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1 Introduction

The discovery of neutrino oscillations provided us with one of the first and clearest experi-
mental hints of shortcomings in the Standard Model (SM). This is because the SM predicts
neutrinos to be exactly massless while neutrino oscillations irrefutably prove that at least
two of the three known neutrinos should carry mutually non-degenerate masses [1, 2].
However, neutrino masses were theoretically anticipated by model builders much before
the experimental confirmation came. In fact, the so-called type-I seesaw was developed
in 1977 [3] a good 20+ years before the first unambiguous experimental proof of neutrino
oscillations emerged. Ever since the first works, a plethora of “neutrino mass models” and
“neutrino mass generation mechanisms” have been developed.1

The various neutrino mass generation models and mechanisms primarily aim to gener-
ate non-zero neutrino masses as well as to provide an explanation for their smallness with
respect to the mass of the other fermions. This is typically achieved through:

(a) Seesaw mechanisms: neutrino masses are inversely proportional to a large scale [3–
12].

1These two terms will be more carefully defined in section 2.
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(b) Loop mechanisms: neutrino masses are generated as quantum corrections at loop
level [13–20].

(c) Naturalness mechanisms: neutrino masses are directly proportional to a very small
parameter [21, 22] whose smallness is justified through ’t Hooft naturalness crite-
rion [23].

(d) Hybrid mechanisms: neutrino masses are small due to some combination of the
above three mechanisms.

Before going on further, let us first briefly discuss the effective operator approach to
generate neutrino masses. Even though we will focus in this work on completely renormal-
izable models, this will serve as a guiding tool that will allow us to easily clasify models.
Since the nature of neutrinos is still unknown, we must consider both possibilities of Dirac
and Majorana neutrinos. In fact, these operators are different for Majorana and Dirac
neutrinos, as we now proceed to discuss.

ForMajorana neutrinos, the effective operator behind neutrino mass generation can
generically be written as [24, 25]

LM = CM
Λm+n−1 L̄

c LΦ(m) σ(n) + h.c. , (1.1)

where CM is an effective coupling constant matrix, L is the usual SM lepton doublet and the
generation indices are suppressed for brevity. Λ is the energy scale at which the new degrees
of freedom responsible for the generation of this effective operator lie. Furthermore, Φ(m) is
a scalar operator withm ≥ 0 SU(2)L scalar doublets which need not be all of the same type.
Similarly, σ(n) denotes a scalar operator containing n ≥ 0 (same or different types) scalar
fields having any SU(2)L representation apart from the doublet representation. Needless to
say, none of the fields in Φ(m) σ(n) that obtain a vacuum expectation value (VEV) should
carry nontrivial color or electric charges. Finally, the SU(2)L representations of all the
scalars should be such that the combination Φ(m) σ(n) transforms either as a triplet or
singlet under SU(2)L. This will then ensure that the effective operator in eq. (1.1) is a
singlet under the SU(3)C ⊗ SU(2)L ⊗U(1)Y gauge symmetry. We note that m = 2, n = 0,
with Φ ≡ H the SM Higgs doublet, would lead to the well-known Weinberg operator [26],
without additional scalar VEV insertions. Another popular example is obtained with
m = 2, n = 1, Φ = H and σ = χ, where χ is a singlet scalar field. This would be the
effective operator of the majoron model [27, 28]. Operators including Φ(2) = HaHb, withHa

and Hb two different Higgs doublets, are induced in the context of the Two-Higgs-doublet
model framework, for instance in supersymmetric models [29].

In case of Dirac neutrinos, the SM particle content must necessarily be extended to
include right-handed neutrinos νR, singlets under the SM gauge group. Being SM singlets,
the number of right-handed neutrinos is unconstrainted by theory. However, at least three
right handed neutrinos are needed to generate sequential Dirac masses for all the three
neutrino flavours. The effective operator leading to neutrino masses in this scenario can
be written as [24, 30]

LD = CD
Λm+n−1 L̄ νR Φ(m) σ(n) + h.c. , (1.2)
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where CD is an effective coupling constant matrix and we have followed the same notation
as in eq. (1.1), again suppressing generation indices. The usual conditions mentioned in
the Majorana case apply here too, except that the scalar combination Φ(m) σ(n) should now
transform as an SU(2)L doublet to ensure that the operator in eq. (1.2) is a singlet under
SU(3)C ⊗ SU(2)L ⊗U(1)Y. Notice that the simplest case will be m = 1, n = 0 with Φ ≡ H̃,
where we have defined H̃ = iτ2H

∗, with τ2 the second Pauli matrix. Another simple real-
ization would be m = 1, n = 1 with Φ ≡ H̃ and σ ≡ χ being an SU(3)C ⊗ SU(2)L ⊗U(1)Y
singlet [12]. Other realizations are also possible, see [24, 30–33].

In this work we aim to look in detail at one of the most popular naturalness mecha-
nisms, the inverse seesaw mechanism [21]. We will do so for both Dirac and Majorana neu-
trinos and demonstrate the various possibilities for both scenarios by constructing several
explicit models. Special attention will be given to the Dirac realization of the mechanism,
which has been only briefly discussed in the literature [34]. We will show that specific
models for Dirac neutrinos can be built with the same defining properties that characterize
the well-known Majorana inverse seesaw. Most of the models discussed here are, to the
best of our knowledge, constructed for the first time in this work.

The rest of the manuscript is organized as follows. We begin by defining the key
features of the inverse seesaw mechanism in section 2. Then, in order to fix notations and
conventions, we describe the well-known Majorana inverse seesaw in section 3, in which
the initial U(1)B−L symmetry gets broken to a residual Z2. Then we proceed to present
the Dirac versions of the inverse seesaw in section 4. Sections 5 and 6 discuss various
generalizations of the minimal inverse seesaw setups presented in the previous sections, both
for Dirac and Majorana neutrinos. In section 5 we explore versions of the inverse seesaw
containing additional representations of the SM gauge group, while section 6 considers
extensions with additional fermionic states that lead to further suppressions of the resulting
light neutrino masses. Finally, we summarize our results and draw conclusions in section 7.

2 The inverse seesaw framework

The inverse seesaw is a popular approach for the generation of neutrino masses with the
mediator masses potentially being close to the electroweak scale. It is characterized by the
presence of a small mass parameter, generally denoted by µ, which follows the hierarchy
of scales

µ� v � Λ , (2.1)

with v the Higgs VEV that sets the electroweak scale and Λ the neutrino mass generation
scale, determined by the masses of the seesaw mediators. The µ-parameter suppresses
neutrino masses as mν ∝ µ, allowing one to reproduce the observed neutrino masses and
mixing angles with large Yukawa couplings and light seesaw mediators. This usually leads
to a richer phenomenology compared to the standard high-energy seesaw scenario.

In this paper we will explore the various types of inverse seesaws possible for both
Dirac and Majorana neutrinos. To do this let us begin with an attempt to first precisely
define what we mean by mass models and mass mechanisms.
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Neutrino mass generating models. A proper neutrino mass model should be capable
of generating neutrino masses and should be renormalizable. It is also highly desirable,
though not essential, that the mass model also provides an “explanation” for the non-zero
yet so tiny masses of neutrinos when compared to masses of all the other fermions in the SM.

Neutrino mass generation mechanisms. A mechanism is a class of models which
generates the neutrino masses in the same or very closely related ways. For example,
various variants of the canonical type-I seesaw model can be clubbed together as type-I
seesaw mechanism.

Given the above definition of the mass generation models and mechanisms we can now
define the criterion to determine which models can be classified as belonging to the inverse
seesaw mechanism:

1. Presence of a small symmetry breaking parameter: the first and foremost
condition for a model to be classified as an inverse seesaw model is the requirement
of a “small” symmetry breaking “µ-parameter”. The µ-parameter has to be such
that the limit µ→ 0 enhances the symmetry of the Lagrangian. This crucial feature
implies that in the absence of the µ-parameter, the model would have a conserved
symmetry group G, which gets broken by µ 6= 0 as

G µ−−−−→ G′ . (2.2)

Here G′ ⊃ G is a residual symmetry.2 Therefore, the limit µ→ 0 enhances the sym-
metry of the model, making it natural in the sense of ’t Hooft [23] and protecting
the small value of µ from quantum corrections. Note that here smallness3 of the
µ-parameter is with respect to other parameters in the model under consideration.
When the dimensions of the other parameters in the model do no match the dimen-
sions of the µ-parameter, the other parameters should be correctly normalized before
making the comparison.

2. µ-parameter from explicit/spontaneous symmetry breaking: the µ-
parameter can either be an explicit symmetry breaking term or a spontaneously
induced symmetry breaking term. However, to classify as a genuine inverse seesaw,
the µ-parameter should be a “soft term”. In particular, this means that if the µ-
parameter is an explicit symmetry breaking term, then it should have a positive
mass dimension.

3. Neutrino mass dependence on µ-parameter: the neutrino mass at leading order
must be directly proportional to the µ-parameter.

4. Extended fermionic sector: a genuine inverse seesaw model should always have
an extended fermionic sector directly participating in the neutrino mass mechanism.

2It can happen that the µ-parameter completely breaks the symmetry group G. In such a case G′ ≡ I
i.e. the trivial Identity Group.

3We leave the “How small should be considered small?” question to the model creator’s taste.
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This means fermions beyond the fermionic content of the SM should be involved in
neutrino mass generation.

5. The µ-parameter need not be unique: in cases where there are different µi-
parameters, all should be soft and in the limit of µi → 0 ∀ i, the symmetry of
Lagrangian should be enhanced. Also, at least one µi-parameter should be di-
rectly involved in the neutrino mass generation mechanism. Furthermore, all the
µi-parameters directly involved in neutrino mass generation should satisfy all the
other conditions listed above.

An example of a model which satisfies all these features is the canonical Majorana
inverse seesaw model [21]. The SM field inventory is extended to include a Vector Like
(VL) fermion transforming as a singlet under the gauge group. The explicit Majorana mass
term (a soft term) for this new fermion will break lepton number in two units explicitly and
thus its smallness is protected by a symmetry. In this notation, G = U(1)L while G′ = Z2
and µ is the explicit Majorana mass term. More details are given in section 3.

Let us emphasize again that the µ-parameter can be explicitly introduced in the La-
grangian, as a symmetry-breaking mass term, or spontaneously generated by the VEV of a
scalar. In the rest of the paper we will concentrate on the latter case. This is particularly
convenient for our discussion, since the identification of the broken symmetry becomes more
transparent. Furthermore, the smallness of the µ-parameter can be more easily justified in
extended models that generate it spontaneously. We note, however, that scenarios with an
explicit µ-term would lead to analogous conclusions, just replacing a VEV by a bare mass
term.4

3 Warm up: canonical Majorana inverse seesaw

As a warm up, we will start by fleshing out the well-known case of the canonical Majorana
inverse seesaw, in which the U(1)L, or equivalently U(1)B−L, symmetry is broken to a
residual Z2 subgroup [21]. While this symmetry breaking is typically done explicitly, here
keeping in mind the ease of generalization and the clarity it offers regarding the residual
subgroup, we will construct a fully consistent model in which the U(1)B−L symmetry is
broken spontaneously. Although the model shown here is of course not new, it will allow
us to set up the notation and conventions.

The symmetries and field inventory of the model are shown in table 1. In what concerns
the number of generations of the new fields, it is common to assume 3 copies for each species,
although more minimal options exist [35, 36]. Under the assumption of a conserved U(1)B−L
symmetry, one can write the Lagrangian terms

LMaj = Y L̄ H̃ N c + λ S̄c χS + M S̄cN + h.c. . (3.1)
4Note that this analogy is only true if the µ-term does not break any of the SM gauge symmetries.

Otherwise, explicit violation is forbidden while scenarios with spontaneous violation are in principle allowed,
provided µ � v, as generally assumed in the inverse seesaw setup. Therefore, the spontaneously broken
scenario is in a sense more general than the explicitly broken one. Of course, electric charge and color
should remain as conserved charges in either case.
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Fields SU(2)L⊗U(1)Y U(1)B−L → Z2 Fields SU(2)L⊗U(1)Y U(1)B−L → Z2

L (2,−1/2) −1 → −1
N (1,0) 1 → −1 S (1,0) −1 → −1
H (2,1/2) 0 → 1 χ (1,0) 2 → 1

Table 1. Particle content of the model. The U(1)B−L symmetry gets broken into the residual Z2
after χ gets a VEV. All fields are taken to be left-handed. Note that N and S form a VL pair of
fermions.

where H̃ = iτ2H
∗, with τ2 the second Pauli matrix. The new fermions N and S and the

scalar χ are all Standard Model gauge singlets. However, they all carry B − L charges
given by N = 1, S = −1 and χ = 2. Note that, unless stated otherwise, the generation
indices in eq. (3.1) as well as throughout this paper are suppressed for brevity. The scalars
H and χ obtain VEVs given by

〈H〉 = v , 〈χ〉 = u . (3.2)

Here v is the usual SM Higgs VEV, responsible for the breaking of the electroweak sym-
metry, while u breaks B − L in two units, leaving a residual Z2 symmetry. In fact, the χ
VEV induces a Majorana mass term for the S fermion,

µ = λu . (3.3)

This is the usual µ-parameter in the standard inverse seesaw model which, in the literature,
is often put as an explicit symmetry breaking term. Since µ is a symmetry-breaking term
and in the limit µ → 0 the Lagrangian has the enhanced U(1)B−L symmetry, µ can be
naturally small. This implies that in the spontaneous symmetry breaking version currently
under consideration, one naturally has u� v for λ ≈ O(1).

We would like to emphasize that the t’Hooft naturalness condition applied here, merely
states that if µ is small then its smallness will be protected against quantum corrections
i.e. µ will not receive any large quantum corrections. However, the naturalness condition
does not explain why µ should be small in the first place. Of course, one can indeed ask
why µ should be small. One possible answer is that, maybe the smallness of µ is owing to
the fact that the origin of such symmetry breaking terms lies in a bigger theory. In such
a bigger theory, its smallness is due to suppression by some large scale or, alternatively,
because it is generated at loop level, see [36–38] for examples. However, in this work we
do not attempt to address the cause for initial smallness of µ in any detail and will simply
assume that µ is small to begin with. Then in such a case the t’Hooft naturalness criterion
will ensure that it remains small even after quantum corrections.

Coming back to the canonical inverse seesaw model, we note that the symmetries of
the model will always allow the Yukawa term

L′Maj = λ′ N̄ c χ∗N + h.c. (3.4)

– 6 –
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〈H〉 〈H〉

L LY λM

N N

M Y

S S

〈χ〉

Figure 1. Neutrino mass generation in the standard Majorana inverse seesaw. The µ-term can
be either spontaneously generated by the VEV of the scalar χ or can be explicitly added as a soft
B− L breaking term.

which preserves the U(1)B−L symmetry. After symmetry breaking, this new piece generates
a second Majorana mass term, in this case for the N fermion,

µ′ = λ′ u . (3.5)

Eqs. (3.1) and (3.4) lead to the following Majorana mass term after symmetry breaking

Lm =
(
ν̄c N̄ c S̄c

)
0 Y v 0

Y T v µ′ MT

0 M µ



ν

N

S

 . (3.6)

If the model parameters follow the inverse seesaw hierarchy of eq. (2.1), or equivalently,

µ, µ′ � Y v �M , (3.7)

then the light neutrino mass matrix can be obtained in seesaw approximation as

mν =
(
Y v 0

)µ′ MT

M µ

−1Y T v

0

 . (3.8)

Assuming one generation for the time being, this leads to the light neutrino mass formula

mν = Y 2 v2µ

µµ′ −M2 . (3.9)

The first term in the denominator of eq. (3.9) is negligible under the seesaw hierarchy in
eq. (3.7), and one can finally approximate

mν = −Y 2 v
2 µ

M2 , (3.10)

and obtain the usual inverse seesaw formula, diagramatically represented in figure 1.
The inverse seesaw mechanism has several appealing features. First of all, we note that

the resulting neutrino mass formula turns out to be proportional to the small µ-parameter.
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This allows one to obtain light neutrino masses of the order of 0.1 eV with TeV-scale seesaw
mediators and O(1) Yukawa couplings, hence leading to a much richer phenomenology com-
pared to the usual high-scale seesaw scenarios. Furthermore, we note that the µ-parameter
is protected by the B − L symmetry, since the limit µ → 0 restores U(1)B−L. This makes
its smallness perfectly natural in the sense of ’t Hooft. Finally, we also note that in this
construction the U(1)B−L symmetry (or equivalently U(1)L) remains anomalous and there-
fore cannot be gauged. In this case they must be global symmetries, and their spontaneous
breaking (by u 6= 0) would lead to the appearance of a Goldstone boson, the majoron.

On a side note, the reader should keep in mind that from the diagram depicted in
figure 1 alone, one cannot distinguish between the simplest scenario in which U(1)B−L →
Z2 and more involved situations with U(1)B−L → Z2n. Note that, when neutrinos are
Majorana fermions, the residual transformation of the light neutrinos will always be ν ∼
zn = −1 where z = eiπ/n. The difference between Z2 and a more complicated Z2n cannot
be seen in the neutrino mass generation but will generate differences in the scalar sector. A
detailed discussion between the differences of these types of models shall be found elsewhere
since it would be beyond the scope of this work.

4 The simplest Dirac inverse seesaw

In this section we aim to develop the inverse seesaw model for Dirac neutrinos. However,
before going into details of the model, let us switch over to the “chiral notation” first. Thus,
from now on we give the same field name to fermions who will ultimately form a VL pair.
The left- and right-handed fields are distinguished with a subscript L or R. For example,
the fields of section 3 get renamed as N → NL and Sc → NR in the chiral notation. This
notation change is done to facilate the user to easily identify the fields which will ultimately
form either a Dirac or pseudo-Dirac pair. It will become especially useful when working
with Dirac neutrinos.

Furthermore, as mentioned already, throughout this work we consider symmetries to
be always broken spontaneously. This choice is taken because we find that the symmetry
transformations of the fields before and after breaking, as well as, the nature of the residual
symmetry that is left, are more transparent when the symmetry is spontaneously broken.
Also, as argued before, the spontaneous version is completely general and for any model
with an explicit symmetry breaking µ-term, its spontaneous symmetry breaking analogue
can be always constructed. It has the added advantage that in cases where the symmetry
under consideration is a gauge symmetry, only the spontaneous breaking of the symmetry
is allowed and hence only spontaneously broken models are mathematically consistent.

Finally, before moving on we want to reiterate that in this work we do not attempt to
answer the questions:

• How and why the µ-term should be small in the first place?

• How small a µ-term should be considered small?

These are important questions and are left to be addressed by the creators of a given
model. We are merely assuming that, to begin with, the µ-term is small. Moreover, since

– 8 –
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in the limit µ → 0 the symmetry of the system is enhanced, therefore following t’Hooft’s
arguments, such a small µ-term will be protected against large quantum corrections and
will remain small. In the spontaneous symmetry breaking versions that we consider, this
means that the VEV of the scalar which leads to the µ-term will be much smaller than the
electroweak VEV.

Coming back to the Dirac inverse seesaw model, note that for neutrinos to be Dirac
particles, some unbroken symmetry should forbid the appearance of Majorona mass terms.
This symmetry can very well be the residual symmetry G′ left unbroken when the µ-term
breaks the bigger symmetry G, see eq. (2.2). Here we will take G = U(1)B−L and G′ can
be any of its Zn; n > 2 subgroups [39]. In this section we take the simplest possibility of
G′ = Z3.

Symmetries play an even more central role in Dirac inverse seesaw constructs. First, a
symmetry is required to ensure the Dirac nature of neutrinos i.e. to forbid Majorana mass
terms for them. Second, a symmetry is also necessary to forbid the tree-level term L̄H̃νR,
which if present would imply tiny Yukawa couplings. Third, one must resort to a symmetry
breaking argument to make the smallness of the µ-parameter natural. One can accomplish
these tasks by using different symmetries for each task. However, as we discuss now, the
U(1)B−L symmetry and its residual Z3 subgroup are enough to play all these roles.

We are choosing here the U(1)B−L symmetry because it can be made anomaly free
by adding right-handed neutrinos with appropriate B− L charges. This can be especially
important if we were to gauge the symmetry, as is often done. The usual solution to
make U(1)B−L anomaly free is to add three right-handed neutrinos νR with B− L charges
(−1,−1,−1). However, an exotic choice of B − L charges for the right-handed neutrinos
can fulfill all these conditions, the so-called 445 chiral solution [10, 11, 40]. In this case, the
right-handed neutrinos carry (−4,−4, 5) charges under U(1)B−L. Being anomaly free, the
U(1)B−L symmetry can also be gauged, leading to a richer phenomenology. Throughout
this work we will mainly use this solution in all the Dirac models that we will construct.
However, let us mention that this is not the only possible symmetry solution [20] but just
a particularly elegant one. Also note that in many models the third right-handed neutrino
transforming as 5 under U(1)B−L will not have any allowed Yukawa couplings and therefore
will remain massless. While this is phenomenologically allowed, giving it a mass can be
done with a small extension of the scalar sector which will not affect the main features of
the models shown.

Dirac inverse seesaw. We begin the discussion on Dirac versions of the inverse seesaw
mechanism with a very minimal realization. In this simple case, the leading effective op-
erator for neutrino masses is L̄H̃χνR. This corresponds to the operator in eq. (1.2) with
Φ ≡ H̃ where H is the Higgs doublet and σ ≡ χ; χ being an SU(3)C ⊗ SU(2)L ⊗U(1)Y
singlet. In the full ultraviolet complete theory, the particle content and symmetry trans-
formations are shown in table 2, while the relevant Lagrangian terms for the generation of
neutrino masses are given by

LMin = Y L̄H̃NR + λ N̄LχνR + M N̄LNR + h.c. . (4.1)

– 9 –
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Fields SU(2)L⊗U(1)Y U(1)B−L → Z3 Fields SU(2)L⊗U(1)Y U(1)B−L → Z3
Fe

rm
io

ns Li (2,−1/2) −1 → ω2 νR (1,0) (−4,−4,5) → ω2

NL (1,0) −1 → ω2 NR (1,0) −1 → ω2

Sc
al

ar
s

H (2,1/2) 0 → ω0 χ (1,0) 3 → ω0

Table 2. Particle content of the minimal model implementing the Dirac inverse seesaw. All
quarks transform as 1/3 (ω1) under U(1)B−L (Z3), while their SU(3)C ⊗ SU(2)L ⊗U(1)Y charges
are identical to those in the SM. Here ω = e2πi/3 is the cube root of unity with ω3 = 1. Moreover,
with this choice of charges the U(1)B−L symmetry is anomaly free.

The scalar acquire VEVs
〈H〉 = v , 〈χ〉 = u . (4.2)

and break the electroweak and U(1)B−L symmetries, respectively. The VEV of χ induces
the small symmetry breaking µ-term.

µ = λu . (4.3)

Also, note that the VEV of the singlet scalar χ breaks U(1)B−L in three units, leaving a
residual Z3 symmetry under which all scalars transform trivially while all fermions (ex-
cept quarks) transform as ω2, with ω = e2iπ/3; ω3 = 1 being the cube root of unity. This
symmetry forbids all Majorana terms and therefore protects the Diracness of light neutri-
nos. The H and χ VEVs also induce Dirac masses proportional to the Y and λ Yukawa
couplings. These, in the Dirac basis

(
ν̄L N̄L

)
and (νRNR)T , gives rise to the mass matrix

M =

0 Y v

µ M

 (4.4)

where, as mentioned before, µ = λu will be naturally small as it is the U(1)B−L symmetry
breaking term.

Thanks to the residual Z3 symmetry, the neutrinos are Dirac particles whose masses
in the inverse seesaw limit M � Y v � µ are given by

mν = Y v
µ

M
, (4.5)

as diagramatically shown in figure 2.
Since in the limit µ→ 0 the U(1)B−L symmetry is restored, the smallness of the µ-term

is protected. Its smallness will not be altered by higher order corrections, and therefore is
perfectly natural. For example, if we take a small µ ∼ 10 eV, we can obtain mν ∼ 0.1 eV
for Y ∼ 0.1 and M ∼ 1TeV. We should also point out that the mass matrix in eq. (4.4)
is similar to the mass matrix one obtains in the Dirac type-I seesaw [10–12, 24]. However,
in the type-I seesaw case, the off-diagonal terms in eq. (4.4) are taken to be comparable to
each other i.e. Y v ≈ λu�M . Thus, for Dirac neutrinos, the minimal inverse seesaw and
the type-I seesaw are just two limits of the same mass matrix.

– 10 –
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〈H〉 〈χ〉

L νRY λM

NR NL

Figure 2. Neutrino mass generation in the minimal Dirac inverse seesaw.

Some final comments are in order. First, since the U(1)B−L symmetry is anomaly
free, it can be a gauge symmetry. This eliminates the Goldstone boson associated to its
breaking and leads to a much richer phenomenology. Note that the canonical Majorana
inverse seesaw discussed in section 3 is not anomaly free and hence cannot be gauged.
Second, the Dirac inverse seesaw model is also relatively simple in terms of new fields
added to the theory. In addition to the Standard Model particles, we have just added the
right-handed neutrinos νR, a VL fermionic pair NL and NR and an extra singlet scalar χ,
which is needed only if the spontaneous symmetry breaking is desired.

5 Generalizing the inverse seesaw — I: multiplets

The canonical Majorana inverse seesaw and its Dirac analogue discussed in the previous
sections are the simplest possibilities to implement the inverse seesaw mechanism. How-
ever, inverse seesaw as an idea is much more general and can be implemented in many
different ways. It is the aim of this and section 6 to explore the various ways in which one
can generalize it. As we show, there are several directions in which both the Dirac and
Majorana inverse seesaws can be generalized. Many of these generalized models contain
exotic fermions and scalars which will have very unique signatures in experiments, which
we intend to explore in followup work.

In this section we restrict ourselves only to generalizing the SU(2)L×U(1)Y multiplets
that can lead to the inverse seesaw, both for Majorana and Dirac neutrinos. We will also
show a few examples of each kind. We emphasize that these generalized versions may have
a richer collider phenomenology than their simpler cousins.

5.1 Generalized Majorana inverse seesaw

We consider a generalization of the Majorana inverse seesaw that uses the same number of
scalars and fermions as in table 1 and figure 1, but allows for other representations under
SU(2)L × U(1)Y. The Lagrangian will be formally equivalent to the one shown in 3 just
replacing H → φ, χ→ ϕ, N → NL and Sc → NR, but with different multiplets of SU(2)L.5

5From here onwards, when an undefined higher multiplet of SU(2)L is defined we will assume correct
contractions without writing them explicitly. For example, the different components of the fields in the
term L̄φ∗NR, where φ ∼ n and NR ∼ n± 1, will be combined in such a way that they are contracted to an
SU(2)L singlet.
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Fields SU(2)L⊗U(1)Y U(1)B−L → Z2 FieldsSU(2)L⊗U(1)Y U(1)B−L → Z2
Fe

rm
io

ns Li (2,−1/2) −1 → −1
NL (n±1,Y −1/2) −1 → −1 NR (n±1,Y −1/2) −1 → −1

Sc
al

ar
s H (2,1/2) 0 → 1 φ (n,Y ) 0 → 1

ϕ (1,3,5 . . .2n+1,1−2Y ) 2 → 1

Table 3. Particle content of the generalized Majorana inverse seesaw. To generate a mass for the
other SM fermions, a SM-like Higgs scalar H is always needed, and we have explicitly included it
in the list. In some particular cases, φ can be identified with the SM-like Higgs H itself i.e. φ ≡ H
and two separate particles are not required. The VEV of the scalar ϕ breaks the B− L symmetry
and thus can be naturally small.

There are many such generalizations possible and before we embark on their discussion,
we need to streamline the notation such that the same notation can be easily applicable to
Dirac as well as Majorana cases and to various possible generalizations. This generalized
notation will be used throughout the rest of the paper.

• The two new type of fermions (called N,S in section 3) which will ultimately form
a VL pair are henceforth called by NL and NR. Note that they have the same
SU(2)L ⊗ U(1)Y representation and B − L charges. Henceforth, we will denote the
SU(2)L and U(1)Y charges of a given particle as (n′, Y ′); n′ being the dimensionality
of the SU(2)L multiplet and Y ′ being its hypercharge. In this notation, the two new
fermions of section 3 will both have their SU(2)L ⊗U(1)Y charges given by (1, 0).

• We denote the scalar which couples to L and NR as φ. This scalar couples to the two
fermions via the Yukawa term L̄ φ∗NR and in general will transform as (n, Y ) under
SU(2)L ⊗ U(1)Y, setting Y ′ = Y − 1/2 and n′ = n ± 1. Of course, n and Y have to
be correlated in such a way that an electrically neutral component of φ exists. For
example, for n = 1, only Y = 0 is possible. For n = 2, Y = ±1/2, this being the
case in which φ can be identified with a SM-like Higgs i.e. either H or H̃. For n = 3,
Y = ±1, 0. For n = 4, Y = ±1/2,±3/2 and so on.

• The scalar whose VEV leads to the µ-term will be denoted as ϕ. It will transform
under SU(2)L as 1, 3, 5, . . . 2n+1 and will have a hypercharge of 1− 2Y . Like in
the case of φ, the relation between the SU(2)L ⊗U(1)Y charges of ϕ have to be such
that a neutral component exists in order to avoid electric charge violation.

Having established our notation, let us look at the possible multiplet generalizations of
the canonical inverse seesaw of section 3. Since in this section we are restricting ourselves to
only multiplet generalizations, the particle content of the models remain the same. Thus,
in all cases we are led to the same inverse seesaw formula in eq. (3.10). However, now the
fields can have more general SU(2)L ⊗U(1)Y charges, as shown in table 3.

In table 3, apart from the scalars φ and ϕ, we have also explicitly added a SM Higgs-
like SU(2)L scalar doublet H. In models where φ has suitable quantum numbers so as

– 12 –



J
H
E
P
0
3
(
2
0
2
1
)
2
4
8

〈φ〉 〈φ〉

L LY λM

NR NR

M Y

NL NL

〈ϕ〉
(n, Y, 0) (n, Y, 0)

(n± 1, Y − 1

Figure 3. Generalized Majorana inverse seesaw.

Name of the model NL and NR φ ϕ (µ-term)
Type I inverse seesaw — (2, 1, 0) (1, 0) (2,1/2) =H (1,0)
Type III inverse seesaw — (2, 1, 0) (3, 0) (2,1/2) =H (1,0)
Type III inverse seesaw — (2, 5, 0) (3, 0) (2,1/2) =H (5,0)
Type III inverse seesaw — (2, 5, 2) (3, -1) (2, -1/2) = H̃ (5, 2)

Type III inverse seesaw — (4, 5, 1-2Y) (3, Y-1/2) (4, Y=-1/2, 3/2) (5, 1-2Y)
Type IV inverse seesaw — (3, 7, 1-2Y) (4,Y −1/2) (3, Y = 0, ± 1) (7,1−2Y )
Type V inverse seesaw — (4, 1, 0) (5, 0) (4, 1/2) (1,0)

Type V inverse seesaw — (4, 5 or 9, 0) (5, 0) (4, 1/2) (5 or 9, 0)
Type V inverse seesaw — (4, 5 or 9, 1-2Y) (5, Y-1/2) (4, Y=-1/2, 3/2) (5 or 9, 1-2Y)

Type V inverse seesaw — (4, 9, 4) (5, -2) (4, -3/2) (9, 4)

Table 4. A few examples of the generalized inverse seesaw in the Majorana case. The nomenclature
of the models is “Type X inverse seesaw — (n, m, k)” where X is the SU(2)L multiplet of the fermion
N , n and m are the SU(2)L multiplets of φ and ϕ, respectively, and k is the hypercharge of ϕ. If
the field φ is charged as (2,−1/2) under SU(2)L ⊗ U(1)Y then it can be identified with the SM
Higgs doublet H while ϕ is responsible for B− L breaking. We are not showing the models which
generate a type-II seesaw contribution. See text for detailed discussion.

to be used for mass generation for quarks and charged leptons, a separate H field is not
needed. In such cases one can identify φ ≡ H. The Feynman diagram for the inverse
seesaw generation of neutrino masses using general multiplets is shown in figure 3.

Some of the simplest generalized inverse seesaw models are listed in table 4. Some of
the type-III models have been discussed previously in [41–48]. In [48] the first case of “Type
V inverse seesaw” was also discussed. The remaining cases, to the best of our knowledge,
are being discussed for first time by us. Let us now cover the simplest cases systematically.

1. For n = 1: the simplest case is obtained with n = 1. In this case, the only option for
the Y hypercharge is Y = 0 as any other value will lead to electric charge breaking
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once φ gets a VEV. Then the only option for the charges of NL, NR is (2,−1/2),
which are the same as for the SM lepton doublet L. Finally, given these charges,
ϕ would be forced to transform as (3, 1). However, one can see that the resulting
model will also induce a type II seesaw which, depending on the parameter choices,
can provide the leading order contribution to the light neutrino masses, among other
phenomenological issues. Thus, this choice will at best lead to a mixed inverse-typeII
seesaw and not a pure inverse seesaw as desired. Hence, we reject this possibility and
will not discuss it further.

2. For n = 2: the next case is n = 2, where we can identify φ with either H (for
Y = 1/2) or H̃ (for Y = −1/2). Moreover, the internal fermions NR and NL can be
either singlets or triplets under SU(2)L and will carry a hypercharge equal to Y −1/2
i.e. either 0 or −1. Several different possibilites arise here as we discuss now:

(a) The case Y = 1/2 with NL, NR ∼ (1, 0) implies ϕ ∼ (1, 0). It is nothing but
the canonical Majorana inverse seesaw discussed in section 3 and studied and
extensively in the literature.

(b) The case Y = −1/2 with NL, NR ∼ (1,−1) does not lead to any viable neutrino
mass model. This is because NL and NR in this case have no electrically neutral
components and hence are unsuitable to act as tree-level mediators for neutrino
mass generation.

(c) Taking NL and NR to be two SU(2)L triplets with hypercharge 0, leads to three
possibilities for ϕ: 1, 3 or 5 under SU(2)L. Taking ϕ ∼ 1 under SU(2)L leads
to the “type-III inverse seesaw” shown in table 4. The option ϕ ∼ 3 would lead
to vanishing neutrino masses since two triplets contracting to another triplet
is an antisymmetric combination, which vanishes if the two fields are identical.
The last option ϕ ∼ 5 would be the “type-III variant seesaw” shown in table 4.

(d) Finally, for NL, NR ∼ 3 under SU(2)L with −1 hypercharge, the scalar ϕ can
only transform as (5, 2). This is a novel possibility and would represent an exotic
variant of the type-III inverse seesaw. In table 4 we refer to this possibility as
“exotic variant I” of the type-III inverse seesaw. As opposed to the ‘normal’ type-
III inverse seesaw, this model will feature doubly electrically charged fermions
and quadruply charged scalars.

3. For n = 3: in the case n = 3 we have three possibilities for Y : 0 and ±1. For
each value of Y , the fermions can transform as either doublets or quadruplets under
SU(2)L, with their hypercharge values ranging from −3/2 to 1/2. There are several
possible cases falling under this category. These are:

(a) For Y = 1, the fermions NL and NR will have a hypercharge of 1/2. If they
are SU(2)L doublets, then ϕ will again be an SU(2)L triplet with hypercharge 1.
Thus, in this case, in addition to the inverse seesaw there will also be a type-II
seesaw-like contribution. We therefore neglect this option. If the new fermions
are quadruplets under SU(2)L, ϕ will have hypercharge −1 and will transform
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as 3 or 7 under SU(2)L. However, the case ϕ ∼ (3,−1) would generate a type-II
seesaw contribution. We call the only remaining posibility “Type IV inverse
seesaw” in table 4. Note that again due to the antisymmetry of the contractions
4×4→ 1 and 4×4→ 5, the options of ϕ transforming as 1 and 5 under SU(2)L
are both forbidden.

(b) For Y = 0, again if the fermions are doublets then we will end up having a type-
II seesaw contribution along with the inverse seesaw and as before we reject this
possibility. If NL and NR are quadruplets of SU(2)L with hypercharge −1/2
then again ϕ will transform as 3 or 7 with hypercharge of 1. However, as before
the case ϕ ∼ (3, 1) would generate a type-II seesaw contribution. So again the
only viable possibility is ϕ ∼ 7 under SU(2)L and the resulting model is again
the “Type IV inverse seesaw” given in table 4.

(c) For Y = −1 the new fermions will have a hypercharge of −3/2. Thus, they
cannot be doublets as in that case they will not have any electrically neutral
component to act as intermediate particles for neutrino mass generation. If the
fermions are quadruplets, then the only option for ϕ is to transform as 7 under
SU(2)L. In this case the possibility of it being a triplet will imply that ϕ has no
electrically neutral component and hence if it gets VEV, it would violate electric
charge invariance.

(d) In summary, in all cases for n = 3, we only have one viable possibility, namely
that of the fermions transforming as quadruplets of SU(2)L with hypercharge
Y − 1/2, while ϕ will transform as (7, 1− 2Y ).

4. For n = 4: there are 4 possibilities for Y : ±1/2 and ±3/2. The internal fermions
will be either triplets or quintuplets, while ϕ will be either 1 (only for Y = 1/2), 5
or 9 (only for the quintuplet case) under SU(2)L.

(a) The case in which Y = 1/2 and the fermions are triplets would generate another
contribution for the type-III inverse seesaw. We therefore neglect this possibility.
If the fermions are quintuplets with hypercharge 0, ϕ could be either (1, 0),
leading to the “type-V inverse seesaw”, or a variant of it, which we call “type V
variant”, with ϕ transforming as either (5, 0) or (9, 0) as shown in table 4.

(b) For Y = −1/2, the new fermions can be either quintuplets or triplets with
hypercharge −1. ϕ will transform as either a quintuplet, in both cases, or in the
quintuplet case, as 9 with hypercharge 2. In table 4 these possibilites are listed
as “type V exoctic variant I”.

(c) If Y = 3/2 then the new fermions can be either triplets or quintuplets with
hypercharge 1. Again, ϕ will transform as either a quintuplet, in both cases, or
a 9 only in the quintuplet fermion case, of hypercharge −2. This possibility is
also listed as “type V exoctic variant I” in table 4.

(d) Finally, the case Y = −3/2 only allows for quintuplet fermions of hypercharge
−2. The only viable option for ϕ is to transform as (9, 4), leading to the “type
V exoctic variant II” of table 4.
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Fields SU(2)L⊗U(1)Y U(1)B−L → Z3 Fields SU(2)L⊗U(1)Y U(1)B−L → Z3
F

er
m

io
ns Li (2,−1/2) −1 → ω2 νR (1,0) (−4,−4,5)→ ω2

NL (n±1,Y −1/2) −1 → ω2 NR (n±1,Y −1/2) −1 → ω2

Sc
al

ar
s H (2,1/2) 0 → ω0 ϕ (n±1,Y −1/2) 3 → ω0

φ (n,Y ) 0 → ω0

Table 5. Particle content of the generalized Dirac inverse seesaw. As in the Majorana case, here
also φ can be identified with the SM Higgs under certain conditions. Again, ϕ breaks the symmetry
and generates the µ-term. The particle charges under the residual Z3 symmetry are given by cube
roots of unity with ω = e2πI/3; ω3 = 1.

5. For n > 4: higher values of n are also possible. However, one can trivially generalize
further to higher n values and we will not discuss them explicitly.

Before ending this section, we would like to comment on the advantages of using
spontaneous symmetry breaking rather than explicit breaking, when exploring the model
space for any given neutrino mass generation mechanism. If one opts for explict symmetry
breaking to generate the µ-term, one will miss many interesting models. This is because
in such case one can only consider µ-terms that do not break gauge symmetries, as gauge
symmetries cannot be broken explicitly. This is equivalent to restricting to only SU(2)L
singlet cases with Y = 0 in our analysis. On the contrary, when the µ-term is induced
through spontaneous symmetry breaking, the field ϕ whose VEV will lead to the µ-term
can in principle transform as any representation of the gauge groups. In cases when ϕ

has non-trivial SU(2)L ⊗ U(1)Y transformations, its VEV will break gauge symmetry as
well. However, since it is spontaneous breaking and given the hierarchy 〈ϕ〉 � v; v being
the electroweak VEV, there is no issue in such a breaking. Thus, generating the µ-term
dynamically via spontaneous symmetry breaking reveals the full landscape of models falling
under the inverse seesaw mechanism.

5.2 Generalized Dirac inverse seesaw

We now move on to the multiplet generalization of the Dirac inverse seesaw. Again, the
Lagrangian of the model would be formally identical to the one in section 4, but with higher
SU(2)L multiplets and replacing H → φ and χ→ ϕ. The charges under U(1)B−L will also
be identical and therefore the model would share the same appealing features. The general
SU(2)L ×U(1)Y charges can be seen in table 5 and diagramatically in figure 4.

The notation and conventions here are the same as in the previous section 5.1, which
generalized the inverse seesaw mechanism in the Majorana case. Here we are again using
the anomaly free (−4,−4, 5) solution for the U(1)B−L symmetry with the B − L charges
of NL, NR assigned in a “vector” fashion such that the U(1)B−L group remains anomaly
free. Note that for neutrinos to remain Dirac particles, an unbroken symmetry is needed to
protect their Diracness. As in section 4, this role is again fullfiled by the unbroken residual
Z3 subgroup of the U(1)B−L symmetry, see table 5.
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〈φ〉 〈ϕ〉

L νRY λM

NR NL

(n, Y ) (n± 1, Y − 1

Figure 4. Generalized Dirac inverse seesaw.

Name of the model NL and NR φ ϕ (µ-term)
Type I Dirac inverse seesaw — (2, 1, 0) (1,0) (2,1/2) (1,0)
Type III Dirac inverse seesaw — (2, 3, 0) (3,0) (2,1/2) (3,0)
Type III Dirac inverse seesaw — (2, 3, -1) (3,−1) (2,−1/2) (3,−1)
Type III Dirac inverse seesaw — (4, 3, 1) (3,1) (4,3/2) (3,1)

Type IV Dirac inverse seesaw — (3, 4, Y-1/2) (4,Y −1/2) (3,Y = 0,±1) (4,Y −1/2)
Type V Dirac inverse seesaw — (4, 5, 0) (5,0) (4,1/2) (5,0)
Type V Dirac inverse seesaw — (4, 5, 1) (5,1) (4,3/2) (5,1)
Type V Dirac inverse seesaw — (4, 5, -1) (5,−1) (4,−1/2) (5,−1)
Type V Dirac inverse seesaw — (4, 5, -2) (5,−2) (4,−3/2) (5,−2)

Table 6. A few examples of the generalized Dirac inverse seesaw.

Finally, let us list a few viable examples in table 6. The general strategy to build these
models is similar to that discussed at length for the Majorana case in section 5.1. We first
fix the SU(2)L⊗U(1)Y charge of the scalar φ. Depending on the φ charges, the NL and NR

fields can have only one option for their SU(2)L ⊗ U(1)Y transformations. Finally, given
the charges of both φ and the NL, NR fields, the viable options for the ϕ gauge charges can
be obtained. The final list of viable models for the Dirac inverse seesaw with generalized
multiplets are listed in table 6.

In table 6 we have restricted outselves to n = 4 i.e. upto the case in which φ transforms
as a quadruplet under SU(2)L. Nevertheless, the generalization to higher n > 4 is rather
straightforward. Finally, as in the Majorana case, here also we have named the “type”
of the model based on the SU(2)L transformation of the NL, NR fermions. The subclass
numbering is based on the SU(2)L transformation of φ as well as the SU(2)L ⊗ U(1)Y
transformation of the ϕ field.
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Fields SU(2)L ⊗U(1)Y U(1)B−L Fields SU(2)L ⊗U(1)Y U(1)B−L

L (2,−1/2) −1 SR (1, 0) 0
NL (1, 0) −1 NR (1, 0) −1
H (2, 1/2) 0 χ (1, 0) 1

Table 7. Particle content of the Majorana double inverse seesaw model. In this case, the U(1)B−L
symmetry gets completely broken after χ gets a VEV.

6 Generalizing the inverse seesaw — II: double inverse seesaw and be-
yond

We will now move into a new type of generalization of the inverse seesaw framework in
which the fermionic sector of the model is extended in order to obtain double or multiple µ-
term supression of the neutrino mass. As before, we start with the Majorana case, showing
how one can obtain a “double inverse seesaw”. We then discuss how one can generalize to
triple and then multiple inverse seesaw. After that we show that the same can be done for
Dirac neutrinos, explicitly working out the double and triple inverse seesaws and ending
with a discussion on the Dirac multiple inverse seesaw.

6.1 Majorana double inverse seesaw

We start the discussion with the double inverse seesaw model for Majorana neutrinos. To
build a double seesaw model, consider the canonical inverse seesaw model of section 3 and
add a new fermion SR with B−L charge 0. Moreover, let us change the charge of χ from 2
to 1. We keep rest of the fields and their charges identical to those in the canonical model.
Therefore, the particle content and the charges of the relevant fields are given in table 7.

The SU(3)C ⊗ SU(2)L ⊗U(1)Y and U(1)B−L invariant Lagrangian relevant for neu-
trino mass generation is given by

Lyuk = Y L̄H̃NR + MN N̄LNR + MS S̄RS
c
R + λ N̄Lχ

∗SR + λ′ N̄Rχ
∗ScR + h.c. (6.1)

where Y , λ and λ′ are Yukawa couplings and MN and MS are gauge invariant mass terms.
As shown diagrammatically in figure 5, neutrino masses are generated once the scalars get
VEVs, 〈H〉 = v and 〈χ〉 = u.

The neutral fermion mass Lagrangian after symmetry breaking is given in matrix form
by

Lm =
(
L̄c N̄R N̄ c

L S̄R

)


0 Y v 0 0
Y T v 0 MN µ′

0 MT
N 0 µ

0 µ
′T µT MS




L

N c
R

NL

ScR

 , (6.2)

where we have defined µ = λu and µ′ = λ′u. Curious readers will find this mass matrix
a bit amusing as it does not look like an inverse seesaw mass matrix. However, this is
simply because we have changed the ordering of the fields while writing the mass matrix.
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λ

〈φ〉 〈φ〉

L LY MN

NR SR

MS λ

NL SR

〈χ〉 〈χ〉

NL NR

MN Y

Figure 5. Neutrino mass generation in the double Majorana inverse seesaw.

This is done so as to follow the sequence in which they appear in the fermionic line of
figure 5. Since the model has symmetry breaking µ-terms as well as invariant terms, the
model parameters naturally follow the inverse seesaw hierarchy

µ, µ′ � Y v �MN ,MS , (6.3)

and the light neutrino mass matrix can be obtained in seesaw approximation as

mν =
(
Y v 0 0

)
0 MN µ′

MT
N 0 µ

µT
′
µT MS


−1

Y T v

0
0

 . (6.4)

Assuming one generation for the time being, this leads to the light neutrino mass formula

mν = Y 2 v2 µ2

2MNµµ′ −M2
N MS

≈ Y 2 v2 µ2

M2
N MS

. (6.5)

One can easily see that this formula for light neutrino masses follows the same spirit as
the well-known formula in the canonical Majorana inverse seesaw. However, now neutrino
masses get suppressed by µ2 instead of µ. This is the reason why we call this model double
inverse seesaw.

6.2 Majorana triple inverse seesaw and beyond

To go further along this idea, let us now add a new Weyl fermion and rearrange the B−L
charges. We will also need to add a new symmetry-breaking scalar, see the relevant fields
and charges in table 8.

To induce a triple inverse seesaw we need two different scalars carrying U(1)B−L charges
as shown in table 8, with a being an integer. It should be noted that χ1 has to be different
from χ2 in order for the triple inverse seesaw to provide the leading order contribution.
Moreover, for the same reason, the B − L charges of both χ1 and χ2 need to be different
from 0. The simplest solution is thus a = 2 leading to χ1 ∼ 3 and χ2 ∼ 4. Note that a = 1
will lead to a type-I seesaw like contribution as the leading contribution. Hence, a 6= 1 is
required to have triple inverse seesaw as the leading contribution to neutrino masses.
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Fields SU(2)L⊗U(1)Y U(1)B−L → Z2 Fields SU(2)L⊗U(1)Y U(1)B−L → Z2

L (2,−1/2) −1 → −1
NL (1,0) −1 → −1 NR (1,0) −1 → −1
SL (1,0) a → −1 SR (1,0) a → −1
H (2,1/2) 0 → 1
χ1 (1,0) a+1 → 1 χ2 (1,0) 2a → 1

Table 8. Particle content of the Majorana triple inverse seesaw model. The U(1)B−L symmetry
gets broken into the residual Z2 after χ1 and χ2 get non-zero VEVs.

〈φ〉 〈χ1〉

L LY λ1MN

NR SL

MS λ2

NL SR

〈χ1〉 〈χ2〉

SL SR

MS λ1

〈φ〉

NL NR

MN Y

Figure 6. Neutrino mass generation in the triple Majorana inverse seesaw. We note that the terms
NR SL and SR SR cannot be avoided irrespective of the charge assignment. These terms generate
µ′ terms in analogy to the standard Majorana inverse seesaw.

After symmetry breaking the light neutrinos become massive, as shown in the diagram
of figure 6. The resulting neutral fermions mass Lagrangian in matrix form is given by

Lm =
(
L̄c N̄R N̄ c

L S̄R S̄cL

)


0 Y v 0 0 0
Y T v 0 MN 0 µ′1

0 MT
N 0 µ1 0

0 0 µT1 µ′2 MS

0 µT
′

1 0 MT
S µ2





L

N c
R

NL

ScR

SL


+ h.c. (6.6)

where µi = λiui and µ′i = λ′iui; i = 1, 2 with λi, λ′i being Yukawa couplings and 〈χi〉 = ui
being the VEVs of the SU(3)C ⊗ SU(2)L ⊗U(1)Y singlet scalars. The model parameters
naturally follow the already familiar inverse seesaw hierarchy

µi, µ
′
i � Y v �MN ,MS . (6.7)

Using the hierarchy of eq. (6.7) in eq. (6.6) we obtain the light neutrino mass matrix in
seesaw approximation as

mν =
(
Y v 0 0 0

)


0 MN 0 µ′1

MT
N 0 µ1 0

0 µT1 µ′2 MS

µT
′

1 0 MT
S µ2



−1
Y T v

0
0
0

 . (6.8)
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Assuming one generation, one obtains the light neutrino mass formula

mν = Y 2v2 µ2
1µ2

M2
NM

2
S − 2MSMNµ1µ′1 + µ2

1µ
′2
1 −M2

Nµ2µ′2
≈ Y 2v2 µ2

1 µ2
M2
NM

2
S

. (6.9)

In direct analogy with the standard inverse seesaw, contributions coming from µ′ can
be safely neglected. Note that here the suppression mechanism is enhanced by µ2

1µ2.
Therefore, we would call this mechanism triple Majorana inverse seesaw.

Further developments into quadruple, quintuple, . . . , Majorana inverse seesaw mecha-
nisms are straightforward. One indeed has to ensure that the n th order inverse seesaw is
the leading order contribution to neutrino masses. This can always be ensured by choosing
appropriate charges for the particles transforming under the symmetry whose breaking
leads to the µ-terms of the model. Having ensured that, in general we find

• For (2n− 1)th order inverse seesaw: in this case we require “n pseudo-vector
pairs” of fermions and “n” scalars. The resulting leading neutrino masses for a
(2n− 1)th order inverse seesaw (one generation) are given by

mν ≈ Y 2 v2 µn
M2
n

i=n−1∏
i=1

µ2
i

M2
i

, (6.10)

where Y is the Yukawa coupling involving the lepton doublet, µi; i = 1, · · · , n are the
small symmetry breaking µ-terms and Mi; i = 1, · · · , n are the pseudo-Dirac masses
for the pseudo-vector pairs of fermions.

• For 2nth order inverse seesaw: in this case we require “n pseudo-vector fermion
pairs”, a chiral fermion and “n” scalars. The resulting leading contributions to neu-
trino masses for a 2n th order inverse seesaw (one generation) are given by

mν ≈ Y 2 v2 1
Mn+1

i=n∏
i=1

µ2
i

M2
i

, (6.11)

where the definitions of all the couplings are the same as in the previous case.

6.3 Dirac “double” inverse seesaw

To build the double Dirac inverse seesaw, we start with the field and symmetry inventory
of the minimal Dirac inverse seesaw of section 4. To it, we add new VL fermions, SL,R,
and a new singlet scalar χ2. The only modification in the B−L charges is that we will take
(χ1, χ2) to transform as (χ1, χ2) ∼ (6,−9). Remember that in the previous example we had
χ ∼ 3. Moreover, we take the new VL fermion to transform as SL,R ∼ 5, while the rest of
the fields share their transformation properties with the previous model as shown in table 9.

With the above choice of U(1)B−L charges it is easy to check that the model is anomaly
free and can be gauged if desired. Also, the B−L charges of the scalars are chosen in such
a way that their VEVs break U(1)B−L → Z3. This residual Z3 symmetry remains unbroken
thus ensuring the Dirac nature of neutrinos. Note that the fields νR and SR share the same
transformation properties, but we call them differently to follow the notational conventions
of the previous and following sections.

– 21 –



J
H
E
P
0
3
(
2
0
2
1
)
2
4
8

Fields SU(2)L⊗U(1)Y U(1)B−L→Z3 Fields SU(2)L⊗U(1)Y U(1)B−L→Z3
Fe

rm
io
ns Li (2,−1/2) −1 → ω2 νR (1,0) (−4,−4,5) → ω2

NL (1,0) −1 → ω2 NR (1,0) −1 → ω2

SL (1,0) 5 → ω2 SR (1,0) 5 → ω2

Sc
al
ar
s

H (2,1/2) 0 → ω0 χ1 (1,0) 6 → ω0

χ2 (1,0) −9 → ω0

Table 9. Particle content of the Dirac analogue of the inverse seesaw. The U(1)B−L charges of the
fermions are fixed by an anomaly cancellation condition while the U(1)B−L charges of the scalars
are chosen such that the residual Z3 symmetry remains unbroken and the leading contribution to
neutrino mass is induced by the double inverse seesaw.

With all these ingredients, the Lagrangian of the model relevant to neutrino mass
generation is given by

LDir = Y L̄ H̃ NR + λ2 S̄L χ
∗
2 νR + λ1 N̄L χ

∗
1 SR + λ′1 S̄L χ1NR (6.12)

+ MN N̄LNR + MS S̄LSR + h.c. . (6.13)

Symmetry breaking is triggered by the scalar VEVs

〈H〉 = v , 〈χ1〉 = u1 , 〈χ2〉 = u2 , (6.14)

which lead to the following µ-terms,

µ1 = λ1 u1 , µ′1 = λ′1 u1 , µ2 = λ2 u2 . (6.15)

After symmetry breaking, eq. (6.12) leads to the mass Lagrangian in matrix form

Lm =
(
ν̄L N̄L S̄L

)
0 YN v 0
0 MN µ1

µ2 µ′1 MS



νR

NR

SR

 . (6.16)

Again, the natural hierarchy among the parameters of the model is

µ1, µ
′
1, µ2 � Y v �MN ,MS , (6.17)

which leads to the light neutrino mass matrix

mν =
(
Y v 0

)MN µ1

µ′1 MS

−1 0
µ2

 . (6.18)

For one generation of light neutrinos, this is equivalent to

mν = YN
v µ1 µ2

µ1µ′1 −MNMS
' −YN v

µ1µ2
MN MS

. (6.19)

This result is illustrated in the Feynman diagram shown in figure 7.
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〈φ〉 〈χ2〉

L νRY λ1MN

NR SL

MS λ2

NL SR

〈χ1〉

Figure 7. Neutrino mass generation in the Dirac double inverse seesaw. The µ-terms can be either
explicit or spontaneously generated by the VEV of the scalars χ1 and χ2.

Fields SU(2)L⊗U(1)Y U(1)B−L → Z3 Fields SU(2)L⊗U(1)Y U(1)B−L → Z3

Fe
rm

io
ns

Li (2,−1/2) −1 → ω2 νR (1,0) (−4,−4,5) → ω2

NL (1,0) −1 → ω2 NR (1,0) −1 → ω2

SL (1,0) −4−b → ω2 SR (1,0) −4−b → ω2

TL (1,0) a−1 → ω2 TR (1,0) a−1 → ω2

Sc
al
ar
s

H (2,1/2) 0 → ω0 χ1 (1,0) a → ω0

χ2 (1,0) b → ω0 χ3 (1,0) −3−a−b → ω0

Table 10. Particle content of the triple Dirac inverse seesaw. The free charges a and b can only
take certain values, see text for a more detailed discussion.

As it is clear from eq. (6.19), neutrino masses in this case are suppressed by two µ-terms
and hence the name Dirac double inverse seesaw. Note that the effect of µ′ is subleading in
the neutrino mass generation. Finally, we should remark that the spontaneous breaking of
U(1)B−L by the u1 and u2 VEVs leaves a residual Z3 symmetry. As in the minimal Dirac
model of section 4, here too all scalars transform trivially under this residual symmetry,
while all fermions (except quarks which transform as ω) transform as ω2. Again, this
symmetry forbids all Majorana mass terms and protects the Diracness of light neutrinos.

6.4 Dirac triple inverse seesaw and beyond

In order to build the triple Dirac inverse seesaw, we take the same field inventory as in sec-
tion 6.3 and add a new set of VL fermions, which we denote as T . Moreover, we need to add
a new scalar and modify the B−L symmetry charges of the symmetry breaking scalars. The
B−L anomaly free 445-solution can still be implemented, with the new fermions SL,R, TL,R
getting “vector” B− L charges, thus preserving the anomaly free structure, see table 10.

In this construction we must again emphasize the importance of the correct symmetry
breaking pattern and the residual unbroken symmetry. If the parameters a, b are chosen
without care, one may generate Majorana mass terms which would in turn spoil the Dirac
nature of neutrinos. For example, the choice a = 2 would allow the presence of the
mass term N̄ c

LNLχ2, which would eventually induce Majorana neutrino masses through
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〈φ〉 〈χ3〉

L νRY λ1MN

NR TL

MT λ3

NL TR

〈χ1〉 〈χ2〉

SR SL

MS λ2

Figure 8. Neutrino mass generation in the Dirac triple inverse seesaw. The terms NRTL and TRSL
cannot be avoided irrespective of the charge choices. These terms generate µ′ terms in analogy to
the standard Majorana inverse seesaw, but they play a subleading role in the generation of neutrino
masses.

the effective operator L̄cLHHχ2. As a general rule, the three scalars χi; i = 1, 2, 3 under
U(1)B−L must transform as multiples of 3, the sum of their charges must be 3 and none of
them should have 0 charge under the U(1)B−L symmetry.

Neutrinos get massive after symmetry breaking, as shown in the diagram of figure 8.
The neutral fermions mass Lagrangian is given by

Lm =
(
ν̄L N̄L S̄L T̄L

)


0 YN v 0 0
0 MN 0 µ2

µ1 0 MS µ′3

0 µ′2 µ3 MT




νR

NR

SR

TR

 . (6.20)

Here all µ-terms are defined as µi = Yiui and µ′i = Y ′i ui. Again, the natural hierarchy
among the parameters of the model is

µi, µ
′
i � YN v �MN ,MS ,MT , (6.21)

which leads to the light neutrino mass matrix

mν =
(
YN v 0 0

)
MN 0 µ2

0 MS µ′3

µ′2 µ3 MT


−1

0
µ1

0

 . (6.22)

For one generation of light neutrinos this is equivalent to

mν = YN v
µ1µ2µ3

MNMSMT −MSµ2µ′2 −MNµ3µ′3
' YN v

µ1µ2µ3
MNMSMT

(6.23)

Note that again the effect of µ′i is subleading in the neutrino mass formula due to the
assumed inverse seesaw hierarchy.

We finally point out that in order to induce a quadruple Dirac inverse seesaw and
beyond one would just need to sequentially add a new VL fermion alongside a new scalar
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Model mν formula New fermions New scalars

Majorana (2n−1)th inverse seesaw Y 2v2 µn

M2
n

∏i=n−1
i=1

µ2
i

M2
i

n VL pairs n scalars

Majorana 2nth inverse seesaw Y 2v2 1
Mn+1

∏i=n
i=1

µ2
i

M2
i

n VL pairs and a Weyl fermion n scalars

Dirac nth inverse seesaw Y v
∏i=n
i=1

µi
Mi

n VL pairs n scalars

Table 11. The neutrino mass formula and the minimal set of fields required for an nth order
inverse seesaw model. Note that this table is written assuming one generation of neutrinos. The
mass for all three generations can be generated simply requiring multiple generations for each type
of the new fermions.

with a judicious choice of symmetry breaking charges for the scalars. To obtain an nth
order Dirac inverse seesaw as the leading contribution we need to add n VL fermionic
pairs and n scalars. Of course appropriate symmetries, with particles carrying appropriate
charges under them, are required to ensure that neutrinos are Dirac particles with the
leading contribution to their mass given by the nth order Dirac inverse seesaw as

mν ≈ Y v
i=n∏
i=1

µi
Mi

, (6.24)

where as before Y is the Yukawa coupling involving the lepton doublet, µi; i = 1, · · · , n are
the small symmetry breaking µ-terms and Mi; i = 1, · · · , n are the masses for the vector
pairs of fermions.

A combination of the generalizations shown in section 5 and section 6 is straightforward
and will not be developed here.

7 Summary and conclusions

To summarize, in this work we have developed the idea of inverse seesaw to encompass a
whole class of mass generation mechanisms for both Majorana and Dirac neutrinos. We be-
gan by reviewing the famous canonical inverse seesaw before developing its Dirac analogue.
We then showed that the idea of inverse seesaw is very general and can be implemented in
a variety of ways. In particular we focused on two distinct type of extensions. In section 5
we focused on developing the “multiplet” extensions of the inverse seesaw. We showed that
both the canonical Majorana inverse seesaw and its Dirac analogue can be generalized by us-
ing fermions and scalars which transform as higher SU(2)L multiplets with appropriate hy-
percharges. Subsequently in section 6 we discussed the “multiple µ” extensions. We showed
that one can generalize the idea of inverse seesaw to models where the neutrino mass is
suppressed by multiple symmetry breaking µ-terms. We explicitly constructed doubly and
triply suppressed inverse seesaw models for both Majorana and Dirac neutrinos. This idea
can in fact be generalized in a rather straightforward manner to higher order inverse seesaw
models. The general mass for neutrinos in an nth order inverse seesaw models along with
the minimal set of new particles required in such models is summarized below in table 11.

It is noted that a combination of both techniques is also straightforward and hence
not explicitly pursued in this work. Following the ideas above, it is possible to construct
the ‘multiple µ’ inverse seesaw models in a framework with higher order multiplets of
SU(2)L ×U(1)Y.
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Additionally let us emphasize the central role of the B − L symmetry both in the
Majorana and the Dirac models. It is clear that these models need a symmetry argument
in order to properly realize the inverse mechanism and, while not the only option, B − L
represents a natural, minimal and elegant option which, in the Dirac case, can also be used
to ensure the Diracness of neutrinos. Moreover, by using the anomaly free “445-solution”,
we have ensured that all Dirac models are anomaly free and can therefore be gauged.

Finally the models developed here are expected to have novel and interesting phe-
nomenological signatures, both in colliders as well as in low scale experiments like those
looking for signatures of lepton flavour or lepton number breaking. We plan to systemati-
cally explore these in follow up works.
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