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1 Introduction

An Unruh-DeWitt detector is conventionally a point particle (like an atom) that can couple
to a quantum field. The detector has internal discrete energy levels which, along with the
field may be excited/de-excited to higher/lower levels. Such (de-)excitation depends upon
the trajectory of the detector, the field-detector coupling and also the particular initial
and final states we are looking into. One particularly interesting quantity is the response
function of the detector, representing the rate of quantum transitions occurring per unit
proper time along detector’s trajectory. The associated quanta are not necessarily actual
created particles which may give rise to flow of energy and momentum, but instead they
may be an outcome of application of the external energy required to maintain detector’s
particular trajectory. We refer our reader to [1] and references therein for a discussion.
The response functions for an Unruh-DeWitt detector have been investigated in various
contexts in the flat spacetime. This includes various non-inertial trajectories, e.g. [2–9]
(also references therein). See also [10–12] and references therein for dynamics of entangled
detectors interacting with quantum fields.

The de Sitter spacetime is physically very well motivated in the context of the early
inflationary as well as the current universe. It has gained considerable attention in the
context of the Unruh-DeWitt detector model. The earliest of such discussions can be seen
in [1] and references therein, where it was shown that the response function for a comoving
detector in the cosmological de Sitter spacetime for a conformal scalar in a conformal
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vacuum is thermal, although there is no actual particle creation in this scenario. This
analysis was later extended in various directions, including scalar fields without conformal
symmetry, in the static de Sitter coordinate and also quite extensively in the context of
quantum entanglement and decoherence, e.g. [13–32] and references therein.

In this work we compute at the leading order of the perturbation theory, the response
functions of a comoving Unruh-DeWitt detector for complex scalar fields, for both confor-
mally symmetric and massless minimal cases. It is well known that a massless minimal
scalar can be a very good candidate for the inflaton. We also wish to discuss the possi-
bility of extending these results in the context of the de Sitter α-vacua [33–43]. Since the
field-detector coupling must be hermitian, for a complex scalar it must be at the simplest
non-trivial form proportional to φ†φ,1 unlike the case of a real scalar [1]. Apart from
considering this as a theoretical model of handling Dirac fermionic fields, such quadratic
couplings can also be expected emerging in low energy effective theories of some interacting
theories where a scalar describes composite particles at low energies [44, 45]. The same is
true for any complex field like a Dirac fermion. Due to such coupling, one obtains prod-
uct of two Wightman functions in the integral of the response function and thus perhaps
not unexpectedly, one encounters divergences needing suitable regularization. We refer
our reader for discussions on the Unruh-DeWitt detector models for complex fields in the
Rindler space including entanglement dynamics to [44–52]. Expectedly, in curved space-
time, the issue of the non-linear interaction between the detector and the field as well as
the corresponding divergences may become much more relevant receiving curvature contri-
butions. In order to analyse the curvature effects, we, therefore, consider the response of
the Unruh-DeWitt detector in a maximally symmetric spacetime with constant curvature.
This study can be considered as a theoretical approach of handling the divergences appear-
ing in more realistic non-linear couplings in various kind of fields in de Sitter spacetime.
We refer our reader to [53] and references therein for discussions on loop effects with a
massless minimal complex scalar in the context of scalar quantum electrodynamics in de
Sitter spacetime.

A quantum field in the de Sitter spacetime may inherit many inequivalent vacua,
depending upon its symmetry structure. The Bunch-Davies vacuum, for example, is suited
for describing early time inflationary modes [54] according to comoving observers. The one
parameter family of de Sitter invariant α-vacua [33] on the other hand, may be interesting
in the context of the trans-Planckian physics. For example, discussion on such vacua
in the context of the so called trans-Planckian censorship conjecture can be seen in [55]
and references therein. Since an α-vacuum can be expressed as a squeezed state over the
Bunch-Davies states, one can expect nontrivial feature in the detector response function
with respect to such a vacuum. Another curious point to note is, unlike the Bunch-Davies
case, the timelike parameter that defines a positive frequency α-mode will not be the
cosmological time, which is the proper time along a comoving detector’s trajectory. Also,
it was reported earlier in certain contexts that such vacua may not be good candidates

1One can also envisage a Hermitian linear coupling with either φR = φ + φ† or φI = i(φ† − φ), which
technically will be no different from the monopole coupling of a real scalar field.
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to do perturbation theory, owing to their inherent non-local characteristics [35–43]. While
we wish to reinforce this argument in this paper, one possibly cannot completely rule
these vacua out based upon the limitations offered by the perturbative approaches, for
it is possible that they should be treated via some (hitherto unknown) non-perturbative
techniques. Not surprisingly, the analysis of α-vacua has invited enough attention and
there has been a significant effort devoted towards isolating their signatures in inflationary
paradigm [37, 56, 57].

The paper is summarised as follows. In the next section we briefly review the basic
setup for the Unruh-DeWitt detector model. Using this, we discuss in section 3 the response
functions for a real conformal and massless minimal scalar. In section 4, we discuss complex
conformal and massless minimal scalars respectively in the conformal and the Bunch-
Davies vacua. For the latter in particular, suitable regularization scheme is employed in
order to find out well behaved result. This regularization involves in particular, adding a
fictitious conformal scalar field with divergent detector-field interaction, in order to cancel
a divergence appearing in the response function. This result also possesses a de Sitter
symmetry breaking logarithm growing with time analogous to the infrared secular growth,
reported earlier in e.g. [58–62]. However, such term is absent for the case of a real scalar [13].
In section 5, we discuss generalisation of complex fields’ results to the α-vacua and we point
out some possible ambiguities. The case of the nearly massless minimal scalar is briefly
mentioned in section 6. Finally we conclude in section 7. Even though we stick to the first
order perturbation theory throughout, we argue in section 7 that the response function
for real scalars in the α-vacua can be defined and computed at any arbitrary order of the
perturbation theory.

2 The setup

Following [1, 33, 34], we briefly review below the basic setup we use in this paper, for the
sake of completeness.

The de Sitter metric in the spatially flat cosmological coordinates in (3 + 1)-
dimensions reads

ds2 = −dt2 + e2Ht
(
dx2 + dy2 + dz2

)
, (2.1)

where H =
√

Λ/3 is the Hubble constant. Defining the conformal time, η = −e−Ht/H,
the metric takes a conformally flat form,

ds2 = 1
H2η2

[
−dη2 + dx2 + dy2 + dz2

]
. (2.2)

The generic free action for a real scalar field reads,

S = −1
2

∫ √
−g d4x

[
(∇µφ)(∇µφ) +m2φ2 + ξRφ2

]
,

whereas for a complex scalar field it reads,

S = −
∫ √
−g d4x

[
(∇µφ†)(∇µφ) +m2|φ|2 + ξR|φ|2

]
.
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We are chiefly interested in two cases here: a) a conformal scalar (m2 + ξR = R/6) and
b) a massless minimal scalar (m2 + ξR = 0). The case of a nearly massless and minimal
scalar will be briefly discussed in section 6. We shall set below ~ = 1 = c.

We shall use the formalism of particle detectors in curved spacetime discussed in e.g. [1]
and references therein. Let us first discuss a real scalar field theory. The simplest coupling
of this field with a pointlike detector (e.g. an atom) is taken as,

Lint = gµ(τ)φ(x(τ)),

where g is a coupling constant and µ is the monopole moment operator of the detector.
In the Heisenberg picture, µ(τ) = eiH0τ µ e−iH0τ , where H0 is the free Hamiltonian of the
detector, and τ is the proper time along detector’s trajectory. We shall specialise to a
comoving trajectory and hence will take detector’s spatial points to be fixed.

Thus the first order matrix element for the field-detector combined system to make a
transition from an initial state |i〉 to a final state |f〉 is given by

Mfi = ig 〈E|µ|E0〉
∫ τf

τi

dτe−i(E−E0)τ 〈φf |φ(x(τ))|φi〉, (2.3)

where we have taken |i〉 = |E0〉 ⊗ |φi〉 and |f〉 = |E〉 ⊗ |φf 〉, and E0 and E are respectively
the energy eigenvalues of the detector in these states. The transition probability is given by

|Mfi|2 = g2 |〈E|µ|E0〉|2
∫ τf

τi

dτ1 dτ2 e
−i(E−E0)(τ1−τ2) 〈φi|φ(x2(τ2))|φf 〉〈φf |φ(x1(τ1))|φi〉.

However, it is more interesting to sum over all possible final states of the quantum field |φf 〉.
Thus if we take the initial state |φi〉 of the field to be its vacuum, using the completeness
relation, we have an effective probability of a definitive transition only in the detector state

F(∆E) =
∫
Dφf |Mfi|2 (2.4)

= g2 |〈E|µ|E0〉|2
∫ τf

τi

dτ1 dτ2 e
−i(E−E0)(τ1−τ2) 〈φi|φ(x2(τ2))φ(x1(τ1))|φi〉,

where
〈φi|φ(x2(τ2))φ(x1(τ1))|φi〉 ≡ iG+(x2(τ2)− x1(τ1)),

is the Wightman function. It is then convenient to define two new temporal variables,

τ+ = τ1 + τ2
2 ∆τ = τ1 − τ2.

Assuming further adiabatic turn on and off of the detector-field coupling, taking τi = 0
and τf → ∞, the response function of the detector per unit τ+ is defined as (in units of
g2 |〈E|µ|E0〉|2 which we shall stick to in the remaining of the paper)

dF(∆E)
dτ+

=
∫ ∞
−∞

d(∆τ) e−i∆E∆τ iG+(∆τ), (2.5)

where F := F/(g|〈E|µ|E0〉|)2 and we have written ∆E = E − E0. ∆E > 0 (∆E < 0)
denotes excitation (de-excitation) of the detector interacting with the quantum field. The
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integral (2.5) was computed in [13] in the Bunch-Davies vacuum for a conformal, a massless
minimally coupled as well as for a minimally coupled and nearly massless scalar field (see
also [1]).

Eq. (2.5) can be extended to the de Sitter α-vacua in a straightforward manner as
follows [34]. The mode function uα corresponding to the choice of the α-vacua are related to
the mode function u(x) corresponding to the Bunch-Davies vacuum2 through a Bogoliubov
tranformation [33],

uα(x) = coshαu(x) + sinhαu?(x), (2.6)

where α is a spacetime independent real parameter. Then the de Sitter invariant Wightman
function in these vacua reads [33],

G+
α (x, x′) = cosh2 αG+(x, x′) + sinh2 αG+(x, x′) + 1

2 sinh 2α
(
G+(x, x′) +G+(x, x′)

)
,

(2.7)
where a bar over the spacetime points denotes the antipodal position, which corresponds
to η → −η in eq. (2.2). All the G+’s on the right hand side of the above equation stand
for the Bunch-Davies vacuum. For a scalar field of mass m and non-minimal coupling ξ,
G+(x, x′) reads [33],

iG+(x, x′) = H2

16π2 Γ
(3

2 − ν
)

Γ
(3

2 + ν

)
2F1

(3
2 − ν,

3
2 + ν, 2; 1− y

4

)
, (2.8)

where

ν =
(9

4 − 12ξ − m2

H2

)1/2
,

and the de Sitter invariant interval y written in terms of the conformal time reads,

y(x, x′) = −(η − η′ − iε)2 + |~x− ~x′|2

ηη′
,

where ε = 0+. Rewriting things now in the cosmological time t and setting ~x = ~x′ for a
comoving detector, we have

y(t, t′) = −4
(

sinh H∆t
2 − iε

)2
. (2.9)

Likewise we have for the antipodal transformations,

y(t, t′) = 4
(

cosh H∆t
2 + iε

)2
y(t, t′) = 4

(
cosh H∆t

2 − iε
)2

y(t, t′) = −4
(

sinh H∆t
2 + iε

)2
. (2.10)

Since we have set the comoving spatial separation to zero, the cosmological time t be-
comes the proper time along detector’s trajectory, τ = t. Putting these all in together, the

2Bunch-Davies mode function u(x) assumes a positive frequency appearance at early time i.e. u(x) →
e−ikη+i~k·~x for kη → −∞ and hence have been the preferred choice of initial state for the quantum fields in
de Sitter background.

– 5 –



J
H
E
P
0
3
(
2
0
2
1
)
2
2
0

response function for the de Sitter α-vacua is then obtained once we replace the Wightman
function appearing in eq. (2.5) by eq. (2.7), [34]

dFα(∆E)
dt+

=
∫ ∞
−∞

d(∆t) e−i∆E∆t iG+
α (∆t), (2.11)

and further use eqs. (2.8), (2.9) and (2.10) into it.
A few comments pertaining eq. (2.11) are in order here. First, we note that we have not

changed the e−i∆E∆t term according to the antipodal transformation at all. This is because
this term originates purely from the detector, eq. (2.3), and not from the field. Since the
detector is a pointlike and localised object, the antipodal transformation simply should not
act on this term. We also note that the nonlocal characteristic of the α-vacua is manifest
from eq. (2.7), where we have addedWightman functions corresponding to antipodal points.
Thus there seems to be an apparent interpretational problem of coupling a pointlike particle
detector to the field in this case. However, we may get rid of this issue by recalling that
the Bogoliubov rotation made from the Bunch-Davies modes, eq. (2.6), is purely local.
Since on the other hand the Wightman function does not represent propagation of the
field, the same appearing in eq. (2.11) can be interpreted as just an expectation value of
the operator φ(x)φ(x′) with respect to the vacuum corresponding to the α modes. With
this interpretation, we shall see below that at least for a real scalar field we can compute
the response function in the α-vacua without any apparent ambiguity.

Finally as discussed before, for a complex scalar field the simplest non-trivial detector-
field coupling is quadratic in the field,

Lint = gµ(t)φ†(x(t))φ(x(t)). (2.12)

Alike the fermions, e.g. [50], the quadratic coupling is necessary in order to make the field-
detector interaction Hamiltonian hermitian. Accordingly, the integral for the response
function will contain a product of two Wightman functions. We address this issue in detail
in section 4.

3 Response functions of a real scalar field in α-vacua

3.1 The conformal scalar

We start with the simplest case of a conformally invariant scalar field theory. Even though
such a field does not create particles in a conformally flat spacetime such as the de Sitter in
the conformal vacuum, it is well known that the Unruh-DeWitt detector records a thermal
response function in the conformal or the Bunch-Davies vacuum [1]. This result was later
extended to the de Sitter α-vacua in [34]. We briefly reproduce this result below chiefly to
fix the notations we shall be using in the rest of this paper.

In the conformal vacuum (ν = 1/2) eq. (2.8) in the comoving frame of the detector
becomes

iG+(x, x′) = H2

4π2y
= − H2

16π2(sinh H∆t
2 − iε)2

, (3.1)
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and hence eq. (2.11) gives, when written in terms of a dimensionless temporal coordinate,
u = H∆t/2,

dFα(∆E)
dt+

= − H

8π2

∫ ∞
−∞

du e−2i∆Eu/H
[

cosh2 α

(sinh u− iε)2 + sinh2 α

(sinh u+ iε)2

−1
2 sinh 2α

( 1
(cosh u− iε)2 + 1

(cosh u+ iε)2

)]
. (3.2)

The above integrals can easily be evaluated e.g. by using a semicircular contour closing
in the lower half plane. Note that since the function cosh u is never vanishing on the
real line, from hereafter we shall not retain the ±iε terms for them. We next introduce a
dimensionless energy difference for convenience,

p := 2∆E
H

,

in terms of which the response function is found to be [34],

dFα(p)
dt+

∣∣∣
conf.

= pH

4π

(
coshα− eπp/2 sinhα

)2
eπp − 1 . (3.3)

Setting α = 0 above recovers the thermal spectra associated with the usual conformal
vacuum [1]. We have plotted eq. (3.3) scaled by the α = 0 result in figure 1. A couple
of things are perhaps worth noting: a) the response becomes gradually stronger with the
increasing α values b) taking α ≥ 0, the numerator of eq. (3.3) forces the response function
to be vanishing at some p-value, for a given α and c) unlike the α = 0 case [1], there is
no unique meaning of eq. (3.3) in terms of pure absorption or pure emission. This should
correspond to the fact that firstly, for α 6= 0 the timelike parameter corresponding to
the Bogoliubov rotated modes, eq. (2.6), is not the proper time along the detector, which
dictates its time evolution. Second, such mode mixing makes an α-vacuum to be a squeezed
state over all the Bunch-Davies states. These two facts force the detector to undergo both
excitations and de-excitations, as is manifest in eq. (3.3). In different de Sitter vacua the
non-thermal response have been obtained from field content analysis as well [16], though
an Unruh-DeWitt detector does not always measure the field content.

3.2 The minimally coupled massless scalar

As is evident, one cannot simply set ν = 3/2 corresponding to the massless minimal
coupling in eq. (2.8), owing to the fact that there exists no de Sitter invariant Wightman
function for a massless minimal scalar. One thus needs to find it independently [33],

iG+(y) = H2

4π2

(1
y
− 1

2 ln y + 1
2 ln

(
a(η)a(η′)

)
+ ln 2− 1

4

)
. (3.4)

Compared to eq. (3.1), the above thus contains additional terms including one that breaks
the de Sitter symmetry. Eq. (2.11) in this case reads,

dFα(p)
dt+

= H

2π2

∫ ∞
−∞

du e−ipu
[
− cosh2 α

( 1
4(sinh u− iε)2 + 1

2 ln
(
−4(sinh u− iε)2

))
− sinh2 α

( 1
4(sinh u+ iε)2 + 1

2 ln
(
−4(sinh u+ iε)2

))
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Figure 1. Variation of the response function (3.3) [34], when scaled by the conformal vacuum
(α = 0) result, with respect to the dimensionless energy difference p for different α-values.

+ sinh 2α
( 1

2 cosh2 u
− ln

(
4 cosh2 u

))
+
(1

2 ln(a(t)a(t′)) + ln 2− 1
4

)
e2α
]
, (3.5)

where p = 2∆E/H as earlier. Using eq. (3.3), we rewrite the above equation as

dFα(p)
dt+

= dFα(p)
dt+

∣∣∣
conf.

+ H

2π2

(1
2 ln(a(t)a(t′)) + ln 2− 1

4

)
e2αδ(p)

− H

4π2

∫ ∞
−∞

du e−ipu
[

cosh2 α ln
(
−4(sinh u− iε)2

)
+ sinh2 α ln

(
−4(sinh u+ iε)2

)
− sinh 2α ln

(
4 cosh2 u

) ]
. (3.6)

We note that as ε→ 0,

Arg
(
−4(sinh u∓ iε)2

)
= ±π sgn(u), (3.7)

where sgn stands for the ‘sign’ function.
Following [13], then the regularised form of the logarithmic integrals of eq. (3.6) can be

found by introducing an infinitesimal positive imaginary part in p and then by integrating
them by parts. Some calculations after using eq. (3.3) yields,

dFα(p)
dt+

∣∣∣
MM

= pH

4π

(
coshα− eπp/2 sinhα

)2 + (4/p)2( coshα+ eπp/2 sinhα
)2

eπp − 1

+ H

2π2

(1
2 ln(eH(t+t′)) + ln 2− 1

4

)
e2α δ(p), (3.8)

where the suffix “MM” stands for massless and minimal scalar field. We shall argue in sec-
tion 7 that the above results for a real conformal or massless minimal scalar goes through
arbitrary order of the perturbation theory, without encountering any difficulty. Putting
α = 0 recovers the result of [13].
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Figure 2. Variation of the response function (3.8) with p 6= 0, when scaled by the Bunch-Davies
(α = 0) result, with respect to p for different α-values. Unlike figure 1, the response function is
monotonic here.

Note that the term proportional to H(t + t′) in the above equation is not de Sitter
invariant. The physical origin of this is related to the non-existence of a vacuum state for a
massless minimal scalar that corresponds to the full isometry of the de Sitter background.
This non-existence leads to the de Sitter breaking logarithm in the Wightman function
in eq. (3.4), eventually being reflected in eq. (3.8). In fact such terms are always expected
to originate from a state that does not obey the full isometry of the spacetime. For
example, even in the flat spacetime one can construct analogous symmetry breaking two
point functions for non-vacuum states, leading to symmetry breaking terms in the response
function [63].

The first term on the right hand side of eq. (3.8) diverges as p→ 0 whereas the second
term diverges at p = 0. However, for a detector undergoing transitions with discrete
internal energy levels (i.e., p = 2∆E/H 6= 0), the δ-function term drops out. On the
other hand, for a detector with continuum energy levels, it seems that possibly we need to
integrate eq. (3.8) over all p values with an appropriate density of states in order to give
the response function a well defined meaning. The behaviour of the first term on the right
hand side of eq. (3.8) as p→ 0 dictates the density of state must vanish at least as O(p2)
as p→ 0. However, this makes the integral related to the second term vanishing.

We shall focus in this work only on detectors with p 6= 0, so that we may ignore the
δ(p)-term anyway, whenever it appears. The simplest physical example of such a detector
is of course, a two level system undergoing level transition. Even though this makes the
de Sitter breaking term in eq. (3.8) disappear, for a complex, massless minimal scalar such
logarithm will indeed appear from the integration of the Wightman functions, as we shall
see below.

We have plotted in figure 2 the characteristics of the response function (p 6= 0), by
scaling it with the Bunch-Davies result (α = 0). The behaviour is monotonous, as compared
to the conformal scalar, figure 1.
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4 Complex scalar in the Bunch-Davies vacuum

4.1 Conformal complex scalar in conformal vacuum

Using eq. (2.12), the first order response function for a complex scalar field is given by,

dF(∆E)
dt+

=
∫ ∞
−∞

d(∆t)e−i∆E∆t
[
(iG+(∆t))2 + (iG+(0))2

]
. (4.1)

The second integrand on the right hand side is divergent and is present for any spacetime.
It was suggested earlier in [44, 46] to replace the argument of iG+(0) by an infinitesimal
cut-off and obtain a term proportional to δ(p), so that one can ignore it for transitions
with p 6= 0.

A more systematic and satisfactory prescription to deal with this divergence was
suggested recently in [45], by replacing the field-detector interaction Lagrangian den-
sity, eq. (2.12), with the normal ordered one,

Lint = gµ(t)φ†(x(t))φ(x(t))→ gµ(t) : φ†(x(t))φ(x(t)) :

Since the iG+(0) term appearing in eq. (4.1) essentially represents the vacuum to vacuum
transition in the coincidence limit, the normal ordering prescription just gets rid of any
such divergence beforehand. Thus whenever we have a quadratic field-detector coupling
such as eq. (2.12), we must normal order it. Having dealt with this, however, we shall
encounter additional divergences (both ultraviolet and infrared) for a massless minimally
coupled complex scalar from the first integral of eq. (4.1), which needs further suitable
regularization.

However, the first integral does not show any divergence for a conformal scalar in the
conformal vacuum. Using eq. (3.1), eq. (4.1) becomes,

dF(p)
dt+

= H3

128π4

∫ ∞
−∞

du
e−ipu

(sinh u− iε)4 . (4.2)

We can perform the above integration just like the real scalar field by choosing the inte-
gration contour to be a semicircle in the lower half plane and taking the poles lying on the
negative imaginary axis. We find

dF(p)
dt+

∣∣∣
complex, conf.

= p3H3

384π3
1

eπp − 1 . (4.3)

Note that the thermal factor remains unchanged compared to the real scalar field.

4.2 The minimally coupled massless complex scalar

Massless complex scalar fields with interactions have previously been studied in context of
cosmology [53] and also in BEC systems mimicking gravity systems [64], where study of
detector response may be more feasible. Also, as we discussed previously, the quadratic
coupling with complex scalars will give us good theoretical exposure of handling the re-
sulting divergences in more physical, e.g. fermionic systems. Therefore, in order to study
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curvature effects and non-linear couplings in physically realisable systems, we consider
complex scalar field interactions as our first step. Further, since we are interested mainly
in studying the curvature effects in the detector response, we consider the massless limit
first before going to a more realistic small mass limit in section 6.

However, as we shall see this case will not be as simple as that of the conformal one.
In fact there will be finite as well as divergent terms in the expression for the rate of the
response function, originating at the coincidence limit of the Wightman functions. We shall
not be able to compute the response function in a closed form and will eventually resort to
numerical analysis. However, before we do so, we first need to regularise the integral and
also need to cast it into a form which can be handled numerically without any ambiguity.

We have the rate of the response function,

dF(p)
dt+

= H3

8π4

∫ ∞
−∞

du e−ipu
[

(y ln y − 2)2

4y2 + 2
(1

2 ln(a(t)a(t′)) + ln 2− 1
4

) (1
y
− 1

2 ln y
)

+
(1

2 ln(a(t)a(t′)) + ln 2− 1
4

)2
]
, (4.4)

which can be rewritten as (after excluding a δ-function term, cf., the discussion at the end
of section 3.2),

dF(p)
dt+

= H3

8π4

∫ ∞
−∞

du e−ipu
[[

2(sinh u− iε)2 ln(−4(sinh u− iε)2) + 1
]2

16(sinh u− iε)4

−

(
1
2 ln(a(t)a(t′)) + ln 2− 1

4

)
2(sinh u− iε)2

−
(1

2 ln(a(t)a(t′)) + ln 2− 1
4

)
ln(−4(sinh u− iε)2)

]
. (4.5)

Let us evaluate the first integral of eq. (4.5) first, which is the most non-trivial. It reads,∫ ∞
−∞

du e−ipu
[

1
16(sinh u− iε)4 + ln (−4(sinh u− iε)2)

4(sinh u− iε)2 +
(
ln
(
−4(sinh u− iε)2))2

4

]
. (4.6)

The first integral in eq. (4.6) is the same as that of eq. (4.2),

πp3

48
1

eπp − 1 . (4.7)

Let us now evaluate the second integral of eq. (4.6), which is problematic due to the branch
cut of the logarithm. To tackle this, after using eq. (3.7) and expanding the logarithm in
powers of e−2u, we rewrite it as

− 1
2

∞∑
n=1

1
n

∫ ∞
0

du

(
e−(ip+2n)u

(sinh u− iε)2 + c.c.
)

+ i

2

(
∂p + π

2

)∫ ∞
0

du

(
e−ipu

(sinh u− iε)2 − c.c.
)
,

(4.8)
where “c.c.” denotes complex conjugation and we have used∫ ∞

−∞
du

e−ipu sgn(u)
(sinh u− iε)2 =

∫ ∞
0

du

(
e−ipu

(sinh u− iε)2 − c.c.
)
. (4.9)
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Figure 3. Contours to evaluate (4.8).

We shall evaluate the above integral first. We write,∫ ∞
0

du
e−ipu

(sinh u− iε)2 = −i ∂
∂ε

∫ ∞
0

du
e−ipu

(sinh u− iε) . (4.10)

The poles of the integrand are located at

un = i(nπ + (−1)nε) n = 0, ±1, ±2, · · ·

We use a quarter-circular contour in the fourth quadrant to evaluate this integral, as shown
in the first of figure 3 and let the radius of the quarter-circle go to infinity. The poles are
avoided using infinitesimal semicircular deformations,

zn = un + εeiθ (ε = 0+) − π/2 ≤ θ ≤ π/2 .

The arc of the quarter-circle does not contribute to the integration. Computing the effect of
the deformations and then performing the derivative with respect to ε, eq. (4.10), we have∫ ∞

0
du

e−ipu

(sinh u− iε)2 = − πp

eπp − 1 + i

(∫ ∞
0

duI
e−puI

(sin uI + ε)2

)
poles excluded

+O(ε), (4.11)

where uI = −Im(u) along the negative imaginary axis. Note that the poles of the integral
on the right hand side of eq. (4.11) are located at nπ − (−1)nε, n = 1, 2, · · · , which are
excluded via the first contour of figure 3.

As a check of consistency, we have∫ ∞
−∞

du
e−ipu

(sinh u− iε)2 =
∫ ∞

0
du

(
e−ipu

(sinh u− iε)2 + c.c.
)

= − 2πp
eπp − 1 , (4.12)

where the complex conjugate of the first integral within parenthesis can either be found by
using the second contour of figure 3, or by simply complex conjugating eq. (4.11), since the
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integral on the right hand side of this equation is real. We can see that eq. (4.12) recovers
the result of eq. (3.3) with α = 0.

Note that unless we converted the second order pole of the integral to first order
via eq. (4.10), the computation of the above infinitesimal deformations of the contour
would not have been possible, for such deformations always yield diverging results for
poles beyond first order.

We now have from eqs. (4.9), (4.11),∫ ∞
−∞

du
e−ipu sgn(u)
(sinh u− iε)2 = 2i

(∫ ∞
0

duI
e−puI

(sin uI + ε)2

)
poles excluded

. (4.13)

The integral on the right hand side is written as,∫ π

0
duI

e−puI

(sin uI + ε)2 +
∞∑
n=1

∫ (n+1)π−ε

nπ+ε
duI csc2 uI e

−puI , (4.14)

where ε = 0+ and hence the integration limits exclude the poles. Note that we have got
rid of the ε term for the integrals in the summation. Each of the integrals give divergent
contribution as we approach the poles. We tackle with them by treating all the integrals
in an equal footing as follows. We note from eq. (4.13) that the coincidence limit of the
Wightman function u→ 0 on its left hand side corresponds to the points where sin uI = 0
on the right hand side, achieved via the contour of figure 3. Thus we shall regularise the
integrals of eq. (4.14) by using suitable regularization near each pole, effectively regularising
the very short distance divergent correlation as u → 0 and thereby giving the response
function a physical meaning. This task can be largely simplified if we first set all ε terms
to zero in eq. (4.14) and simply rewrite it as

∞∑
n=0

∫ (n+1)π

nπ
duI csc2 uI e

−puI ,

which can be rewritten after a change of variable as,
∞∑
n=0

e−pπn
∫ π

0
dx csc2 x e−px.

Note that the only poles in the above integral are now located at x = 0, π. Performing the
sum and further breaking the integration limits, the above can be rewritten as,

csch πp2

∫ π/2

0
dx csc2 x cosh p

(
π

2 − x
)
,

so that the only pole of the above integration is located at x = 0. Accordingly, we break
the above integration into three pieces and write after using eq. (4.13),∫ ∞

−∞
du

e−ipu sgn(u)
(sinh u− iε)2

= 2i
(

coth πp2

∫ π/2

0
dx csc2 x − p

∫ π/2

0
dxx csc2 x

)
(4.15)

+ 2i csch πp2

∫ π/2

0
dx csc2 x

[
cosh

(
π

2 − x
)
p− cosh πp2 + px sinh πp2

]
.
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The first two integrals in the above expression diverge as x → 0. It is easy to see
from eq. (4.4) that there is no flat space limit of this divergence as the integrals van-
ish in the H → 0 limit. Such short distance divergence structure is expected to be present
in all Hadamard states. Before we deal with this divergence, let us also evaluate the first in-
tegral of eq. (4.8), using the contour of figure 3. After computing the effect of deformations
around the infinitesimal semicircles, we can express it as,

−1
2

∞∑
n=1

1
n

∫ ∞
0

du

(
e−(ip+2n)u

(sinh u− iε)2 + c.c.
)

(4.16)

= πp

epπ − 1

∞∑
n=1

1
n

+ 1
sinh πp

2

∞∑
n=1

1
n

∫ π/2

0
dx csc2 x sin 2nx sinh

(
π

2 − x
)
p .

The first term on the right hand side corresponds to infinitesimal deformation of the contour
in figure 3, whereas the second integral corresponds to the ‘poles excluded’ part as earlier.
For the second integral we slightly lift its lower limit, so that we can use the formula 1.441
of [65],

∞∑
n=1

sin 2nx
n

= π − 2x
2 (0 < x < π), (4.17)

to rewrite eq. (4.16) as

πp

epπ − 1

∞∑
n=1

1
n

+ π

2 sinh πp
2

∫ π/2

ε
dx csc2 x sinh

(
π

2 − x
)
p

− 1
sinh πp

2

∫ π/2

ε
dxx csc2 x sinh

(
π

2 − x
)
p . (4.18)

The first term diverges as ζ(1) whereas the integrals diverge as x → ε. Accordingly, we
now separate the above into non-divergent and divergent pieces,

πp

epπ − 1

∞∑
n=1

1
n

+ π

2

∫ π/2

0
dx csc2 x−

(
1 + πp

2 coth πp2

) ∫ π/2

0
dxx csc2 x

+ π

2 sinh πp
2

∫ π/2

0
dx csc2 x

[
sinh

(
π

2 − x
)
p− sinh πp2 + px cosh πp2

]
− 1

sinh πp
2

∫ π/2

0
dxx csc2 x

[
sinh

(
π

2 − x
)
p− sinh πp2

]
. (4.19)

Combining the above expression and eq. (4.15), we have the divergent part of eq. (4.8)
(i.e., the second integral of eq. (4.6)),

∫ ∞
−∞

du e−ipu
ln (−4(sinh u− iε)2)

4(sinh u− iε)2

∣∣∣∣∣
div.

= π

2

(
csch2 πp

2 − coth πp2 + 1
)∫ π/2

0
dx csc2 x

− πp

eπp − 1

∫ π/2

0
dxx csc2 x+ πp

eπp − 1

∞∑
n=1

1
n
.

(4.20)
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After inserting suitable regulators, we rewrite the second and third of the above diver-
gences as,

− πp

eπp − 1

(∫ π/2

0
dxx csc2 x−

∞∑
n=1

1
n

)
(4.21)

→ − πp

eπp − 1

(∫ π/2

0
dxx csc2(x+ ε)−

∞∑
n=1

(1− ε′)n

n

)
= πp

eπp − 1 ln ε

ε′
.

Note that we could have set ε = ε′ above to get rid of the term as a whole. However,
since these cut-offs are used to regularise respectively, an integration and a series, for the
sake of generality we have kept them distinct.

Likewise the first divergence of eq. (4.20) can be regularised by setting cscx→ csc(x+
ε), and we have

∫ ∞
−∞

du e−ipu
ln (−4(sinh u− iε)2)

4(sinh u− iε)2

∣∣∣∣∣
div.

=
π coth πp

2
eπp − 1

1
ε

+ πp

eπp − 1 ln ε

ε′
. (4.22)

The right hand side is divergent in the absence of regulators introduced and therefore
depends upon the fashion in which the regularisation is carried out. Interestingly these
divergences can easily be tackled through the renormalisation of the off-diagonal matrix
elements of the detector’s monopole operator, µ, in its energy eigenbasis, as follows.3 We
modify the field-detector interaction coupling by adding another monopole operator that
does not couple to the field,

Lint = gµ(t) : φ†(x(t))φ(x(t)) : +µ′(t) .

Analogous modification for a real scalar field yields the shift of the detector energy level,
as has been discussed recently in [30]. The response function with the above modification
becomes (after ignoring a δ-function as earlier),

dF(p)
dt+

= 2
H

∫ ∞
−∞

du e−ipu (iG+(u))2 + 2
gH

(〈E|µ′|E0〉
〈E|µ|E0〉

+ c.c.
)∫ ∞
−∞

du e−ipu iG+(u) .

(4.23)
The first term on the right hand side gives the usual response function integral for a

massless minimal complex scalar, eq. (4.5), whereas the second term yields the response
function for a massless minimal real scalar, eq. (3.8) (with α = 0 and p 6= 0). Our objective
is to exploit this new term to cancel the contribution eq. (4.22). We find the desired
condition after a little calculation,

〈E|µ′|E0〉 = − gH3

8π2p (1 + 16/p2)

(
coth πp

2
ε

+ p ln ε

ε′

)
〈E|µ|E0〉 . (4.24)

3This result can also be obtained through the identification ε = ε′, followed by a principal value com-
putation of the first integral on the right hand side of eq. (4.20). There might exist some other viable
regularisation or renormalisation schemes as well to tackle this divergence. Of course, like any other diver-
gent observable in QFT, the physically meaningful finite result may be different in different regularisation
schemes and only experiments can ascertain which scheme is correct.
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This corresponds to an operator relationship,

µ′ = −gH
3

8π2

∑
i,j, i 6=j

Cij |i〉〈i|µ|j〉〈j| (4.25)

where the states represent the complete orthonormal energy eigenkets of the detector,
and Cij ’s are real numbers depend upon the energy levels. Denoting then |E0〉 and |E〉
respectively by, for example |i = 0〉 and |i = 1〉, we obtain from eqs. (4.24), (4.25), the
requirement

C10(p = 2(E − E0)/H) = 1
p(1 + 16/p2)

(
coth πp

2
ε

+ p ln ε

ε′

)
. (4.26)

It is clear that by construction, µ′ will cancel the divergence for any level transition of the
detector. Note also that C10 is even in p, i.e. C01 = C10. Likewise Cij = Cji for all i, j.

Note that µ′ is non-diagonal in the energy eigenbasis of the detector, eq. (4.25). Thus
it is clear from eq. (4.24) that here we are basically renormalising the off-diagonal matrix
elements of the operator µ via the operator µ′, which serves as a counterterm. However in
doing so, we have the appearance of a detector-curvature interaction, gH3, in eq. (4.25).
This seems to be curious, for such non-minimal interaction of the detector and the spacetime
curvature is introduced at the level of the Lagrangian density itself. It will be interesting
to see whether this term can produce any finite or observable effects at higher order of the
perturbation theory. We hope to pursue this issue in a future work.

We also refer our reader to [45] for a discussion on the renormalisation of the Unruh-
DeWitt detector response in the flat spacetime with different interacting field theories
like QED.

Collecting now the finite pieces from eqs. (4.15), (4.19) and using eq. (4.8), we obtain
the regularised expression of the second integral of eq. (4.6),∫ ∞

−∞
du e−ipu

ln (−4(sinh u− iε)2)
4(sinh u− iε)2

∣∣∣∣∣
Regularised

= π

2 csch πp2 coth πp2

∫ π/2

0
dx csc2 x

[
cosh

(
π

2 − x
)
p− cosh πp2 + px sinh πp2

]
− csch πp2

∫ π/2

0
dx csc2 x

[(
π

2 − x
)

sinh
(
π

2 − x
)
p

−
(
π

2 − x
)

sinh πp2 + πpx

2 cosh πp2

]
− π

eπp − 1

∫ π/2

0
dx csc2 x [epx − 1− px]

− csch πp2

∫ π/2

0
dxx csc2 x

[
sinh

(
π

2 − x
)
p− sinh πp2

]
. (4.27)

Finally, we come to the third integral of eq. (4.6). After using eq. (3.7), it takes the
form (after ignoring a term containing δ(p)),

1
2

∫ ∞
0

du cos pu
(
ln(4 sinh2 u)

)2
+ π

∫ ∞
0

du sin pu ln(4 sinh2 u). (4.28)
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After expanding the logarithms, the above integral can be rewritten as,

−2
(
∂2
p + π∂p

) ∫ ∞
0

du cos pu− 4
∞∑
n=1

1
n
∂p

∫ ∞
0

du sin pu e−2nu

−2π
∞∑
n=1

1
n

∫ ∞
0

du sin pu e−2nu + 2
∞∑

m,n=1

1
mn

∫ ∞
0

du cos pu e−2(m+n)u.(4.29)

The first two integrals diverge as u→∞. Such infrared divergence can be regularised
by introducing an infinitesimal positive imaginary part in p. Accordingly, we get∫ ∞

0
du cos pu = 0. (4.30)

Using this and also integrating by parts, eq. (4.29) can be put into a regularised form

4
∞∑
n=1

p2 − 4n2

n(p2 + 4n2)2 −
∞∑
n=1

2πp
n(p2 + 4n2) + 8

∞∑
m,n=1

1
n (p2 + 4(m+ n)2) . (4.31)

The various summations appearing above, as is evident, are all convergent.
Thus eqs. (4.7), (4.27) and (4.31), when added together, gives a regularised expression
for the first integral of eq. (4.5).

The remaining integrals of eq. (4.5), i.e. the second and the third ones were already eval-
uated respectively in section 3.1 and section 3.2. Thus, combing them with eqs. (4.7), (4.27)
and (4.31), we finally obtain a fully regularised expression of the detector response function
of eq. (4.5),

dF(p)
dt+

∣∣∣
complex,MM

= p3H3

384π3
1

eπp − 1 +
(1

2 ln(a(t)a(t′)) + ln 2− 1
4

)
pH3

8π3
1

eπp − 1

(
1 + 8

p2

)

+H3

2π4

[ ∞∑
n=1

p2 − 4n2

n(p2 + 4n2)2 −
∞∑
n=1

πp

2n(p2 + 4n2) + 2
∞∑

m,n=1

1
n (p2 + 4(m+ n)2)

]

+ H3

16π3 csch πp2 coth πp2

∫ π/2

0
dx csc2 x

[
cosh

(
π

2 − x
)
p− cosh πp2 + px sinh πp2

]
−H

3

8π4 csch πp2

∫ π/2

0
dx csc2 x

[(
π

2 − x
)

sinh
(
π

2 − x
)
p

−
(
π

2 − x
)

sinh πp2 + πpx

2 cosh πp2

]
−H

3

8π4 csch πp2

∫ π/2

0
dxx csc2 x

[
sinh

(
π

2 − x
)
p− sinh πp2

]
−H

3

8π3
π

eπp − 1

∫ π/2

0
dx csc2 x [epx − 1− px] . (4.32)

Before we proceed, we note the regularization procedures we adopted to derive the
above expression. First, we discussed a couple of possible regularization cum renormaliza-
tion schemes to tackle the short distance ultraviolet divergence of eq. (4.20). Second, we
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Figure 4. Plot of eq. (4.32) (after scaling it by H3/8π3) with respect to p for different values of
H(t+ t′) = 2Ht+.

also needed to introduce an infinitesimal positive imaginary part in p, in order to regularise
the infrared divergence of some of the integrals of eq. (4.29).

If we let p→∞ in eq. (4.32), each of the terms of the first two lines as well as the last
integral vanish. The remaining three integrals do not vanish individually in this limit, but
they cancel with each other to yield a vanishing contribution. This is expected, as p→∞
corresponds to energy level separation of the detector much larger than the spacetime
energy scale, H.

Note that there is a logarithm in eq. (4.32), increasing monotonically with 2Ht+ =
H(t+ t′), indicating breakdown of the perturbation theory as Ht,Ht′ � 1. This seems to
be analogous to the secular growth reported earlier in the context of perturbative quantum
field theory in de Sitter space, e.g. [58–62] (also references therein). Such secular growth is
absent for a real massless minimal scalar, eq. (3.8), for in that case the de Sitter breaking
term is accompanied by a δ-function. We also note that in this limit the p-dependence
of eq. (4.32) becomes qualitatively similar to that of the real scalar, eq. (3.8) (with α = 0
and p 6= 0). Finally, we note that eq. (4.32) diverges for small p-values, as of the real
scalar, eq. (3.8).

Since the response function eq. (4.32) is now regularised, we investigate its behaviour
numerically without any trouble, as a function of the dimensionless energy p, figure 4.

5 The ambiguity of complex scalar field with α-vacua

We finally come to the case of complex scalar fields with α-vacua. However, we argue below
that the detector response function is not well defined in this case. The response function
for a conformal scalar in this case is given as,

dFα(p)
dt+

= H3

128π4

∫ ∞
−∞

du e−ipu
[

cosh2 α

(sinh u− iε)2 + sinh2 α

(sinh u+ iε)2 −
sinh 2α
cosh2 u

]2

. (5.1)
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Expanding the square, making some rearrangements of terms and also redefining ε in some
of the integrals, we find

dFα(p)
dt+

= H3

128π4

∫ ∞
−∞

du e−ipu
[

cosh4 α

(sinh u− iε)4 + sinh4 α

(sinh u+ iε)4

+sinh2 2α
2

( 1
sinh4 u

+ 2
cosh4 u

)
−8 sinh 2α

(
cosh2 α

(sinh 2u− iε)2 + sinh2 α

(sinh 2u+ iε)2

)]
. (5.2)

Note that there is an integral containing sinh−4 u without any iε. This term arises due to the
multiplication (sinh u−iε)2(sinh u+iε)2, while squaring. All but the integral containing this
term can be straightforwardly evaluated. The integral containing sinh−4 u is problematic
because it does not converge on the real line, nor we can attempt to compute any principal
value, for it diverges in the presence of poles beyond the first order. We cannot re-insert any
iε term now, for the answer will depend upon the sign of that term. Also, the contour of
figure 3 cannot be used here, for we can compute the effect of the infinitesimal semicircular
deformations to avoid the poles only if the poles are of first order.

Similar cancellation of the iε regulator and some other ambiguities in the context
of the perturbation theory in de Sitter α-vacua were reported earlier in [35–43]. Such
ambiguity seems to originate from the inherent non-local characteristic of the α-vacua,
coming from the antipodal transformations discussed in section 2. Thus even though we
may give the detector response function for a real scalar in the α-vacua a meaning in the
sense of just an expectation value (cf. the discussions at the end of section 2), apparently it
fails for a complex scalar. In [41] (also references therein), it was suggested to modify the
Feynman propagator by adding two sources, in order to tackle the non-locality. However,
for a pointlike, localised particle detector it is not clear to us how much appropriate will
be any such analogous modification. Since such a detector model is very generic and well
motivated and also keeping in mind the existing results on the de Sitter α-vacua mentioned
above, to the best of our knowledge and understanding, it seems that the above problem
should not be attributed to the model of the detector we are working in, but it should be
regarded as a generic problem of the perturbation theory with the α-vacua.

Nevertheless, we may still try to obtain a regularised version of the problematic integral
as follows. However the caveat is, this will not yield a unique result, as described below.
Let us first rewrite the integral as∫ ∞

−∞
du

e−ipu

sinh4 u
= 1

12 lim
ε′→0

∂3
ε′

(∫ ∞
−∞

du
e−ipu

(sinh u− ε′) + c.c.
)
,

where ε′ is real, no matter positive or negative. Since the pole on the real axis of the
integrand on the right hand side is of first order, its principal value is well defined. This
allows us to thus define a regularised value of our original integration as,∫ ∞

−∞
du

e−ipu

sinh4 u

∣∣∣∣∣
Regularised

(5.3)

:= 1
12 lim

ε′→0
∂3
ε′

(
PV

∫ ∞
−∞

du
e−ipu

(sinh u− ε′) + PV
∫ ∞
−∞

du
eipu

(sinh u− ε′)

)
.
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Figure 5. Possible contours to evaluate eq. (5.4).

Accepting this definition, the contour for the first integration on the right hand side is
taken to be a semicircle with an infinitesimal semicircular deformation of radius ε′ centred at
u = ε′, in the lower half plane. Thus the poles we pick up are located at un = inπ+(−1)nε′

(n = −1,−2,−3, . . . ). For the second, we use similar contour in the upper half plane,
picking up the poles at un = inπ+ (−1)nε′ (n = 1, 2, 3, . . . ), figure 5. Splitting the integral
into two parts on the right hand side in the definition of eq. (5.4) will ensures its real
valuedness. We find∫ ∞

−∞
du

e−ipu

sinh4 u

∣∣∣∣∣
Regularised

= −πp
3

3

[ 1
eπp + 1 −

1
2 + 2

p2

]
. (5.4)

Evaluating the rest of the integrals in eq. (5.2), we obtain a regularised detector re-
sponse function for a conformal complex scalar in the α-vacua,

dFα(p)
dt+

∣∣∣
complex conf.

= p3H3

384π3

[
cosh4 α+ sinh4 α eπp

eπp − 1

+
12 sinh 2α

(
cosh2 α+ sinh2 α eπp/2

)
p2(eπp/2 − 1)

−1
2 sinh2 2α

(
eπp − 1− 2eπp/2(eπp + 1)

e2πp − 1 − 1
2 + 2

p2

)]
. (5.5)

Setting α = 0 recovers the result of eq. (4.3).
As evident, the above result is not unique, for eq. (5.4) would change if we change

the integration contour. For example, in the first of figures 5, we could have made the
infinitesimal semicircular deformation in the upper half plane as well (and the opposite in
the second of figure 5), which will lead to a change of sign of the second and third terms
appearing on the right hand side of eq. (5.5). We face similar ambiguity for the case of a
massless minimal scalar field as well. Again, such ambiguities can be attributed towards
regularisation scheme adopted for the divergent integrals, and in the absence of any limiting
consistency condition for the α-vacua, perhaps only experiments should be able to verify
or rule-out the correct regularisation for obtaining physical finite results.
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6 The case of a nearly minimally coupled massless scalar

We shall end with a comment on the case of a nearly massless minimally coupled scalar.
The Wightman function in this case reads,

iG+(y) = H2

4π2

(1
y
− 1

2 ln y + 1
2s + ln 2− 1

)
, (6.1)

where s = 3/2 − ν with |s| � 1 is a small parameter and y is given by eq. (2.9). Note
that the de Sitter symmetry breaking logarithm is absent here compared to eq. (3.6).
Comparing eq. (6.1) and eq. (3.6) it is clear that we can compute the detector response for
this scalar by just making the replacement,(1

2 ln(a(t)a(t′)) + ln 2− 1
4

)
→
( 1

2s + ln 2− 1
)
,

appearing in any of the expressions for the response function for the massless minimal
scalar field (such as eq. (4.32)). Thus despite s is large, there will be no term growing with
time in this case, as compared to the exactly massless one. On the other hand, if we take
a complex scalar field in the α-vacua, problems exactly similar to section 5 will prevail.

7 Discussions

We have computed, in this work, the response function for the Unruh-DeWitt detector
coupled to a complex scalar field at the first order perturbation theory, for both conformal
and a massless minimal couplings. The latter requires certain regularization procedure in
order to give the response function a physical meaning. We have discussed extension of
these results to the de Sitter α-vacua and have pointed out some possible ambiguities for
a complex scalar.

We have also shown that for a real scalar field theory with a field-detector coupling
linear in the field operator, with the interpretation discussed at the end of section 2, we can
compute the response function for the α-vacua (see also [34]). It is easy to argue that such
computation extends to any arbitrary order of the perturbation theory. This is because
at the n-th order, we have a term like

∏
n

∫
dτnφ(τn) from the S-matrix expansion. Since

there are as many integrations as the number of field operators, we shall never have two
Wightman functions appearing in a single integral. Accordingly, the cancellation of the
iε regulators as of section 5 does not occur in this case. For example, the second order
correction in the response function can be evaluated (up to some numerical factors) as

d2Fα(∆E)
dt+ dt′+

∼
(∫ ∞
−∞

d(∆t) e−i∆E∆t iG+
α (∆t)

)2

+
∫ ∞
−∞

d(∆t) e−i∆E∆t iG+
α (∆t)×

∫ ∞
−∞

d(∆t′) ei∆E∆t′ iG+
α (∆t′),

which can indeed be computed without any ambiguity. Similarly, the corrections to the
response function can be obtained for higher orders as well.
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For the massless and minimal complex scalar in particular (section 4.2), we have dis-
cussed a viable regularisation cum renormalisation scheme. It will be interesting to check
how this can consistently tackle the divergences at higher order of the perturbation theory
as well.

Computation of the response function for a fermionic field will be more realistic. Since
massless fermion is conformally invariant, we may expect in this case the spectrum to be
qualitatively similar to that of a complex conformal scalar. Also, we do not expect any de
Sitter breaking logarithms for fermions. It will also be interesting to investigate the massless
minimal complex scalar field theory from various perspective of quantum entanglement, e.g.
entanglement harvesting. The effect of background primordial electromagnetic fields on a
charged scalar will also be interesting, for in this case we expect de Sitter breaking terms
indicating instability at late times analogous to that of the growing logarithm of eq. (4.32),
even in the massive case. We shall come back to these issues in future works.
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