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1 Introduction

Noncommutative structures are expected to occur at the Planck scale [1, 2] where Quan-
tum Gravity effects become relevant [3, 4]. Among the various noncommutative (quantum)
spacetimes, the κ-Minkowski spacetime [5] is believed to be a good candidate to describe
the quantum spacetime underlying Quantum Gravity. This noncommutative (quantum)
spacetime is known for long to be rigidely linked to the κ-Poincaré algebra [6] coding
the quantum version of its relativistic symmetries. This latter already shows up within
(2+1)-d gravity with matter as a symmetry of the (effective) Noncommutative Field The-
ory (NCFT) obtained by integrating out the gravitational degrees of freedom [7] while
interesting arguments favoring its role as a symmetry of (3+1)-d quantum gravity (in a
particular regime) were given in [8], therefore enforcing the belief that at ultra-high energy,
Poincaré invariance as well as Minkowski spacetime should be replaced by their respec-
tive κ-deformations. The phenomenological consequences [3, 4] of these κ-deformations
have been examined in many works, dealing e.g. with Doubly Special Relativity [9, 10] or
Relative Locality [11].

For pioneering works on noncommutative gauge theories, see [12–14]. Since gauge in-
variance at low energy must supplement Poincaré invariance in any reasonable field theory,
it is natural to consider noncommutative gauge theories obeying both κ-Poincaré invariance
and (noncommutative analog of) gauge invariance at energy near the Planck scale. The
quantum properties for NCFT on κ-Minkowski spaces stayed rather poorly investigated for
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a long time [15]. Recently, the introduction of a convenient star-product [16, 17]1, resulting
from a combination of the Weyl-Wigner quantization with the convolution algebra of the
affine group R n R(d−1) (d is the dimension of the κ-Minkowski space) has allowed us to
start studying the one-loop properties of various classes of NCFT on κ-Minkowski [16, 20].

But gauge invariance and κ-Poincaré invariance are difficult to reconcile together. In
fact, the requirement of κ-Poincaré invariance singles out the simple Lebesgue integral
as the trace to be used in the action. But this trace is no longer cyclic w.r.t. the star-
product, i.e. it is as a twisted trace. A twist, called the modular twist depending on the
dimension d of the κ-Minkowski space, appears upon cyclic permutation of the factors
inside the trace, thus preventing the various factors arising from gauge transformations
to balance each other. In [21], we have shown how to combine a twisted noncommutative
differential calculus, a twisted notion of noncommutative connection and the modular twist
to construct a gauge invariant action quadratic in the curvature in 5 dimensions. This value
was shown to be the only one for which the compensations between the twists achieved
gauge invariance.

The result in [21] raised the question to know if it is actually possible to obtain gauge
invariance for other values of d (e.g. for d = 4), by a suitable modification of the twisted
differential calculus linked to twisted derivations of the κ-Poincaré algebra and/or the
twists related to the noncommutative connection, of course still preserving an acceptable
commutative limit for the action. It turns out that the answer is negative as it will be
shown in this paper, thus motivating more investigation on physical properties related to
the (essentially unique) framework obtained in [21].

The paper is organized as follows. In the section 2, we show that κ-Poincaré invariant
gauge theories built on the κ-Minkowski space and constrained to have physically suitable
commutative limit must necessarily be 5-d. Gauge invariance of the action can be achieved
thanks to the existence of a unique twisted noncommutative differential calculus based on
a (unique) family of twisted derivations of the algebra of the deformed translations. The
subsection 2.2 deals with the necessary algebraic constraints on twisted connections, while
in the subsection 2.3 we show how the gauge invariance requirement fixes the dimension
of the κ-Minkowski space and selects a unique twisted differential calculus. In the section
3, we explore general properties of both 5-d gauge-invariant action possibly coupled to
matter and related 4-d effective actions obtained through compactification. The subsec-
tion 3.1 involves phenomenological aspects devoted in particular to standard scenarios with
(compactification of) flat extra dimension [22, 23] in which the 5-d deformation parame-
ter κ is naturally interpreted as the bulk 5-d Planck mass. We study generic properties
of the resulting 4-d effective theories, focusing mainly on the zero modes sector. Consis-
tency with recent data from collider experiments [24–27] yields the following lower bound
κ & O(1013) GeV. The explicit construction of gauge invariant actions is presented in the
subsection 3.2. In the subsection 3.3, we obtain a BRST symmetry linked to the 5-d non-
commutative gauge invariance algebraically characterized by a nilpotent operation used to
construct a gauge-fixed action. In the section 3.4, we apply the popular test of in-vacuo dis-

1For alternative star-products on κ-Minkowski, see [18, 19].
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persion relations of Gamma Ray Burst (GRB) photons [28–34] to the deformed dispersion
relation derived from the action and show that the lower bound on κ is increased by 4–5 or-
ders of magnitude, favoring the scenarios with very small flat extra dimension. We discuss
the robustness of this latter bound in the light of possible new features of noncommutative
causal structures. In the section 4, we conclude.

2 κ-Poincaré invariant gauge theories on κ-Minkowski space

2.1 Basics properties

We use the bicrossproduct basis [6]. Our convention are as in [16]. The relevant formulas
are collected in the appendix A. The d-dimensional κ-Minkowski spaceMd

κ is conveniently
described as the algebra of smooth functions on Rd with polynomial maximal growth,
equipped with the star-product and involution [16, 17]

(f ? g)(x) =
∫
dp0

2π dy0 e
−iy0p0

f(x0 + y0, ~x)g
(
x0, e

−p0/κ~x
)
, (2.1)

f †(x) =
∫
dp0

2π dy0 e
−iy0p0

f̄
(
x0 + y0, e

−p0/κ~x
)
. (2.2)

Eq. (2.1) yields

[x0, xi] = i

κ
xi, [xi, xj ] = 0 (2.3)

([f, g] = f ?g−g ?f) with i, j = 1, · · · , d−1 describing the usual commutation relations for
the d-dimensional κ-Minkowski space. The deformation parameter κ has the dimension of
a mass and can be naturally identified with the d-dimensional Planck mass, not necessarily
of the same order of magnitude than the observed 4-d Planck mass MP ≈ 1019GeV.

The κ-deformed relativistic symmetries of Md
κ are coded by the κ-Poincaré algebra

Pdκ. Recall that any action S =
∫
ddx L where L is some Lagrangian and

∫
ddx is the usual

Lebesgue integral is κ-Poincaré invariant. Indeed, one can show [17] that any element h in
Pdκ acts on S as

h . S :=
∫
ddx h . L(φ) = ε(h)S (2.4)

where ε : Pκ → C is the counit of Pdκ, the symbol . denotes the action of h and φ denotes
generically some fields. For instance by using the appendix A, a standard calculation yields

(E . φ)(x) = φ

(
x0 + i

κ
, ~x

)
(2.5)

where we used
E = e−P0/κ (2.6)

and
(Pµ . φ)(x) = −i∂µφ(x), µ = 0, . . . , d− 1 (2.7)

which combined with ε(E) = 1 and ε(Pµ) = 0 leads to E . S = S, Pµ . S = 0.
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It is known that the Lebesgue integral satisfies∫
ddx (f ? g)(x) =

∫
ddx ((σ . g) ? f) (x), (2.8)

σ = Ed−1, (2.9)

i.e.
∫
ddx is a twisted trace with respect to (2.1). This trades the usual cyclicity for a KMS

property. Indeed, as pointed out in [16, 35, 36], the action S defines a KMS weight [37–39]
associated with the (Tomita) group of modular automorphisms [40–42] whose generator
is (2.9), called the modular twist. For general discussions on physical consequences of
KMS property, see [43]. One-loop properties of κ-Poincaré invariant scalar NCFT onM4

κ

have been examined in [20], showing soft UV behavior, absence of UV/IR mixing and for
some of them vanishing of the beta functions [20].

Had we decided to abandon the κ-Poincaré invariance, then we could have used a
cyclic integral w.r.t. the star product, as in e.g. [44, 45]. But, the resulting actions would
have had physically unsuitable commutative limits. Notice that the loss of cyclicity does
not complicate practical calculations. In fact, any Pdκ-invariant action based on (2.1)–
(2.9) can be easily represented as a nonlocal field theory involving ordinary integral and
commutative product.

We will consider the noncommutative analog of U(1) gauge symmetry [46–49]. Gener-
alization to larger symmetry follows from a mere adaptation of [47–49] and would not alter
the conclusions obtained in this work. We look for noncommutative gauge theories onMd

κ

with polynomial actions depending on the curvature (field strength) of the noncommutative
connection (gauge potential), to be characterized below, satisfying two requirements:

(i) the action, say S, is both invariant under Pdκ and the noncommutative U(1) gauge
symmetry,

(ii) the commutative limit of S is physically acceptable, that is it coincides with the
action describing an ordinary field theory.

In [21], we have shown that the twisted trace (2.8) insuring Pdκ-invariance restricts the
allowed values of d at which such an action may eventually exist. One necessary ingredient
is the existence of (at least one) suitable twisted noncommutative differential calculus, the
twist being essential. In particular, there is no untwisted differential calculus which can
support a gauge invariant action, whatever the dimension of Md

κ may be [21], as e.g. the
bicovariant differential calculi on κ-Minkowski [52, 53].

The second ingredient related to the noncommutative differential calculus is the con-
struction of a twisted connection and its curvature. Requiring the gauge invariance of the
action then amounts to require that the effects of the various twists balance the one of the
modular twist (2.9), resulting in a d-depending consistency relation between all the twists.

We now show that gauge invariant actions satisfying i) and ii) can only be obtained
from a unique 1-parameter family of twisted derivations of the algebra of the “deformed
translations” T dκ ⊂ Pdκ (see appendix A) and only for d = 5, the unique value for which the
noncommutative gauge symmetry can be accommodated with the κ-Poincaré invariance.
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2.2 Fixing the twists

In this section, there is no summation over the repeated indices in the formulas.
We introduce a set of d mutually commuting bitwisted derivations of

Md
κ, {Xµ}µ=0,...,d−1. Recall that Xµ as a bitwisted derivation [21] ofMd

κ is an element of
Pdκ satisfying the twisted Leibniz rule:

Xµ (a ? b) = Xµ (a) ? αµ (b) + βµ (a) ? Xµ (b) , (2.10)

with
[αµ, Xµ] = [βµ, Xµ] = 0. (2.11)

The twists αµ and βµ belong to Pdκ and are algebra automorphisms ofMd
κ, so that

αµ(a ? b) = αµ(a) ? αµ(b) (2.12)

and the same holds for βµ. Hence, to each Xµ corresponds a pair of twists (αµ, βµ). The
general framework of noncommutative differential calculi based on such twisted derivations
has been characterized in [21]. Here, it will be sufficient to work with the “components” of
the 1-form connection and 2-form curvature.

We start from the general bitwisted connection, defined as a map ∇µ : M→M, where
M is a module over the algebra, assumed here to be a copy ofMd

κ, namely M 'Md
κ, and

satisfying [21]
∇µ (ma) = ∇µ (m) ? τµ (a) + ρµ (m) ? Xµ (a) (2.13)

where τµ and ρµ are automorphisms ofMd
κ, elements of Pdκ. From this follows

∇µ(a) = Aµ ? τµ(a) +Xµ(a), Aµ := ∇µ(1), (2.14)

where Aµ is the noncommutative gauge potential, which will be relevant in the follow-
ing analysis. A general algebraic presentation of noncommutative connections (and of
derivation-based differential calculi) can be found in [46]. For adaptation to the NCFT
framework as well as some extensions of the notion of connection, see [47–51].

Consider now the most general twisted gauge transformations for which each compo-
nent of the noncommutative gauge potential Aµ is acted on by a left and a right twist,
denoted by ρ1,µ and ρ2,µ. The twisted gauge transformations can be expressed as

∇µ(.) −→ ∇gµ(.) = ρ1,µ(g†) ?∇µ (ρ2,µ (g) ? ·) (2.15)

where ρ1,µ and ρ2,µ are elements of Pdκ and are assumed to act as regular automorphisms [54]
ofMd

κ which implies
ρa,µ(g)† = ρ−1

a,µ(g†), a = 1, 2, (2.16)

for any g inMd
κ verifying the unitary relation

g† ? g = g ? g† = 1. (2.17)

Here, the group of noncommutative gauge transformations, denoted by U(Md
κ), is the set

of unitary elements of Md
κ, the noncommutative analog of the U(1) gauge symmetry.
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Now from algebraic manipulations, one infers that ∇gµ(a) = Agµτµ(a)+Xµ(a), ∇gµ given
by (2.15), defines a connection if the following relations hold true:

αµ = τµ, ρ1,µ(g†) ? βµρ2,µ(g) = 1 (2.18)
Agµ = ρ1,µ(g†) ? Aµ ? τµρ2,µ(g) + ρ1,µ(g†) ? Xµ(ρ2,µ(g)). (2.19)

The general expression of the components Fµν of the curvature is obtained from the
expression

∇µ (Kµν∇ν (a))−∇ν (Kνµ∇µ (a)) = Fµν ? τµKµντν (a) , (2.20)

where the twist Kµν , element of Pdκ, acts as an automorphism ofMd
κ. One easily finds that

Fµν = Xµ (Kµν (Aν))−Xν (Kνµ (Aµ)) +Aµ ? τµKµν (Aν)−Aν ? τνKνµ (Aµ) , (2.21)

is a morphism of (twisted) module provided

βµKµν = βνKνµ = 1, (2.22)
τµKµντν = τνKνµτµ, (2.23)
τµKµνXν = XνKνµτµ, (2.24)
XµKµντν = τνKνµXµ, (2.25)
XµKµνXν = XνKνµXµ. (2.26)

Upon combining (2.19) and (2.21), a tedious calculation leads to the twisted gauge trans-
formations for Fµν given by

F gµν = ρ1,µ(g†) ? Fµν ? τµKµντνρ2,ν(g) (2.27)

provided the following relations hold true:

τµρ2,µ (g) ? τµKµνρ1,ν(g†) = 1, (2.28)
βµKµνρ1,ν(g†) = βνKνµρ1,µ(g†), (2.29)
τµKµντνρ2,ν(g) = τνKνµτµρ2,µ (g) , (2.30)
τµKµνXνρ2,ν (g) = XνKνµτµρ2,µ (g) , (2.31)
XµKµνρ1,ν(g†) = −ρ1,µ(g†) ? Xµρ2,µ(g) ? τµKµνρ1,ν(g†). (2.32)

We now show that the number of twists is severely restricted, due to compatibility
conditions between (αµ, βµ), the twists of gauge transformations (ρ1,µ, ρ2,µ) andKµν . These
conditions insure the stability of the space of connections under gauge transformations and
(twisted) gauge covariance of the curvature.

Indeed, by combining (2.22)–(2.26) with (2.28)–(2.32), one realizes that the twists ρ1,µ
are all equal and similarly for ρ2,µ. Namely,

ρ1,µ = ρ1, ρ2,µ = ρ2, (2.33)

for any µ = 0, 1, . . . , d − 1, where ρ1 and ρ2 will be characterized in a while. Besides, by
combining the unitary relation (2.17) with eq. (2.28), one obtains

ρ2 = Kµνρ1. (2.34)
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Hence, all the Kµν are equal to some automorphism ofMd
κ K, to be characterized below.

Namely, one has
Kµν = K, (2.35)

so that (2.22) implies
βµ = β = K−1, (2.36)

and (2.28) yields
τµ = τ. (2.37)

Using ρ2 = Kρ1 and differentiating ρ2(g†)ρ2(g) = 1 by Xµ using (2.10), one can check
that (2.32) is verified.

Summarizing the above analysis, it appears at this stage that only β, α = τ and ρ2
remain as independent twists.

Now, assume first that Xµ belongs to T dκ . Recall that T dκ has primitive elements
(E , P0, Pi) with coproduct

∆(E ⊗ E) = E ⊗ E , ∆(P0) = P0 ⊗ I + I⊗ P0, ∆(Pi) = Pi ⊗ I + E ⊗ Pi. (2.38)

But since τ and β are assumed to be automorphisms of Md
κ, their coproduct must be of

the form
∆(h) = h⊗ h (2.39)

for h = τ , β. Indeed, since Md
κ is a module algebra over Pdκ, one must have

h(a ? b) = m?∆(h)(a⊗ b) = m?(h(a)⊗ h(b)) = h(a) ? h(b) with m?(a⊗ b) = a ? b.
One therefore concludes that τ , β and K must be powers of E , owing to the ex-

pression for ∆(E). Thus, they all are regular automorphisms verifying relations similar
to (2.16). Since E commutes with all the elements of Pdκ, all the twists β, τ and ρ2 are
mutually commuting.

2.3 Gauge and κ-Poincaré invariances — consistency condition

From now on, summation over repeated indices is understood.
Now, we look for a gauge invariant action of the form

S(A) =
∫
ddx Fµν ?

[
Jµν(F †µν)

]
(2.40)

where Jµν is an automorphism of Md
κ and the Lebesgue measure

∫
ddx involved in

S(A) (2.40) insures that the requirement i) is verified.
Upon using (2.27) together with (2.8) and (2.9), one easily finds that (2.40) is invariant

under the NC U(Md
κ) gauge transformations provided

Ed−1Jµν(ρ1(g†)†) ? ρ1(g†) = 1 (2.41)

τ2Kρ2 (g) ? Jµν
((
τ2Kρ2 (g)

)†)
= 1. (2.42)

The combination of eq. (2.41) with (2.16) and g ? g† = 1 yields

Jµν = J = E1−dρ2
1. (2.43)
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This, combined with (2.42), owing to the fact that τ , K, ρ1,2 commute with each other,
gives rise to τ4 = E1−dβ4 where we used K = β−1, so that

τ = E
1−d

4 β. (2.44)

Using the duality between Md
κ and T dκ [6] and the above restrictions on the twists, one

infers from (2.10) that the coproduct of any Xµ must be of the form

∆(Xµ) = Xµ ⊗ τ + β ⊗Xµ. (2.45)

But, as an element of T dκ , Xµ must be expressible as a finite sum

Xµ =
∑

xmnkEmPni P k0 . (2.46)

Then, the combination of these two constraints fixes the allowed twisted derivations in T dκ .
One finds after some standard computation that the only possibilities for these latter are

Eγ(1− E), EγP0, EγPi, (2.47)

where γ is a real parameter. The respective pair of twists (α, β) are easily found to be
given by (Eγ , Eγ+1), (Eγ , Eγ) and (Eγ , Eγ+1).

Finally, notice that the use of twisted derivations out of T dκ would lead to actions with
unusual (physically unsuitable) commutative limits which would not meet requirement ii).

To conclude, using (2.44) and α = τ , one finds that the only physically admissible
solution is given by

α = Eγ , β = Eγ+1. (2.48)

This, plugged into (2.44), gives finally

1 = E
5−d

4 , (2.49)

thus singling out
d = 5, (2.50)

which is independent of γ. This is the unique physical value for the classical dimension at
which κ-Poincaré and NC gauge invariance can coexist, selecting in Pdκ a unique family of
twisted derivations of Tκ, given by

X
(γ)
0 = κEγ(1− E), X

(γ)
i = EγPi. (2.51)

3 Discussion

3.1 Phenomenological set-up

Let us first summarize the above analysis.
Requiring the action on the κ-Minkowski spaceMd

κ to be invariant under the quantum
analog of its relativistic symmetries modeled by Pdκ forces to introduce in the action a
twisted trace w.r.t. the star product characterizing Md

κ. The additional requirement of
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gauge invariance is physically needed in any realistic model on Md
κ as its commutative

limit should at least reproduce the Yang-Mills structure of the Standard Model.
As we have shown, the compatibility of κ-Poincaré invariance with “noncommutative”

(quantum) gauge invariance can be achieved only through the use of twisted connections
and curvatures together with corresponding twisted gauge transformations, singling out
a unique (one-parameter) family of twisted derivations of the algebra of the so-called de-
formed translations.

From this framework, the various twist effects in an action quadratic in the curvature
can balance each other only whenever the classical dimension of Md

κ is d = 5 which thus,
roughly speaking, appears as a kind of consistency condition for which a (noncommutative)
gauge symmetry can be accommodated with the quantum relativistic symmetry of the
quantum space.

This result goes beyond a pure algebraic interest in the context of noncommutative
field theories on κ-Minkowski space. As a matter of fact, it appears to be a strong physical
prediction in that it states clearly that κ-Poincaré invariant gauge theories with physi-
cally acceptable commutative (low energy) limit must be 5-d. As a byproduct, this result
gives a rationale based on symmetry constraints for the introduction of an extra (spa-
tial) dimension. Note that any experimental evidence disfavoring the existence of a single
extra dimension would render questionable the physical relevance of κ-Poincaré invari-
ant gauge theories (together with possibly related concepts linked to κ-deformations of
Minkowski space-time).

Matching the 5-d bulk models to 4-d effective theories can be done in principle through
various scenarios. These latter depend on various assumptions, in particular those done
on the nature of the extra dimension, which can be chosen flat or warped, on its size
and on the allowed propagations of the fields which may propagate in the bulk or stay
confined on a submanifold/brane. Models with (flat) extra dimension or with warped
extra dimension of Randall-Sundrom type are reviewed and compared in e.g. [55, 56] from
a phenomenological viewpoint.

In this paper, we will consider the first type of scenarios, namely those based on the
assumption of the existence of one (flat) extra dimension2. The case of warped dimension
will be briefly commented at the end of this subsection.

One immediate issue to be discussed is whether any typical contribution coming from
the noncommutative structure underlying the 5-d bulk theory may show up in the 4-d
effective theory as possibly observable effect which may signal the noncommutative origin of
the extra dimension. This depends on the order of magnitude of the deformation parameter
κ which is the natural mass scale occurring in the present framework. Recall than in a 4
dimensional set-up, the corresponding deformation parameter, say κ4, is usually identified
with the Planck mass MP , namely

κ4 ∼MP , (3.1)

which from a Quantum Gravity viewpoint may be naturally viewed as the mass scale
which should be observed by all independent observers in a regime where the gravity

2No restriction is imposed on the field propagation: the fields are assumed to propagate in the bulk.
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effects become of the same order of magnitude than those of the other interactions. For an
exhaustive review of this interpretation within the Doubly Special Relativity using both
the κ-Poincaré (Hopf) algebra as well as, see [57].

Owing to the above discussion, it is natural to interpret κ as the 5-d bulk Planck mass.
The requirement ii) described in the section 2.1 implies that the generic expression for any
4-d effective theory should take the form

S4 = S
(κ→∞)
4 + ∆S4 (3.2)

where in obvious notations ∆S4 involves all the noncommutative corrections of the order
O( 1

κn ), n ≥ 1, to S(κ→∞)
4 which is some usual commutative action independent of κ. Of

course, a similar decomposition holds for the bulk action, namely S5 = S
(κ→∞)
5 + ∆S5.

In a wide class of phenomenologically interesting scenarios, underlying the popular
models with flat extra dimensions or UED models [22, 23], one assumes that the space
is flat while the extra dimension is compact with size R ∼ 1

µ , where µ is some mass
scale, constrained as to be in agreement with experimental data. In these scenarios, the
popular relation relating µ, MP and the (5-d) bulk Planck mass, say M?, is given by
M2
P ≈M3

?
1
µ . Recall that it simply stems from a mere 5-d extension of the Einstein-Hilbert

action combined with a standard dimensional analysis while it is assumed that it holds
true also for gauge theory models [55, 56].

We will follow the same line of thought in this paper, which is a natural assumption,
so that the above relation between the mass scales becomes

M2
P ≈ κ3 1

µ
, (3.3)

since κ is identified with the 5-d bulk Planck mass M?, while the fields are assumed to
propagate in the bulk.

Recent collider experiments [24–27] have produced lower bounds for the size of the
extra dimension µ−1 within flat extra-dimensional and UED scenarios [22, 23]. From these
analysis, one can set conservatively

µ & O(1− 5) TeV. (3.4)

This combined with (3.3) and assuming MP ∼ O(1019)GeV yields

κ & O(1013) GeV. (3.5)

At this stage, some remarks are in order which will be illustrated in the next subsection
within a generic U(M5

κ) gauge theory coupled to a fermion.

1. First, recall that, in the flat extra dimensional scenarios, the reduction from 5 di-
mensions to 4 dimensions is usually done through a suitable compactification of the
extra dimension, for instance on S1/Z2, leading basically to an effective 4-d theory
involving “light” (µ-independent) zero-modes plus “heavy” Kaluza-Klein (K-K)-type
modes with masses proportional to µ.
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Disregarding the K-K sector and focusing first on the zero-mode sector, one can
already expect that corrections should be affected by factors ∼ O( 〈E〉κ ) where 〈E〉
is the energy scale at which a given process is observed. In view of the value for
the lower bound of κ (3.5), this implies in particular a strong suppression of these
possible corrections by factors ∼ O(

√
s
κ ) in present and future collider experiments,

where
√
s is, as usual, the energy in the center of mass frame.

In the same way, note that in the K-K sector, the corrections to the K-K number
conservation law [22, 23] stemming from the κ-deformation (which will be apparent
from (3.26)) would lead to unobservable effects at currently reachable energy scale,
since these corrections are also suppressed by inverse powers of κ.

2. The fact that the set of twisted derivations (2.51) underlies the present framework
together with the requirement of U(M5

κ) gauge-invariance of the pure gauge action
necessarily leads to a (κ-depending) deformed “dispersion relation” for the gauge
potential Aµ in the 5-d theory which gives rise to a deformed dispersion relation for
the photon in the 4-d effective theory. Potentially observable effects from deformed
dispersion relations have been already discussed in many works. For exhaustive
reviews, see e.g. refs. [3, 4]. These effects have been discussed either by starting
from general postulated parametrizations of the dispersion relation, or within specific
classes of quantum gravity models producing dispersion relations consistent with the
postulated parametrizations.

Among the related cosmological/astrophysical tests currently considered in the lit-
erature [3, 4], we will focus in the subsection 3.3 on the constraints on the 5-d bulk
Planck mass κ obtained from GRB data [28–34].

3. We note that the noncommutative gauge symmetry, i.e. the gauge symmetry intro-
duced in the subsection 2.2, is broken through the reduction from 5-d to 4-d. This
is a mere corollary of the main result derived in this paper. The resulting 4-d ef-
fective theory will however involve a part which is invariant under the usual U(1)
gauge symmetry plus additional U(1) gauge breaking terms suppressed by powers of
1
κ . These “small” terms will of course disappear at the commutative κ → ∞ limit,
leading to a U(1) invariant action.

This can be easily realized for instance by first considering the (5-d) field strength
Fµν eq. (2.21) or (3.11). This latter expanded up to the 2nd order in 1

κ yields an
expression of the form

Fµν = fµν + 1
κ
φµν +O

( 1
κ2

)
, (3.6)

in which fµν is the usual abelian U(1) field strength while φµν can be read off
from (3.11). Then, by using the action (2.40) rescaled by 1

g2
5
where g5 is the 5-d

gauge coupling constant, a standard calculation gives rise to the κ-expanded action
having the generic expression

S = 1
g2

5

∫
d5x

(
fµνfµν + 1

κ
φµνfµν +O

( 1
κ2

))
, (3.7)
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(summing implicitely over µ and ν from 0 to 4) where only the first term is invariant
under the (5-d) U(1) gauge symmetry.

Then, a standard compactification of the extra dimension gives rise to a 4-d action
of the form

Seff = 1
g2

∫
d4x

(
f0
mnf

0
mn + 1

κ
∆(A) + . . .

)
(3.8)

where the ellipses denote K-K heavy modes and

g2 = µg2
5 (3.9)

is the 4-d gauge coupling constant. Again, only the first term is invariant under
the (now 4-d) U(1) gauge symmetry with f0

mn = PmA
0
n − PnA0

m (m,n = 0, 1, 2, 3)
being identified with the usual 4-d U(1) field strength, the superscript 0 denoting the
zero mode part while 1

κ∆(A) collects all the terms which are not U(1) invariant. In
this respect, it may be interesting to build a model involving (at least) one family
of leptons using the present framework and examine if the terms involves in 1

κ∆(A)
may induce possibly observable effects.

4. Finally, one may wonder if the above conclusions on the various mass scales and in
particular (3.5) linked to the validity of the relation (3.3) would be possibly modified
assuming a scenario with a warped extra dimension [55, 56]. A definite conclusion
would await for the proper inclusion, if possible at all, of a suitable warped metric
into the present framework. This is beyond the scope of this paper.

3.2 The gauge invariant action

Let us discuss general physical features of κ-Poincaré invariant gauge theories. In this
subsection, we consider the coupling of S(A) (2.40) to a fermion ψ, assuming from now on
that Aµ is real-valued and ρ2 = I.

A family of U(Md
κ) gauge invariant actions can be obtained by starting from

∇µ(ψ) = Aµ ? Eγ(ψ) +X(γ)
µ (ψ), (3.10)

while the curvature can be expressed as

Fµν = E−1
(
X(0)
µ Aν −X(0)

ν Aµ
)

+Aµ ? E−1(Aν)−Aν ? E−1(Aµ) (3.11)

where X(0)
µ is given by (2.51) in which γ = 0.

From the analysis performed in the previous section, one easily infers that the gauge
transformations are given by

∇gµ(ψ) = Eγ+1(g) ?∇µ(g† ? ψ), (3.12)

Agµ = Eγ+1(g†) ? Aµ ? Eγ(g) + Eγ+1(g†) ? X(γ)
µ (g), (3.13)

F gµν = Eγ+1(g) ? Fµν ? Eγ−1(g†). (3.14)
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where we used the fact that the matter gauge transformations are untwisted, i.e. they read
ψg = g?ψ, as assumed above. Recall that twisted matter gauge transformations are defined
by ψg = ρ2(g) ? ψ.

The extension to a twist ρ2 6= I is straightforward and would not alter the conclusions
of this paper.

The above material, combined with (2.43) and (2.48), so that

J = E2(γ−1), (3.15)

together with (2.40) gives rise to the U(Md
κ) gauge invariant classical action given by

S = S(A) + S(ψ,A) =
∫
d5x

( 1
2g2

5
Fµν ? E2(γ−1)

(
F †µν

)
+ ψ ? E−γ−1 /∇ψ

)
(3.16)

with /∇ = γµ∇µ, ψ = ψ†γ0 in obvious notation (γ†0 = γ0) and the coupling constant g2
5 has

mass dimension −1.
It is convenient to re-express (3.16) by introducing the Hilbert product

〈a, b〉 :=
∫
d5x a† ? b (3.17)

defined in [16]. It yields
S(A) = 1

2g2
5
〈Fµν , E−2(γ+1)Fµν〉 (3.18)

showing that S(A) is real.
It can be noticed that the twisted derivations X(γ)

µ are self-adjoint operators. Namely,
one has

〈a,X(γ)
µ (b)〉 = 〈X(γ)

µ (a), b〉. (3.19)

Eq. (3.19) amounts to show that the primitive elements of Tκ, E and Pi, are self-adjoint.
Indeed, one easily realizes that 〈Ea, b〉 =

∫
d5x (Ea)† ? b =

∫
d5x E−1a† ? b =

∫
d5x a† ?Eb =

〈a, Eb〉 where we used successively (A.10) and (2.4).
In a similar way, one infers 〈Pia, b〉 = 〈a, Pib〉 stemming from the Leibnitz rule for Pi

implied by the second relation in (A.4), namely Pi(a ? b) = Pi(a) ? b + E(a) ? Pi(b). We
assume here that a and b are Schwarz functions, which will be actually the case of the
classical fields involved in the action.

To obtain a gauge invariant coupling of ψ to the gauge potential Aµ, one looks for
a term of the form 〈γ0ψ, Ex∇µ(ψ)〉 where x should be determined to insure the gauge
invariance. By making use of (3.12) so that

∇gµ(ψg) = Eγ+1(g) ?∇µ(ψ), (3.20)

one can write

〈γ0ψ
g, Ex∇gµ(ψg)〉 = 〈γ0g ? ψ, ExEγ+1(g) ? Ex∇µ(ψ)〉

= 〈γ0ψ, g
† ? ExEγ+1(g) ? Ex∇µ(ψ)〉 (3.21)

– 13 –



J
H
E
P
0
3
(
2
0
2
1
)
2
0
9

in which we used 〈g† ? a, b〉 = 〈a, g ? b〉 together with (3.19) and

(E(g))† = E−1(g†) (3.22)

to obtain the second equality in (3.21). It follows that gauge invariance is achieved provided

x = −γ − 1. (3.23)

Putting all together, one easily realize that eq. (3.16) can finally be re-expressed as

S = S(A) + S(ψ,A) = 1
2g2

5
〈Fµν , E−2(γ+1)Fµν〉+ 〈γ0ψ, E−(γ+1) /∇(ψ)〉, . (3.24)

The above action can be enlarged by the addition of a gauge invariant fermion mass term
given by

Sm = m

∫
d5x ψ ? ψ = m

∫
d5x ψE4ψ (3.25)

where m > 0.
The κ → ∞ limit of (3.16) and (3.24) obviously yields the usual (5-d) QED action,

while the U(Md
κ) invariance reduces to the standard U(1) gauge invariance at this limit.

To illustrate the first remark given at the end of the subsection 3.1, we consider the
gauge-matter interaction. This latter can be written as

Sint =
∫ 3∏

i=1

d5ki
(2π)5 /A(k1)ψ(k2)ψ(k3)δ(1)

(
k0

1 + k0
2 + k0

3

)
δ(4)

(
~k1 + ~k2e

−k0
1/κ + ~k3

)
× e

γ−3
κ
k0

3 ,

(3.26)

where ka = (k0
a,
~ka), a = 1, 2, 3, 4. Eq. (3.26) exhibits the usual energy conservation as

indicated by the first delta function, while the momentum conservation is “deformed” by
the factor e−k0

1/κ occurring in the second delta function.
As far as the effective 4-d theory is concerned, the compactification of the extra dimen-

sion, for instance on S1 or S1/Z2, gives rise to a Kaluza-Klein number conservation law, see
for instance [22, 23]. This latter law however is deformed stemming from the deformation
of the momentum conservation resulting in a delta function of the form

δ
(
n1 + n2e

−k0
1/κ + n3

)
, (3.27)

in which n1, n2, n3 are integers (the so called K-K numbers) generated upon the above
compactifications by the periodicity on the fifth coordinate (say x4) of the various fields,
leading to a discretization of the fifth momentum component.

As it can be seen from (3.27), the possible effect of the deformation depends on the
magnitude of κ controlling the contribution of the noncommutativity, which however will
be strongly suppressed by inverse powers of κ due to the lower bound (3.5) as already
indicated in the first remark of the subsection 3.1. These effects will be unobservable in
collider experiments, being suppressed by factors ∼ O(k0

κ ) ∼ O(
√
s
κ ).

A similar conclusion holds true for the Aµ self-interactions.
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3.3 BRST gauge-fixing and kinetic operator

We consider the kinetic term for Aµ in the action (3.16) and (3.24). By making use in the
quadratic part of (3.16) of the useful identity∫

d5x (f ? g†)(x) =
∫
d5x f(x)ḡ(x), (3.28)

which holds true for any (Schwartz) functions, together with (3.19), one easily realizes that
the kinetic term can be cast into the form

Skin(A) = 1
g2

5

∫
d5x AµE−2γ

(
X(0)
α

2
δµν −X(0)

µ X(0)
ν

)
Aν . (3.29)

The second term in (3.29) can be gauged away by using the gauge condition

X(0)
µ Aµ = 0, (3.30)

which reduces to the usual Lorentz gauge condition in the commutative limit.
It is convenient to introduce at this stage the BRST symmetry which can be used

for the implementation of the gauge-fixing. This is done by adding to S(A) in (3.16) the
gauge-fixing term

SGF = s

∫
d5x

(
C
†
? E−4

(
X(0)
µ Aµ

))
=
∫
d5x bX(0)

µ Aµ −
∫
d5x C

†
? E−4

(
X(0)
µ sAµ

)
, (3.31)

where the BRST operator s verifies
s2 = 0 (3.32)

and is defined here by the following structure equations

sAµ = X(γ)
µ (C) +Aµ ? Eγ(C)− Eγ+1(C) ? Aµ, (3.33)

sC = −C ? C, (3.34)
sC = b, (3.35)
sb = 0, (3.36)

which imply
sFµν = Fµν ? Eγ−1(C)− Eγ+1(C) ? Fµν . (3.37)

Here, the fields C, C and b are respectively the ghost, antighost and Stückelberg auxiliary
field assumed to be real valued. Recall that the functional integration over b serves to
implement the gauge condition. The respective ghost numbers of C, C and b are 1, −1
and 0. One has C† = −C stemming from (2.17). In (3.31), the second term involves the
kinetic term for the ghosts as well as the ghost-gauge potential interaction which will not
be of our concern in the following.

A complete algebraic characterization of the BRST symmetry used in the present con-
text, which bears some common features (but also some differences) with the standard
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BRST symmetry arising in commutative gauge theories [58–60] will be presented else-
where [61]. Here, we recall that s acts as a derivation w.r.t. the grading defined by the sum
of the ghost number and the degree of forms modulo 2. In particular, for any functions
(0-forms) a and b, one has

s(a ? b) = s(a) ? b+ (−1)δ(a)a ? s(b), (3.38)

where δ(a) denotes the ghost number of a and s(a†) = (s(a))† together with[
s,X(γ)

µ

]
= 0. (3.39)

As expected, S(A) is BRST invariant, namely

sS(A) = 0, (3.40)

as it can be verified upon using (3.37) combined with the expression for S(A) in (3.16), so
that the gauge-fixed action S(A) + SGF is BRST invariant.

It can be easily verified that, in the commutative limit, this gauge-fixed action reduces
to the usual gauge-fixed QED action in the Lorentz gauge together with the related BRST
structure equations.

Upon integrating out the b field, the kinetic term reduces to

Skin(A) = 1
g2

5

∫
d5x AµK(κ)Aµ (3.41)

with
K(κ) = E−2γ

(
κ2(1− E)2 + ~P 2

)
, (3.42)

in which we further assume the following relation

0 < γ < 1 (3.43)

which insures a suitable decay at large momenta for the propagator.
It is easy to realize that K(κ) is related to the Casimir operator of P5

κ

C1
κ = E−1

(
κ2(1− E)2 + ~P 2

)
(3.44)

by the relation
K(κ) = E−2γ+1C1

κ. (3.45)

We point out that within the present framework, there is almost no freedom in the
choice of the U(M5

κ) action quadratic in the curvature S(A) in (3.16). Its expression is
strongly constrained by the relevant differential calculus (2.51) related to the distinguished
family of twisted derivations of Tκ given in the subsection 2.3, together with gauge invari-
ance and κ-Poincaré invariance. From this follows the expression for the kinetic operator
as well as for the deformed dispersion relation that will emerge in the 4-d effective action
for the zero modes, to which we turn now on.

– 16 –



J
H
E
P
0
3
(
2
0
2
1
)
2
0
9

3.4 Deformed dispersion relations and Gamma Ray Bursts

It is natural to identify K(κ) to the noncommutative analog of the 5-d Laplacian. In this
respect, (3.42) or (3.45) already signal the appearance of a deformed energy-momentum
relation in the 4-d effective theory describing the zero modes. These latter are naturally
identified here to the photons.

We recall that such deformed dispersion relations have been widely considered in the
literature to study possible observable effects on the light speed energy dependence for
electromagnetic signals traveling on cosmological distances from a distant source to Earth.
So far, the corresponding analysis gave rise to plausible estimates for lower bounds on the
Quantum Gravity mass scale, say Mqg, or more precisely to any typical large mass scale,
denoted below by M , related to the origin of the energy dependence of the light speed,
which in a 4-d context, is usually identified either with Mqg or with MP . For a review on
the huge phenomenological literature on the subject, see e.g. [3, 4] and references therein.

Gamma Ray Bursts (GRB) [28, 29] are known to be suitable source candidates. Indeed,
the very large distance the emitted energetic photons3 travel, possibly of the order of
several billion of light years, can “amplify” the effect of the extremely small correction on
the photon velocity. This may result into observable quantities, in particular the arrival
time lags between photons of different energies [30–34].

Among the above studies, those dealing with the area of κ-deformations are of our
concern here. It appears that most of them do not resort to some Lagrangians from
which dispersion relations could be derived from first principles and standard calculations.
Instead, they start from postulated/conjectured reasonable parametrizations for deformed
dispersion relations depending on a set of parameters involving M , to be fitted/constrained
by the observed data. Of course, (almost all) these parametrizations reduce for a given
set of parameters to the dispersion relation one would obtain from the 4-d version of the
deformed Laplacian (3.44), (3.42). This phenomenological approach based on in-vacuo
dispersion of GRB photons is expected to give rise to indicative bounds on the Quantum
Gravity mass scale which are reviewed in [3, 4].

Let us first follow this pragmatical route. To adapt this approach to the present
situation, one first notice from that the relevant mass scale appearing in the 4-d effective
theory for the zero modes (hereafter denoted by aµ) is κ, i.e M = κ. The corresponding
action takes the generic form

S0
eff(aµ) =

∫
d4x

(
aµK4 (κ) aµ + g

(1
κ
V3 (aµ)

)
+ g2

(1
κ
V4 (aµ)

))
, (3.46)

in which we have rescaled aµ as aµ → gaµ where g is the 4-d coupling constant given
by (3.9), K4(κ) is simply the natural reduction of K to 4-d, namely

K4(κ) = E−2γ
(
κ2 (1− E)2 + ~P 2

)
, ~P = (P1, P2, P3) , (3.47)

and V3(a) and V4(a) are respectively cubic and quartic self-interaction terms among the aµ
which represent NC corrections. They are at least of the order of 1

κ and can be obtained
by expanding the interaction terms in S(A) (3.16) in powers of 1

κ .
3Observed energy of the emitted photons can reach O(100)GeV; see e.g. [28, 29].
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Then, neglecting the self-interactions4, (3.46) yields the equation of motionK4(κ)aµ=0
so that the corresponding dispersion relation reads

κ2
(
1− e−E/κ

)2
+ ~p 2 = 0 (3.48)

in which ~p is a 3-momentum and we have set p0 = E.
Now, expanding (3.48) up to O(κ−2) (and switching to Minkowskian signature for

convenience), one obtains

E2 − |~p|2 − 1
κ
E3 +O

( 1
κ2

)
= 0. (3.49)

This latter expression, confronted to past studies exploiting GRB data to look for light
speed variations [30–34], gives rise to an indicative bound on κ. Putting all the results
of [30–34] together, one can be reasonably keep the following value

κ & O
(
10−2 − 10−1

)
MP . (3.50)

Recall by the way that this latter relation is linked to the scenarios with flat extra dimension
considered in this paper (for which (3.3) holds true).

Therefore, one obtains from (3.3) and (3.50) a lower bound on the inverse size of the
extra dimension µ, namely

µ & O
(
10−6 − 10−3

)
MP , (3.51)

which, still assuming MP ∼ O(1019)GeV, gives µ & O(1013 − 1016)GeV.
From this, one may conclude that if the notion of dispersion relation is meaningful

in the present noncommutative context, then present GRB data on light speed variations
definitely favor scenarios with very small flat extra dimension for κ-Poincaré invariant
gauge theories. Note that the K-K spectrum is expected to be heavy with typical mass
proportional to µ.

At this stage, one important comment must be pointed out.
First, we note that our kinetic operator is, up to some (here) unessential factor, very

similar to the one used in [62, 63]. In this recent work, a κ-Poincaré invariant free scalar field
theory onM4

κ is used to model a noncommutative notion of light-cone through a reasonable
noncommutative extension of the Pauli-Jordan-Schwinger function. Recall that in standard
commutative field theory, this function vanishes outside the light-cone and encodes, up
to technical subtleties, the (micro)causality condition. Hence, the use of a reasonable
noncommutative Pauli-Jordan-Schwinger function, as done in [62, 63], actually represents a
possible way to get access to some salient features of causal structures of a noncommutative
space-time such as the κ-Minkowski space, once an action for a noncommutative field theory
is available. Interestingly enough, the main conclusion of [62, 63] is that analysis based
on dispersion relations confronted to GRB data cannot constraint noncommutative field
theories on κ-Minkowski space. In particular, it is found that the above noncommutative

4These may enter through 1st order corrections in the 2-point function; the leading contribution is
O( g

2

κ
) which, assuming g2 ∼ αem ∼ O(10−2), can be neglected compared to the classical contributions

O( 1
κ

) stemming from the Taylor expansion of the first term in (3.46).
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light-cone is blurry, so that the notion of dispersion relation underlying most of the above
analysis should be carefully reconsidered. Besides, this effect affects the usual classical
light-cone over a distance ∼

√
LLP where LP is the Planck lenght, LP ∼ 10−35 m. For a

typical distance for GRB L ∼ 109 ly, further assuming that the source is point-like, the
expected time effect would be ∆t ∼ 10−14s, far beyond the present detection capability.

A somewhat abrupt adaptation of our above analysis to [62, 63] would simply amount
to replace the Planck length by the inverse 5-d bulk Planck mass Lκ ∼ κ−1 since this is
this latter mass scale which appears in the expressions related to the 4-d effective action
for the zero modes. In view of (3.5), it can be easily realized that within our 4-d effective
theory, the situation would be only improved by at most three order of magnitude, as
O(106)LP & Lκ. Therefore, if the causal structure used in [62, 63] is physically suitable,
then the GRB bound (3.50) is questionable.

Fortunately, this is not the end of the story. Causality in noncommutative geometry
is a delicate story. It turns out that the notion of noncommutative causality is not unique,
a fact which already temperates the above negative conclusion. For a review on actual
approaches to noncommutative causality, see e.g. [64, 65] and references therein.

Among these approaches, Lorentzian noncommutative geometry [67] has been set up as
an attempt to adapt to Lorentzian signature the noncommutative geometry which is usually
developed in Euclidean signature. Lorentzian noncommutative geometry involves a natural
notion of causality rooted to the Dirac operator playing in some sense the role of a metric
and underlies the notion of noncommutative metric geometry5. This noncommutative
causality, which coincides to the usual one at the commutative limit, has been applied
for almost-commutative manifolds [66] and for Moyal plane [71], giving in that latter case
the explicit characterization of the relevant causal structure and by the way closing a
controversy of the physics literature about the existence of some causality on the Moyal
plane at the Planck scale.

In this respect, the confrontation of the notion of light-cone used in [62, 63] to the
causal cone stemming from the above noncommutative causality deserves to be carried out
in order to evaluate if the negative conclusion of [62, 63] still survives or leads to a less
pessimistic situation. Such a study has been undertaken [72].

4 Conclusion

We have shown that κ-Poincaré invariant gauge theories on κ-Minkowski space with physi-
cally suitable commutative limit must be 5-d. Only for this special value, noncommutative
(quantum) gauge and κ-Poincaré invariances can be reconciled through the use of twisted
connections and curvatures pertaining to a unique differential calculus, which singles out
a unique family of twisted derivations of the algebra of the deformed translations. This
result appears as an interesting physical prediction, giving as a byproduct a rationale based
on symmetries for the appearance of one spatial extra dimension.

5In an Euclidean set-up, the Dirac operator is the building block of the spectral distance generalizing
the geodesic distance. For explicit constructions on various noncommutative spaces, see [68–70].
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A BRST symmetry related to the noncommutative gauge invariance has been charac-
terized through the definition of a nilpotent Slavnov operation s and used to construct a
(5-d) gauge-fixed action whose commutative limit reduces to the usual (5-d) gauge-fixed
QED action in the Lorentz gauge.

In order to make contact with the 4-d world, we have explored and discussed some
generic properties of the 4-d effective theories which would be obtained within the type of
standard scenarios with (compactification of) flat extra dimension [22, 23], focusing mainly
on the zero-modes part of the action. Here, the deformation parameter κ can be naturally
interpreted as the 5-d bulk Planck mass.

Consistency of these scenarios with the recent bounds from collider physics experi-
ments [24–27] on the size of the compact extra dimension requires κ & O(1013) GeV which
would imply a strong suppression of the effects stemming from the underlying noncom-
mutative structure (i.e. κ-depending) in present and (near) future collider experiments,
as expected.

The invariances of the bulk gauge action together with the related differential calcu-
lus mentioned above give rise finally to a deformed dispersion relation in the 4-d effective
theory for the zero modes, identified to photons. Assuming, as done in most of the litera-
ture, that the (usual) notion of dispersion relation is still meaningful in a noncommutative
context (or at least for the κ-Minkowski space-time), the confrontation of data of GRB
photons to the deformed dispersion relation [30–34] improves the lower bound on κ to
κ & O(1017 − 1018)GeV. Such values would favor the scenarios with a very small flat
extra dimension for κ-Poincaré invariant gauge theories.

We have finally discussed the robustness of this latter bound if the usual notion of dis-
persion relation must be revised. This may be the case if the “noncommutative” light-cone
defining the relevant causal structure deviates from the classical one, as shown recently
in [62, 63]. Drawing a more firm conclusion requires at least to verify if the conclu-
sions [62, 63] still holds true, assuming a different noncommutative causal structure.
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A κ-Poincaré algebra and deformed translations

We will work in the bicrossproduct basis [6]. We denote respectively by ∆ : Pdκ⊗Pdκ → Pdκ,
ε : Pdκ → C and S : Pd

κ → Pd
κ , the coproduct, counit and antipode, thus equipping

Pdκ with a Hopf algebra structure. Pdκ can be conveniently described from the elements
(Pi, Ni,Mi, E , E−1), i = 1, 2, . . . , d− 1, respectively denoting the momenta, the boosts, the
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rotations and E := e−P0/κ satisfying the Lie algebra

[Mi,Mj ] = iε k
ij Mk, [Mi, Nj ] = iε k

ij Nk, [Ni, Nj ] = −iε k
ij Mk, (A.1)

[Mi, Pj ] = iε k
ij Pk, [Pi, E ] = [Mi, E ] = 0, [Ni, E ] = i

κ
PiE , (A.2)

[Ni, Pj ] = − i2δij
(
κ
(
1− E2

)
+ 1
κ
~P 2
)

+ i

κ
PiPj . (A.3)

The Hopf algebra structure is defined by

∆P0 = P0 ⊗ I + I⊗ P0, ∆Pi = Pi ⊗ I + E ⊗ Pi, (A.4)
∆E = E ⊗ E , ∆Mi = Mi ⊗ I + I⊗Mi, (A.5)

∆Ni = Ni ⊗ I + E ⊗Ni −
1
κ
ε jki Pj ⊗Mk, (A.6)

ε(P0) = ε(Pi) = ε(Mi) = ε(Ni) = 0, ε(E) = 1, (A.7)
S(P0) = −P0, S(E) = E−1, S(Pi) = −E−1Pi, S(Mi) = −Mi, (A.8)

S(Mi) = −Mi, S(Ni) = −E−1
(
Ni −

1
κ
ε jki PjMk

)
. (A.9)

The κ-Minkowski spaceMd
κ can be described as the dual of the Hopf subalgebra T dκ which

is generated by Pµ, E . It is called the deformed translation algebra. It becomes a ∗-Hopf
algebra through: P †µ = Pµ, E† = E . Then, the extension of the above duality to a duality
between ∗-algebras, which achieves the compatibility among the involutions, leads to

(t . f)† = S(t)† . f †, (A.10)

for any t in T dκ and any f ∈Md
κ. This, combined with (A.8) yields

(P0 . f)† = −P0 . (f †), (Pi . f)† = −E−1Pi . (f †), (E . f)† = E−1 . (f †). (A.11)

Note that (A.4) implies that Pi’s act as twisted derivations on Md
κ while P0 remains

untwisted. Indeed, one readily obtains

Pi . (f ? g) = (Pi . f) ? g + (E . f) ? (Pi . g), (A.12)
P0 . (f ? g) = (P0 . f) ? g + f ? (P0 . g). (A.13)

for any f, g ∈ Md
κ. Note also that E is not a derivation of Md

κ. Indeed, the first of (A.5)
implies

E . (f ? g) = (E . f) ? (E . g). (A.14)

Finally, we recall the action of T dκ onMd
κ. It is given by

(E . f)(x) = f

(
x0 + i

κ
, ~x

)
, (A.15)

(Pµ . f)(x) = −i(∂µf)(x). (A.16)
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