19)

Here η = Z2/3iS
M

√
c′′

π [25], with Z the complex structure of the throat, M the 3-form flux,
c′′ ≡ 21/3

I(0) ≈ 1.75 [21] and S the axio-dilaton. As we will see below, these terms lead to the
uplift term [25]

Vup = M4
p

gs|η|2

V4/3 = M4
p

c′′

π gsM2
|Z|4/3

V4/3 . (2.20)

2.4 Challenges to the antibrane uplift scenario

As we mentioned in the introduction there has been several challenges regarding the validity
and robustness of the KKLT antibrane uplift scenario. Here we briefly review them.

• Moduli stabilisation is non generic. Since the mid 1980’s it is known that the natural
vacuum state is the zero string coupling gs and infinite string volume V solution.
That is 10d string theory. Any solution in 4d and finite coupling will have to lead
asymptotically to infinite volume and zero coupling. We know that 1/V and gs are
the expansion parameters for α′ and string loop expansions respectively. This means
that if we want any calculation to be under full control, i.e. with arbitrary precision

– 8 –
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in string and α′ expansions, we have to be in a runaway regime where both expansion
parameters go to zero. This is the celebrated Dine-Seiberg problem [44]. This has
been recently revived in terms of the swampland conjectures [45]. The only way
out, as Dine and Seiberg emphasised originally, is to have other parameters that
may be present in string compactifications, such as the rank of the gauge groups N
or other large integers that may exist. Flux compactifications in IIB string theory
actually provide these parameters very naturally. In fact, for compactifications with
hundreds of complex structure moduli, there are many of these integers that can take
very different values possibly leading to weak coupling solutions. In this sense flux
compactifications provide the best way to address this challenge even though full
calculation control cannot be achieved within any compactification.

We may summarise the situation as follows. For tree-level Kähler and superpotentials
K0,W0 the scalar potential vanishes. They will both get quantum corrections δK
and δW with δW only coming from non-perturbative effects. The scalar potential
gets modified as:

V = δV ∼ eK
(
W 2

0 δK +W0δW
)
. (2.21)

Generically the first term dominates since δK is perturbative whereas δW is non-
perturbative, giving the standard runaway behaviour of the Dine-Seiberg problem.
However, if it is possible to achieve W0δK ∼ δW a non-trivial minimum can exist.
This happens either if W0 � 1 as in KKLT9 or if δK ∼ δW as in LVS.

Notice that having runaway to be the most generic solution should not be confused
with quintessence. Quintessence needs a very particular and tuned runaway in which
the fastest rolling direction is extremely tuned to be slow enough as not to contradict
experimental constraints on varying constants of nature and fifth forces. In this sense
getting quintessence is at least as difficult as getting de Sitter. Furthermore, it should
be stressed that not having full computational control does not mean that there is
no control at all. As usual with EFTs as long as the couplings are small enough
the calculations can be trusted. This is what flux compactifications allow. If we
perform a calculation assuming weak couplings and the result of the stabilisation
gives us values

V−1 � 1, gs � 1 , (2.22)

then we should be able to trust the approximation. Otherwise we should discard the
solution. Note also that even though string theory is not fully understood at truly
strong coupling (e.g. gs ∼ 1), nature has been kind enough to prefer at high energies
that the gauge couplings of the Standard Model tend towards a quasi-unification at
weak coupling. It is then desirable that this weak coupling should be achieved in
a fundamental theory, not only for computational control but also to fit with the
phenomenological requirements.

9Recently, explicit mechanisms have been found that can give rise to exponentially small flux superpo-
tentials W0 [46–48].
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• Non explicit models. The KKLT scenario includes several non-trivial ingredients that
are present in type IIB compactifications: Calabi-Yau orientifolds, three-form fluxes,
warped throats, non-perturbative effects and antibranes. Each component of the
scenario is possible within type IIB string theory. However, putting all together in a
single model achieving moduli stabilisation in regimes where all approximations are
valid is very challenging. This is what motivated us to have the simplest explicit
construction that includes all the ingredients and achieves the target, that means all
moduli stabilised at a de Sitter minimum (see section 5). The construction in [3] was
already explicit but there was no attempt to stabilise the moduli at values where the
EFT approximations are trusted. This is the task we will take here.

• Runaway and non-perturbative effects. The KKLT scenario includes fluxes that by
themselves would break supersymmetry in the sense that W0 6= 0. Performing the
calculations of the non-perturbative corrections to W , knowing that beyond tree-
level there is no proper perturbative minimum, was questioned [49]. However as
emphasised in [50], the EFT can properly be trusted if all corrections, perturbative
and non-perturbative, are assumed to be present and there is no need to start from a
vacuum to perform the non-perturbative calculations if at the end of the calculation
there is a well defined minimum. This would have been relevant if the minimum lay
in a regime where the approximations are not valid. Furthermore, in [51] several
examples were considered to make the case. A general discussion of how EFTs can
properly describe time dependent configurations, as the runaway discussed here, can
be found in [52].

• Antibranes and singularities. Some concrete solutions with several antibranes tend
to give rise to singularities that may destabilise the uplift mechanism. This was the
main source of criticism for the antibrane uplift for several years. However, at least
for the case of a single probe antibrane, there is now consensus that the KKLT uplift
is safe from this problem (see for instance [53–55]). Furthermore, [54, 56–58] show
very explicitly that even the supergravity limit, when done correctly, should not show
any singularity.

More recently a new kind of potential singularity, named bulk singularity, was iden-
tified [59] (see also [60]). This corresponds to the fact that the picture of a CY with
warped throat is consistent if the size Rthroat of the region that is warped is smaller
than the radius RCY of the CY. For KKLT in the regime of validity of the approxi-
mations, this condition cannot be satisfied and this implies singularities in the bulk.
However, as stressed in [59], in LVS this problem is absent, essentially because the
exponentially large volume automatically makes RCY � Rthroat. To be more explicit,
the claim of [59] is that the uplifting term has to be of the same order as the value
of the potential at the minimum. For LVS this implies e4A0/V4/3 ∼ W 2

0 /V3. As we
mentioned above, strong warping implies e−4A0 � V2/3. This condition corresponds
to V �W 2

0 which is always satisfied in LVS [61].
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• 10D Formulation of non-perturbative effects in presence of antibranes. Gaugino con-
densation is a 4D dynamical mechanism which should be treated in the 4D EFT since
gauginos condense due to a strong coupling effect in 4D and its proper treatment de-
pends on the logarithmic running of the gauge couplings in 4D (see for instance [62]
for a general discussion). However attempts to reproduce the same results from a
10D perspective are also welcome. A first attempt indicated a potential problem for
the 10D case to reproduce the 4D results and was not allowing dS solutions [60].
However further analysis have made it clear that a proper 10D description should
reproduce the 4D results [63–68].

• Runaway complex structure modulus. As mentioned in the introduction, the fact that
complex structure moduli give rise to warped throats, that can be used to tune the
value of the potential at the minimum, may also destabilise the direction in complex
structure moduli space and give rise again to a runaway behaviour [21, 22, 25]. We will
see next that this is a valid issue that needs to be addressed model by model. However
we emphasise that the condition gsM2 & 47 found in [21] is typically satisfied if the
condition for the validity of the supergravity approximation gsM � 1 is fulfilled. We
will be more explicit next regarding this important issue.

• Validity of the EFT. As mentioned before, the validity of the 4D EFT needs several
assumptions. In KKLT the stabilisation is usually presented in several stages. First
the complex structure moduli Zα and dilaton S are stabilised by DZαW = DSW = 0
with masses of order mZα ∼ mS ∼ B/V with B a function of the vev’s of these
fields. For B ∼ O(1) these masses are hierarchically larger than the gravitino mass
m3/2 ∼ W0/V for W0 � 1. However if B � 1 as it may happen if there is large
warping, at least some of these fields may survive at low energies and should not be
integrated out.
In LVS the situation is different. We may consider it as moduli stabilisation in one
single stage, but organising the calculation of the minimum of the scalar potential in
powers of the small parameter 1/V. If at the end of the calculation the minimum is
at V � 1 the approximation is justified. For a D3 brane on a highly warped region
(e−4A � V2/3) the scalar potential can be written schematically as:

V = Vc.s.︸︷︷︸
O(1/V2)

+ VLVS︸ ︷︷ ︸
O(1/V3)

+ VD3︸︷︷︸
O(e4A/V4/3)

(2.23)

Therefore in an expansion in 1/V, the positive definite first term dominates and
determines the extrema for the complex structure and dilaton. The warping in the
last term is adjusted to make it of the same order of the second term e−4A ∼ V5/3

to provide the dS uplift. Otherwise it could give rise to a runaway in the Kähler
moduli directions or be subdominant. Note that here we do not have to integrate
out the dilaton and complex structure moduli since the potential is extremised at
each order in 1/V. There may be complex structure moduli that after the process
of stabilisation are lighter than most Kähler moduli. If we are interested on the

– 11 –



J
H
E
P
0
3
(
2
0
2
1
)
2
5
8

couplings in the EFT at low energies, these fields should be included.10 However, if
we are interested in determining the vacuum, the procedure just outlined covers all
the moduli fields independent of their masses.

As we will discuss in the next section, if the strongly warped throat can be approxi-
mated by a Klebanov-Strassler (KS) throat [17], then the complex structure modulus
that deforms the conifold singularity has a peculiar Kähler potential [70]. This im-
plies a potential term for this modulus of order O(e4A/V4/3) instead of O(1/V2). For
this reason, as done in [21, 22] for KKLT, we will include this complex structure field
in the stabilisation at next order in 1/V expansion. However, we will see that the
results we obtain are the same as if we had kept such modulus fixed at the value
stabilised by Vc.s..

It is clear that after surviving these criticisms the scenario can be considered more robust
than before. In the rest of this article we will concentrate on the second and last points that
we consider the main open questions to trust antibrane uplift. We will insist to have only
the goldstino as massless state coming from the antibrane in order to justify the use of the
nilpotent superfield which captures the nonlinearly realised nature of the supersymmetry
broken by the antibrane. We will concentrate on the simplest realisation and will not worry
about other sectors of the model. In particular we will not attempt to construct a model
with chiral observable matter. This is beyond the scope of this article and we will leave it
for the future.

3 The dS LVS minima of the scalar potential

3.1 The scalar potential

As we have seen, the complex structure moduli are typically fixed at higher scale than
the Kähler moduli. This allows to study Kähler moduli stabilisation keeping the complex
structure moduli at their fixed value.

On the other hand, in [21, 22, 25] it was observed that when a long warped throat
is generated, the complex structure that deforms the conifold singularity is stabilised at a
scale much smaller than the bulk complex structure moduli. In particular both the flux
potential for Z and the uplift term scale like ( ζV )4/3 around the minimum, where ζ ' e−

2πK
gsM

is the real part of the stabilised Z. This means that in principle one needs to stabilise this
modulus together with the Kähler moduli.

We now write the scalar potential for the complex structure modulus Z and the Kähler
moduli, in presence of a warped throat. The effective action for warped string compact-
ifications was studied in [70–78]. After stabilising the other complex structure moduli
and the axio-dilaton, one is left with an effective Kähler potential that includes also the

10In the presence of warping there are several regimes that should be considered depending on the values
of the warp string scale Mw

s and the warped Kaluza-Klein scale Mw
KK. If we want to consider couplings

among moduli fields heavier than one of these scales the effective field theory should include a finite number
of KK states or even some string states. See for instance [69] for a detailed discussion of all the different
regimes.
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contribution for Z, that is valid in the strongly warped regime [22, 25, 70]:

K = KLVS +KX + c′ξ′|Z|
2
3

V
2
3

, (3.1)

where ξ′ = 9gsM2 and c′ is an order one numerical factor whose value was computed to be
c′ ' 1.18 [70]. The effective superpotential is

W = W0 −
M

2πiZ(logZ − 1) + iKsZ +Ase
−aTs + µ(Z)X , (3.2)

whereW0 is the contribution of all the other complex structure moduli, stabilised at higher
energies;11 M and K are the quantised F3-form flux on the S3 and H3-form flux on the
dual 3-cycle, respectively; s = 1

gs
is the dilaton, stabilised at higher energies.

After using the approximation V � 1, the sugra scalar potential corresponding to the
Kähler potential (3.1) and the superpotential (3.2) is12

Vtot = 8a2A2gs
√
τse
−2aτs

3κsV
+ 4aAgsτse−aτs

V2

(
W0 cos(aθs + φ) + ζ

M

2π sin(aθs + σ)
)

+ ζ4/3

c′M2V4/3

[
c′c′′

πgs
+ M2σ2

4π2 +
(
M

2π log ζ + K

gs

)2
]

+ 3ξ
2√gsV3

[
W 2

0 − 16ζ2
(
M

2π log ζ + K

gs

)2
+ M2ζ2

π2

(1
4 + 2πK

Mgs
− 4σ2 + log ζ

)
+2M

π
W0ζσ cos(σ − φ) +W0ζ sin(σ − φ)

(
M

π
+ 2M

π
log ζ + 4K

gs

)]
. (3.3)

Here, with abuse of notation, we have replaced W0 → W0e
iφ, where now W0 is real and

positive and φ is the phase of the complex W0 appearing in (3.2).

3.2 dS minima

We are interested in minima where the warp factor takes large values. This allows to
reduce the uplifting term so that it compensate the negative AdS vacuum energy of the
LVS minimum and give a tiny dS minimum. The LVS AdS minimum is at VLVS ∼

W 2
0
V3 ,

while the uplifting term is of the order Vuplift ∼ ζ4/3

V4/3 (see equation (2.20)). Hence, to obtain
a small dS minimum we will work in the approximation where

ζ4/3 ∼ W 2
0

V5/3 . (3.4)

This automatically imposes ζ � 1 in a LVS regime.
11Typically what is called W0 includes the contribution of all complex structure and then it would be the

sum of the first two terms on the r.h.s. of (3.2). However, as it will be clear in the following, the second
term will contribute negligibly to the complex structure superpotential.

12In principle η depends on Z. However, terms including derivatives of η with respect to Z are set to
zero once one imposes X = 0 in the vacuum. So effectively µ can be taken as constant.
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We now approximate the potential (3.3) under the assumption (3.4) and compute its
first derivatives to find the minima. We obtain:

Vtot '
8a2A2gs

√
τse
−2aτs

3κsV
+ 4aAgsτse−aτsW0

V2 cos(aθs + φ)

+ ζ4/3

c′M2V4/3

[
c′c′′

πgs
+ M2σ2

4π2 +
(
M

2π log ζ + K

gs

)2 ]
+ 3ξ

2√gsV3W
2
0

(3.5)

We note that θs and σ are stabilised at θs0 = π−φ
a and σ0 = 0. Moreover one sees that

these moduli are decoupled from ζ, τb, τs, since:

∂2Vtot
∂xi∂yj

|σ0,θs0
= 0 ,

where xi = {θs, σ} and yj = {τs, τb, ζ}.13

Fixing σ and θs at their minimum values, the scalar potential for the remaining three
moduli becomes

V = 8a2A2gs
√
τse
−2aτs

3κsV
− 4aAgsτsW0e

−aτs

V2 + 3W 2
0 ξ

2√gsV3

+ 3ζ4/3

8π2c′V4/3

[
8πc′c′′
3gsM2 + 8π2K2

3g2
sM

2 + 8πK
3gsM

log ζ + 2
3 log2 ζ

]
. (3.6)

The resulting scalar potential, at this level of approximation, is given by the usual LVS
one plus an uplift term.

By computing the first derivatives of (3.6), we get the values of the moduli at the
minimum:

∂ζV = 0⇔ ζ = e
− 2πK
gsM
− 3

4 +
√

9
16−

4π
gsM2 c

′c′′

, (3.7a)

∂τsV = 0⇔ τ
3/2
b = 3eaτsW0κs

√
τs

aA

(1− aτs)
(1− 4aτs)

, (3.7b)

∂τbV = 0⇔ τ3/2
s

16aτs(aτs − 1)
(1− 4aτs)2 = ξ

g
3/2
s κs

+ 8q0ζ
4/3τ

5/2
b

27gsκsW 2
0
, (3.7c)

where q0 ≡ 3
8π2c′

(
3
4 −

√
9
16 −

4πc′c′′
gsM2

)
and the relations (3.7a) and (3.7b) were used in (3.7c).

We have moreover approximated V ' τ
3/2
b . Again we use the fact that aτs � 1 (that is

also necessary to have large volume) to approximate the equations (3.7a)–(3.7c) to:

∂ζV = 0⇔ ζ = e
− 2πK
gsM
− 3

4 +
√

9
16−

4π
gsM2 c

′c′′

, (3.8a)

∂τsV = 0⇔ τ
3/2
b '

3W0κs
√
τs

4aA eaτs , (3.8b)

∂τbV = 0⇔ τ3/2
s ' ξ

g
3/2
s κs

+ 8ρ τ5/2
b

27gsκsW 2
0
, (3.8c)

13Eventually we will check that the Hessian is in fact positive definite for these values.
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where we have defined ρ ≡ q0ζ
4/3, with ζ given by the first equation, i.e.

ρ ≡ q′0e
− 8πK

3gsM with q′0 ≡ q0e
− 32π2c′

9 q0 . (3.9)

For later convenience, notice that q′0 does not depend on the flux number K.
We observe that the expression obtained for ζ is compatible with the result in [21, 22,

25]. Note that ζ is shifted with respect to the KS vacuum, where it was ζ = e
− 2πK
gsM . The

important fact is not this shift, that is irrelevant,14 but the fact that the minimum exists
only if the argument of the square root is positive. This happens if [25]

gsM
2 & 47. (3.10)

Differently, there is a runaway of the scalar potential [21].
The approximated equations (3.7a)–(3.7c) give the same results that were found in [23]:

in that paper, the authors considered the potential of the two Kähler moduli where the
value of ζ was assumed to be fixed at higher scales (at the KS solution). We conclude that
even if the modulus Z has a small mass, its stabilisation is however decoupled form the
Kähler moduli one.

Finally, we evaluate the potential at the minimum:

Vmin = 5q0ζ
4/3

9τ2
b

− 12W 2
0 gsκsτ

3/2
s

τ
9/2
b

(aτs − 1)
(1− 4aτs)2 '

5ρ
9τ2
b

− 3W 2
0 gsκsτ

1/2
s

4a τ9/2
b

, (3.11)

that in the limit (3.4) under consideration is approximately Minkowski. Depending on the
value of ρ, the minimum can be AdS, Minkowski or dS.

3.3 Moduli masses

One can compute the masses for the moduli at the minimum, by looking at the eigenvalues
of the matrix 1

2K−1∂2V , where ∂2V is the Hessian of the scalar potential and K−1 is the
inverse of the Kähler metric on the scalar field space. We consider the 3 × 3 block along
the three moduli τs, τb, ζ (the phase modes are decoupled as we have seen above).

The characteristic polynomial of the 3× 3 matrix is a third degree polynomial of the
form −λ3 + bλ2 + cλ + d = 0, where at leading order in our approximation (in particular
aτs � 1) we have

b ' A+B , c ' −AB , d ' ABC , (3.12)

with

A ≡ 2q1/2
0 ρ1/2

9gsc′M2τb
, (3.13)

B ≡ gsW
2
0 a

2τ2
s

τ3
b

, (3.14)

C ≡ 3
2τ2
b

(
5
4

27gsW 2
0 κsτ

1/2
s

20aτ5/2
b

− ρ
)
. (3.15)

14At worst, it scales ζ by a factor close to 1.
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Notice that A,B,C � 1 and hence b � c � d. In particular C � A,B, which implies
d
bc � 1. One can then solve the cubic equation perturbatively and obtain

m2
1 ' b = A+B , m2

2 ' −
c

b
= AB

A+B
, m2

3 ' −
d

c
= C . (3.16)

For the typical values of the parameters, B is bigger than A. When this happens, we have
m2

1 ' B and m2
2 ' A, i.e. m1 is equal to the mass of the modulus τs in LVS. However what

is most important is that m3 is much smaller than the other two masses. Moreover, it is
not always positive (we will see the consequences in the next section).

3.4 Bounds on the warp factor

Let us keep the parameters W0, A, κs, a, gs fixed. The value of ρ changes with different
choices of the fluxes M,K. As a matter of fact, one can obtain a de Sitter minimum only
for a limited range of values of ρ when we fix the other parameters.

One has Minkowski when Vmin = 0, i.e. when ρ is equal to

ρlow '
27gsW 2

0 κsτ
1/2
s

20a τ5/2
b

, (3.17)

where τs and τb are functions of the parameters W0, A, κs, a, gs, that are determined by
solving the equations (3.7a)–(3.7c).

Increasing the value of ρ, m2
3 in (3.16) becomes negative at some point, and the solution

of (3.7a)–(3.7c) is not a minimum of the scalar potential anymore. The value of ρ when
this happens is

ρup '
5
4

27gsW 2
0 κsτ

1/2
s

20a τ5/2
b

. (3.18)

We see that the order of magnitude of admissible ρ (hence of the warp factor) is fixed
by the other parameters in the game, i.e. W0, A, κs, a, gs. In particular, on a dS minimum
ρ will be given by

ρ ' α 27gsW 2
0 κsτ

1/2
s

20a τ5/2
b

(3.19)

where α is a number in ]1, 5
4 [.

Using this fact, we can rewrite the equation (3.8c) as

τ3/2
s ' ξ

g
3/2
s κs

+ 2α τ1/2
s

5a . (3.20)

Solving the cubic equation in τ
1/2
s one realises that τs is shifted with respect to the LVS

minimum (τs ' ξ2/3

gsκ
2/3
s

) by the small quantity δτs = 4α
15a . 1. This small shift affects the ex-

ponentially large τb by a factor of O(1). We have then shown that the uplift term in the po-
tential modifies the relations determining the AdS LVS minimum only at subleading order.
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4 Consistency conditions and limits on D3 tadpole

As we have said above, the 3-form fluxes M and K contribute to the D3-charge, by the
positive number MK. In this section we analyse what is the minimal value of MK that
is allowed within the approximation used to obtain the minima. We will see that this
number is typically large, even larger than what expected by the no-runaway condition
found in [21, 25].

4.1 Constraints

To find a dS minimum, one needs to solve equations (3.7a)–(3.7c) (and check that the
solution is actually a minimum). These equations are valid only in some regions of the
moduli space (τb, τs, ζ) and hence of the parameter space (W0, gs, a, A,M,K, χ(X)).

We now summarise the conditions that define these regions of validity (some of which
we already mentioned before). We will say explicitly when the condition is automatically
satisfied by any solution of the equations (3.7a)–(3.7c) and when this puts constraints on
the range of the parameters.

• Since we want to obtain a de Sitter minimum, the potential must be stabilised at a
positive value. The potential at the minimum should be very small:

Vmin & 0 (4.1)

• The minimum should be found in a regime where one keeps control over the EFT.
First, the Kähler moduli should be stabilised in a region with large volume (so that
we can trust the α′ expansion15):

V � ξ

g
3/2
s

� 1 ⇐⇒ τb � τs . (4.2)

This condition guarantees that the Kähler moduli are stabilised within the Käh-
ler cone in the class of models we consider (where the Kähler cone condition
reads τb > τs).

Secondly, one requires negligible multi-instanton effects in the non-perturbative cor-
rections, i.e. aτs � 1. In particular we will require τs � 1 in order to be consistent
with the supergravity approximation.

In the minima of our potential, all these conditions are satisfied once one imposes
gs � 1, that is anyway necessary to exclude deviations from the perturbative string
approximation. The parameter a may actually be very small, if the non-perturbative
effect is generated by a condensing group with high rank. However, as explained in
section 2.2, the only condensing group that we consider is SO(8), that has a = π

3 .
Hence in our analysis a & 1.

15Notice that this condition has to be imposed on the string-frame compactification volume (Vs = VEg3/2
s )

rather than on the Einstein-frame one (in which we are working).

– 17 –



J
H
E
P
0
3
(
2
0
2
1
)
2
5
8

• The low-energy supergravity provides a valid 4d description only if the following
hierarchy holds:

Mp �Ms &M
(i)
KK � mmoduli,m3/2

The requirement MKK � m3/2, in particular, can be expressed in terms of the
parameters of the model as [33, 61]:√

κ

π
W0 � V1/3 , (4.3)

where16 κ = gseKcs

2 . This puts an upper bound on W0 [33].

• We want a highly warped throat, i.e.

V2/3ρ� 1 (4.4)

where ρ ≡ q0ζ
4/3, with ζ evaluated at the minimum of the potential. Moreover, we

need to request:
ρ1/4V2/3 �

√
κW0

g
1/4
s π1/2

∼ 1 (4.5)

so that the massive string states of the D3-brane at the tip of the throat, which are
redshifted to lower masses, are still negligible with respect to m3/2 [79].
These two conditions are always satisfied at the dS minima of the potential. This is
clear from using the equations (3.8a)–(3.8c) and taking the expression (3.19) of ρ at
the minimum.

• The size of the S3 at the tip of the conifold (R2
S3 ∼ α′gsM) should stay larger than

the string length in order to trust the KS solution, hence:

gsM � 1. (4.6)

For fixed (small) gs this puts a lower bound on the flux M . This flux appears in
the warp factor (2.14): if one wants to generate strong warping (and hence a ρ like
in (3.19)), one needs that the exponent is not too small; hence, if M is large, K
should be large as well and the flux contribution to the D3-charge may be very large.

• We want to avoid the runaway discussed in [21, 25]. Hence we need

gsM
2 & 47 (4.7)

We notice that this constraint is less strong than (4.6). Hence fluxes satisfying that
condition do not typically have the runaway problem.

• Finally, as pointed out in [25, 59], in the KS solution the Z field is not a modulus,
it being fixed to its supersymmetric value. Taking an off-shell Z-dependence of the
warp factor is trustable only if the stabilised value of Z does not deviate much from
the flux stabilised value. For the models under consideration this condition is fulfilled
as ζ in (3.7a) differ from the KS value by a factor of order one (as it can be checked
in our explicit model in section 5).

16Our W0 is rescaled by a factor of
√

4π w.r.t. what is found in [33].
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4.2 Bounds on the flux D3-charge

From section 4.1 we conclude the following. Take a dS minimum of the scalar potential,
satisfying then (3.8a)–(3.8c) and (3.19). To be consistent with all the approximations we
used, it is enough that the parameters of the model fulfill the following three conditions:

(1) gs � 1 such that V & 104;

(2)
√

κ
πW0 � V1/3 (we will take O(10) as limiting ratio);

(3) gs|M | � 1, we will take gs|M | & 5.17

In the following we will show that the conditions (1)-(3) above, put a large lower bound
for the flux D3-charge, as has been recently observed also in [48]. This large positive D3-
charge is typically difficult to cancel in a perturbative type IIB setup, even though in
our opinion the situation is not as bad as suggested in [21]. This shows that this uplift
mechanism is to be taken carefully, at least when one wants to use the KS approximation.

The maximal value of gs that satisfies condition (1) strongly depends on the Euler
characteristic χ(X) of the CY threefold, on κs and on the value of a that appears in the
non-perturbative superpotential. This can be understood substituting equation (3.8c) (or
its approximation (3.20)) into equation (3.8b).

For a fixed volume V, one can increase the value of gs by making W0 larger. However,
condition (2) puts an upper bound on possible choices for W0.

Once the value of gs is chosen, condition (3) generates a bound on M . In order to min-
imise the D3-chargeMK, one should takeM close to this bound. Since the bound is smaller
for larger gs, these models typically prefer the biggest gs compatible with condition (1).
Since the warp factor ρ, defined in (3.9), can only vary in a small range (corresponding
to 1 ≤ α < 5

4 , see (3.19)), for a fixed M , K can take few values. To obtain the minimal
D3-charge MK of the fluxes in the throat one takes the lowest M and then choose the
smallest among the associated K.

There is a caveat: if (even at the largest value of gs compatible with perturbation
theory) one takes a and χ(X) large or κs small, this might produce a very large value
for V. This may seem good; however a very large volume means a very small value of
ρ (see equation (3.19)). In order to have this, one needs to take a large ratio K

gsM
(see

equation (3.8a)), that implies a large K, even for gsM not so big. This eventually leads to
a large D3-charge MK.

In general, one notices that the values of the parameters that minimise the tadpole
MK are typically at the boundary of our consistency conditions. In order to strengthen
these considerations, we made a rough scan over models with fixed χ(X), a and κs, by
varying the parameters gs,W0,K,M (we keep A = 1). We see which ones allow to find a
dS minima that satisfy conditions (1)-(3) and at the same time keep the D3-charge MK

of the throat fluxes to be small.
17We assume that this is enough for the analysis of [80] on the D3 stability to hold. In particular, with

this constraint one always finds M > 12 in the perturbative regime.
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We proceed in the following way: for each value of W0 in the range [1, 30] (with step
1) and gs in [0.01, 0.3] (with step 0.001), we compute the lower and upper bounds for the
warp factor ρ given in (3.17) and (3.18). We then select M and K such that ρ ∈ [ρlow, ρup]
and the conditions (1)-(3) are fulfilled. This allows to select the minimal MK for that
point in the (gs,W0)-space. Scanning over all (gs,W0) that give minima compatible with
conditions (1)-(2), we obtain the minimum for MK for given χ(X), a and κs. Notice that
once we choose X, the parameters χ(X), a and κs are basically fixed.18 We leave the scan
over the CY’s parameters χ(X), a, κs for a future work. However, in order to have an idea
how the results change with them, we make the scan over gs,W0 for few different values of
χ(X), a, κs.

As we said, we distinguish between two values of a, i.e. a = π
3 when the non-

perturbative superpotential is generated by gaugino condensation, and a = 2π when it
is given by a D3-instanton. For a = π

3 the lowest values of MK are given, for few different
choices of κs and χ(X), by (we report also which values of gs,W0 produce each given MK)

(MK){gs,W0} −χ(X)
200 350 500

κs

0.05 96{0.313,10} 160{0.333,15} 224{0.331,6}

0.1 110{0.228,10} 102{0.295,11} 128{0.313,5}

0.5 290{0.087,4} 200{0.126,5} 160{0.157,8}

1 312{0.065,7} 305{0.082,3} 240{0.106,3}

(4.8)

As we have observed above, larger values of the Euler characteristic |χ(X)| and smaller
values of κs provide larger volumes at fixed gs. Hence, in general, one expects to find
a larger (MK)low as one increases κs and/or decreases |χ(X)|. This is what we observe
in (4.8). However, the cases χ = −500 and κs ≤ 0.1 are special because of the caveat we
pointed out above about large χ(X) and small κs. The same observation can be done for
|χ| ≥ 350 and κs = 0.05.

The following table shows the minimum tadpoles for a = 2π:

(MK){gs,W0} χ

200 350 500

κs

0.1 512{0.325,4} 768{0.332,15} −
0.5 144{0.328,1} 224{0.333,12} 304{0.328,9}

1 225{0.201,4} 128{0.313,7} 176{0.313,9}

(4.9)

Here, the large value of a makes the caveat works for all chosen value of χ(X) and κs. The
volume is always big in these examples. It was not possible to find a suitable model with
(χ, κs) = (500, 0.1) in the explored range of parameters. Anyway, if it exists, it is expected
to have MK & 103. In general, we can deduce from this analysis that taking larger values
of a does not improve the results in terms of the tadpole.

18Typically, for a given CYX and a choice of orientifold involution, there are few possible non-perturbative
divisors. Moreover the involution already says if they will support instantonic D3-branes or gaugino con-
densation on an SO(8) D7-brane stack.
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We finally observe that the values we obtain are smaller than the recent lower bound
found in [26], i.e. MK & 500. This large value was obtained by requiring a very small
warp factor, necessary in KKLT to preserve the stability of the Kähler moduli after uplift.
In the LVS vacua we have analysed in this paper, the stability of the vacua has been taken
into account by considering ρ as in (3.19). Hence, we claim that for LVS the bound of [26]
is a bit smaller: we typically find MK & 100.

5 An explicit model with D3-branes uplift

In this section, we present an explicit model. We will choose a CY three-fold that is an
hypersurface in a toric variety. The orientifold involution will be chosen such that there
will be O3-planes that collapse to each other by taking a conifold limit. This will reproduce
a situation with a warped throat modeled on a deformed conifold. This has been discussed
in [3] and it provides the simplest situation with a nilpotent superfield studied in [16].

We will show that this model admits a dS minimum that satisfies the conditions (1)–(3)
of section 4.2.

5.1 Geometric setup

We consider the toric ambient space characterised by the following weights and SR-ideal

z u1 u2 v w ξ DH

C∗1 0 1 1 2 3 7 14
C∗2 1 0 0 0 1 2 4

, SR = {z w, u1 u2 v } . (5.1)

The CY threefold X is an hypersurface in this ambient space, defined by an equation with
degrees given in last column of (5.1) (it is the number 39 in the database [81]).

This CY X has Hodge numbers h1,1 = 2 and h1,2 = 132, and Euler characteristic
χ(X) = −260. The divisors classes Dz (with representative {z = 0}) and Du (with
representative {a1u1 + a2u2 = 0} for arbitrary a1, a2 ∈ C) make up an integral basis for
H2(X,Z).19 The intersection form takes the expression

I3 = 9D3
z − 3D2

zDu +DzD
2
u . (5.2)

The second Chern class of the Calabi-Yau is

c2(X) = 66D2
u − 8D2

z . (5.3)

For what follows, it will be useful to use {Dw, Dz} as a basis of H4(X) (even though non-
integral, i.e. it generates the integral divisors by rational linear combinations). In this basis
the intersection form takes the simple form

I3 = 9D3
w + 9D3

z . (5.4)
19We use the same symbol for the 4-cycles and the Poincaré dual 2-forms.
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Let us expand the Kähler form on the basis {Dw, Dz}:

J = twDw + tzDz . (5.5)

We can then express the volumes of the divisors Dw and Dz in terms of the parame-
ters tz, tw:

τw ≡ vol(Dw) = 1
2

∫
Dw

J2 = 9
2 t

2
w , τz ≡ vol(Dz) = 1

2

∫
Dz
J2 = 9

2 t
2
z . (5.6)

The volume of the CY three-fold is then

V = 1
6

∫
X
J3 = 3

2
(
t3w + t3z

)
=
√

2
9
(
τ3/2
w − τ3/2

z

)
(5.7)

We see that the volume takes the Swiss cheese form (2.9). We then identify τb = 1
3(2

3)1/3τw,
τs = τz and κs =

√
2

9 . Moreover, the divisor Dz is a P2, i.e. a rigid cycle with h1,1 = 0. It
will actually support the non-perturbative effect.

5.2 Involution

We consider the involution
σ : w 7→ −w . (5.8)

The CY three-fold equation must be restricted to be invariant under this involution, i.e
only monomials with even powers of w can appear. In particular, the defining equation
turns out to be20

ξ2 = w4 [v + P2(u)]− 2bw2z2
[
v4 + v3Q2(u) + v2Q4(u) + v Q6(u) +Q8(u)

]
(5.9)

+c z4
[
v7 + v6R2(u) + v5R4(u) + v4R6(u) + v3R8(u) + v2R10(u)

+vR12(u) +R14(u)
]

where Pn(u), Qn(u), Rn(u) are polynomials of degree n in the coordinates u1, u2
and b, c ∈ C.

Let us consider the fixed point locus under the involution (5.8). It is made up of two
codimension-1 loci at w = 0 and z = 0 and two isolated fixed points at the intersection
ξ = u1 = u2 = 0. Hence, by implementing this orientifold involution, one obtains two
O7-planes in the classes [DO71 ] = Dw and [DO72 ] = Dz, and two O3-planes. Notice that
D3
O7 = 18.

The Euler characteristics of the O7-planes divisors are given by χ(D) =
∫
D c2(D).21

In the present model we have χ(O71) = χ(Dw) = 75 and χ(O72) = χ(Dz) = 3.
We can now calculate, by means of Lefschetz fixed point theorem, the values of h1,2

−
(that gives the number of complex structure deformations of the invariant equation (5.9))

20We have reabsorbed the linear term in ξ by a redefinition of ξ itself.
21Since D is a divisor of X, we can use the adjunction formula to obtain c2(D) = c2(X) + c1(D)2. Since

X is a CY, c1(D) = −D.
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and h1,2
+ (that gives the number of abelian bulk vectors). The theorem states the following

relations between the (even and odd) Betti numbers and the Euler characteristic χ(Oσ) of
the fixed point set:∑

i

(−1)i
(
bi+ − bi−

)
= χ(Oσ) where bi± =

∑
p+q=i

hp,q± . (5.10)

In our case χ(Oσ) = χ(O71)+χ(O72)+2χ(O3) = 75+3+2 ·1 = 80. We know all the Betti
numbers except b3±, i.e. b0− = b1± = b2− = b4− = b5± = b−6 = 0, b0+ = b6+ = 1, b2+ = h1,1 = 2.
The relation (5.10) then gives b3−− b3+ = 74, that in terms of h1,2

± becomes h1,2
− −h

1,2
+ = 36.

Using also h1,2
+ + h1,2

+ = h1,2 = 132, we get h1,2
− = 84 and h1,2

+ = 48.

5.3 D7-brane setup

An O7-plane has a D7-brane charge equal to −8[DO7]. This must be canceled by the
D7-branes. A D7-brane, wrapping the divisor D, can support a gauge invariant flux F ≡
F − ι∗B, where F is the gauge flux and ι∗B is the pull-back of the NSNS two-form on D.
The gauge flux must be quantised such that the Freed-Witten anomaly is canceled [82], i.e.

F + c1(D)
2 ∈ H2(D,Z) (5.11)

(remember that in a CY c1(D) = −ι∗D, where ι∗ is the pull-back map on D).
The O72 plane wraps a rigid divisor; hence its charge is canceled by four D7-branes

(plus their orientifold images) wrapping Dz. If one takes

B = Dz

2 , (5.12)

one can choose a quantised flux such that F = 0 on the D7-branes wrapping Dz. This
gives rise to an SO(8) pure super Yang-Mills, supporting gaugino condensation (the zero
flux prevents from breaking the gauge group to a subgroup with chiral spectrum).

The D7-charge of the O71 plane can be cancelled by any D7-brane setup whose total
homology class is 8[DO71 ]. We choose to work with a so called Whitney brane [28, 83],
an orientifold invariant D7-brane, wrapping the locus η2

12,4 − w2χ18,6 = 0 in the homology
class 8Dw (the subscript indicates the degree of the polynomial with respect to the C∗

toric actions in (5.1)). This brane can be seen as the result of the brane recombination
between a D7-brane at η12,4 − wψ9,3 = 0 and its image D7-brane at η12,4 + wψ9,3 = 0. In
this process the D-brane charges are conserved. This will be used in the next section to
compute the D3-brane charge of the Whitney brane.

5.4 D3-tadpole

We now compute the contribution of the various objects to the D3-tadpole.
We have two O3-planes, that give a total charge

QO3
D3 = 2×

(
−1

2

)
= −1 . (5.13)
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The O7-planes contribute to the charge with −χ(O7)
6 , where χ(O7) is the Euler char-

acteristic of the divisor wrapped by the O7-plane. In our model

QO71
D3 = −χ(Dw)

6 = −75
6 = −25

2 (5.14)

QO72
D3 = −χ(Dz)

6 = −3
6 = −1

2 (5.15)

Let us consider the D7-branes. The D3-charge of a single D7-brane wrapping a divisor
D and supporting the (gauge invariant) flux F is given by

QD7
D3 = −χ(D)

24 − 1
2

∫
D
F ∧ F . (5.16)

The four D7-branes (plus their images) on top of the O72 divisor will then contribute
as (remember that we chose F = 0)

QD72
D3 = −(4 + 4)× χ(D)

24 = −χ(Dz)
3 = −1 . (5.17)

We compute the D3-charge of the Whitney brane in the brane-image brane system.
Both D7-branes wrap a divisor in the class DP = 4Dw. Since this class is even, the gauge
flux must be integral. Moreover the pull-back of B = Dz

2 on DP vanishes (as zw is in the
SR-ideal). The flux on one D7-brane is then F = n ι∗Du (n ∈ Z), while on its image is
F ′ = −n ι∗Du. The D3-charge of the Whitney brane is equal to the sum of the D3-charges
of the two D7-branes, i.e.

QD7W
D3 = −χ(DP )

12 −
∫
X
n2DP ∧Du ∧Du = −840

12 − 4n2DwD
2
u = −70− 4n2 . (5.18)

The range in which n can vary is given by the condition that the Whitney brane is not
forced to split into brane/image-brane [28, 83], i.e.

[O71]
2 − DP

2 ≤ F ≤ − [O71]
2 + DP

2 with DP − [O71] ≥ 0 . (5.19)

In our case this gives

− 3
2Dw ≤ nDu ≤

3
2Dw i.e. |n| ≤ 4 . (5.20)

When we choose the biggest value n = ±4, we obtain

QD7W
D3 = −70− 4× 16 = −134 . (5.21)

The total D3-charge of the O3/O7/D7 setup is

Q
O3/O7/D7
D3 = −1− 25

2 −
1
2 − 1− 134 = −149 . (5.22)

This is quite a big number. We will see that it is large enough to compensate the
contribution from the fluxes in the throat and it still leaves space to have bulk fluxes that
stabilise the bulk complex structure moduli.
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5.5 Warped throat with O3-planes at the tip

In this section, we follow [3] to prove that there is a corner in the complex structure moduli
space where a long throat is generated and moreover that at the tip of this throat there is
a pair of O3-planes. We will eventually want to put an D3-brane on top of one of the two
O3-planes, in order to give an explicit realisation of the construction in [16].

We focus on the neighborhood of the O3-planes at ξ = u1 = u2 = 0. If we plug these
relations inside the defining equation (5.9), we get the equation

w4v − 2bw2z2v4 + c z4v7 = 0 (5.23)

in the one-dimensional ambient space with weight system

z v w

C∗1 0 2 3
C∗2 1 0 1

(5.24)

We can first fix z = 1 (if z = 0 the equation above implies w = 0 as well, but they cannot
vanish simultaneously), going to the one dimensional ambient space

v w

C∗ 2 3
(5.25)

Then, we note that v 6= 0, as v cannot vanish together with u1 and u2 (see the SR-ideal).
Fixing v = 1, we are left with the ambient space C/Z2 (Z2: w 7→ −w) and the equation

w4 − 2bw2 + c = 0 . (5.26)

We then explicitly see why we obtain two O3’s (the equation is solved by w2 = γi, with
γi the zeroes of the quadratic equation, the solutions w = ±√γi are identified by the Z2
orbifold action). These two points come on top of each other when the discriminant of the
quadratic equation is zero, i.e. when

b2 − c = 0 . (5.27)

So, let us redefine
c ≡ b2 + δ . (5.28)

When δ = 0 the two O3-planes go on top of each other at the point w2− bz2 = 0. When δ
is small they are very close to each other.

As a next step we need to check that in the limit δ → 0 a conifold singularity is
generated on the CY three-fold at the point ξ = u1 = u2 = w2 − bz2 = 0. It is enough to
consider a small neighborhood of the points ξ = u1 = u2 = (w2− bz2)2 + δ = 0. Here v and
z still do not vanish and we can fix them to 1. In this local patch, the equation defining
the CY three-fold becomes (in an ambient space C4/Z2)

− ξ2 +
∑

i,j=1,2
aijuiuj + (w2 − b)2 + . . . = δ (5.29)
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where ‘. . .’ are monomials that vanish faster that the quadratic ones at ξ = u1 = u2 =
w2−b = 0 (we keep δ small). The equation (5.29) describes a deformed conifold singularity.
This becomes manifest if we diagonalise the quadratic form aij and write the equation as22

− ξ2 + u2
1 + u2

2 + (w2 − b)2 + . . . = δ . (5.30)

We have then shown what we aimed, i.e. that when taking δ → 0 we obtain a conifold
singularity. δ is the complex structure modulus that controls the size of the S3 at the tip
of the throat.

We need finally to find how the involution is acting on the conifold. By carefully in-
specting the gauge fixing v = z = 1, one discovers that in the local patch we are considering
the involution becomes

ξ 7→ −ξ , u1 7→ −u1 , u2 7→ −u2 , (5.31)

that perfectly reproduces the geometric action required for the retrofitting of a nilpotent
Goldstino sector [3].

Let us finish with a comment on the D3-charge. Remember first that we have two O3-
planes at the tip of the throat. The D3-charge of the system of the O7-planes and tadpole
cancelling D7-branes is integral. As discussed in [3], one can choose for instance to put a
stuck D3 at one of the O3− points on the contracting S3, and a stuck D3 on the other O3−
on this same S3. This pair of stuck branes does not contribute to the D3-charge (5.22). As
the D-branes are stuck at the O3-planes, there is no perturbative decay channel between
the D3 and the D3 (if the c.s. are fixed such that the S3 has finite size) [3].

5.6 Moduli stabilisation

We have studied moduli stabilisation in section 3. We use those results in this section. We
will take the parameter ξ in the Kähler potential (3.1) as given by ξ ≡ −χ(X)ζ(3)

4(2π)3 , without
including the correction of [34]; the results we find do not differ sensibly from those obtained
by adding that correction (the Euler characteristic of this model is χ(X) = −260; with the
correction of [34] the Euler characteristic would be effectively shifted to 260 − 36 = 224).
From equation (5.7) we read κs =

√
2

9 . Moreover the non-perturbative superpotential is
generated by gaugino condensation on the SO(8) D7-brane stack wrapping the divisor Dz,
i.e. a = π

3 .
Applying the methods of the numerical analysis of section 4.2, one finds that the only

allowed values of the throat flux D3-charge are MK = {88, 92, 125}. We choose the values
of the parameters W0, gs,M,K that produce a model with MK = 88, i.e.

W0 = 23; gs = 0.23; M = 22; K = 4 . (5.32)

Notice that gsM = 5.02, in agreement with the requirement (3) of section 4.2.
22It seems that when δ → 0 we get two conifold singularities, one at w =

√
b and one at w = −

√
b.

However, these points are identified by the orbifold action. Note also that the conifold point is far apart
from the orbifold singularity of the ambient space, that anyway never belongs to the CY three-fold.
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Figure 1. The total scalar potential along its weakest direction (τs = τmin
s ).

In this case the moduli are stabilised at:

τs = 7.6; τb = 704; ζ = 0.005

which means, in particular that the volume V ' τ
3/2
b = 18698 � 1 (in Einstein frame;

in string frame this corresponds to Vs = 2036) as needed. These values correspond to a
de Sitter minimum with Vmin ' 10−12.

The value of the scalar potential at the minimum can be decreased (without breaking
the other constraints) by fine-tuning W0: the finer the tuning, the smaller the potential at
the minimum. The masses of the moduli are:

m2
1 = 3.7× 10−5Mp, m2

3 = 9.5× 10−13Mp, m2
2 = 8.7× 10−10Mp,

showing the predicted hierarchy (m1,m3 are approximately the masses of the moduli τs
and τb at the LVS minimum).

The other scales are:

Ms = 0.009Mp ' 3.6M bulk
KK , M bulk

KK = 0.002Mp ' 6m3/2, m3/2 = 4.3× 10−4Mp,

hence they respect the correct hierarchy. As predicted in section 4.1, all the remaining
consistency conditions are fulfilled.

To have a qualitative idea of the potential, we fix all the moduli but τs, τb at their
vacuum value. The resulting two-moduli potential,23 beside the minimum, has a second
stationary point at

(τs, τb) = (8.2, 1123)

that turns out to be a saddle point.24 If we furthermore keep τs at its vev, the resulting
one modulus potential is plot in figure 1: it has a maximum at τb = 1433 ≡ τmax

b , with
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Figure 2. Total scalar potential as a function of τs and τb. The black dots correspond to the de
Sitter minimum, the saddle point and the maximum along the weakest direction (the blue curve).
The grey plan at V = Vsaddle highlights the unstable direction for the saddle point.

Vτmax
b

= 1.2 × 10−11.25 The 2-moduli scalar potential is plotted in figure 2, where all the
significant points and the 1-modulus direction are highlighted.

6 Conclusions

In this paper we have studied the moduli scalar potential for a type IIB compactification in
LVS regime, with a dS minimum realised by the introduction of an D3-brane at the tip of
a warped throat. We assumed that all complex structure moduli (except the one relevant
for the throat) and the dilaton were fixed by fluxes as in GKP and we concentrated on the
scalar potential for the throat complex structure modulus and the Kähler moduli.

We have seen that de Sitter minima exist only for a limited range of values of the warp
factor controlling the uplift term in the potential: increasing the uplift term from the value
realising a Minkowski minimum, the potential soon develops unstable directions. For these
values of the warp factor the minimum is mildly shifted with respect to the LVS minimum.

Since the warp factor depends on the 3-form fluxes M,K along the throat, the limited
range of the warp factor constrains strongly the ratio of the integers M and K. If one
moreover requires the validity of the KS approximation, i.e. gs|M | � 1, one has a lower
bound onM that, due to the fixed ratio, puts also a lower bound on K and in particular on
the product MK. This means that the D3-charge generated from the fluxes in the throat
is bounded from below. Unfortunately this bound is typically large.

In type IIB compactifications the flux contribution to the D3-charge, coming formMK

plus the contribution of the bulk fluxes necessary for complex structure moduli stabilisation,
must be cancelled by localised sources. D7-branes and O3/O7-planes give in fact a negative

23The 3-moduli analysis, including ζ, gives analogous results.
24The global maximum of V is, instead on the boundary of the Kähler cone (τb = τs = τmin

s ) where
Vmax = 0.06.

25This gives an estimate of the barrier for tunneling from the minimum to decompactification. As
discussed in [84] the decay rate in LVS can then be estimated to be of order Γ ∼ e−V

3
∼ e−1036

in Planck
units which, similar to the KKLT case, implies a very stable vacuum with a lifetime smaller than the
recurrence time.
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contribution to the D3-charge. However, having a large negative D3-charge, necessary to
compensate the lower bound on MK, is challenging even if it is possible.

In this paper we estimate the bound on MK as one varies the parameters of the
effective field theory. We conclude that this bound is minimal exactly at the boundary
where the approximation used to obtain the minimum can be trusted.

In the last part of the article, we construct an explicit compact model in perturbative
type IIB string theory, where an explicit throat supporting O3-planes is realised. This
allows to describe the D3-brane degrees of freedom by the introduction of a single nilpotent
chiral superfield. We have shown in this model how one can generate a relatively large
negative D3-charge by a proper D7-brane background, also in perturbative type IIB string
theory. However, to satisfy the D3-tadpole cancellation condition we have to take a not-
so-large value of gsM , i.e. gsM ∼ 5 that is bigger than 1 but it is not so big. Moreover
also the string coupling should be taken small but not-so-small, i.e. gs ∼ 0.23. One may
decrease the string coupling (improving string perturbation theory), but this would lead
to decreasing gsM , worsening the KS supergravity approximation.

In summary we conclude that within a class of models which are simple enough to
be explicit but rich enough to include all the ingredients of moduli stabilisation, we were
able to provide a concrete de Sitter model from antibrane uplift satisfying all consistency
constraints while also having small expansion parameters. We see this as a small step
towards a more systematic realisation of de Sitter vacua in string compactifications. As
expected, this was not a simple task but having been able to find a vacuum in a regime
in which the expansion parameters are small is encouraging. We are confident that with
more elaborate compactifications, including chiral matter, de Sitter solutions with small
expansion parameters, are achievable. We let a systematic search for the future.
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