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Abstract: A new dark sector consisting of a pure non-abelian gauge theory has no renor-
malizable interaction with SM particles, and can thereby realise gravitational Dark Matter
(DM). Gauge interactions confine at a scale ΛDM giving bound states with typical lifetimes
τ ∼ M4

Pl/Λ5
DM that can be DM candidates if ΛDM is below 100TeV. Furthermore, acci-

dental symmetries of group-theoretical nature produce special gravitationally stable bound
states. In the presence of generic Planck-suppressed operators such states become long-
lived: SU(N) gauge theories contain bound states with τ ∼M8

Pl/Λ9
DM; even longer lifetimes

τ = (MPl/ΛDM)2N−4/ΛDM arise from SO(N) theories with N ≥ 8, and possibly from F4
or E8. We compute their relic abundance generated by gravitational freeze-in and by infla-
tionary fluctuations, finding that they can be viable DM candidates for ΛDM & 1010 GeV.
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1 Introduction

A new quasi-stable particle with massM , spin 0, 1/2 or 1 and gravitational interactions only
is a phenomenologically viable DM candidate, dubbed ‘gravitational DM’ [1–3]. Such DM
can be produced through gravitational scatterings or through fluctuations during inflation.

Can gravitational DM be realised in reasonable theories, or does it need ad hoc assump-
tions? For example a scalar S can always have non-gravitational renormalizable quartic
interactions to the Higgs H, |H|2|S|2. A singlet fermion N can always have a renormal-
izable Yukawa interaction to the Higgs and left-handed leptons L, NLH. (This can be
forbidden imposing a Z2 N → −N symmetry). The models of vectors considered in [1–3]
have the same problem, as they involve a scalar S to make vectors massive; furthermore
abelian vectors can mix with hypercharge at renormalizable level. We thereby here con-
sider a theory based on the SM plus a new non-abelian gauge group G and no scalars or
fermions charged under it. The action is

S =
∫
d4x

√
| det g|

[
−1

2M̄
2
PlR+ LSM + LDM + LNRO

]
(1.1)
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where MPl =
√

8πM̄Pl = 1.2 × 1019 GeV is the Planck mass, and LSM and LDM describe
the renormalizable interactions in the SM and DM sectors. As the dark sector is a pure
gauge theory with non-abelian gauge group G, at renormalizable level DM is decoupled
from the SM. The most generic Lagrangian is

LDM = −1
4G

a
µνG

µνa + θDM
g2

DM
32π2G

a
µνG̃

µνa (1.2)

where Gaµν = ∂µG
a
ν − ∂νG

a
µ − gDMf

abcGbµG
c
ν . The dark θDM term is physical and non-

perturbatively breaks P and CP in the dark sector; we assume that θDM is of order unity,
and it will not give qualitatively new effects. Given that the dark sector confines at a scale
ΛDM, the glueball hadrons made of vectors are possible DM candidates provided that they
are long lived enough. Different decay rates arise depending on the possible reasonable
assumptions considered below.

1. In the most extreme case one could assume that LNRO = 0 i.e. that gravity is the only
non-renormalizable interaction. This is a consistent possibility in theories of renor-
malizable quantum gravity based on 4-derivatives, that however contain possibly
problematic states with negative classical energy (see e.g. [4, 5]). Under this assump-
tion, most dark bound states undergo gravitational decays with rates Γ ∼ m5/M4

Pl.
They can be DM only if long-lived, which needs their mass m to be below ∼ 100 TeV.
We will find that some gauge groups G predict other bound states that are exactly
stable, in this limit.

2. In more general theories, gravity and SM interactions give rise, via perturbative quan-
tum corrections such as renormalisation group (RG) running, to Planck-suppressed
non-renormalizable operators that link the SM and DM sectors and respect the ac-
cidental symmetries of the renormalizable Lagrangian LSM + LDM. One example is
dimension 6 operators such as LDM|H|2/M2

Pl [6]. Such operators correct the rates of
gravitational processes by order unity factors.

3. As an alternative possibility, generic Planck-suppressed non-renormalizable operators
might be present in some theories of quantum gravity, such as those with lots of new
states around the Planck scale (e.g. string models), and those where gravity gets
strongly coupled (non-perturbative quantum gravity, possibly dominated by black
holes and wormholes, is expected to violate accidental symmetries [7, 8]). Such
operators imply decays of generic dark bound states. Some bound states remain
long-lived enough to be DM candidates, even if heavy.

The paper is structured as follows.
In section 2 we study the bound states and their lifetimes, finding, in addition to the

ordinary glueballs, special longer-lived glueballs if the gauge group is G = SU(N) and
very long-lived states if the gauge group SO(2N) at large N & 8. Such states can be DM
candidates even if heavier than about 1010 GeV.

In section 3 we compute DM production via gravitational thermal freeze in. This is
maximally efficient if the reheating temperature TRH is comparable to ΛDM. Our results
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differ from [1–3] that considered gravitational production of massive vectors with 3 degrees
of freedom, as our massless vectors have 2 degrees of freedom, and acquire mass through
confinement. Our study is similar to [9], that however only considered gravitational freeze-
in of SU(N) ordinary glueballs.1

In section 4 we consider gravitational production during inflation. As gravitational pro-
duction via scatterings is dominated by the highest reheating temperature after inflation,
inflation itself can contribute more. Ignoring possibly large but model-dependent effects
(production of DM from inflaton decay or from post-inflationary inflaton oscillations, if
kinematically allowed) we find that pure gravitational production during inflation is sub-
leading. Indeed our (purely transverse) vectors are conformally coupled at tree level, so
they are not produced in conformally flat cosmological backgrounds. The conformal sym-
metry is broken by the quantum running of the gauge coupling gDM and by confinement,
giving rise to computable effects.

Conclusions are given in section 5.

2 Bound states of vectors

Dark vectors are stable, being the only states charged under the dark gauge group. How-
ever, at dark temperatures TDM . ΛDM they acquire mass through confinement, forming
dark glueballs (DG) with mass MDG ∼ ΛDM. Thereby DM candidates arise if some bound
state made of dark vectors is long-lived enough. RG running of αDM = g2

DM/4π is given,
in one loop approximation, by

1
αDM(µ) = 1

αDM(µ′) + b

2π ln µ

µ′
, b = 11

3 CG (2.1)

where CG is the quadratic Casimir of the group G. Furthermore we define dG as the
dimension of the group G, so that CG = N and dG = N2 − 1 for G = SU(N); and
CG = 2(N − 2), dG = N(N − 1)/2 for SO(N).

So the running dark gauge coupling is related to the energy scale ΛDM at which the
dark sector confines, αDM(ΛDM) ∼ 4π, by

αDM(µ) ≈ 2π
b

1
lnµ/ΛDM

. (2.2)

2.1 Ordinary glueballs

Analogy with QCD computations [12–14] suggests that the lightest dark glueball is the
state with spin 0 and quantum numbers JPC = 0++ that corresponds to the gauge-invariant
operator Tr [GµνGµν ], where Gij ≡ Ga(T a)ij and T a are the generators in the fundamental.
We assume MDG ≈ 2ΛDM. Such state decays gravitationally into two gravitons, or into
SM particles via one-graviton exchange (see figure 1). Since two gravitational couplings
are involved, the decay amplitude arises at order 1/M2

Pl, and thereby gives a decay width
of order

ΓDG ≡ 1/τDG ∼ Λ5
DM/M

4
Pl. (2.3)

1Other works considered confined vectors in the opposite limit, where SU(N) glueballs interact so
strongly via enhanced NRO with the SM sector, that the thermal relic abundance is relevant [6, 10, 11].
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Figure 1. Possible gravitational decays of dark glueballs. SM denotes any Standard Model particle,
including gravitons.

Order one couplings depend on non-perturbative factors. Furthermore, generic Planck-
suppressed operators would contribute giving comparable decay rates. We thereby do not
go beyond the estimate.

Particles with DM-like relic abundance that decay into SM states with lifetime τ in
the range 3 min . τ . 1026 s are excluded. The lower bound is obtained from BBN, the
upper bound from indirect detection (see e.g. [15]) and the intermediate range is covered
by CMB observations (see e.g. [16–18]). Thereby, dark glueball DM with lifetime given by
eq. (2.3) is excluded in the mass range 100 TeV .MDG . 1010 GeV, see figure 2.

QCD computations also indicate that various heavier glueballs (pseudo-scalars, reso-
nances with spin 2, as well as GGG states with spin 1 and possibly 3), are light enough
that they cannot undergo fast gauge decays into two lightest glueballs. Most of such states
(the exceptions will be discussed in the next sections) undergo gravitational decays with
rates comparable to ΓDG, possibly including decays that involve one lighter glueball and
that can be faster, Γ(DG′ → DGg) ∼ Λ3

DM/M
2
Pl, see e.g. figure 1b.

The dark gauge group in general has a topological θDM term, that violates space-time
parity P and CP at non-perturbative level, such that P-even glueballs (such as TrGG) mix
with P-odd glueballs (such as TrGG̃). The TrGG̃ glueball cannot decay gravitationally,
but can decay via NRO with similar rate.

We next discuss the special glueballs, long-lived because of group-theoretical acciden-
tal symmetries.

2.2 Long-lived SU glueballs: group charge conjugation

The U(1), SU(N), SO(2k) and E6 groups with symmetric Dynkin diagrams have complex
representations, and complex conjugation is a Z2 outer automorphism of the group [16–19].
The explicit action of C can be obtained considering any complex representation with
generators T a: gauge interactions are left invariant by G C−→ −G∗. So C-even vectors are
associated to purely imaginary generators T a. The overall minus sign arises because, in
field theory, vectors couple to C-odd currents (of scalars, Jµ ∼ φ∗T a∂µφ, of vectors and of
fermions). A U(1) vector is C-odd, Gµ C−→ −Gµ. In a basis where each vector Gaµ is either
Odd or Even under C the group structure constants fabc and the symmetric tensor dabc
satisfy fOOO, fOEE = 0, fOOE , fEEE 6= 0 and dOOO, dOEE 6= 0, dOOE , dEEE = 0. So Gaµν
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Figure 2. Estimated lifetime of glueballs, compared to time-scales relevant for indirect detection
bounds and Big Bang Nucleosynthesis.

has the same parity as Gaµ and [11]

TrGµµ′Gνν′ ∝ Gaµµ′G
a
νν′ is CP-even

TrGµµ′ [Gνν′ ,Gρρ′ ] ∝ ifabcGaµµ′G
b
νν′G

c
ρρ′ is CP-even

TrGµµ′{Gνν′ ,Gρρ′} ∝ dabcGaµµ′G
b
νν′G

c
ρρ′ is CP-odd.

The d tensor (related to anomalies, in theories with fermions) is non-vanishing only for
SU(N) groups, excluding SU(2) = SO(3) and including SU(4) = SO(6). For all other
groups the C-odd GGG glueball vanishes. SO(2N) and E6 groups admit complex represen-
tations, but dabc vanishes.

The C-odd glueball predicted by SU(N) groups is stable under gravitational decays,
because gravitational interactions respect C, so charge conjugation acting on SM parti-
cles and on dark vectors are independent symmetries. On the other hand, the C-odd
glueball can decay gravitationally if the action contains the non-renormalizable oper-
ator Tr(G{G,G})/M2

Pl, which explicitly breaks C-parity. The C-odd state can decay
into SM particles in the presence of dimension-8 operators such as Tr(G3)|H|2/M4

Pl or
Tr(G3)µνBµν/M4

Pl. In both cases, the C-odd ball acquires a decay rate

ΓC−odd ∼ Λ9
DM/M

8
Pl. (2.4)

C-odd SU(N) glueballs could be the only DM in a narrow mass range around ΛDM ∼
1011 GeV, see figure 2.

2.3 Long-lived SO glueballs: group parity

Longer-lived glueball states arise if the gauge group is SO(N) with even N ≥ 8. Recalling
that SO(N) vectors can be described by an anti-symmetric matrix Gij = GaT aij , a long-
lived special glueball with mass M ≈ NΛDM/2 is formed by N/2 vectors and corresponds
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to the gauge-invariant operator

OOB = Pf G ∼ εi1···iNGi1i2 · · · GiN−1iN (2.5)

where Lorentz indices have been omitted, and the Pfaffian is the square root of the deter-
minant. Such state, being built with the Levi-Civita ε tensor, is odd under a Z2 parity in
internal SO(N) space. Following [20, 21] we dub it O-parity, in order not to confuse it
with usual parity P. We dub the O-odd glueballs as ‘odd-balls’.

O-parity can be concretely represented, for example, as a reflection of the first compo-
nent of the fundamental representation, such that it acts on vectors as Gij → (−1)δ1i+δ1jGij ,
leaving the SO(N) group algebra invariant [20, 21]. More abstractly, the odd-ball trans-
forms as Pf G → Pf G × detR under SO(N) rotations R, where detR = ±1 for O(N)
groups. O-parity is an accidental symmetry of the renormalizable gauge action, as well as
of its gravitational extension.

Under assumptions 1. or 2. in the introduction, odd-balls are gravitationally stable.
They decay gravitationally under assumption 3., namely if the action contains the higher-
dimensional operator Pf G/MN−4

Pl , which explicitly breaks O-parity. Odd-balls decay into
SM fields in the presence of operators such as |H|2 Pf G/MN−2

Pl . In both cases, odd-balls
decay with rate

ΓOB ∼M(M/MPl)2N−4, (2.6)

which is highly suppressed at moderately large N .2 For example, for N = 10, SO(10)
odd-balls can be DM in the mass range 1010 GeV . ΛDM . 1015. For N = 6, the long-
lived glueball of SO(6) = SU(4) is the C-odd glueball of SU(4), and eq. (2.6) reduces
to eq. (2.4).

Odd-balls exist for SO(2k) groups because the fundamental representation is real, so
that vectors can be written as a matrix Gij , with two lower indices, that turns out to be
anti-symmetric.3 The list of Lie groups and their invariant tensors in table 1 [23, 24],
suggests that similar states exist if G is the exceptional group F4 or E8. Concerning F4,
its Gij matrix of vectors is a sub-group of SO(26) vectors with rank 24 (ignoring Lorentz
indices and derivatives) [25]. Concerning E8, its 248× 248 matrix of vectors Gij has rank
240; we don’t know if the bound state built with the εi1···i248 tensor is long-lived or can
fragment into smaller bound states built with the Aijk and Si1···i8 invariant tensors of E8.

2.4 Hadronization of vectors

In the next section we will consider pairs of vectors produced by collisions with
E =

√
s � ΛDM. We here estimate the particle multiplicity in vector jets, determined

by soft-radiation doubly enhanced by IR logarithmic terms that can be resummed through
2A similar highly protected accidental global symmetry was used to propose a high-quality axion model

in [22].
3The Gij matrix of a Sp(N) group is symmetric so that its contractions with the ε tensor vanish. More

in general, ε is not a fundamental tensor of Sp(N), as it can be written as εi1···iN = Ai1i2 · · ·AiN−1iN +
permutations in terms of the anti-symmetric invariant tensor Aij with two indices of Sp(N).

– 6 –
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group fundamental adjoint invariant tensors
SU(N) N, N̄ N2 − 1 δji , εi1···iN
SO(N) N N(N − 1)/2 δij , εi1···iN
Sp(2N) 2N N(2N + 1) Aij , εi1···i2N ,

G2 7 14 δij , Aijk, εi1···i7

F4 ⊂ SO(26) 26 52 δij , Sijk, εi1···i26

E6 ⊂ SU(27) 27, 27 78 δji , Sijk, εi1···i27

E7 ⊂ Sp(56) 56 133 Aij , Sijkl, εi1···i56

E8 248 248 δij , Aijk, Si1···i8 , εi1···i248

Table 1. Invariant tensors of Lie groups, where S denotes a symmetric tensor A denotes an anti-
symmetric tensor, and ε is the Levi-Civita tensor. Complex conjugate representations are shown
as upper indices. We recall that SU(2) = SO(3) = Sp(2), SO(5) = Sp(4), SU(4) = SO(6),
SO(4) = SU(2)2.

evolution equations [26, 27]. The numerical factor is the same for all groups, as the vec-
tor/vector splitting function, proportional to the Casimir CG, gets cancelled by the one
loop running of the gauge coupling in it, with beta function proportional to CG. As a result

NDG(E) ∼ exp
(√

48
11 ln E

ΛDM

)
. (2.7)

We next need to estimate the relative amount of special glueballs with respect to ordi-
nary glueballs. It’s enough to consider G = SO(N) and its special odd-balls. We model
hadronization as follows. We assume that nearby vectors start forming bound states until
achieving singlets under G. We perform a MonteCarlo simulation, that adds to a list of
vectors one more vector Gij with random i < j indices until singlets are possible. When-
ever k > 1 vectors can be contracted with δij tensors, we assume that these k vectors form
a glueball with k vectors, that drop out of the bound state. Whenever the bound state
contains N/2 vectors with all different indices, we assume that these N/2 vectors form an
odd-ball. Running numerically up to N = 16 we find that the fraction of the dark vector
energy that ends up in SO(N) odd-balls is approximately 1.2× 0.76N , mildly suppressed
at large N . The energy fraction that ends up in ordinary glueballs made of k vectors is
approximatively given by the Poisson distribution e−µµk−1/(k − 1)! with µ = (N + 4)/6.

3 DM production from thermal scatterings

We here consider DM produced through the freeze-in mechanism by which a hot bath of
high temperature SM particles occasionally results in gravitational collisions that pair-
produce dark matter. The 2 → 2 annihilation processes SM SM → DM DM occur
through the s-channel exchange of a graviton hµν . Since the production is driven by non-
renormalizable gravitational interactions, it is dominated by the highest available energy

– 7 –
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scales after the end of inflation, i.e the reheating temperature TRH. Defining the Hubble
rate during inflation asHinfl, the reheating temperature is TRH ≈ (45/4π3gSM)1/4√MPlHinfl
if SM reheating happens instantaneously, or smaller TRH ∼

√
MPlΓinfl otherwise. We dis-

tinguish two regimes

• if TRH � ΛDM DM is mostly produced in form of massless dark gluons G (sec-
tions 3.1, 3.2) which later undergo cosmological evolution (section 3.3).

• if TRH � ΛDM DM is directly produced in form of hadronic bound states; as discussed
in section 3.4.

In both cases, one needs to take into account the possibility that faster decays of ordinary
glueballs reheat the Universe, see section 3.5.

3.1 Thermal production rate of massless dark vectors

We expand the metric as gµν = ηµν + 2hµν/M̄Pl, where M̄Pl = MPl/
√

8π is the re-
duced Planck mass. The graviton propagator with quadri-momentum k is i(ηµµ′ηνν′ +
ηµν′ηνµ′)/2k2 + · · · . One graviton hµν couples as hµνTµν/M̄Pl where Tµν ≡ 2 δS/δgµν =
TµνSM + TµνDM + · · · is the usual energy-momentum tensor. In our case it is traceless, as
we consider massless vectors, and we neglect masses of SM particles at temperature much
above the weak scale. Tree-level s-channel exchange of one graviton generates the effective
amplitude A = −iT /M̄2

Pls where T = TµνT
µν .

The differential cross sections for production of the dG massless gauge bosons from
scatterings of particles with negligible masses and spin S = {0, 1/2, 1} are obtained as
dσS/dt = Sf 〈|A |2〉S/16πs2, where Sf = 1/2 and 〈|A |2〉 is summed over the polarizations
of the final states and averaged over the initial states. Most cross sections can be obtained
from [28]4 or from [2] (see also [1], where some cross sections differ)

dσ0
dt

= dG
t2u2

16πs4M̄4
Pl
,

dσ1/2
dt

= dG
tu
(
t2 + u2)

64πs4M̄4
Pl
,

dσ1
dt

= dG
t4 + u4

64πs4M̄4
Pl

(3.1)

where s = (p1 +p2)2, t = (p1−q1)2, u = (p1−q2)2 are the usual Mandelstam variables. The
non-minimal coupling ξ of the spin-0 scalar h to gravity does not contribute to dσ0, because
it adds to the SM energy momentum tensor a term proportional to (∂µ∂ν − ηµν∂2)h2 and
because TµνDM is trace-less and conserved (see also [29] ).

The interaction rate density in thermal equilibrium at temperature T is

γeq
S = g2

SSi
T

32π4

∫ ∞
smin

ds s3/2σS(s)K1

(√
s

T

)
(3.2)

where Si = 1/2 if the initial particles are identical (real scalars and gauge bosons) and
Si = 1 otherwise (Dirac fermion/anti-fermion pair); gS are the polarization degrees of

4The cross sections in points 3 and 4 in appendix A, there computed for a tower of KK gravitons, are
adapted to a single graviton as S(x) = 1/M̄2

Plx.
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freedom of the initial particles (1 for scalars, 2 for fermions and massless vectors) and K1
is the modified Bessel function. We find

γeq
0 = dGT

8

40π5M̄4
Pl
, γeq

1/2 = 3dGT 8

20π5M̄4
Pl
, γeq

1 = 3dGT 8

10π5M̄4
Pl
. (3.3)

The total interaction rate density is

γeq(SM SM→ GG) = N0γ
eq
0 +N1/2γ

eq
1/2 +N1γ

eq
1 = 283dGT 8

40π5M̄4
Pl

(3.4)

where NS are the number of degrees of freedom, N0 = 4, N1/2 = 45/2 and N1 = 12 in
the SM.

3.2 Freeze-in abundance of massless vectors

We here compute the freeze-in gravitational production rate of dark vectors with negligible
mass, ΛDM � TRH. Assuming that the big-bang suddenly started at the maximal tem-
perature TRH and that the number abundance of dark vectors n vanishes at TRH, its later
evolution is dictated by the Boltzmann equation

ṅ+ 3HRn = 2γeq. (3.5)

Here a dot denotes d/dt, HR = ȧ/a =
√

8πρR/3/MPl is the expansion rate, ρR = π2g∗T
4/30

with g∗ = 106.75 is the energy density of SM radiation at temperature T . It is conve-
nient to rewrite the Boltzmann equation in terms of Y = n/s as function of z = TRH/T ,
where s = 4ρR/3T is the SM entropy density. The resulting Boltzmann equation is
sHRz dY/dz = 2γeq, solved by

Y (T � TRH) = 2γeq

3HRs

∣∣∣∣
T=TRH

. (3.6)

A similar result is found with a more realistic definition of TRH, that assumes that SM
particles are progressively reheated by the energy released by some non-relativistic energy
density ρφ that decays with width Γφ into SM particles only. ρφ could be due to the
inflaton, or to some non-relativistic unstable particle. The Boltzmann equations now are

ρ̇φ + 3Hρφ = −Γφρφ, ρ̇R + 4HρR = Γφρφ, ṅ+ 3Hn = 2γeq (3.7)

where H =
√

8π(ρφ + ρR)/3/MPl. The reheating temperature TRH is defined in terms of
Γφ as the temperature at which

Γφ = HR(TRH) i.e. TRH =
[ 45

4π3g∗
Γ2
φM

2
Pl

]1/4
. (3.8)

What happens at T � TRH gets diluted by the entropy release. Numerical solutions give

Y (T �TRH) = 0.53 2γeq

3HRs

∣∣∣∣
T=TRH

= 1.2 10−22
(

TRH

1012 GeV

)3 2γeq|T =TRH

T 8
RH/M̄

4
Pl
≈ 7.4 10−5dG

(
TRH

M̄Pl

)3
.

(3.9)
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3.3 Cosmological evolution of dark vectors

After vectors are gravitationally pair-produced with small number density Y = n/s ∼
(TRH/M̄Pl)3 and energy density ρ ∼ TRHn, three qualitatively different cosmological evo-
lutions can take place, depending on the value of ΛDM:

• For large ΛDM (we determine below how large) vectors don’t thermalize and their
number or energy density are too small to thermally block confinement. Thereby pair-
produced vectors immediately hadronise: each vector forms NDG(TRH) dark glueballs
with mass ∼ ΛDM, with NDG estimated previously in eq. (2.7). This happens when
the number density ∼ NDGn is smaller than Λ3

DM, and thereby for large ΛDM &
N

1/3
DG (T 2

RH/M̄Pl). In this regime, glueball self-interactions are slower than the Hubble
rate; ordinary glueballs next decay quickly, giving negligible cosmological effects.
Longer-lived glueballs remain as thermal relics; their density gets diluted by universe
expansion while their Y = n/s remains constant.

For smaller ΛDM the vector energy density is large enough to prevent immediate
hadronization:

• For very low ΛDM . M̄Pl(TRH/M̄Pl)15/4 screening of color charges blocks confinement
and reduces initial-state radiation, that we neglect: NDG ∼ 1. Vector thermalization
takes place when the SM sector has temperature T therm

SM ∼ M̄Pl(TRH/M̄Pl)3, because
at this point the scattering rate among vectors (with cross sections σ ∼ g4

DM/T
2)

exceeds the Hubble rate. Energy conservation implies that vectors thermalize to
temperature T therm

DM ∼ M̄Pl(TRH/M̄Pl)15/4. Next vectors cool and hadronise when
their temperature falls below TDM ∼ ΛDM, acquiring thermal abundance YDM ∼
(TDM/TSM)3 ∼ (TRH/M̄Pl)9/4. We can neglect cannibalistic 3 ↔ 2 processes that
occur after hadronization, as they only give a logarithmic correction to YDM.

• The intermediate range M̄Pl(TRH/M̄Pl)15/4 . ΛDM . T 2
RH/M̄Pl is similar to the previ-

ous case, except that vectors start interacting through non-perturbative interactions,
that lead to their confinement when the universe expanded enough that n ∼ Λ3

DM,
corresponding to a temperature of the SM sector equal to T had

SM ∼ ΛDM(M̄Pl/TRH). At
this point vectors form glueballs with mass ∼ ΛDM and thermal energy ∼ T had

DM . Their
abundance gets later corrected by cannibalistic processes, that we can again neglect.

3.4 Thermal production and decay of dark bound states

Finally, we consider thermal production at TRH . ΛDM of dark bound states. As these
are unstable, the production rate via inverse decays is simply given in terms of their decay
width as

γeq(SM SM→ DG) = TM2
DG

2π2 K1

(
MDG
T

)
ΓDG. (3.10)

Model-independent bounds imply that DM freeze-in due to inverse decays negligibly con-
tributes to the DM density. Therefore the production of DM for temperatures T . ΛDM
is dominated by the exponentially suppressed tail of production of vectors.
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3.5 Glueball decays and DM dilution

If ordinary dark glueballs have lifetime long enough that they dominate the energy density
of the Universe while decaying into SM particles and gravitons, they substantially reheat
the Universe and dilute the abundance of stabler DM odd-balls. The dilution effect is
sizeable if ΛDM � T 2

RH/MPl and τDG < TU ∼ 1010 yr. In this region glueballs decay
at temperature

Tdecay ≈
Λ3

DM
M̄2

Pl

(M̄Pl/TRH)/N1/3
DG if glueballs are not thermal

(M̄Pl/TRH)3/4 if glueballs are thermal .
(3.11)

We can approximate decays as instantaneous, finding that they reheat the Universe up to
T ′RH ∼ ΛDM (ΛDM/MPl)3/2. Then, the DM abundance gets diluted down to
Y diluted

DM = YDMDDG where the dilution factor DDG is estimated as

DDG ∼


1

NDG


√

ΛDMM̄Pl

TRH

3

if glueballs are not thermal,(
Λ2

DMM̄Pl
T 3

RH

)3/4

if glueballs are thermal.

(3.12)

Combining all effects above, and considering a model with G = SO(10), gives the nu-
merical result in figure 3, that shows that gravitational freeze-in can reproduce the DM
abundance in two different regimes: either as ordinary glueballs lighter than about 100TeV
(see also [9]), or as special long-lived odd-balls, that can thereby be much heavier, up to
1014 GeV in the figure. The intermediate mass range around 107 GeV is excluded by bounds
on the decaying ordinary glueballs, if the DM abundance is achieved. In this intermediate
range dilution is sizeable and the DM abundance is proportional to YDM/YDG where YDG
is the abundance of the decaying ordinary glueballs. This ratio does not depend on TRH,
so that requiring that the measured DM abundance is reproduced fixes the value of ΛDM
(ΛDM ≈ 108 GeV for N = 10).

In the next section we will show that pure gravitational production during inflation
gives a negligible extra contribution to the DM density.

4 DM production from inflationary fluctuations

Freeze-in gravitational production during the Big Bang is dominated by the highest tem-
peratures around TRH, which means that earlier cosmology can contribute more if higher
energies were present. We assume an earlier inflation phase, during which the energy den-
sity of the Universe was dominated by a scalar field φ, the inflaton. Its energy density is
ρ = φ̇2/2 + V and its pressure is p = φ̇2/2 − V . The inflaton potential V (φ) allows for a
prolonged rapid expansion (usually on a plateau, the so-called slow-roll phase), followed by
an oscillatory phase which sets the reheating temperature TRH, where the inflaton acquires
its mass mφ. DM production can arise in multiple ways:
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Figure 3. Parameter space of the SO(10) model. The DM abundance is reproduced along the
blue curve (in which case it is composed of both ordinary dark glueballs and odd-balls) and along
the green curve (in which case it is composed of odd-balls only, since other glueballs have decayed).
The upper red region is excluded from the current bound on the tensor inhomogeneities. Finally,
assuming generic Planck-suppressed operators in the pink and orange regions some state decays with
lifetime between 3 min and 1026 sec: these regions are excluded by indirect detection, CMB and Big
Bang Nucleosynthesis constraints if the decaying state has a relic abundance comparable to DM.

(a) from quantum fluctuations during inflation;

(b) after inflation end, when the inflaton is possibly oscillating around the minimum of
its potential. In our context the inflaton couples to DM at least gravitationally, and
the phase space is open if mφ & O(1)× ΛDM;

(c) when the inflaton finally decays, if it decays into DM. In our context this happens
at least gravitationally if mφ & 2O(1)× ΛDM.

In the above list, (b) and (c) are particle physics processes (see [30]) that depend on the
inflaton model. In particular, if the inflaton decays gravitationally into both SM and DM,
(c) would overwhelm the scattering contribution computed in the previous section. We
assume instead that mφ is small enough that (b) and (c) can be neglected, and focus
instead on the purely inflationary production (a).

During inflation, the negative pressure of the inflation (thanks to its barotropic pa-
rameter w ≈ −1) drives the exponential expansion of the Universe as dark energy with
scale factor a ∝ eHinflt with a roughly constant Hinfl = (8πV/3M2

Pl)1/2. The Universe,
even if somewhat inhomogeneous at small scales, quickly ends up being described by the
FLRW metric

ds2 = gµνdx
µdxν = dt2 − a(t)2dx2. (4.1)

As such, we expect inflation to homogenize the field relatively quickly.

– 12 –



J
H
E
P
0
3
(
2
0
2
1
)
1
7
4

�������� ���-���� ���

��� �* �

����� ������ �

�

�*

�
�
�
�
�
��
�
��
��
�
�
/�

�
������� �/�

>
Λ
�
�

�
������� �/�

<
Λ
�
�

������ �������� �/�
>
�
���

�
������ �������� �/�

<
�
���

���� ≫ Λ��

Figure 4. Evolution during and after inflation of the relevant scales, assuming instantaneous
reheating at inflation end, when a = aRH. The black continuous curve is the horizon, and the
region beyond the horizon is shaded in gray. The half-wavy line is the transition from vector to
hadron modes. The special mode k∗ is the one that, after inflation at a = a∗, re-enters the horizon
while transitioning from vector to hadron.

The FLRW spacetime is conformally flat, so that gravity does not couple to massless
classical vectors that enjoy a conformal symmetry. At quantum level, conformal invariance
is broken by the RG running of gDM, which generates a non-vanishing trace for the energy-
momentum tensor, Tµµ = βgDM TrG2

µν/2gDM, and ultimately leads to confinement and dy-
namical generation of the mass scale ΛDM. However, we cannot perform lattice simulations
of strongly-interacting vectors during Universe expansion, and inflationary production is
usually computed in terms of free modes. We thereby approximate the system by making
explicit its quasi-free degrees of freedom in the following unusual effective action

Strans
eff =

∫
d4x

√
−detg

{
−ĜaµνĜaµν/4g2

DM for modes with k/a&ΛDM∑
X [(∂X)2−(m2

X+ξXR)X2]/2 for modes with k/a.ΛDM
(4.2)

where X are the multiple quasi-stable dark hadrons with masses m ∼ ΛDM and unspecified
spins 0, 1, . . .. Eq. (4.2) means that, when expanding fields into modes, we only retain
hadrons at low energy and vectors at high-energy; for these we approximate the scale
anomaly by using the running gauge coupling gDM renormalized at their energy scale. As
usual when computing in cosmology, we define k as the comoving momentum, so that k/a
is the momentum. If Hinfl . ΛDM the vector description is never relevant (modes ‘confine’
early during inflation), and the computation reduces to inflationary production of massive
dark hadrons X, to be studied in section 4.1. If Hinfl & ΛDM modes cross inflation end
while being in the vector description and transition to the hadron description later: figure 4
sketches how the relevant scales evolve, and the computation is performed in section 4.2.5

5Production of vector dark matter during inflation was studied in [31], considering an Abelian massive
vector with Stueckelberg mass: in this case inflation dominantly produces its longitudinal component, which
can even have a ghost-like behaviour. We consider a qualitatively different situation: non-abelian massless
confining vectors with two transverse components.
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4.1 Inflationary production at H . ΛDM

In this regime inflation can produce dark hadrons X. We focus on a massive scalar hadron
bound state, as massive higher-spin bound states only exist in the low-energy regime where
the peculiar behaviour of massive fundamental higher-spin states (e.g. longitudinal modes
of spin 1, see [32–35]) does not take place. Then the bound-state field equations in the
homogenous limit are

Ẍ + 3HẊ + (m2 + ξR)X = 0 (4.3)

where R = 12H2
infl during inflation. The non-minimal coupling to gravity ξ is, in principle,

computable [36], and depending on the details of the model, can also lead to production
of DM during the preheating stage [37]. Non-perturbative dynamics is not expected to
produce the special conformal value ξ = 1/6, as strong coupling breaks the conformal
symmetry. In order to examine how dark matter is produced, we perturb the field around
the homogeneous value 〈X〉 = 0 as [38]

X(~x, t) =
∫

d3k

(2π)3
ei
~k·~x

a3/2

[
Xk(t)a~k +X∗k(t)a†

−~k

]
. (4.4)

Neglecting time derivatives of Hinfl, the equations of motion for the perturbation compo-
nents Xk with comoving momentum k are

Ẍk + ω2
kXk = 0, ω2

k = k2

a2 +H2
inflµ

2, µ2 ≡ −1
4 + m2

H2
infl

+ 12
(
ξ − 1

6

)
. (4.5)

The equations forXk are solved in terms of Bessel functions of order iµ. Particle production
during inflation can be computed at the end of inflation by using the in-out formalism: there
are two classes of solution to the equation of motion, X in

k and Xout
k , found by imposing as

a boundary condition the Bunch-Davies vacuum at very early times aH � k

(Xk)BD '
exp(ik/aH)√

2k
. (4.6)

Since a depends on time, the vacuum is time-dependent, and so the mode functions evolve
according to the Bogoliubov transformation

X in
k = αkX

out
k + βkX

out
k . (4.7)

The density of the final products is given by 〈0in|a†out(~p)aout(~q)|0in〉 = |βk|2δ(3)(~p − ~q),
which means

NX =
∫ ∞

0
dk 2πk2|βk|2. (4.8)

The Bogoliubov factor that relates in and out states is |βk|2 = 1/(e2πµ − 1). The integral
in eq. (4.8) is divergent. This is to be expected, since it corresponds to the total density of
particles produced across all time. Moreover, the bulk of particle production occurs when
the two terms in ωk are equal, corresponding to a vector mode with a wavelength set by
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its effective mass. We may then use the time at which production reaches its peak for each
mode in order to write the integral for NX in terms of η. This is given by k/(aHinfl) = µ,
or at conformal time η = −µ/k, and so

NX = 2π|βk|2µ3
∫ 0

−∞
dη (aH)4. (4.9)

The density of the “out” states at the end of inflation will then corresponds to the physical
DM density. We are interested in the production rate per unit (physical) volume Γ, which
is related to the physical number density nX at any given moment by nX = Γ/(3H). Using
the expression of the Bogoliubov coefficient βk, we can read off the rate Γ, which leads to
the result that the density of bound states at inflation end roughly corresponds to a thermal
density with T ∼ Hinfl/2π [30, 35, 38, 39],

ninfl = H3
infl
3

2πµ3

e2πµ − 1 ∼ H
3
infle

−m/Hinfl , ρinfl ≈ mninfl. (4.10)

Let us discuss the two limits of this result.

• Production of heavy bound states with masses m� Hinfl is exponentially suppressed
as expected. Assuming m ∼ ΛDM and instantaneous reheating (which then initiates
radiation domination) with TRH ∼

√
MPlHinfl � Hinfl implies that the inflationary

contribution is sub-dominant with respect to the contribution of freeze-in gravita-
tional collisions,

ρinfl
ρcoll

∼
√
Hinfl
MPl

e−ΛDM/Hinfl � 1. (4.11)

• Production of scalars so light that µ2 < −1/4 is not covered by this computation.
Indeed, µ2 = −1/4 + m2

eff/H
2
infl where meff is the effective mass of aX as function

of conformal time: this is the Weyl transformation that shows that a scalar with
meff = 0 i.e. µ2 = −1/4 remains in its vacuum state.

Fundamental light scalars with µ2 < −1/4 would develop a vacuum expectation value,
giving rise to the ‘misalignment mechanism’ for DM production. Our scalars X are however
hadrons, and, while we cannot compute what happens if ΛDM . Hinfl, the deep regime
ΛDM � Hinfl can be computed by switching to the constituent vector description. This is
studied in the next section.

4.2 Inflationary production at H � ΛDM

In this regime relevant modes exit from inflation while still being described by perturbative
vectors, rather than by hadrons. The vector action that effectively accounts for the quan-
tum RGE running is eq. (4.2). The vector equations of motion (we can drop non-abelian
terms) are

∇σĜσρ + ∇σ(g2
DM)

g2
DM

Ĝσρ = 0. (4.12)
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The coupling gDM runs with the length scale as

ε ≡ d ln g2
DM

d ln a = 11CG
3

g2
DM

8π2 > 0 (4.13)

where d ln a = Hdt = −dN corresponds to the number of e-foldings. We thereby have ε� 1
in the perturbative regime, and ε ∼ 1 around confinement. As expected, the trace anomaly
disappears when the running of gDM is neglected. Eliminating the temporal component
Ĝ0 along with the divergence of the spatial components Ĝi, the classical equation for the
homogeneous transverse spatial components of vectors, ĜT , is

d2ĜT
dt2

+ (1− ε)Hinfl
dĜT
dt

= 0. (4.14)

We expand the transverse ĜT in terms of canonically normalized modes as

ĜT (~x, t) =
∫

d3k

(2π)3
ei
~k·~x

a1/2

[
Gk(t)b~k +G∗k(t)b

†
−~k

]
gDM. (4.15)

Neglecting time derivatives of Hinfl, the equations of motion for the perturbation compo-
nents Gk with comoving momentum k are

G̈k + ω2
kGk = 0, ω2

k = k2

a2 +H2
inflµ

2, µ2 ≡ −1
4 + ε

2 (4.16)

where the value of ε is evaluated around horizon exit, so that eq. (2.2) gives ε≈1/ ln(a∗/aRH)
in the notations of figure 4. Eq. (4.16) has the same form as eq. (4.5) for scalar fluctuations
Xk, and is thereby similarly solved by Bessel functions of order iµ. Indeed, in the limit
ε = 0, eq. (4.16) reduces to µ2 = −1/4, the value that corresponds to a conformally coupled
state that remains in its ground state despite Universe expansion. The ε term coming from
the RG running of gDM makes µ2 > −1/4, bringing the vector into the regime where it does
not develop a coherent vacuum expectation, and its inflationary abundance is suppressed
by a multiplicative factor of ε (see eq. (29) in [40]).

As ε increases, the vector abundance remains small (|βk|2∼1/(2πµ) and ninfl ∼ µ2H3
infl)

as long as ε barely exceeds 1/2, such that µ is small. Only in the deep non-perturbative
regime ε ≈ 1 does the vector abundance become comparable to the bound-state abundance
computed in section 4.1. The two regimes therefore smoothly connect.

In conclusion, the above demonstrates that the purely inflationary production of both
free vectors and bound states, roughly given by a thermal density with T ∼ Hinfl or less,
is negligible compared to freeze-in due to gravitational scatterings,

ρinfl
ρcoll

. µ2

√
Hinfl
MPl

� 1. (4.17)

As a result, the final result remains as shown in figure 3, where only gravitational freeze-in
is included.
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5 Conclusions

We extended the Standard Model by adding a new ‘dark’ non-abelian gauge interaction and
nothing else, in particular no matter fields charged under the new interaction. Then the
new dark sector has no renormalizable interactions to the SM and confines at a scale ΛDM.
We thereby obtained a dark sector that interacts with the SM sector only gravitationally.
We also allowed for Planck-suppressed non-renormalizable operators.

The dark sector forms various glueball bound states that can be long-lived enough to be
Dark Matter candidates. The simplest glueballs (such as the lightest state Tr [GµνGµν ] with
JPC = 0++) decay gravitationally with lifetime τ ∼M4

Pl/Λ5
DM and can be DM candidates

only if ΛDM is below 100TeV.
We have shown that other special glueball states are odd under accidental symme-

tries of group-theoretical nature. Such special states are exactly stable in the limit where
Planck-suppressed operators are neglected, and otherwise have Planck-enhanced lifetimes.
SU(N) gauge theories contain special states odd under group charge-conjugation with
τ ∼ M8

Pl/Λ9
DM. Longer lifetimes τ = (MPl/ΛDM)2N−4/ΛDM are obtained in SO(N) theo-

ries at N & 8 because some “odd-ball” states are odd under parity in group space. Similar
states might exist for the F4 and E8 exceptional groups.

We compute the relic abundance generated by gravitational freeze-in and by purely
inflationary fluctuations, assuming that model-dependent decays and scatterings of the in-
flaton into DM are negligible (for example because blocked by a too small inflaton mass).
In particular, inflationary production of non-abelian vectors is possible because quantum
corrections break the conformal symmetry of the classical action, necessitating an unusual
computation. We found that gravitational freeze-in dominates for instantaneous reheat-
ing, and that a theory of non-abelian dark vectors provides successful gravitational DM
candidates, either as ordinary glueballs for ΛDM . 100 TeV, or as special heavier glueballs,
For example, figure 3 considers a SO(10) theory, showing that odd-ball DM is allowed for
1010 GeV . ΛDM . 1015 GeV.

Concerning phenomenology, DM signals generically get suppressed down to unobserv-
able levels when DM becomes heavy and weakly coupled. Although our model is gravi-
tationally coupled, the weak coupling can be circumvented in two situations. First, slow
gravitational decays of ultra-heavy relics can give signals in indirect detection experiments.
When a ultra-heavy particle decays into some SM particle, electro-weak and QCD log-
enhanced quantum corrections generate a shower containing all SM particles.6 Second,
two quasi-stable odd-balls can scatter with cross section σ ∼ 1/Λ2

DM producing glue-balls
that quickly decay gravitationally; the resulting flux of ultra-energetic SM particles in the
Milky Way (size R ∼ 10 kpc, DM density ρ ∼ GeV/ cm3) is however small because DM is
heavy: Φ ∼ R�(ρ�/ΛDM)2σ ∼ (1010 GeV/ΛDM)410−18/km2 yr. Furthermore, sub-leading
inflationary production can give rise to iso-curvature inhomogeneities. These effects can
easily be much below current bounds.

6The neutrino flux from decays of ultra-heavy relics cannot explain the ANITA anomalous events,
see [41].
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To conclude with a curiosity, we give a positive answer to the question raised by
Dyson [42]: no fundamental reason prevents observing a graviton, and thereby confirm-
ing its quantum nature. Indeed, ultra-heavy DM particles could decay into high-energy
gravitons, possibly giving a graviton flux as high as allowed by bounds on extra relativistic
radiation. This is detectable in principle (although planet-scale detectors are needed) by
gravitational scatterings on matter with cross section σ ∼ e2/M2

Pl.
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