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the geometric symmetries of supergravity backgrounds. In particular, we introduce the

notion of a conformal Killing spinor superfield εα, which proves to generate extended su-

perconformal transformations. Among its cousins are the conformal Killing vector ξa and

tensor ζa(n) superfields. The former parametrise conformal isometries of supergravity back-
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the conformal Killing tensors of a given background are associated with higher symme-

tries of the hypermultiplet. By studying the higher symmetries of a non-conformal vector

multiplet we introduce the concept of a Killing tensor superfield. We also analyse the

problem of computing higher symmetries for the conformal d’Alembertian in curved space

and demonstrate that, beyond the first-order case, these operators are defined only on a

limited class of backgrounds, including all conformally flat ones.
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1 Introduction

The superconformal tensor calculus for N = (1, 0) supergravity in six dimensions was for-

mulated by Bergshoeff, Sezgin and Van Proeyen in 1986 [1], as a natural generalisation of

that for d = 4, N = 2 supergravity [2–7]. More recently it was further developed [8, 9],

including the construction of the complete off-shell action for minimal Poincaré supergrav-

ity [8] and a higher-derivative extension of chiral gauged supergravity [9], see [10] for a

pedagogical review.

The tensor calculus [1] has found numerous applications, in particular the explicit

construction of off-shell curvature squared supergravity actions [9, 11–13]. It is a powerful

approach to formulate supergravity-matter systems. However, similar to its d = 4, N = 2

and d = 5, N = 1 cousins, it has two limitations. Firstly, it does not offer tools to

describe off-shell charged hypermultiplets. Secondly, it is rather impractical from the point

of view of constructing nonlinear supergravity actions such as invariants for conformal

supergravity, see, e.g., [14] for a related discussion. These limitations are avoided by

resorting to superspace techniques. There exist two fully fledged superspace formulations

for N = (1, 0) conformal supergravity and its general off-shell couplings to supersymmetric

matter: (i) SU(2) superspace [15]; and (ii) conformal superspace [16]. Both formulations

have analogues in d < 6 dimensions.

The SU(2) superspace of [15] is a particular d = 6 realisation of the general ap-

proach to formulate N -extended conformal supergravity in 3 ≤ d ≤ 6 dimensions using

the so-called GR[d;N ] superspace, where GR[d;N ] is the R-symmetry subgroup of the N -

extended superconformal group in d dimensions.1 By definition, GR[d;N ] superspace is a

supermanifoldMd|δN , with d bosonic and δN fermionic dimensions.2 Its structure group is

Spin(d−1, 1)×GR[d;N ], where Spin(d−1, 1) is the double covering group of the connected

Lorentz group SO0(d−1, 1). This means that the differential geometry ofMd|δN is realised

in terms of covariant derivatives of the form

DA = (Da,Dα̂) = EA − ΩA − ΦA . (1.1)

Here EA = EA
M∂/∂zM denotes the inverse superspace vielbein, ΩA = 1

2ΩA
bcMbc is the

Lorentz connection, and Φ = ΦA
IJI the R-symmetry connection. The index α̂ of the

fermionic operator Dα̂ is, in general, composite; it is comprised of a spinor index α and an

R-symmetry index. The supergravity gauge group includes a subgroup generated by local

transformations

δKDA = [K,DA] , K := ξBDB +
1

2
KbcMbc +KIJI , (1.2)

where the gauge parameters ξA, Kbc = −Kcb and KI obey standard reality conditions

but are otherwise arbitrary. Given a tensor superfield ϕ (with suppressed Lorentz and

R-symmetry indices), its transformation law under (1.2) is δKϕ = Kϕ.

1According to the Nahm classification [17], superconformal algebras exist in spacetime dimensions d ≤ 6.

The d = 5 case is truly exceptional, for it allows the existence of the unique superconformal algebra F(4).
2Here δN = 2bd/2cN for d = 3, 4 and 6, and δN = 8 for d = 5. We denote by zM = (xm, θµ̂) the local

coordinates for Md|δN . Without loss of generality, we assume that the zero section of Md|δN defined by

θµ̂ = 0 corresponds to the spacetime manifold Md.

– 2 –



J
H
E
P
0
3
(
2
0
2
1
)
1
5
7

In order to describe conformal supergravity, the superspace torsion TAB
C in

[DA,DB} = −TABCDC −
1

2
RAB

cdMcd −RABIJI , (1.3)

must obey certain algebraic constraints, which may be thought of as generalisations of the

torsion-free constraint in gravity. A fundamental requirement on the superspace geome-

try, in order to describe conformal supergravity, is that the constraints on the torsion be

invariant under super-Weyl transformations of the form

δσDa = σDa + · · · , δσDα̂ =
1

2
σDα̂ + · · · , (1.4)

where the scale parameter σ is an arbitrary real superfield. The ellipsis in the expression

for δσDa includes, in general, a linear combination of the spinor covariant derivatives Dβ̂
and the structure group generators Mcd and JK . The ellipsis in δσDα̂ stands for a linear

combination of the generators of the structure group. The resulting curved superspace will

be denoted (Md|δN ,D). In many dynamical systems of interest, matter superfields may be

chosen to be primary under the super-Weyl group, δσϕ = wϕσϕ, where the parameter wϕ
is the super-Weyl weight of ϕ.

The approach sketched above was pioneered in d = 4 by Howe [18, 19] who put forward

the concept of U(N ) superspace. In particular, he introduced the U(1) and U(2) superspace

geometries [19], corresponding to N = 1 and N = 2 conformal supergravity, respectively.

Howe’s analysis was purely geometric in the sense that he did not address the problem of

constructing supergravity-matter actions. The full power of U(1) superspace was revealed

in the book [20], which provided a unified description of the off-shell formulations for N = 1

supergravity and their couplings to matter. General off-shell N = 2 supergravity-matter

systems in d = 4 were constructed in U(2) superspace in [21], building on the concepts of

rigid projective superspace [22–24] and superconformal projective multiplets [25, 26]. The

four-dimensional results of [21] provided a natural extension of the earlier construction of

the SU(2) superspace formalism in five dimensions [27]. The d = 3 realisation of GR[d;N ]

superspace is known as SO(N ) superspace. Its geometry was developed in [28, 29]. This

formalism was used in [29] to construct off-shell supergravity-matter couplings for N ≤ 4.

As compared with the d = 6, N = (1, 0) superconformal tensor calculus of [1], the

important advantage of the SU(2) superspace approach [15] is that it offered off-shell for-

mulations for general supersymmetric nonlinear σ-models coupled to supergravity.3 This

was achieved by making use of the concept of covariant projective supermultiplets.4

The superspace formalism of [16] is a particular d = 6 realisation of the universal

approach to N -extended conformal supergravity in d ≤ 6 dimensions, which is based on

gauging the entire N -extended superconformal group, of which Spin(d−1, 1)×GR[d;N ] is

a subgroup. This approach, known as conformal superspace, was originally developed for

3The component reduction of these locally supersymmetric σ-models can be carried out using the tech-

niques developed by Butter in the d = 4, N = 2 case [30, 31].
4The concept of covariant projective supermultiplets was introduced earlier in d < 6 dimensions, first in

the framework of d = 5, N = 1 [27, 32, 33], followed by d = 4, N = 2 [21, 34], then in d = 3, N = 3 and

N = 4 [29], and finally in d = 2, N = (4, 4) supergravity [35, 36].
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N = 1 and N = 2 supergravity theories in four dimensions by Butter [37, 38]. More re-

cently, it has been extended to the cases of d = 3, N -extended conformal supergravity [39],

d = 5 conformal supergravity [40], and d = 6, N = (1, 0) conformal supergravity [16].

Conceptually, conformal superspace is a superspace analogue of the famous formulation

for conformal (super)gravity as the gauge theory of the (super)conformal group pioneered

by Kaku, Townsend and van Nieuwenhuizen [41, 42], and further developed by Kugo and

Uehara [43].

One of the important achievements of the conformal superspace approach [16] is that

it provided the first ever construction of all the invariants for N = (1, 0) conformal su-

pergravity in six dimensions.5 Several months later, these invariants were reduced to

components in [45], which resulted in the first tensor calculus description of the conformal

supergravity actions. Conformal superspace has also been used to describe the supersym-

metric completion of several curvature-squared invariants for N = (1, 0) supergravity in

six dimensions [46, 47].

Conformal superspace is an ultimate formulation for conformal supergravity in the

sense that any different off-shell formulation is either equivalent to it or is obtained from it

by partially fixing the gauge freedom. In particular, GR[d;N ] superspace can be obtained

from a partial gauge fixing of conformal superspace, see [37–40] for the technical details. In

the case of six dimensions, it was demonstrated in [45] that the N = (1, 0) superconformal

tensor calculus of [1] is a gauged fixed version of the conformal superspace developed in [16].

Recently, local supertwistor formulations for N = (1, 0) and N = (2, 0) conformal su-

pergravity in six dimensions have been constructed [48], and analogous formulations have

been proposed in diverse dimensions [49]. Ref. [48] offered the first superspace description

of the N = (2, 0) Weyl supermultiplet, which was originally formulated using the supercon-

formal tensor calculus [50]. In accordance with the above discussion, the local supertwistor

formulation should be equivalent to conformal superspace.6 The latter is at present much

more developed and is thus the one favoured in this paper. We should also mention that

the harmonic superspace formulation for N = (1, 0) conformal supergravity was briefly

described in [52]. Unfortunately, this approach has not been pursued for over thirty years.

The present work is devoted to new applications of the supergravity formula-

tions [15, 16]. Their fundamental property is that they offer a universal setting to generate

off-shell supersymmetric field theories in curved space. In particular, all N = (1, 0) super-

symmetric theories that were originally constructed in terms of ordinary fields, may be read

off from a superfield theory upon elimination of the auxiliary fields. In order to develop

supersymmetric field theory in a given supergravity background, one needs a formalism

to determine the (conformal) isometries of the background superspace. Such a formalism

was developed long ago [53] within the framework of d = 4, N = 1 old minimal supergrav-

ity. The approach described in [53] is universal, for in principle it may be generalised to

curved backgrounds associated with any supergravity theory formulated in superspace, see

5A simple by-product of the analysis in [16] was the first construction of the locally supersymmetric

F2F action coupled to conformal supergravity. In Minkowski space, the N = (1, 0) supersymmetric F2F

action was described for the first time in [44] within the harmonic superspace approach.
6Both constructions are based on Cartan connections, first discussed in the superspace context in [51].
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the discussion in [54]. In particular, this approach has been properly generalised to study

supersymmetric backgrounds in N = 2 supergravity in three [55] and four [56] dimensions,

and N = 1 supergravity in five dimensions [57]. One of the goals of this paper is to work

out the structure of (conformal) isometries of a given N = (1, 0) supergravity background

in six dimensions.

Within the GR[d;N ] superspace formulation, there exists a universal description of all

conformal isometries of a given curved background (Md|δN ,D). Following the discussion

in [54], a real supervector field ξ = ξBEB on (Md|δN ,D) is called conformal Killing if

(δK + δσ)DA = 0 , (1.5)

for some Lorentz Kbc, R-symmetry KI and super-Weyl σ parameters. For any dimension

3 ≤ d ≤ 6 and any conformal supergravity, the following general properties are expected

to hold:

• All parameters Kbc, KI and σ are uniquely determined in terms of ξB, which allows

us to write Kbc = Kbc[ξ], KI = KI [ξ] and σ = σ[ξ].

• The spinor component ξβ̂ is uniquely determined in terms of ξb.

• The vector component ξb obeys a closed equation that contains all information about

the conformal Killing supervector field.

The properties have been established for d < 6 in several publications [53, 55–57]. The d =

6, N = (1, 0) case will be studied in this paper. By construction, the set of conformal Killing

vectors on (Md|δN ,D) is a Lie superalgebra with respect to the standard Lie bracket. This

is the superconformal algebra of (Md|δN ,D). One may show that it is finite-dimensional.

In the d = 6, N = (1, 0) case, the proof will be given in section 3.

Given a conformal Killing supervector field ξA on (Md|δN ,D), the first-order operator

D
(1)
ξ = K[ξ] + δσ[ξ] is a symmetry of any supersymmetric wave equation Oϕ = 0, where

O is the kinetic operator for some matter supermultiplets ϕ. For every solution ϕ of the

mass-shell equation, D
(1)
ξ ϕ is also a solution. It is of interest to study higher symmetries

of supersymmetric wave equations, nth-order operators D
(n)
ζ taking solutions to solutions,

for instance in the context of higher-spin superalgebras [58–62]. Higher symmetries of

relativistic wave equations have extensively been studied in the literature, see, e.g., [63–71]

and references therein. In the supersymmetric case, however, the program of studying the

higher symmetries of the so-called super-Laplacians and related geometric structures in

diverse dimensions has been initiated only a few years ago [72–74], mostly in Minkowski

superspace (Md|δN , D). So far there has been only one publication [75] devoted to the

higher symmetries of supersymmetric wave equations in curved supergravity backgrounds.

The present paper is aimed, in part, at a study of the higher symmetries of several on-shell

supermultiplets in a background of N = (1, 0) conformal supergravity in six dimensions.

Their non-supersymmetric analogues are also examined in diverse dimensions, and bring

with them new insights for the supersymmetric story.

– 5 –
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This paper is organised as follows. Section 2 reviews the SU(2) and conformal su-

perspace formulations for conformal supergravity. The conformal isometries of a fixed

superspace are then studied in section 3. In section 4, we introduce the notion of a confor-

mal Killing spinor superfield, which generates extended superconformal transformations.

By a systematic study, it is shown that among its cousins are the conformal Killing vectors

and tensors, which generate conformal isometries and higher symmetries, respectively. In

section 5 we review the higher symmetries of the conformal d’Alembertian and present

some new observations pertinent to the supersymmetric story. Following this, we study

the higher symmetries of the hypermultiplet and vector multiplet in sections 6 and 7, re-

spectively. Section 8 is devoted to the study of N = (1, 0) maximally supersymmetric

backgrounds. Concluding comments are given in section 9.

The main body of this paper is accompanied by several technical appendices. Ap-

pendix A recounts our conventions. We review the conformal Killing supervector fields of

N = (2, 0) Minkowksi superspace in appendix B. In appendix C, we detail a formalism

for the study of supersymmetric backgrounds from a superspace perspective. Finally, in

appendix D, we detail how to ‘degauge’ from conformal to SU(2) superspace.

2 Conformal supergravity in superspace

As discussed in the introduction, there exist two fully fledged superspace formulations for

N = (1, 0) conformal supergravity and its couplings to supersymmetric matter. In the lit-

erature they are referred to as (i) SU(2) superspace [15]; and (ii) conformal superspace [16].

Since both approaches will be used in the present paper, in this section we briefly review

these formulations.

2.1 SU(2) superspace

We consider a supermanifoldM6|8 parametrised by six bosonic (x) and eight fermionic (θ)

coordinates zM = (xm, θµı ), where m = 0, 1, · · · , 5, µ = 1, · · · , 4 and ı = 1, 2. The name

“SU(2) superspace” derives from the fact that its structure group, Spin(5, 1) × SU(2)R,

includes the R-symmetry group SU(2)R in addition to the spin group. Therefore, the

superspace covariant derivatives, DA = (Da,Diα), have the form

DA = EA −
1

2
ΩA

bcMbc − ΦA
jkJjk . (2.1)

Here EA = EA
M∂M is the frame field, with EA

M being the inverse superspace vielbein,

ΩA
bc the Lorentz connection, and ΦA

ij the SU(2)R connection. The Lorentz (Mab) and the

R-symmetry (J ij) generators are defined to act on Weyl spinors, vectors and isospinors as

follows:

Mα
βψγ = δγαψ

β − 1

4
δβαψ

γ , Mα
βψγ =

1

4
δβαψγ − δβγψα , (2.2a)

MabVc = 2ηc[aVb] , J ijχk = εk(iχj) , (2.2b)

where the Lorentz generator with spinor indices, Mα
β , is defined in accordance with the

general rule (A.19), Mα
β = −1

4(γab)α
βMab. For further details regarding our spinor con-

ventions we refer the reader to appendix A.1.

– 6 –
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The covariant derivatives are characterised by graded commutation relations

[DA,DB} = −TABCDC −
1

2
RAB

cdMcd −RABklJkl , (2.3)

where TAB
C is the torsion, RAB

cd the Lorentz curvature, and RAB
kl the R-symmetry

curvature. In order to describe conformal supergravity, the torsion must obey certain

constraints [15]

T iα
j
β
c = 2iεij(γc)αβ , (dimension-0) (2.4a)

T iα
j
β
γ
k = 0 , T iα b

c = 0 , (dimension-
1

2
) (2.4b)

Ta b
c = 0 , Ta β(j

β
k) = 0 . (dimension-1) (2.4c)

Their general solution is given by the relations

{Diα,D
j
β} = −2iεij(γa)αβDa + 2iCija (γabc)αβMbc − 2iεijW abc(γa)αβMbc

−4iεijNabc(γa)αβMbc + 6iεijCkla (γa)αβJkl −
8i

3
Nabc(γabc)αβJ

ij , (2.5a)

[Da,Djβ ] = Cbjk(γab)β
δDkδ −

1

4
Wacd(γ

cd)β
δDjδ −Nacd(γ

cd)β
δDjδ

−1

2
Ra

j
β
cdMcd −Rajβ

klJkl , (2.5b)

where the curvature tensors in the second line of (2.5b) have the following form:

Ra
j
β
cd = −1

4

[
(γa

cd)γδδ
ρ
β − 2(γa)βγ(γcd)δ

ρ
]
Wρ

γδj

−
[
(γa

cd)βγ + 4δ[c
a (γd])βγ

]( 1

12
Wγj − Cγj

)
+
[
(γcd)β

γδba + 2δγβδ
[c
a η

d]b
](
Nbγj − Cbγj

)
, (2.6a)

Ra
j
β
kl = −(γa)βγCγjkl − 5(γa)βγ

(
Cγ(k − 1

6
Wγ(k

)
εl)j

−
(

4Naβ(k − 3Caβ(k
)
εl)j . (2.6b)

The algebra of the covariant derivatives is determined by three dimension-1 real tensors,

Wabc = W[abc], Nabc = N[abc] and Cija = Cjia , and their covariant derivatives. The 3-forms

Nabc and Wabc are self-dual and anti-self-dual, respectively,

1

3!
εabcdefNdef = Nabc ,

1

3!
εabcdefWdef = −W abc . (2.7)

They are equivalently described in terms of the symmetric chiral rank-2 spinors Wαβ :=
1
6Wabc(γ̃

abc)αβ and Nαβ := 1
6Nabc(γ

abc)αβ .

The curvature tensors (2.5a) and (2.5b) involve several dimension-3/2 descendants of

Ca ij , Nαβ and Wαβ , defined by

DγkCa ij = (γa)γδCδijk + εk(iCa γj) + εk(i(γa)γδCδj) , (2.8a)

DγkNαβ =
2

3

(
Dk[γNα]β +Dk[γNβ]α

)
:= (γa)γ(αNa β)

k , (γa)[γαNa β]
k = 0 , (2.8b)

DγkWαβ = Wγk
αβ + δ(α

γ W
β)
k . (2.8c)

– 7 –



J
H
E
P
0
3
(
2
0
2
1
)
1
5
7

In accordance with the general discussion in section 1, the curved superspace introduced

above will be denoted (M6|8,D).

In SU(2) superspace, the gauge group of conformal supergravity is generated by three

types of local transformations: (i) general coordinate transformations; (ii) structure group

transformations; and (iii) super-Weyl transformations. An infinitesimal transformation of

the combined type (i) and (ii) acts on the covariant derivatives as

δKDA = [K,DA] , K = KCDC +
1

2
KcdMcd +KklJkl . (2.9)

Given a tensor superfield U (with its indices suppressed), its transformation law with

respect to (2.9) is

δKU = KU . (2.10)

An infinitesimal super-Weyl transformation of the covariant derivative [15] is

δσDiα =
1

2
σDiα − 2(Diβσ)Mα

β − 4(Dαjσ)J ij , (2.11a)

δσDa = σDa −
i

2
(γ̃a)

αβ(Dkασ)Dβk − (Dbσ)Mab −
i

8
(γ̃a)

αβ(DkαDlβσ)Jkl , (2.11b)

where the real parameter σ is unconstrained. The crucial feature of these transformations

is that they preserve the supergravity constraints (2.4).

A tensor superfield U is said to be primary of Weyl weight (or dimension) w if it

transforms homogeneously under (2.11)

δσU = wσU . (2.12)

The torsion Wabc proves to be a primary superfield of dimension +1. It is the N = (1, 0)

supersymmetric extension of the Weyl tensor [15, 76].

In what follows, we will need a finite form of the super-Weyl transformations (2.11).

Direct calculations lead to

D′iα = e
1
2
σ
(
Diα − 2(Diβσ)Mα

β − 4(Dαjσ)J ij
)
, (2.13a)

D′a = eσ
(
Da −

i

2
(γ̃a)

αβ(Dkασ)Dβk − (Dbσ)Mab −
i

8
(γ̃a)

αβ(DkαDlβσ)Jkl

− i

8
(γ̃a

cd)αβ(Dkασ)(Dβkσ)Mcd −
3i

4
(γ̃a)

αβ(Dkασ)(Dlβσ)Jkl

)
. (2.13b)

Such a transformation acts on the dimension-1 torsion superfields as follows:

W ′abc = eσWabc , (2.14a)

N ′abc = eσ
(
Nabc −

i

32
(γ̃abc)

αβ
(
DkαDβkσ + 4(Dkασ)Dβkσ

))
, (2.14b)

C ′a
ij = eσ

(
Ca

ij +
i

8
(γ̃a)

αβ
(
D(i
αD

j)
β σ − 2(D(i

ασ)Dj)β σ
))

. (2.14c)

– 8 –
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2.2 Conformal superspace

In the conformal superspace approach of [16] (see also [45] for the component analysis) the

whole superconformal algebra is gauged in superspace by introducing covariant derivatives

∇A = (∇a,∇iα) of the following form

∇A = EA −
1

2
ΩA

bcMbc − ΦA
klJkl −BAD− FABK

B . (2.15)

The difference compared with the SU(2) superspace covariant derivatives of (2.1) is the

presence of dilatation (BA) and special conformal (FAB) connections, where D is the di-

latation generator and KA = (Ka, Sαi ) are the special conformal generators. The complete

list of graded commutation relations defining the N = (1, 0) superconformal algebra are

given in appendix A.2.

To describe the standard N = (1, 0) Weyl multiplet in conformal superspace, one

constrains the algebra of covariant derivatives

[∇A,∇B} = −TAB
C∇C −

1

2
R(M)AB

cdMcd −R(J)AB
klJkl

−R(D)ABD−R(K)ABCK
C , (2.16)

to be completely determined in terms of the super-Weyl tensor Wαβ

KAWαβ = 0 , DWαβ = Wαβ , (2.17)

which satisfies the constraints

∇(i
α∇

j)
βW

γδ = −δ(γ
[α∇

(i
β]∇

j)
ρ W

δ)ρ , (2.18a)

∇kα∇γkW βγ − 1

4
δβα∇kγ∇δkW γδ = 8i∇αγW γβ . (2.18b)

Additionally, we require that the algebra of covariant derivatives resembles a d = 6, N =

(1, 0) super Yang-Mills theory

{∇iα,∇
j
β} = −2iεij(γa)αβ∇a ,

[
∇a,∇iα

]
= (γa)αβW

βi . (2.19)

Here W αi is a primary dimension 3/2 operator valued in the superconformal algebra.

Moreover, one imposes that the structure group generators act on the covariant derivatives

∇A precisely as if they were the generators PA.

By solving the Bianchi identites, one obtains

[∇a,∇b] = − i

8
(γab)α

β{∇kβ ,W α
k } , (2.20)

and the additional constraints

{∇(i
α ,W

βj)} =
1

4
δβα{∇(i

γ ,W
γj)} , {∇kγ ,W

γ
k } = 0 . (2.21)
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The operator W αi is then constrained to be

W αi = Wαβ∇iβ +∇iγWαβMβ
γ − 1

4
∇iγW βγMβ

α +
1

2
∇βjWαβJ ij +

1

8
∇iβWαβD

− 1

16
∇jβ∇

i
γW

αγSβj +
i

2
∇βγW γαSβi

− 1

12
(γab)β

γ∇b
(
∇iγW βα − 1

2
δαγ∇iδW βδ

)
Ka . (2.22)

Results at mass-dimension higher than 3/2 can be found in [16].

It is convenient to define the following

Xαi := − i

10
∇iβWαβ , Xk

γ
αβ := − i

4
∇kγWαβ − δ(α

γ X
β)k , (2.23a)

Yα
βij := −5

2

(
∇(i
αX

βj) − 1

4
δβα∇(i

γX
γj)

)
= −5

2
∇(i
αX

βj) , (2.23b)

Y :=
1

4
∇kγX

γ
k , (2.23c)

Yαβ
γδ := ∇k(αXβ)k

γδ − 1

6
δ

(γ
β ∇

k
ρXαk

δ)ρ − 1

6
δ(γ
α ∇kρXβk

δ)ρ . (2.23d)

Due to the constraints (2.18), these superfields are the only independent descendants of

Wαβ . As described in detail in [45], the multiplet of superconformal field strengths of the

standard Weyl multiplet is described by the θ = 0 projection of the previous superfields.

A reduction to components is straightforward and discussed in [45].

In conformal superspace, the gauge group of conformal supergravity, G, is generated by

covariant general coordinate transformations, associated with a local superdiffeomorphism

parameter ξA and standard superconformal transformations, associated with the following

local superfield parameters: the Lorentz Λab = −Λba, SU(2)R Λij = Λji, dilatation σ, and

special conformal transformations ΛA = (Λa,Λ
i
α). The covariant derivatives transform as

δK∇A = [K,∇A] , K = ξB∇B +
1

2
ΛbcMbc + ΛjkJjk + σD + ΛBK

B . (2.24)

While the transformation law for a tensor superfield U is

δKU = KU . (2.25)

The superfield U is said to be primary and of dimension w if

KAU = 0 , DU = wU . (2.26)

It is important to point out that the dimension of U coincides with its super-Weyl

weight (2.12).

We conclude by mentioning that SU(2) superspace is a gauge-fixed version of the

conformal superspace geometry and thus their physical multiplets are equivalent. We refer

the reader to appendix D for a description of the degauging procedure.
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3 Conformal isometries

In this paper a central role is played by the conformal isometries of a given supergravity

background (M6|8,D) and their extensions.7 We will say that a real supervector field

ξ = ξBEB on (M6|8,D) is conformal Killing if there exist Lorentz (Kbc[ξ]), R-symmetry

(Kjk[ξ]) and super-Weyl (σ[ξ]) parameters such that

δDA =
(
δK[ξ] + δσ[ξ]

)
DA =

[
ξBDB +

1

2
Kbc[ξ]Mbc +Kjk[ξ]Jjk,DA

]
+ δσ[ξ]DA = 0 , (3.1)

where the super-Weyl transformation δσDA is defined in (2.11). Such transformations

render the superspace geometry invariant, in particular

δCija = δWabc = δNabc = 0 , (3.2)

and thus are said to be superconformal.

3.1 Conformal Killing vector superfields

The solution to (3.1) is:

ξαi =
i

12
Dβiξβα = − i

12
(γ̃a)αβDβiξa , (3.3a)

Kα
β [ξ] =

1

2

(
Diαξ

β
i −

1

4
δβαDiγξ

γ
i

)
+

1

2
ξa(Wabc + 2Nabc)(γ

bc)α
β = −1

4
(γab)α

βDaξb , (3.3b)

Kij [ξ] =
1

4
Dα(iξ

α
j) = − i

48
(γ̃a)αβDα(iDβj)ξa , (3.3c)

σ[ξ] =
1

4
Diαξαi =

1

6
Daξa , (3.3d)

where ξa obeys

Diαξa = −1

5
(γab)α

βDiβξb . (3.4)

We have shown that every infinitesimal superconformal transformation, δK[ξ] + δσ[ξ], of

(M6|8,D) is parametrised by the vector superfield ξa, and eq. (3.4) is the fundamen-

tal constraint defining this transfromation. All other conditions are implications of (3.3)

and (3.4). For instance, the latter implies the usual conformal Killing equation for the

superfield ξa:

D(aξb) =
1

6
ηabDcξc . (3.5)

While the analysis above was carried out in the SU(2) superspace setting, equivalent

results can be derived using the conformal superspace approach. Here we will say that ξ =

ξBEB is conformal Killing if there exist Lorentz (Λbc[ξ]), R-symmetry (Λjk[ξ]), dilatation

(σ[ξ]) and special conformal (ΛB[ξ]) parameters such that

δK[ξ]∇A = [ξB∇B +
1

2
Λbc[ξ]Mbc + Λjk[ξ]Jjk + σ[ξ]D + ΛB[ξ]KB,∇A] = 0 . (3.6)

7The conformal isometries of N = (1, 0) Minkowski superspace in six dimensions were studied in [16, 77].
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Since this transformation preserves the superspace geometry, it must also leave the super-

Weyl tensor invariant,

δK[ξ]W
αβ = K[ξ]Wαβ = 0 . (3.7)

The solution to (3.6) is:

ξαi =
i

12
∇βiξβα = − i

12
(γ̃a)αβ∇βiξa , (3.8a)

Λα
β [ξ] =

1

2

(
∇iαξ

β
i −

1

4
δβα∇iγξ

γ
i

)
+ ξαγW

βγ = −1

4
(γab)α

β∇aξb + ξαγW
βγ (3.8b)

Λij [ξ] =
1

4
∇α(iξ

α
j) = − i

48
(γ̃a)αβ∇α(i∇βj)ξa , (3.8c)

σ[ξ] =
1

4
∇iαξαi =

1

6
∇aξa , (3.8d)

Λiα[ξ] =
1

2
∇iασ[ξ]− 1

16
ξαβ∇iγW βγ =

1

12
∇iα∇aξa −

1

16
ξαβ∇iγW βγ , (3.8e)

Λa[ξ] = 2(γ̃a)
αβ∇αiΛβi =

4

3
∇a∇bξb −

1

8
(γ̃a)

αβ∇iα(ξβγ∇δiW γδ) , (3.8f)

where ξa obeys the conformal Killing vector equation

∇iαξa = −1

5
(γab)α

β∇iβξb . (3.9)

This equation is conformally invariant provided ξa is primary and of dimension −1,

KBξa = 0 , Dξa = −ξa . (3.10)

These relations determine the superconformal properties of the parameters in (3.8). An

important corollary of (3.9) is

∇(aξb) =
1

6
ηab∇cξc . (3.11)

In what follows, we will often make use of the first-order operator

D
(1)
ξ = ξb∇b + ξαi ∇iα +

1

2
Λbc[ξ]Mbc + Λjk[ξ]Jjk + σ[ξ]D + ΛB[ξ]KB , (3.12)

where ξa is characterised by the superconformal properties (3.10), and the remaining pa-

rameters are given by (3.8). The operator D
(1)
ξ is superconformal and of dimension 0 in

the sense that it takes every primary superfield U of dimension w to a primary superfield

of the same dimension,

KAU = 0 , DU = wU =⇒ KAD
(1)
ξ U = 0 , DD(1)

ξ U = wD
(1)
ξ U . (3.13)

If ξa is a solution to (3.9), then D
(1)
ξ generates a conformal isometry,

∇iαξa = −1

5
(γab)α

β∇iβξb =⇒
[
D

(1)
ξ ,∇A

]
= 0 . (3.14)
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Since SU(2) superspace is a gauge fixed version of conformal superspace, it must nec-

essarily be true that (3.6) reproduces (3.1) upon degauging. In particular, it is trivial to

see that (3.9) degauges to (3.4).

It is clear from (3.1) that the commutator of superconformal transformations must

result in another such transformation[
δK[ξ2] + δσ2 , δK[ξ1] + δσ1

]
DA =

(
δK[ξ3] + δσ3

)
DA = 0 , (3.15a)

K[ξ3] :=
[
K[ξ2],K[ξ1]

]
, (3.15b)

From this we may extract the form of ξ3 and σ3

ξa3 = ξb1Dbξa2 − ξb2Dbξa1 −
i

48
(γ̃a)αβDiαξb1Dβiξ2b +

i

48
(γ̃abc)

αβDiαξb1Dβiξc2 , (3.16a)

σ3 = ξA2 DAσ1 − ξA1 DAσ2 . (3.16b)

This analysis implies that the conformal Killing supervector fields generate a finite di-

mensional super Lie algebra. The independent parameters are set of superfields Υ =

(ξB,Kab,Kjk, σ,DCσ) and one can prove that applying any number of covariant deriva-

tives to Υ gives a linear combination of Υ.

The statement above is most easily proven when working in Minkowski superspace,

M6|8. Here the superspace covariant derivatives DA = (∂a, D
i
α) take the form

∂a =
∂

∂xa
, Di

α =
∂

∂θαi
− i(γa)αβθ

βi∂a , (3.17)

and satisfy the algebra

{Di
α, D

j
β} = −2iεij∂αβ ,

[
∂a, D

i
α

]
= 0 ,

[
∂a, ∂b

]
= 0 . (3.18)

In this context, one may readily derive the following constraints

Dk
γKα

β [ξ] = 2δβγD
k
ασ[ξ]− 1

2
δβαD

k
γσ[ξ] , (3.19a)

Di
αK

jk[ξ] = 4εi(jDk)
α σ[ξ] , (3.19b)

Di
αD

j
βσ[ξ] = −iεij∂αβσ[ξ] , (3.19c)

Di
α∂bσ[ξ] = 0 . (3.19d)

Thus, our claim holds for this geometry.

The proof above readily generalises to curved superspace. For example, by analysing

the invariance δCa
ij = 0 and δNabc = 0 one can derive the following relations for the second

spinor derivative of σ

− i

8
(γ̃a)

γδD(i
γ D

j)
δ σ = ξcDcCaij + ξγkD

k
γCa

ij +Ka
bCb

ij + 2K(i
kCa

j)k + σCa
ij , (3.20)

i

32
(γ̃abc)γδDkγDδkσ = ξdDdNabc + ξγkD

k
γNabc + 3K[a

dNbc]d + σNabc . (3.21)

Another implication of (3.3) and (3.4) is

Daξγk =
i

2
(γ̃a)

βγDβkσ + (γab)β
γξβjCbjk +

1

2
(γbc)β

γξβk (Wabc + 2Nabc)− ξbTabγk , (3.22)

– 13 –



J
H
E
P
0
3
(
2
0
2
1
)
1
5
7

which implies the following expression for the spinor derivative of the super-Weyl parameter

Dαkσ = − i

3
Dαβξβk +

4i

3
ξδjCαδjk −

i

6
(γabc)δαξ

δ
k(Wabc + 2Nabc)−

i

3
ξb(γa)αβTab

β
k . (3.23)

Note that equation (3.22) plays a fundamental role in the study of supersymmetric space-

times.

We also note that by imposing the invariance of the super-Weyl tensor δWabc = 0 one

obtains

ξdDdWabc + ξγkD
k
γWabc + 3K[a

dWbc]d + σWabc = 0 , (3.24)

which hints at the fact that superspace backgrounds admitting non-trivial conformal isome-

tries are in general constrained.

3.2 Conformally related superspaces

By definition a superspace (M6|8, D̃) is said to be conformally related to (M6|8,D) if

the corresponding covariant derivatives D̃A and DA are related by a finite super-Weyl

transformation,

D̃iα = e
1
2
ρ
(
Diα − 2(Diβρ)Mα

β − 4(Dαjρ)J ij
)
, (3.25a)

D̃a = eρ
(
Da −

i

2
(γ̃a)

αβ(Dkαρ)Dβk − (Dbρ)Mab −
i

8
(γ̃a)

αβ(DkαDlβρ)Jkl

− i

8
(γ̃a

cd)αβ(Dkαρ)(Dβkρ)Mcd −
3i

4
(γ̃a)

αβ(Dkαρ)(Dlβρ)Jkl

)
, (3.25b)

for some super-Weyl parameter ρ. The torsion superfields are then mapped from a curved

superspace to the other according to (2.14) with σ replaced by ρ. The two superspaces

(M6|8, D̃) and (M6|8,D) prove to have the same conformal Killing vector superfields. In

fact an efficient way to analyse conformal isometries is by mapping their conformal Killing

supervector fields from one superspace to its conformally related one — see for instance the

case of conformally flat superspaces. Given such a supervector field ξ = ξAEA = ξ̃AẼA, it

may be shown that

K[ξ̃] := ξ̃BD̃B +
1

2
Kbc[ξ̃]Mbc +Kkl[ξ̃]Jkl = K[ξ] , (3.26a)

σ[ξ̃] = σ[ξ]− ξρ . (3.26b)

3.3 Isometries

In order to describe Poincaré supergravity in 3 ≤ d ≤ 6 dimensions, the Weyl multiplet

of conformal supergravity has to be coupled to some compensating multiplets Ξ. Two

compensators are required for theories with eight supercharges such as N = (1, 0) super-

gravity in six dimensions. The conceptual setup is actually universal, which is why it is

suitable to start with a general discussion of the situation in d dimensions where conformal

supergravity is described using GR[d;N ] superspace (Md|δN ,D), see section 1.
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In general, the compensators are Lorentz scalars, and at least one of them must have

a non-zero super-Weyl weight wΞ 6= 0,

δσΞ = wΞσΞ . (3.27)

They may also transform in some representations of the R-symmetry group. The compen-

sators are required to be nowhere vanishing in the sense that the R-symmetry singlets |Ξ|2

should be strictly positive. Different off-shell supergravity theories correspond to different

choices of Ξ. The superspace corresponding to Poincaré supergravity is identified with a

triple (Md|δN ,D,Ξ). The notion of conformally related superspaces, which was introduced

in section 3.2, is naturally generalised to the case under consideration. Specifically, two

curved superspaces (Md|δN , D̃, Ξ̃) and (Md|δN ,D,Ξ) are conformally related if their co-

variant derivatives related to each other according to (3.25), and the compensators Ξ̃ and

Ξ are connected by the same finite super-Weyl transformation,

Ξ̃ = ewΞρΞ . (3.28)

Once Ξ has been fixed, the off-shell supergravity multiplet is completely described in

terms of the following data: (i) a superspace geometry for conformal supergravity; and

(ii) the conformal compensators. Given a supergravity background, its isometries should

preserve both of these inputs. This leads us to the concept of Killing supervector fields.

Let ξ = ξBEB be a conformal Killing supervector field on (Md|δN ,D),

(δK[ξ] + δσ[ξ])DA = 0 , (3.29a)

for uniquely determined parameters Kbc[ξ], KI [ξ] and σ[ξ]. It is called a Killing supervector

field on (Md|δN ,D,Ξ) if the compensators are invariant,

(K[ξ] + wΞσ[ξ])Ξ = 0 . (3.29b)

The set of Killing vectors on (Md|δN ,D,Ξ) is a Lie superalgebra. The Killing equa-

tions (3.29a) and (3.29b) are super-Weyl invariant in the sense that they hold for all

conformally related superspace geometries.

Using the compensators Ξ we can always construct a superfield Ξ = f(Ξ) that is a

singlet under the structure group and has the properties: (i) it is an algebraic function of Ξ;

(ii) it is nowhere vanishing; and (iii) it has a non-zero super-Weyl weight wΞ, δσΞ = wΞσΞ.

It follows from (3.29b) that

(ξBDB + wΞσ[ξ])Ξ = 0 . (3.30)

The super-Weyl invariance may be used to impose the gauge condition

Ξ = 1 , (3.31)

Then eq. (3.30) reduces to

σ[ξ] = 0 , (3.32)
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and the Killing equations (3.29a) and (3.29b) take the following form:[
K[ξ],DA

]
= 0 , (3.33a)

K[ξ]Ξ = 0 . (3.33b)

Now we specialise the Killing equations (3.29a) and (3.29b) to the case of N = (1, 0)

supergravity in six dimensions. The equations read[
ξBDB +

1

2
Kbc[ξ]Mbc +KklJkl,DA

]
+ δσ[ξ]DA = 0 , (3.34a)(

ξBDB +Kkl[ξ]Jkl + wΞσ[ξ]
)

Ξ = 0 . (3.34b)

The most convenient set of compensators for N = (1, 0) Poincaré supergravity [1] consists

of a tensor multiplet Φ and a linear multiplet Gij = Gji. The former is a primary real

scalar of super-Weyl weight wΦ = 2, which obeys the constraint [15, 78, 79](
D(i
αD

j)
β + 4iCijαβ

)
Φ = 0 (3.35)

and is nowhere vanishing in the sense that Φ−1 exists. The latter is a real SU(2) triplet

(that is, Gij = Gij = εikεjlG
kl), which is a primary superfield of super-Weyl weight wG = 4

and obeys the constraint [15, 78]

D(i
αG

jk) = 0 . (3.36)

The linear compensator is required to be nowhere vanishing in the sense that G−1 exists

for G :=
√

1
2G

ijGij . There are two natural choices for Ξ: either Φ or G.

The above formalism will be employed in section 8 and appendix C to study supersym-

metric spacetimes in the superspace setting. Now we will turn to describing the extension

of (conformal) Killing vector superfields to the case of (conformal) Killing tensor superfields

and higher symmetries of N = (1, 0) supermultiplets.

4 Conformal Killing spinor superfields and their higher rank cousins

In this section we introduce various cousins of the conformal Killing vector superfields ξa,

eq. (3.4). Some of them can be used to describe extended superconformal transformations

(conformal Killing spinor superfields) and higher symmetries of N = (1, 0) supermultiplets

(conformal Killing tensor superfields).

In SU(2) superspace, a conformal Killing spinor superfield εα is defined to satisfy the

constraint

Diαεβ =
1

4
δβαDiγεγ . (4.1)

This equation is super-Weyl invariant provided the super-Weyl transformation of εα is

δσε
α = −1

2
σεα . (4.2)
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In conformal superspace, εα is required to (i) be primary and of dimension −1/2; and (ii)

obey the constraint obtained from (4.1) by replacing D’s with ∇’s.

Equation (4.1) imposes significant restrictions on the component content of εα. In

particular, the following corollary of (4.1)

DiαD
j
βε
β = −8i

3
εijDαβεβ + 16iCijαβε

β + 16iεijNαβε
β , (4.3)

implies that εα|θ=0 and Diαεα|θ=0 are the only independent component fields. Making

further use of (4.3) leads to

Dαβεγ = −2

3
δγ [αDβ]δε

δ − εαβσδW σγεδ , (4.4a)

DαβDiγεγ = εαβγδ

[
5i

12
Wγi − 16Cγi

]
εδ + 8

[
Nαβ,γi − Ciαβ,γ

]
εγ , (4.4b)

where the torsion superfields on the right-hand side of (4.4b) are defined in (2.8).

Associated with εα is its conjugate ε̄α defined by (A.12). The latter is also a conformal

Killing spinor superfield. We can combine εα and ε̄α into a symplectic Majorana spinor

εαî that carries a new SU(2) 6= SU(2)R index. Such objects naturally arise from an N =

(2, 0) −→ N = (1, 0) superspace reduction, see appendix B for more details. Given an

N = (2, 0) superconformal theory realised in N = (1, 0) superspace, εαî describes extended

superconformal transformations.

Let εα1 and εα2 be two conformal Killing spinor superfields. Associated with them is a

vector superfield

ξa = εα1 (γa)αβε
β
2 , (4.5)

which is primary and of dimension −1. As follows from (4.1), ξa satisfies the conformal

Killing vector equation (3.4). As was shown in the previous section, these generate the

conformal isometries of superspace.

Given n conformal Killing vector superfields ξa1
1 , . . . , ξann , we find that their symmetric

and traceless product

ζa(n) = ξ
{a1

1 . . . ξan}n := ξ
(a1

1 . . . ξan)
n − traces (4.6)

has the following super-Weyl transformation law

δσζ
a(n) = −nσζa(n) , (4.7)

and satisfies the constraint

Diαζa(n) =
n

n+ 4
(γb(a1)α

βDiβζa2...an)
b . (4.8)

We will say that any solution ζa1...an = ζ{a1...an} to (4.8) is a conformal Killing tensor

superfield.8 It is clear from (4.6) and (4.8) that the symmetric and traceless product of

8Our definition is equivalent to the one proposed in [73], although the SU(2) superspace formulation was

not used.

– 17 –



J
H
E
P
0
3
(
2
0
2
1
)
1
5
7

two such tensors is also conformal Killing. As will be shown shortly, such tensors generate

higher symmetries of the kinetic operators of superconformal field theories with at most

two derivatives, in accordance with [72]. An immediate consequence of (4.8) is the usual

conformal Killing tensor equation

D{a1
ζa2...an+1} = 0 . (4.9)

The above definition of the conformal Killing tensor superfield can be recast in con-

formal superspace. A symmetric traceless tensor superfield ζa1...an = ζ{a1...an} is called

conformal Killing if it has the superconformal properties

KBζa(n) = 0 , Dζa(n) = −nζa(n) (4.10)

and solves the equation

∇iαζa(n) =
n

n+ 4
(γb(a1)α

β∇iβζa2...an)
b . (4.11)

For a given curved superspace, the set of conformal Killing tensor superfields may

be endowed with an additional algebraic structure. Let ζ
a(m)
1 and ζ

a(n)
2 be two such ten-

sors, then

[ζ1, ζ2]a(m+n−1) = mζ
{a1...am−1|b|
1 Dbζ

am...am+n−1}
2 − nζ{a1...an−1|b|

2 Dbζ
an...am+n−1}
1

− imn

8(m+ n+ 2)
(γ̃{a1)αβDiαζ

a2...am|b|
1 Dβiζ

am+1...am+n−1}
2 b

+
imn

8(m+ n+ 2)
(γ̃{a1

bc)
αβDiαζ

a2...am|b|
1 Dβiζ

am+1...am+n−1}c
2 , (4.12)

is a conformal Killing tensor superfield. This generalises the Lie bracket for conformal

Killing vector superfields (3.16a) and coincides with the one presented in [73], where it was

called the supersymmetric even Schouten-Nijenhuis bracket.9

Having investigated the structure of conformal Killing tensors, we now return to the

master equation (4.1). This constraint admits non-trivial generalisations10

D(i1
α εβ(n)i2...im+1) =

n

n+ 3
δ(β1
α D(i1

γ εβ2...βn)γi2...im+1) . (4.13)

It is conformally invariant provided

δσε
β(n)i(m) =

[
2m− n

2

]
σεβ(n)i(m) . (4.14)

Given two solutions εβ(n1)i(m1) and εβ(n2)i(m2) to (4.13), one can show that

εβ(n1+n2)i(m1+m2) = ε
(β1...βn1 (i1...im1
1 ε

βn1+1...βn1+n2 )im1+1...im1+m2 )
2 , (4.15)

also satisfies this constraint.
9The supersymmetric extension of the even Schouten-Nijenhuis bracket was proposed for the first time

in the framework of N = 1 AdS supersymmetry in four dimensions [80], although no mention of the even

Schouten-Nijenhuis bracket was made.
10The case n = 2, m = 0 describes a conformal Killing-Yano tensor superfield, introduced in a flat

superspace context in [74].
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Let εα1 , εα2 and εα3 be conformal Killing spinors (4.1). It is clear from the analysis above

that their totally symmetric product is a solution to (4.13), while their antisymmetric

product is dual to a right-handed spinor

χα = εαβγδε
β
1 ε
γ
2ε
δ
3 , (4.16)

which satisfies

Di(αχβ) = 0 . (4.17)

This constraint may be immediately generalised

D(i1
(α1
χ
i2...im+1)
α2...αn+1) = 0 , (4.18)

and is conformally invariant provided

δσχ
i(m)
α(n) =

[
2m− 3n

2

]
σχ

i(m)
α(n) . (4.19)

If χ
i(m1)
α(n1) and χ

i(m2)
α(n2) are solutions to this constraint then

χ
i(m1+m2)
α(n1+n2) = χ

(i1...im1

(α1...αn1
χ
im1+1...im1+im2 )

αn1+1...αn1+n2 ) , (4.20)

also solves (4.18).

We may also construct a hook field from our three spinors

`αβ,γ =
1

2
(ε

[α
1 ε

β]
2 ε

γ
3 − ε

γ
1ε

[α
2 ε

β]
3 ) = −`βα,γ , (4.21)

which satisfies the Young condition

`αβ,γ + `βγ,α + `γα,β = 0 . (4.22)

Further, it satisfies the conformally invariant constraint

Diα`βγ,δ =
1

3

(
δβαDiε`ε(γ,δ) − δγαDiε`ε(β,δ)

)
+

1

5

(
δβαDiε`ε[γ,δ] − δγαDiε`ε[β,δ]

)
−2

5
δδαDiε`ε[β,γ] . (4.23)

5 Higher symmetries of the conformal d’Alembertian

There has been extensive study of the higher symmetries of the conformal d’Alembertian

in dimensions d > 2, including the important publications [67, 69, 71]. Here we will

review known results and present some new observations. The outcomes of the non-

supersymmetric analysis in this section will guide our study in the next two sections.

Let φ be a solution to the conformal wave equation in d dimensions

2φ = ∇a∇aφ = 0 , (5.1)
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where ∇a is the conformally covariant derivative (compare with (2.15))

∇a = ea −
1

2
ωa

bcMbc − baD− fa
bKb , (5.2)

with the commutation relations [16, 39]

[
∇a,∇b

]
= −1

2
Cab

cdMcd +
1

2(d− 3)
∇cCabcdKd . (5.3)

Equation (5.1) is known to be conformally invariant if φ has the transformation properties

Kaφ = 0 , Dφ =
1

2
(d− 2)φ . (5.4)

A differential operator D is called a symmetry of the conformal d’Alembertian, 2, if it

obeys the following conditions:

2Dφ = 0 , (5.5a)

KaDφ = 0 , DDφ =
1

2
(d− 2)Dφ . (5.5b)

Condition (5.5b) means that D is a conformal dimension-0 operator. The symmetry oper-

ators of 2 naturally form an associative algebra.

In the algebra of all symmetry operators of 2, it is natural to introduce the equivalence

relation

D1 ∼ D2 ⇐⇒
(
D1 −D2

)
φ = 0 . (5.6)

Utilising (5.6), it is possible to show that every symmetry operator D of order n can be

reduced to the canonical form

D
(n)
ζ =

n∑
k=0

ζa(k)∇a1 . . .∇ak , n ≥ 0 , (5.7)

where the parameters ζa(k) are symmetric and traceless. Making use of the condition (5.5a),

one observes that ζa(n) satisfies the conformal Killing tensor equation

∇{a1
ζa2...an+1} = 0 . (5.8)

Due to (5.5b), ζa(n) is primary, Kbζ
a(n) = 0, and of dimension −n.

Let us first study the n = 0 and 1 cases in more detail. It is easily seen that zeroth-order

symmetry operator D
(0)
ζ is a constant,

2D
(0)
ζ φ = 0 ⇐⇒ ∇aζ = 0 . (5.9)

Given a conformal Killing vector field ξa, the following first-order operator

D
(1)
ξ = ξa∇a +

d− 2

2d
∇aξa , (5.10)
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is a symmetry of the conformal d’Alembertian,

2D
(1)
ξ φ = 0 . (5.11)

The second term on the right-hand side of (5.10) is uniquely determined by each of the

conditions (5.5a) and (5.5b).

Actually, the operator (5.10) is simply a special case of the conformal isometry

D
(1)
ξ = ξa∇a +

1

2
∇aξbMab +

1

d
∇aξaD +

1

2d
∇a∇bξbKa , (5.12a)[

D
(1)
ξ ,∇a

]
= 0 , (5.12b)

which reduces to (5.10) when acting on any primary scalar field of dimension 1
2(d− 2). In

addition to (5.12b), the other fundamental property of D
(1)
ξ is the following:

KaT = 0 , DT = wT =⇒ KaD
(1)
ξ T = 0 , DD(1)

ξ T = wD
(1)
ξ T , (5.13)

for every primary tensor field T (with suppressed indices) of dimension w. The rela-

tions (5.12b) and (5.13) tell us that D
(1)
ξ satisfies the conditions (5.5a) and (5.5b), and

therefore D
(1)
ξ is a symmetry of the conformal d’Alembertian. An immediate corollary of

the above consideration is that, for any conformal Killing vector fields ξa1 , ξ
a
2 , . . . ξ

a
n, the

operator

D(n) := D
(1)
ξ1

D
(1)
ξ2
. . .D

(1)
ξn

(5.14)

is a symmetry of the conformal d’Alembertian. Therefore, the algebra of symmetries of

2 includes the universal enveloping algebra of the conformal algebra of the background

spacetime.

Our consideration above allows for important generalisations. Consider a dynamical

system described by primary fields ϕi coupled to conformal gravity. We place this theory

on a fixed gravitational background and consider a conformal Killing vector field, ξa, on

spacetime. Since the operator (5.12a) preserves the background geometry, the matter

action S[ϕ] is invariant under the conformal transformation δξϕ
i = D

(1)
ξ ϕi. Consequently,

D
(1)
ξ is a symmetry of the corresponding equation of motion, S,i[ϕ] = 0.

Let us now return to the general symmetry operator (5.7) for n > 1. Similar to the

first-order operator (5.10), we would like D
(n)
ζ to be determined by its top component,

which is the conformal Killing tensor ζa(n). Imposing the condition (5.5b) leads to

ζa(k) = Ak∇b1 . . .∇bn−kζ
a(k)b(n−k) , 0 ≤ k ≤ n , (5.15a)

where the constants Ak are given by the solution to the recurrence relation

Ak−1

Ak
=

k(4− 2k − d)

2(k(k + d− 3)− n(n+ d− 1)− d+ 2)
, An = 1 . (5.15b)

It may be readily shown that the constructed operator is a symmetry of 2 in any confor-

mally flat background. However, when the background Weyl tensor is non-vanishing, the
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existence of a higher symmetry implies non-trivial restrictions on its structure. To prove

this claim it suffices to analyse the n = 2 case.

We assert that the second-order operator

D
(2)
ζ = ζab∇a∇b +

d

d+ 2
∇bζab∇a +

d(d− 2)

4(d+ 1)(d+ 2)
∇a∇bζab , (5.16)

only results in a symmetry in backgrounds satisfying

Cabcd∇cζbd +
d(d− 2)

d− 3
∇cCabcdζbd = 0 . (5.17)

The direct computation necessary to verify (5.17) is tedious, thus here we will present

a simpler proof. Consider two conformal Killing vectors ξa1 and ξa2 and the corresponding

first-order symmetry operators D
(1)
ξ1

and D
(1)
ξ2

defined via (5.10). Then their product D(2) :=

D
(1)
ξ1

D
(1)
ξ2

is a second-order symmetry operator. Modulo the equivalence relation (5.6), it

may be expressed as a sum of operators of the form (5.7):

D(2) ∼ D
(2)
ζ +

1

2
D

(1)
[ξ1,ξ2] −

d− 2

4(d+ 1)
D

(0)
〈ξ1,ξ2〉 , (5.18)

where

ζab = ξ
{a
1 ξ

b}
2 , (5.19a)[

ξ1, ξ2

]a
= ξb1∇bξa2 − ξb2∇bξa1 , (5.19b)

〈ξ1, ξ2〉 = ∇bξa1∇aξb2 −
d− 2

d
∇aξa1∇bξb2 −

2

d

(
ξa1∇a∇bξb2 + ξa2∇a∇bξb2

)
. (5.19c)

As D(2) = D
(1)
ξ1

D
(1)
ξ2

is a symmetry operator by construction, we obtain

2D(2)φ ∼ 2D
(2)
ζ φ− d− 2

4(d+ 1)
2D

(0)
〈ξ1,ξ2〉φ = 0 , (5.20)

which has the immediate consequence

2D
(2)
ζ φ = 0 ⇐⇒ ∇a〈ξ1, ξ2〉 = 0 . (5.21)

Now a direct computation leads to

∇a〈ξ1, ξ2〉 = −Cabcd∇cζbd −
d(d− 2)

d− 3
∇cCabcdζbd . (5.22)

Hence, D
(2)
ζ only results in a symmetry when the right-hand side vanishes. We thus expect

that for n ≥ 2 the operator D
(n)
ζ is a symmetry only on a limited class of backgrounds,

such as conformally flat ones.

A natural extension of the analysis above is to determine if there exists a symmetry

operator of the form

D(2) = D
(2)
ζ + Z , ∇aZ = −Cabcd∇cζbd −

d(d− 2)

d− 3
∇cCabcdζbd , (5.23)
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when the conformal Killing tensor is irreducible (ζab 6= ξ
{a
1 ξ

b}
2 ). This fails since Z must be

primary, of dimension 0 and first order in ζab. It is easily verified that no such term exists.

Our analysis in this section has lead to several non-trivial results regarding the struc-

ture of higher symmetry operators. The most important observation is that, beyond the

first-order case, their existence implies previously unknown constraints on the spacetime

Weyl tensor.11 It may be shown that our arguments immediately generalise to the higher

symmetries of superconformal operators. In particular, the existence of such symmetries

should lead to non-trivial restrictions on the super-Weyl tensor Wαβ .

6 Higher symmetries of the hypermultiplet

The study of symmetries of relativistic wave equations has a long-standing history in math-

ematical physics. More recently their supersymmetric generalisations have also been ex-

plored. Specifically, in flat superspace it was shown in [72] that the higher symmetries

of so-called ‘super-Laplacians’ (superspace differential operators containing the spacetime

Laplacian as their highest-dimensional component) are in one-to-one correspondence with

conformal Killing tensor superfields. Further, the higher symmetries of the Wess-Zumino

operator in curved d = 4, N = 1 superspace were analysed in [75]. It is now time to extend

this analysis to the hypermultiplet.

The off-shell formulation for a hypermultiplet coupled to conformal supergravity is

given in [15]. On the mass shell, the hypermultiplet is described by an isospinor superfield

qi satisfying the equation

∇(i
αq

j) = 0 . (6.1)

The constraint is conformally invariant provided qi is a primary superfield of dimension 2

KAq
i = 0 , Dqi = 2qi . (6.2)

Additionally, (6.1) yields the useful corollary

∇iα∇
j
βqj = −4i∇αβqi . (6.3)

Here we will study the higher symmetries of this model. We will say that a differential

operator D is a symmetry operator (of the hypermultiplet) if

∇(i
αDq

j) = 0 . (6.4)

It is useful to introduce an equivalence relation on the space of symmetries so that redun-

dant structures can be discarded. Specifically, we say that two symmetry operators D1

and D2 are equivalent if

D1 ∼ D2 ⇐⇒
(
D1 −D2

)
qi = 0 . (6.5)

Owing to (6.2), we will also require

KADq
i = 0 , DDqi = 2Dqi , (6.6)

which means that D is a superconformal dimension-0 operator.
11This is in keeping with the fact that the background geometry generally restricts Killing tensors, see,

e.g., [81, 82].
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Given a positive integer n, the most general nth-order symmetry operator D(n) is

D(n) =

n∑
k=0

ζA1...Ak∇Ak . . .∇A1 +

n−1∑
k=0

ζA1...Ak,ij∇Ak . . .∇A1Jij , (6.7)

where the coefficients may be chosen to be graded-symmetric in their superspace indices

ζA1...AmAm+1...Ak = (−1)εAmεAm+1 ζA1...Am+1Am...Ak , (6.8a)

ζA1...AmAm+1...Ak,ij = (−1)εAmεAm+1 ζA1...Am+1Am...Ak,ij . (6.8b)

The equivalence relation (6.5) allows us to bring D(n) to the canonical form

D(n) =
n∑
k=0

ζa(k)∇a1 . . .∇ak +
n−1∑
k=0

ζa(k)β
i∇a1 . . .∇ak∇

i
β

+

n−1∑
k=0

ζa(k)ij∇a1 . . .∇akJij . (6.9)

Here all parameters are symmetric and traceless in their vector indices, ζa(k)β
i is gamma-

traceless, (γb)αβζ
a(k−1)bβ

i = 0 , and ζa(k)ij is symmetric in its isospinor indices.

Equation (6.4) yields numerous constraints on the parameters of D(n), including

∇iαζa(n) =
n

n+ 4
(γb(a1))α

β∇iβζa2...an)
b , (6.10a)

ζa(n−1)βi =
i

4(n+ 2)
∇iαζa(n−1)b(γ̃b)

αβ , (6.10b)

ζa(n−1)ij = − in(n+ 1)

8(n+ 2)(n+ 3)
∇(iγ̃b∇j)ζa(n−1)b . (6.10c)

Hence, we obtain expressions for ζa(n−1)βi and ζa(n−1)ij in terms of ζa(n), which is neces-

sarily a conformal Killing tensor (4.10), (4.11). Further, if D(n) is completely determined

in terms of ζa(n), we will denote it by D
(n)
ζ .

If the supergravity background admits a conformal Killing vector superfield ξa, it may

be shown that the corresponding conformal isometry (3.12) yields the unique first-order

symmetry operator

∇(i
αD

(1)
ξ qj) = ∇(i

α

[
ξB∇B + Λjk[ξ]Jjk + 2σ[ξ]

]
qj) = 0 . (6.11)

Thus, given conformal Killing vector superfields ξa1 , ξ
a
2 , . . . ξ

a
n, the operator

D(n) := D
(1)
ξ1

D
(1)
ξ2
. . .D

(1)
ξn

(6.12)

satisfies (6.4). Therefore, the algebra of such symmetries contains the universal enveloping

algebra of the conformal algebra of the background superspace. As was discussed in the

previous section, (6.12) admits a decomposition as a sum of symmetry operators determined

by their top component

D(n) = D
(n)
ζ + · · ·+ ζ0 , (6.13)
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if the superspace is conformally-flat. Therefore, it is of interest to construct the symmetry

operators D
(n)
ζ in backgrounds with vanishing super-Weyl tensor, Wαβ = 0.

Here we will restrict our attention to the evaluation of D
(2)
ζ . When acting on the

hypermultiplet it takes the form

D
(2)
ζ qi = ζab∇a∇bqi −

1

2
ζaαi∇a∇αjqj + ζaij∇aqj + ζa∇aqi −

1

2
ζαi∇αjqj

+ζijq
j + ζqi . (6.14)

The unique solution compatible with (6.4) and (6.6) is

ζaαi = − i

16
(γ̃b)

αβ∇iβζab , (6.15a)

ζaij = − 3

80
i∇(iγ̃b∇j)ζab , (6.15b)

ζa =
3

4
∇bζab , (6.15c)

ζαi = − i

20
(γ̃a)

αβ∇iβ∇bζab +
1

800
(γ̃a)

αβ(γ̃b)
γδ∇iγ∇

j
(β∇δ)jζ

ab , (6.15d)

ζij = − i

80
∇(iγ̃a∇j)∇bζab , (6.15e)

ζ = − 3

20
∇a∇bζab +

1

800
(γ̃a)

αβ(γ̃b)
γδ∇i(α∇β)i∇

j
(γ∇δ)jζ

ab . (6.15f)

In particular, we find that all parameters are expressed solely in terms of the conformal

Killing tensor ζab.

For completeness, we also present the SU(2) superspace form of D
(2)
ζ . A routine de-

gauging leads to

D
(2)
ζ qi = ζabDaDbqi −

1

2
ζ̂aαiDaDαjqj + ζ̂aijDaqj + ζ̂aDaqi −

1

2
ζ̂αiDαjqj

+ζ̂ijq
j + ζ̂qi , (6.16)

where have employed the definitions

ζ̂aαi = − i

16
(γ̃b)

αβDiβζab , (6.17a)

ζ̂aij = − 3

80
iD(iγ̃bDj)ζab −

2

5
Cijb ζ

ab , (6.17b)

ζ̂a =
3

4
Dbζab , (6.17c)

ζ̂αi = − i

20
(γ̃a)

αβDiβDbζab +
1

800
(γ̃a)

αβ(γ̃b)
γδDiγD

j
(βDδ)jζ

ab

+
i

25
(γ̃a)

αβCijb Dβjζ
ab − 11

50
i(γ̃a)

αβNbβiζab +
i

10
(γ̃a)

αβCbβiζab, (6.17d)

ζ̂ij = − i

80
D(iγ̃aDj)Dbζab −

i

80
(γ̃a)

αβCbα(iDj)β ζ
ab − 3

80
i(γ̃a)

αβNbα(iDj)β ζ
ab

+
i

80
Ck(i
a Dj)γ̃bDkζab −

i

10
(γ̃a)

αβD(i
αCbβj)ζab +

i

10
(γ̃a)

αβD(i
αNbβj)ζab

+
5

16
i(γ̃a)

αβCbα(iDβj)ζab −
5

16
i(γ̃a)

αβNbα(iDβj)ζab +DaCijb ζ
ab ,
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ζ̂ = − 3

20
DaDbζab +

1

800
(γ̃a)

αβ(γ̃b)
γδDi(αDβ)iD

j
(γDδ)jζ

ab +
73

800
iCija D(iγ̃bDj)ζab

− i

10
(γ̃a)

αβ(γ̃b)
γδNαγDi(βDδ)iζ

ab +
i

50
(γ̃a)

αβDiαNbβiζab +
i

10
(γ̃a)

αβDiαCbβiζab

+
81

10
Cija Cbijζ

ab − 12

5
(γ̃a)

αβ(γ̃b)
γδNαγNβδζ

ab +
91

400
i(γ̃a)

αβCbαiDβiζab

−47

80
i(γ̃a)

αβNbαiDβiζab . (6.17e)

It may be verified that (6.16) is a superconformal dimension-0 operator

δσD
(2)
ζ qi = 2σD

(2)
ζ qi , (6.18)

and yields a symmetry on conformally-flat superspace backgrounds

D(i
αD

(2)
ζ qj) = 0 . (6.19)

As a result, we have shown the existence of the higher symmetry operator D
(2)
ζ , which

is completely determined in terms of ζab. We expect that, in conformally-flat superspaces,

this is true for symmetries of all orders; every D
(n)
ζ is uniquely determined in terms of

its top component, the conformal Killing tensor superfield ζa(n), as was shown for the

non-supersymmetric case in section 5.

7 Higher symmetries of the vector multiplet

The higher symmetry operators (6.7) belong to a broader family of symmetry operators

acting on tensor superfields of arbitrary index structure. Here we will generalise these

operators by adding Lorentz dependent terms via an analysis of the higher symmetries of

the vector multiplet.

7.1 Superconformal vector multiplet

Consider a vector multiplet coupled to conformal supergravity. Its dynamics is descried by

the higher-derivative action constructed in [16], which is a locally supersymmetric extension

of F2F . The vector multiplet can be realised in terms of the field strength Fαi subject to

the Bianchi identities [16, 78, 83]

∇(i
αF

βj) − 1

4
δβα∇(i

γ F
γj) = 0 , ∇iαFαi = 0 . (7.1)

The field strength Fαi is a primary superfield of dimension 3
2 ,

Sβj F
αi = 0 , DFαi =

3

2
Fαi . (7.2)

The equation of motion for the superconformal vector multiplet [84] is

Gij := ∇a∇aXij − 2Yα
βijFβ

α +
5

2
Xα(i←→∇ αβF

βj) = 0 , (7.3)
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where we have defined S
←→
∇ aT := S∇aT − (∇aS)T , for arbitrary superfields S and T , and

introduced the following descendants of Fαi :

Xij :=
i

4
∇(i
γ F

γj) , Fα
β := − i

4

(
∇kαF

β
k −

1

4
δβα∇kγF

γ
k

)
= − i

4
∇kαF

β
k . (7.4)

The equation of motion (7.3) involves the torsion superfields Yα
βij and Xαi which are

defined according to (2.23).

Let Fαi be a solution of the equations (7.1) and (7.3). A superconformal dimension-0

operator D is called a symmetry of these equations if DFαi is also a solution. Given a

conformal Killing vector superfield ξa, the first-order operator D
(1)
ξ defined by (3.12) is a

symmetry. Higher-order symmetries of the equations (7.1) and (7.3) may be generated by

considering products of the first-order symmetries,

D(n) := D
(1)
ξ1

D
(1)
ξ2
. . .D

(1)
ξn

. (7.5)

7.2 Supersymmetric Maxwell theory

In SU(2) superspace, the off-shell vector multiplet is described by a superfield Fαi subject

to the constraints

D(i
αF

βj) − 1

4
δβαD(i

γ F
γj) = 0 , DiαFαi = 0 . (7.6)

These constraints are super-Weyl invariant provided Fαi is a primary superfield with the

super-Weyl transformation

δσF
αi =

3

2
σFαi . (7.7)

When the vector multiplet is placed on-shell, it obeys the additional equtation

D(i
αF

αj) = 0 =⇒ D(i
αF

βj) = 0 (7.8)

It is important to note that the equation (7.8) is not super-Weyl invariant, since

the super-Weyl invariance has been fixed by imposing an appropriate gauge condition.

In the superconformal setting to Poincaré supergravity, the vector multiplet couples to

the tensor compensator Φ introduced in section 3.3. The compensator appears in the

superspace action for the vector multiplet [15], and the action is super-Weyl invariant.

The corresponding equation of motion for the vector multiplet is

1

4
ΦD(i

αF
αj) +D(i

αΦFαj) = 0 . (7.9)

Choosing the super-Weyl gauge

Φ = 1 (7.10)

reducing the equation of motion to (7.8). In this subsection we make use of the super-Weyl

gauge (7.10).
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We now turn to the analysis of the higher symmetries of this theory. The operator D

is said to be a symmetry of the (on-shell) vector multiplet if

D(i
αDF

βj) = 0 , DiαDFαi = 0 . (7.11)

The most general nth-order symmetry operator for the vector multiplet is

D(n) =

n∑
k=0

ζa(k)Da1 . . .Dak +

n−1∑
k=0

ζa(k)β
iDa1 . . .DakD

i
β

+
n−1∑
k=0

ζa(k)ijDa1 . . .DakJij +
1

2

n−1∑
k=0

ζa(k),bcDa1 . . .DakMbc

+
1

2

n−1∑
k=0

ζa(k−1)α,bc
iDa1 . . .Dak−1

DiαMbc +
1

2

n−2∑
k=0

ζa(k),bcijDa1 . . .DakMbcJij , (7.12)

where ζa(k) is a conformal Killing tensor (4.8). When n = 1, its action on Fαi reduces to

D
(1)
ξ Fαi = δK[ξ]F

αi =
(
ξBDB +Kjk[ξ]J

jk +
1

2
Kbc[ξ]Mbc

)
Fαi . (7.13)

As the procedure to compute (7.12), say for n = 2, is analogous to that of (6.9) for

the hypermultiplet, we will not pursure such analysis here. Instead, we will extract some

non-trivial information regarding the structure of this operator for general n via (7.11).

Our analysis reveals the following restrictions on its parameters:

ζa(n−1)βi =
i

4(n+ 2)
∇iαζa(n−1)b(γ̃b)

αβ , (7.14)

ζa(n−1)ij = − in(n+ 1)

8(n+ 2)(n+ 3)
∇(iγ̃b∇j)ζa(n−1)b , (7.15)

ζa(n−1)
α
β = − i

8(n+ 2)

(
(γ̃b)

βγDiαDγi −
1

4
δβαDiγ̃bDi

)
ζa(n−1)b

+nζa(n−1)bNbcd(γ
cd)α

β , (7.16)

as well as the Killing condition for tensor superfields

Dbζa(n−1)b = 0 =⇒ D(a1
ζa2...an+1) = 0 . (7.17)

Equations (4.8) and (7.17) define N = (1, 0) Killing tensor superfields in six dimen-

sions.12 Given two Killing tensor superfields ζ
a(m)
1 and ζ

b(n)
2 , it may be shown that their

bracket, defined by (4.12), is also Killing

Db[ζ1, ζ2]a(m+n−2)b = 0 . (7.18)

12The concept of a Killing tensor superfield was introduced for the first time in [80] in the framework of

N = 1 AdS supersymmetry in four dimensions.
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8 Maximally supersymmetric backgrounds

The existence of (conformal) Killing vector and tensor superfields places non-trivial restric-

tions on the superspace geometry. So far we have not examined the constraints imposed

by such conditions. In this section the case of Killing vectors (where eq. (3.32) is imposed)

is further elaborated on. More results are given in appendix C, where we discuss how to

obtain component results from superspace.

Here we restrict ourselves to the case of eight supercharges, i.e. maximally N = (1, 0)

supersymmetric backgrounds, and derive constraints on the superspace geometry. By a

similar analysis13 to [57], in such backgrounds it may be shown that (C.1) implies

DiαCakl = 0 , DiαWabc = 0 , DiαNabc = 0 . (8.1)

Additionally, the Killing spinor equation (3.22) reduces to

Daξγk = (γab)β
γξβjCbjk +

1

2
(γbc)β

γξβk (Wabc + 2Nabc) . (8.2)

Equation (8.1) leads to severe restrictions on the backgroud superspace geometry.

In particular, the integrability conditions {Diα,D
j
β}C

kl
a = 0, {Diα,D

j
β}Wabc = 0, and

{Diα,D
j
β}Nabc = 0 imply the following differential equations

DdWabc = −6(Wd[a
e + 2Nd[a

e)Wbc]e , (8.3a)

DdNabc = −6(Wd[a
e + 2Nd[a

e)Nbc]e , (8.3b)

DdCakl = −2(Wdab + 2Ndab)C
bkl − 6Cd

p(kCap
l) , (8.3c)

together with the algebraic conditions

(γ[a
de)αβWbc]dCe

ij = 0 , (8.4a)

(γ[a
de)αβNbc]dCe

ij = 0 , (8.4b)

(γabc)αβC
bilCcjk = −2

3
N bcd(γbcd)αβ(εj(iCa

l)k + εk(iCi)ja ) . (8.4c)

Note that (8.3) can be compactly rewritten as

D̃dWabc = 0 , D̃dNabc = 0 , D̃dCakl = 0 , (8.5)

where we have defined

D̃a := Da − 3Ca
klJkl + (Wabc + 2Nabc)M

bc . (8.6)

A lengthy, though straightforward, analysis of the consistency of (8.3) and (8.4) together

with the superspace Bianchi identities leads to the following algebraic constraints

Ca
kl = CaC

kl , CijCij = 2 , (8.7a)

WabcCd = 0 , (8.7b)

NabcCd = 0 , (8.7c)

WαγNβγ =
1

4
δαβW

γδNγδ , (8.7d)

13For any background admitting eight supercharges, if there is a tensor superfield T such that its bar-

projection vanishes, T | = 0, and this condition is supersymmetric, then the entire superfield is zero, T = 0.

See [57] for a more detailed discussion.
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as well as the conditions

DACa = 0 , DACkl = 0 , DANbcd = 0 , DAWbcd = 0 . (8.8)

It should be emphasised that, due to (8.7b) and (8.7c), two branches of solutions exist,

defined by: (i) Ca = 0; and (ii) Wabc = Nabc = 0.

Note that the algebraic constraint (8.7d), due to the (anti-)self-duality conditions on

Wabc and Nabc, is equivalent to any of the following relations

N[a
deWb]de = 0⇐⇒ Na[b

eWcd]e = 0⇐⇒Wa[b
eNcd]e = 0⇐⇒ N[ab

eWcd]e = 0 , (8.9)

while the following relations hold identically

W[a
deWb]de = 0⇐⇒Wa[b

eWcd]e = 0⇐⇒W[ab
eWcd]e = 0⇐⇒W[abcWdef ] = 0 , (8.10a)

N[a
deNb]de = 0⇐⇒ Na[b

eNcd]e = 0⇐⇒ N[ab
eNcd]e = 0⇐⇒ N[abcNdef ] = 0 . (8.10b)

By a routine calculation it may be shown that

Nabc = α
(
ω

(0)
[a ω

(1)
b ω

(2)
c] + ω

(3)
[a ω

(4)
b ω

(5)
c]

)
, (8.11a)

Wabc = β
(
ω

(0)
[a ω

(1)
b ω

(2)
c] − ω

(3)
[a ω

(4)
b ω

(5)
c]

)
, (8.11b)

is a solution to (8.7d), provided that ω
(i)
a , 0 ≤ i ≤ 5, are orthogonal one-forms, that is,

ω(i)
a ω(j)a = 0 , (i 6= j) . (8.12)

This result was originally derived in [85] (see also [86]). These one-forms may be normalised

to constitute an orthonormal basis, and then the expressions for Nabc and Wabc will, in

general, involve overall factors α and β as in (8.11).

In accordance with our analysis, for every maximally supersymmetric N = (1, 0) back-

ground the algebra of covariant derivatives is given by the following graded commutation

relations:

{Diα,D
j
β} = −2iεij(γa)αβDa +

(
− 2iεij(γa)αβ

(
W acd + 2Nacd

)
+ 2i(γacd)αβCaC

ij
)
Mcd

+

(
6iεij(γa)αβCaC

kl +
8i

3
(γabc)αβNabcε

i(kεl)j
)
Jkl , (8.13a)

[Da,Dkγ ] =

(
(γab)γ

δCbCkl −
1

2
(Wabc + 2Nabc)(γ

bc)γ
δδkl

)
Dlδ , (8.13b)

[Da,Db] =
(

8δ
[c
[aCb]C

d] − 4δ
[c
[aδ

d]
b]C

eCe

)
Mcd

+
(

8δ
[c
[aN

d]efNb]ef + 2δ
[c
[aW

d]efWb]ef + 16N[a
e[cWb]e

d]
)
Mcd . (8.13c)

The algebra is determined by the four tensors Ca, C
kl, Nbcd and Wabc, which are covari-

antly constant, eq. (8.8), and obey the algebraic constraints (2.7) and (8.7). In conjunc-

tion with the Lorentz and R-symmetry commutation relations, [Mcd,DA] and [Jkl,DA],

the graded commutation relations (8.13) define the most general superalgebras with eight
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supercharges, which are associated with the maximally supersymmetric backgrounds of

N = (1, 0) Poincaré supergravity. These superalgebras were derived two years ago [87]

using sophisticated algebraic techniques. Here we have demonstrated that the superspace

techniques allow one to derive these superalgebras via a simple calculation.

In accordance with the discussion in appendix C, the commutation relation (8.13c) is

equivalent to that of the spacetime covariant derivatives. Therefore we can immediately

read off the Ricci tensor, the scalar curvature and the Weyl tensor:

Rab = −16CaCb + 16ηabC
cCc − 16Na

cdNbcd − 4Wa
cdWbcd −

8

3
ηabN

cdeWcde , (8.14a)

R = 80CcCc − 16N cdeWcde , (8.14b)

Cabcd = Rabcd −
1

2

(
ηa[cRd]b − ηb[cRd]a

)
+

1

10
Rηa[cηd]b ,

= 16Na[c
eWd]be − 16Nb[c

eWd]ae +
16

15
ηa[cηd]bN

efgWefg . (8.14c)

Note that the condition Wabc = 0 implies that the superspace is conformally flat [16]. As a

result of (8.14c) it is clear that Wabc = 0 implies Cabcd = 0, though the reverse is not true

in general.

It should be remarked that the algebra of covariant derivatives (8.13) takes a particu-

larly simple form if the torsion-free covariant derivative Da is replaced with the torsionful

one defined by (8.6). One obtains

{Diα,D
j
β} = −2iεij(γa)αβD̃a + 2i(γacd)αβCaC

ijMcd −
8i

3
(γabc)αβNabcJ

ij , (8.15a)

[D̃a,Dkγ ] =
{[

(γab)γ
δCb − 3Caδ

δ
γ

]
Ckl − (Wabc + 2Nabc)(γ

bc)γ
δδkl

}
Dlδ , (8.15b)

[D̃a, D̃b] = 4(Wab
d + 2Nab

d)D̃d +
(

8δ
[c
[aCb]C

d] − 4δ
[c
[aδ

d]
b]C

eCe

)
Mcd . (8.15c)

We see that the R-symmetry curvature vanishes if Nabc = 0. The graded commutation

relations take a remarkably simple form if Nabc = 0 and Ca = 0; the bosonic body of this

superspace is a conformally flat AdS3 × S3 spacetime or a pp-wave, see later.

We now employ the above analysis to identify all possible maximally supersymmetric

spacetimes, which are the bosonic bodies of the superspaces with geometry (8.13), or

equivalently (8.15). The most obvious solution is Minkowski space, M6 ≡ R5,1, which

corresponds to the choice Ca = 0 and Nabc = Wabc = 0. When this is not the case,

it follows from (8.7b) and (8.7c) that there are two disconnected branches of solutions,

defined by Ca 6= 0 or Ca = 0.

Solutions belonging to the branch Ca 6= 0, which necessarily have Nabc = Wabc = 0,

are characterised by the existence of a parallel, nowhere vanishing vector field. Thus, since

C2 = CaCa is constant, the possible backgrounds are locally equivalent to the following

three cases, R × S5 for C2 < 0, AdS5 × R when C2 > 0 and a pp-wave spacetime if

C2 = 0 [87].

When Ca = 0, the corresponding geometries are described by the covariantly con-

stant three-forms Nabc and Wabc, which decompose as the sum of two orthogonal simple

forms (8.11). If either of the corresponding simple forms are null, the background is a
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pp-wave spacetime [88]. When this is not the case, it follows that locally the spacetime

decomposes into the product of two three-dimensional symmetric spaces. This can be in-

ferred by the structure of the three-form fluxes given in (8.11). In particular, the possible

solutions are [87]: (i) AdS3 × S3; (ii) AdS3 × R3; and (iii) R2,1 × S3.

In general, for backgrounds belonging to (i) the radii of the AdS3 and S3 do not

necessarily coincide — in particular, (ii) and (iii) are degenerate cases of (i). Additionally,

if Nabc = 0 and Wabc 6= 0, their radii must be equal (proportional to β in (8.11)). This

background is one of the well-known solutions to minimal N = (1, 0) supergravity in six

dimensions [89]. It is also an example of a superspace which is not superconformally flat,

Wabc 6= 0, though its bosonic body is conformally flat, Cabcd ≡ 0.14

So far we have not specified any conformal compensators Ξ. We have worked in the

super-Weyl gauge (3.31), where Ξ is a descendant of the compensators Ξ which is a singlet

under the structure group and has the properties: (i) it is an algebraic function of Ξ; (ii)

it is nowhere vanishing; and (iii) it has a non-zero super-Weyl weight wΞ, δσΞ = wΞσΞ.

Additional constraints on supergravity backgrounds often occur once a specific choice of

compensators is made.

Let us analyse the case of the compensators introduced in section 3.3, specifically: the

tensor multiplet Φ and the linear multiplet Gij = Gji. Then it is possible to identify Ξ

with Φ. In the super-Weyl gauge (7.10), the tensor multiplet constraint (3.35) reduces to

Cija = 0 . (8.16)

Every Killing supervector field ξB must leave the linear compensator Gij invariant,(
ξBDB +Kkl[ξ]Jkl

)
Gij = 0 , (8.17)

in accordance with (3.34b). In the case of a maximally supersymmetric background, this

equation implies that Gij is annihilated by the spinor covariant derivatives,

DiαGjk = 0 . (8.18)

Now, the integrability condition {Diα,D
j
β}G

kl = 0 leads to the constraint

Nabc(γabc)αβ
(
εk(iGj)l + εl(iGj)k

)
= 0 , (8.19)

which is solved by

Nabc = 0 . (8.20)

We have shown that the conditions (8.16) and (8.20) hold for all maximally supersymmetric

backgrounds of Poincaré supergravity with the tensor and linear compensators.

Instead of identifying Ξ = Φ as has been done above, we can instead choose Ξ = G.

Next, we impose the super-Weyl gauge

G2 = 1 ⇐⇒ GikG
k
j = −δij . (8.21)

14The reader can consult [90] for an interesting discussion of superconformal flatness of AdSp × Sq

superspaces based on coset constructions.
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Then the analyticity constraint (3.36) and the super-Weyl gauge condition (8.21) tell us

that Gij is annihilated by the spinor covariant derivatives, eq. (8.18), and thus the integra-

bility condition {Diα,D
j
β}G

kl = 0 must hold. The latter contains nontrivial information, in

accordance with the anti-commutation relation (2.5a). Specifically, the integrability condi-

tion tells us that the condition (8.20) holds. Every Killing supervector field ξB must leave

the tensor compensator Φ invariant,

ξBDBΦ = 0 , (8.22)

in accordance with (3.34b). In the case of a maximally supersymmetric background, this

equation implies that Φ is annihilated by the spinor covariant derivatives, and therefore

Φ = const . (8.23)

As a result, the tensor multiplet constraint (3.35) reduces to (8.16).

We have discussed the two possible choices: (i) Ξ = Φ; and (ii) Ξ = G. Both of

them lead to the same maximally supersymmetric backgrounds, which are characterised

by the conditions (8.16) and (8.20). The superspace torsion is determined by the super-

Weyl tensor Wabc which is covariantly constant. Such a superspaces are the only maximally

supersymmetric solutions of Poincaré supergravity. Let us discuss this point in more detail.

The equations of motion for Poincaré supergravity have the simplest form in conformal

superspace. In this setting, the tensor compensator Φ and the linear compensator Gij obey

the constraints

∇(i
α∇

j)
β Φ = 0 , (8.24a)

∇(i
αG

jk) = 0 . (8.24b)

For more details, including the Poincaré supergravity action, we refer the reader

to [47, 84, 91]. The superfield equations of motion for N = (1, 0) Poincaré supergrav-

ity were derived in [84]. They have the form

Wαi = 0 , ∇(i
α∇

j)
β

(
G

Φ

)
= 0 , (8.25)

where Wαi is the field strength of a composite vector multiplet

Wαi =
1

G
∇αβΥi

β +
4

G
(WαβΥi

β + 10iXα
j G

ij)− 1

2G3
Gjk(∇αβGij)Υk

β

+
1

2G3
GijFαβΥβj +

i

16G5
εαβγδΥβjΥγkΥδlG

ijGkl , (8.26)

with Υi
α := 2

3∇αjG
ij and Fαβ := i

4∇
k
[αΥβ]k. To make contact with our previous results, we

now degauge to SU(2) superspace. Upon degauging, the tensor multiplet constraint (8.24a)

turns into (3.35), while the linear multiplet constraint (8.24b) takes the form (8.18). The

second equation of motion for Poincaré supergravity in (8.25) becomes

(
D(i
αD

j)
β + 4iCijαβ

)(G
Φ

)
= 0 . (8.27)
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The analysis given above tells us that the following properties hold for all maximally su-

persymmetric backgrounds: (i) both compensators Φ and Gij are covariantly constant;

and (ii) the conditions (8.16) and (8.20) hold. Now eq. (8.27) is satisfied. The first equa-

tion of motion in (8.25), Wαi = 0, is also satisfied, since all maximally supersymmetric

backgrounds have no covariant background spinor superfields.

9 Conclusion

To conclude, we summarise the main results of this paper and outline some interesting

areas for future work. Our main outcomes are as follows:

• We have described the structure of (conformal) isometries of N = (1, 0) supergravity

backgrounds within the SU(2) and conformal superspace formulations. In the in-

finitesimal case they were shown to form a closed algebra on any fixed supergravity

background. Further, we detailed how these may be utilised to trivially read off the

(conformal) Killing spinor equation at the component level. Its solutions may be

uplifted to a unique (conformal) Killing vector superfield on M6|8.

• The conformal Killing spinor superfields εα, which generate extended conformal su-

persymmetries, were introduced. In addition, their relation to the conformal Killing

vector ξa and tensor ζa(n) superfields was shown. The former parametrise the confor-

mal isometries of superspace, while the latter are associated with the higher symme-

tries of the kinetic operators of on-shell multiplets. Additionally, it was proven that

the conformal Killing tensors of a fixed superspace form a superalgebra with respect

to the bracket (4.12).

• We studied the higher symmetries of three on-shell models in curved backgrounds,

namely: (i) the conformal scalar field; (ii) the hypermultiplet; and (iii) the non-

conformal vector multiplet. In our analysis of (i) we have, for the first time, derived

the explicit form of every higher symmetry operator on curved backgrounds. For (ii),

it was proven that the conformal Killing tensor superfields ζa(n) generate all (non-

trivial) symmetries of their kinetic operators. Finally, in the case of (iii), we deduced

that its higher symmetries are parametrised by Killing tensor superfields, which were

also introduced in this work (7.17).

• The maximally supersymmetric backgrounds of N = (1, 0) supergravity in six dimen-

sions were classified. Our analysis leads to the superalgebra (8.13), or equivalently

(8.15), which contains three distinct branches. Further, their corresponding space-

time backgrounds are derived, reproducing the results of [87–89].

Interesting open problems include the following:

• Our approach to the higher symmetries of the conformal d’Alembertian in section 5

may be immediately generalised to the study of more complex conformal field theories.

In particular, it would be interesting to extend this analysis to Maxwell electrody-

namics in four dimensions.
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• We believe that, as was shown for the conformal d’Alembertian, every higher sym-

metry operator for the hypermultiplet and vector multiplet is uniquely determined

in terms of its top component. It would be interesting to prove this explicitly.

• As an extension of our analysis of the higher symmetries of the (massless) hyper-

multiplet in section 6, it would be interesting to study the higher symmetries of the

massive hypermultiplet on d = 4, N = 2 and d = 5, N = 1 supergravity backgrounds.
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A Conventions

A.1 Spinors in six dimensions

Our 6D notation and conventions are similar to to those of [15], with a few minor modifi-

cations. All relevant details are summarized here.

The Minkowski metric is ηab = diag(−1, 1, 1, 1, 1, 1), the Levi-Civita tensor εabcdef is

normalised by ε012345 = −ε012345 = 1, and the Levi-Civita tensor with world indices is

given by εmnpqrs := εabcdefea
meb

nec
ped

qee
ref

s.

We exclusively use four component spinors in the body of the paper, but it is useful

to relate these to eight component spinor conventions. The Dirac 8 × 8 matrices Γa and

the charge conjugation matrix C obey the relations

{Γa,Γb} = −2ηab1 , (Γa)† = −Γa , CΓaC
−1 = −ΓTa ,

C†C = 1 , C = CT = C∗ . (A.1)

In particular, ΓaC
−1 is antisymmetric. The chirality matrix Γ∗ is defined by

Γ[aΓbΓcΓdΓeΓf ] = εabcdefΓ∗ . (A.2)

As a consequence of the above conditions, one can show that

Γa = B(Γa)∗B−1 , B = Γ∗Γ0C
−1 . (A.3)

15However the entire responsibility of the publication belongs to the owners of the publication. The

financial support received from TÜBITAK does not mean that the content of the publication is approved

in a scientific sense by TÜBITAK.
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The charge conjugate Ψc of a Dirac spinor is conventionally defined by

Ψ̄ ≡ Ψ†Γ0 =: (Ψc)TC =⇒ Ψc = −Γ0C
−1Ψ∗ = −Γ∗BΨ∗ . (A.4)

Because B∗B = −1, charge conjugation is an involution only for objects with an even

number of spinor indices, so it is not possible to have Majorana spinors in six dimensions.

One can instead have a symplectic Majorana condition when the spinors possess an SU(2)

index. Conventionally this is denoted

(Ψi)
c = Ψi =⇒ Ψi = −Γ0C

−1(Ψi)
∗ = −Γ∗B(Ψi)

∗ (A.5)

for a spinor of either chirality. We raise and lower SU(2) indices i = 1, 2 using the conven-

tions

Ψi = εijΨj , Ψi = εijΨ
j , ε12 = ε21 = 1 . (A.6)

We employ a Weyl basis for the gamma matrices so that an eight-component Dirac

spinor Ψ decomposes into a four-component left-handed Weyl spinor ψα and a four-

component right-handed spinor χα so that

Ψ =

(
ψα

χα

)
, Γ∗ =

(
δαβ 0

0 −δαβ

)
, α = 1, · · · , 4 . (A.7)

The spinors ψα and χα are valued in the two inequivalent fundamental representations of

su∗(4) ∼= so(5, 1). We further take

Γa =

(
0 (γ̃a)αβ

(γa)αβ 0

)
, C =

(
0 δα

β

δαβ 0

)
. (A.8)

The Pauli-type 4× 4 matrices (γa)αβ and (γ̃a)αβ are antisymmetric and related by

(γ̃a)αβ =
1

2
εαβγδ(γa)γδ , (γa)∗ = γ̃a , (A.9)

where εαβγδ is the canonical antisymmetric symbol of su∗(4). They obey

(γa)αβ(γ̃b)βγ + (γb)αβ(γ̃a)βγ = −2ηabδγα , (A.10a)

(γ̃a)αβ(γb)βγ + (γ̃b)αβ(γa)βγ = −2ηabδαγ , (A.10b)

and as a consequence of (A.3),

(γa)αβ = Bα
γ̇Bβ

δ̇
(
(γa)γδ

)∗
, (γ̃a)αβ = Bα

γ̇B
β
δ̇

(
(γ̃a)γδ

)∗
, B =

(
Bα

β̇ 0

0 Bα
β̇

)
. (A.11)

A dotted index denotes the complex conjugate representation in su∗(4). It is natural to

use the B matrix to define bar conjugation on a four component spinor via

ψ̄α = Bα
β̇(ψβ)∗ , χ̄α = Bα

β̇(χβ)∗ , (A.12)
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with the obvious extension to any object with multiple spinor indices. For example,

(γa)αβ = (γa)αβ using (A.11) and similarly for γ̃a. We also note that, as a consequence of

B∗B = −1,

ψα = −ψα, (A.13)

with the natural extension to any tensor carrying an odd number of spinor indices. A

symplectic Majorana spinor Ψi, decomposed as in (A.7) and obeying (A.5), has Weyl

components that obey

ψαi = ψαi , χαi = χiα . (A.14)

The Grassmann coordinates θαi and the parameters ηiα of S-supersymmetries are both

symplectic Majorana-Weyl using this definition.

We define the antisymmetric products of two or three Pauli-type matrices as

γab := γ[aγ̃b] :=
1

2
(γaγ̃b − γbγ̃a) , γ̃ab := γ̃[aγb] = −(γab)

T , (A.15a)

γabc := γ[aγ̃bγc] , γ̃abc := γ̃[aγbγ̃c] . (A.15b)

Note that γab and γ̃ab are traceless, whereas γabc and γ̃abc are symmetric. Further antisym-

metric products obey

γabc = − 1

3!
εabcdefγ

def , γ̃abc =
1

3!
εabcdef γ̃

def , (A.16a)

γabcd =
1

2
εabcdefγ

ef , γ̃abcd = −1

2
εabcdef γ̃

ef , (A.16b)

γabcde = εabcdefγ
f , γ̃abcde = −εabcdef γ̃f , (A.16c)

γabcdef = −εabcdef , γ̃abcdef = εabcdef . (A.16d)

Making use of the completeness relations

(γa)αβ(γ̃a)
γδ = 4 δ[α

γδβ]
δ , (A.17a)

(γab)α
β(γab)γ

δ = −8 δα
δδγ

β + 2 δα
βδγ

δ , (A.17b)

(γabc)αβ(γ̃abc)
γδ = 48 δ(α

γδβ)
δ , (A.17c)

(γabc)αβ(γ̃abc)γδ = (γabc)αβ(γ̃abc)
γδ = 0 , (A.17d)

it is straightforward to establish natural isomorphisms between tensors of so(5, 1) and

matrix representations of su∗(4). Vectors V a and antisymmetric matrices Vαβ = −Vβα are

related by

Vαβ := (γa)αβVa ⇐⇒ Va =
1

4
(γ̃a)

αβVαβ . (A.18)

Antisymmetric rank-two tensors Fab are related to traceless matrices Fα
β via

Fα
β := −1

4
(γab)α

βFab , Fα
α = 0 ⇐⇒ Fab =

1

2
(γab)β

αFα
β = −Fba . (A.19)

Self-dual and anti-self-dual rank-three antisymmetric tensors T
(±)
abc ,

1

3!
εabcdefT

(±)
def = ±T (±)abc , (A.20)
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are related to symmetric matrices Tαβ and Tαβ via

Tαβ :=
1

3!
(γabc)αβTabc = Tβα ⇐⇒ T

(+)
abc =

1

8
(γ̃abc)

αβTαβ , (A.21a)

Tαβ :=
1

3!
(γ̃abc)αβTabc = T βα ⇐⇒ T

(−)
abc =

1

8
(γabc)αβT

αβ . (A.21b)

A.2 The N = (1, 0) superconformal algebra

The bosonic sector of the N = (1, 0) superconformal algebra contains the translation (Pa),

Lorentz (Mab), special conformal (Ka), dilatation (D) and SU(2) generators (Jij), where

a, b = 0, 1, 2, 3, 4, 5 and i, j = 1, 2. Their algebra is

[Mab,Mcd] = 2ηc[aMb]d − 2ηd[aMb]c , (A.22a)

[Mab, Pc] = 2ηc[aPb] , [D, Pa] = Pa , (A.22b)

[Mab,Kc] = 2ηc[aKb] , [D,Ka] = −Ka , (A.22c)

[Ka, Pb] = 2ηabD + 2Mab , (A.22d)

[J ij , Jkl] = εk(iJ j)l + εl(iJ j)k , (A.22e)

with all other commutators vanishing.

Its superconformal generalisation is obtained by extending the translation generator

to PA = (Pa, Q
i
α) and the special conformal generator to KA = (Ka, Sαi ). The fermionic

generator Qiα obeys the algebra

{Qiα, Q
j
β} = −2iεij(γc)αβPc , [Qiα, Pa] = 0 , [D, Qiα] =

1

2
Qiα , (A.23a)

[Mab, Q
k
γ ] = −1

2
(γab)γ

δQkδ , [J ij , Qkα] = εk(iQj)α , (A.23b)

while the generator Sαi obeys the algebra

{Sαi , S
β
j } = −2iεij(γ̃

c)αβKc , [Sαi ,Ka] = 0 , [D, Sαi ] = −1

2
Sαi , (A.24a)

[Mab, S
γ
k ] =

1

2
(γab)δ

γSδk , [J ij , Sαk ] = δ
(i
k S

j)
α , (A.24b)

Finally, the (anti-)commutators of KA and PB are

[Ka, Q
i
α] = −i(γa)αβS

βi , [Sαi , Pa] = −i(γ̃a)
αβQβi , (A.25a)

{Sαi , Q
j
β} = 2δαβ δ

j
iD− 4δjiMβ

α + 8δαβJi
j . (A.25b)

B The conformal Killing supervector fields of M6|16

The aim of this appendix is to study the structure of conformal Killing supervector fields

of N = (2, 0) Minkowski superspace in six dimensions. Such analyses were previously

conducted in [77, 92]. By employing this construction, we will explicitly prove our earlier

claim that the proposed conformal Killing spinor superfields (4.1) naturally arise from an

N = (2, 0) −→ (1, 0) superspace reduction.
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We recall that N = (2, 0) Minkowski superspace, M6|16, is parametrised by the coor-

dinates zA = (xa, θαI ), where a = 0, 1, · · · , 5, α = 1, · · · , 4 and I = 1, · · · , 4. Its covariant

derivatives take the form

∂a =
∂

∂xa
, DI

α =
∂

∂θαI
− i(γa)αβθ

βI∂a , (B.1)

and satisfy the algebra

{DI
α, D

J
β} = −2iΩIJ∂αβ ,

[
∂a, D

I
α

]
= 0 ,

[
∂a, ∂b

]
= 0 . (B.2)

Here ΩIJ = −ΩJI is an invariant tensor of the N = (2, 0) R-symmetry group USp(4). It is

convenient to choose a basis for ΩIJ such that it takes the form

ΩIJ =

(
εij 0

0 εîĵ

)
, i, î = 1, 2. (B.3)

We will say that the real supervector field

ξ = ξ̄ = ξa∂a + ξαI D
I
α , (B.4)

is conformal Killing if it satisfies[
ξ,DI

α

]
= −(DI

αξ
β
J )DJ

β . (B.5)

This constraint implies the fundamental equation

DI
αξ

a = −2i(γa)αβξ
βI , (B.6)

which yields

ξαI = − i

12
(γ̃a)

αβDβIξ
a . (B.7)

By a routine computation, we may bring (B.5) to the form[
ξ,DI

α

]
= −ωαβ [ξ]DI

β + ΛIJ [ξ]DJ
α −

1

2
σ[ξ]DI

α, (B.8)

where we have made use of the definitions

ωα
β [ξ] = −1

4
(γab)α

β∂aξb ,

ΛIJ [ξ] = −1

4

[
DI
αξ

α
J −

1

4
δIJD

K
α ξ

α
K

]
,

σ[ξ] =
1

6
∂aξa . (B.9)

It is clear that the above parameters generate Lorentz, R-symmetry and scaling transfor-

mations, respectively.

We now briefly consider the problem of performing a reduction to N = (1, 0) Minkowski

superspace. Without loss of generality, we will assume that this coincides with the section
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of M6|16 defined by θαI = (θαi , θ
α
î

) = (θαi , 0). It then follows that, upon such a reduction,

every solution to (B.5) decomposes into an N = (1, 0) conformal Killing supervector field,

a spinor superfield and an additional triplet of scalar superfields defined by

εα
î

= ξα
î
|θα
î

=0 , λîĵ :=
1

4
D(̂i
α ξ

αĵ)|θα
î

=0 . (B.10)

The spinor εα
î

and λîĵ generate non-manifest extended superconformal symmetries in M6|8,

where λîĵ generates the hidden SU(2) R-symmetry within USp(4). By making use of the

fundamental equation (B.6), one may show that εα
î

satisfies

Di
αε
β

ĵ
=

1

4
δβαD

i
γε
γ

ĵ
, (B.11)

which implies that εα1 and εα2 are conformal Killing spinor superfields (4.1). As a result, we

have proven our original claim.

C Bosonic backgrounds

In this appendix, we introduce a formalism to study 6D N = (1, 0) supersymmetric back-

grounds starting from a superspace perspective. Our analysis will be restricted to bosonic

backgrounds, meaning that the following conditions hold

DiαCakl| = 0 , DiαWabc| = 0 , DiαNabc| = 0 . (C.1)

Following [20, 93, 94], the bar-projection of a superfield is defined as usual:

U | := U(x, θ)
∣∣
θ=0

, (C.2)

for any superfield U(z) = U(x, θ). The coordinates xm parametrise a curved spacetimeM6,

the bosonic body of the superspace M6|8. The bar-projection of the superspace covariant

derivatives is defined similarly by:

DA| = EA
M | ∂M −

1

2
ΩA

bc|Mbc − ΦA
kl| Jkl . (C.3)

Due to (C.1), one can completely gauge away the gravitini such that the projection of

the vector covariant derivatives takes the simple form

Da| = Da ⇐⇒ ψm
α
i = 0 , (C.4)

where

Da = ea −
1

2
ωa

bcMbc − φaklJkl, ea := ea
m∂m (C.5)

is a spacetime covariant derivative with Lorentz (ωa
bc) and SU(2)R (φa

kl) connections. In

what follows, the gauge (C.4) will be assumed. The covariant derivatives Da obey

[Da,Db] = −1

2
RabcdMcd −RabklJkl , Rabcd = Rab

cd| , Rabkl = Rab
kl| . (C.6)
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For convenience, we also make the definitions

ca
kl = Ca

kl| , wabc = Wabc| , nabc = Nabc| . (C.7)

An important feature of such backgrounds (C.1) is that every conformal Killing vector

superfield (3.4) can be uniquely decomposed as a sum of even and odd ones. We will say

that the conformal Killing supervector ξA is even if

va := ξa| 6= 0 , ξαi | = 0 . (C.8)

or odd if

ξa| = 0 , εαi := ξαi 6= 0 . (C.9)

The fields va and εαi encode complete information about the parent conformal Killing

vector superfield. This appendix is devoted to the study of symmetries they induce at the

spacetime level.

C.1 Conformal Killing vectors

Let ξA be an even conformal Killing supervector field (C.8). By bar-projecting (3.5) we

obtain

Davb = kab[v] + ηabω[v] , (C.10)

where we have defined

kab[v] := Kab[ξ]| = D[avb] , ω[v] := σ[ξ]| = 1

6
Dava . (C.11)

In particular, it follows from (C.10) that va is a conformal Killing vector field

D(avb) =
1

6
ηabDcv

c . (C.12)

By employing the results of section 3, it may be shown that every conformal Killing vector

field on M6 may be lifted to a unique even conformal Killing vector superfield on M6|8.

We also note that, at the component level, SU(2)R transformations are generated by

kij [v] := Kij [ξ]| , (C.13)

which satisfies the differential equation

Dak
ij [v] = Rabijvb + vbDbca

ij + ka
b[v]cijb + 2k(i

k[v]cj)ka + ω[v]cija . (C.14)

It should be remarked that in the case of Poincaré supergravity, we must supplement

the constraints above with

σ[ξ] = 0 =⇒ ω[v]| = 0 , (C.15)

which implies that va is a Killing vector field

D(avb) = 0 . (C.16)

Further, by making use of (3.20) equation (C.14) reduces to

Dak
ij [v] = Rabijvb . (C.17)
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C.2 Conformal Killing spinors

Our analysis in this subsection will be restricted to those backgrounds which admit at

least one conformal supersymmetry. Such spacetimes are associated with a superspace

possessing an odd conformal Killing supervector field ξA (C.9), from which one can

identify a conformal Killing spinor εαi as the bar projection of ξαi . The spinor εαi gen-

erates a Q-supersymmetry transformation, while S-supersymmetry transformations are

parametrised by

ηiα := Diασ[ξ]| . (C.18)

With the previous assumptions at hand, bar-projecting equation (3.22) gives

Daε
γ
k = (γab)β

γεβjcbjk +
1

2
(γbc)β

γεβk(wabc + 2nabc) +
i

2
(γ̃a)

βγηβk . (C.19)

Moreover, eq. (3.23) implies

ηβk = − i

3
Dβδε

δ
k +

4i

3
εδjcβδjk −

i

6
(γabc)δβε

δ
k(wabc + 2nabc) , (C.20)

and (C.19) becomes

Daε
γ
k − cak

jεγj −
1

2
(wabc + 2nabc)(γ

bc)β
γεβk =

i

2
(γ̃a)

βγ
(
ηβk − 2i(γb)βδε

δjcbjk
)
, (C.21)

or, equivalently,

D̂aε
γ
k =

i

2
(γ̃a)

βγ
(
ηβk − 2i(γb)βδε

δjcbjk
)
≡ i

2
(γ̃a)

βγ η̂βk , (C.22)

where we have defined

D̂a := Da + ca
klJkl − (wabc + 2nabc)M

bc , (C.23)

and

η̂αk := − i

3
(γa)αβD̂aε

β
k . (C.24)

The conformal Killing spinor equation then takes the particularly simple form

D̂aε
γ
k = −1

6
(γ̃a)

γβ(γb)βδD̂bε
δ
k ⇐⇒ D̂αβε

γ
k = −2

3
δ[α

γD̂β]δε
δ
k (C.25)

In particular, we see that the gamma-traceless part of D̂aε
γ
k is identically zero.

Associated with a non-zero commuting spinor εαi is the 6-vector

Va = (γa)αβε
ijεαi ε

β
j , (C.26)

which proves to be a conformal Killing vector field when εαi is a solution to (C.19):

D(aVb) =
1

6
ηabD

cVc . (C.27)

Furthermore, it is a null vector

V 2 := V aVa = 0 . (C.28)
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By construction, the following identities hold

δ(DiαCajk) = 0 , δ(DiαWabc) = 0 , δ(DiαNabc) = 0 , (C.29)

which implies the conditions (C.1) are superconformal. The bar-projection of the above

conditions imply the following constraints

(γ̃a)
βγDiαD

(j
β D

k)
γ σ| = 4iεβl

(
− [Diα,Dlβ ]Ca

jk| − 2iεilDαβca
jk − 4i(γabc)αβc

bilccjk

+4iεil(γb)αβ(wabc + 2nabc)c
cjk − 12iεilcαβ

p(jcap
k)

−8i

3
N bcd(γbcd)αβ

(
εj(ica

l)k + εk(ica
i)j
))

(C.30a)

+8i(γab)α
γηiγc

bjk − 32iηαl
(
εj(ica

l)k + εk(ica
l)j
)

+ 8iηiαca
jk ,

0 = εβj

(
− 1

2
[Diα,D

j
β ]Wabc| − iεijDαβwabc + 6i(γ[a

de)αβwbc]dce
ij

+6iεij(γd)αβ(wde[a + 2nde[a)wbc]e

)
−3ηiβ(γd[a)α

βwbc]d + ηiαwabc , (C.30b)

i

32
(γ̃abc)

γδDiαDkγDδkσ| = εβj

(
− 1

2
[Diα,D

j
β ]Nabc| − iεijDαβnabc + 6i(γ[a

de)αβnbc]dce
ij

+6iεij(γd)αβ(wde[a + 2nde[a)nbc]e

)
−3ηiβ(γd[a)α

βnbc]d + ηiαnabc . (C.30c)

Restrictions on higher mass-dimension component parameters may be obtained from the

invariance of higher-order spinor derivatives of Ca
jk, Wabc and Nabc. These results exem-

plify how results in components can be efficiently obtained from a superspace setting.

In the case of Poincaré supergravities, the equations given above must be supplemented

by the additional condition

σ[ξ] = 0 =⇒ ηiα = 0 , (C.31)

which is a consequence of (3.32). The conformal Killing spinor equation (C.19) becomes

D̂aε
γ
k = (γ̃a)

βγ(γb)βρε
ρjcbjk , (C.32)

which implies

D̂δρε
ρ
k = 6(γb)δρε

ρjcbjk , (C.33)

and

εδkD̂δρε
ρ
k = 0 . (C.34)

This implies that

D̂aVa = 0 = DaVa , (C.35)

thus Va is a Killing vector field

D(aVb) = 0 . (C.36)
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D From conformal to SU(2) superspace

As is well known, SU(2) superspace exists as a gauge-fixed version of conformal superspace.

The process of moving from the latter to the former is known as ‘degauging’ and we outline

it here extending previous analysis in 3 ≤ D ≤ 5, see [37–40].

The first step in this procedure is to eliminate the dilatation connection. Under an

infinitesimal special conformal gauge transformation the one-form B = EaBa + Eαi B
i
α

transforms as

δK(Λ)B = −2EaΛa − 2Eαi Λiα . (D.1)

Thus, in exchange for a loss of unconstrained special conformal gauge freedom,16 one can

gauge away B.

BA = 0 . (D.2)

As a result, the special conformal connection becomes auxiliary and must be manually

extracted from ∇A.

The degauged covariant derivatives are given by

DA := ∇A + FABK
B = EA −

1

2
ΩA

bcMbc − ΦA
ijJij . (D.3)

Since their structure group is SO(5, 1)× SU(2)R it is clear that they are SU(2) superspace

covariant derivatives. They satisfy the algebra

[DA,DB} = −TAB
CDC −

1

2
RAB

cdMcd −RAB
klJkl . (D.4)

The degauged special conformal connections FA
B provide new contributions to the torsion,

and by extension to the other curvatures.

We use different symbols for the degauged derivatives and the SU(2) ones of section 2.1

since, as we will see, they satisfy slightly different torsion constraints. Since the vielbein,

Lorentz, and SU(2) connections are exactly those of conformal superspace, it is easy to

give expressions for the new torsion and curvature tensors in terms of their conformal

counterparts. This can be done by using the expression of the conformal superspace torsion

and curvature two-forms in terms of the vielbein and connection superfields [16]

T a = dEa + Eb ∧ Ωb
a + Ea ∧B , (D.5a)

T α
i = dEαi + Eβi ∧ Ωβ

α +
1

2
Eαi ∧B − Eαj ∧ Φji − iEc ∧ Fβi(γ̃c)

αβ , (D.5b)

R(D) = dB + 2Ea ∧ Fa + 2Eαi ∧ Fiα , (D.5c)

R(M)ab = dΩab + Ωac ∧ Ωc
b − 4E[a ∧ Fb] + 2Eαj ∧ Fjβ(γab)α

β , (D.5d)

R(J)ij = dΦij − Φk(i ∧ Φj)
k − 8Eα(i ∧ Fj)α , (D.5e)

R(K)a = dFa + Fb ∧ Ωb
a − Fa ∧B − iFkα ∧ Fβk(γ̃

a)αβ , (D.5f)

R(S)iα = dFiα − Fiβ ∧ Ωα
β − 1

2
Fiα ∧B − Fjα ∧ Φj

i − iEβi ∧ Fc(γc)αβ . (D.5g)

16There exists a class of combined local dilatations and special conformal transformations preserving the

gauge B = 0. These exactly reproduce the super-Weyl transformations (2.11), see e.g. [29, 37, 95].
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For example, in the gauge B = EABA ≡ 0, one finds the torsion tensors are related by

Ta = T a , Tα
i = T α

i + iEc ∧ Fβi(γ̃c)
αβ . (D.6)

By investigating (D.6), one can extract the structure of the torsion constraints in the

degauged geometry. We find that these are all the same as for the covariant derivatives

DA, except that

Taβ(j
β
k) 6= 0 , Tab

c 6= 0 . (D.7)

In the SU(2) superspace geometry of section 2.1, both of these torsions are required to

vanish. As we will see, these conditions can be satisfied by redefining the degauged vector

covariant derivative. Then, the resulting geometry exactly reproduces the SU(2) superspace

geometry of section 2.1.

To elaborate further, we must analyse the additional superfields introduced by the

special conformal connections FA
B. In the gauge (D.2) the dilatation curvature, eq. (D.5c),

is given by

R(D)AB = 2FAB − 2FBA(−1)εAεB . (D.8)

The vanishing of the dilatation curvature at dimension-1, see (2.19), constrains the special

conformal connection as

Fiα
j
β = −Fjβ

i
α = − i

4
Aαβ

ij + iεijYαβ , (D.9)

where the superfields Aαβ
ij , and Yαβ satisfy

Aαβ
ij = (γa)αβAa

ij = Aαβ
ji = −Aβαji , Yαβ = Yβα =

1

6
(γabc)αβYabc . (D.10)

At this point it is possible to derive the degauged algebra of covariant derivatives. An

efficient way to do this is to consider a weight-zero primary superfield U0 transforming

as a tensor in some representation of the remainder of the superconformal algebra. For

example, to determine the anti-commutator of spinor derivatives we consider

{D i
α,D

j
β}U0 = {∇iα,∇

j
β}U0 + FiαC [KC ,∇jβ}U0 + FjβC [KC ,∇iα}U0 . (D.11)

The resulting algebra is

{D i
α,D

j
β} = −2iεij(γa)αβDa + 4iεijY bcd(γb)αβMcd + 2iεij(γa)αβAa

klJkl

+
i

2
Ab

ij(γbcd)αβMcd +
8i

3
(γabc)αβYabcJ

ij . (D.12)

To match (2.5a) it is necessary to make the following identifications

Aa
ij = 4Ca

ij , Yabc = −Nabc , (D.13)

and

D i
α = Diα , Da = Da +WabcM

bc + Ckla Jkl . (D.14)
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Next, we compute [Da,D
j
β ] at dimension-1. One finds

[Da,D
j
β ]U0 = [∇a,∇jβ ]U0 + FaC [KC ,∇jβ}U0 − FjβC [KC ,∇a}U0 ,

which implies

[Da,D
j
β ] = Ca

j
kD

k
β + Cbjk(γab)β

δDk
δ −Wacd(γ

cd)γ
δD j

δ −Nacd(γ
cd)β

δD j
δ + · · ·

Finally, we turn to Fa
j
β . Since at mass dimension-3/2, (D.5c) implies

R(D)a
j
β = 2Fa

j
β − 2Fjβa , (D.15)

by employing the dilatation curvatures of eq. (2.22), one obtains

Fjβa = Fa
j
β +

1

16
D i
βW

αβ = Fa
j
β +

5i

8
Xβi . (D.16a)

By examining the expressions for the conformal superspace torsion and curvatures of

eq. (D.5), one can obtain

TAB
c = TAB

c , (D.17a)

TAB
γ
k = TAB

γ
k − iδcA(γ̃c)

γδFB,δk + iδcB(γ̃c)
γδFA,δk , (D.17b)

RAB
cd = R(M)AB

cd − 4δ
[c
AFB,

d] + 4δ
[c
BFA,

d] + 2δA
γ
k(γcd)γ

δFB,
k
δ (−1)εB

−2δB
γ
k(γcd)γ

δFA,
k
δ , (D.17c)

RAB
kl = R(J)AB

kl − 8δA
ρ
p FB,

(k
ρ ε

l)p(−1)εB + 8δB
ρ
p FA,

(k
ρ ε

l)p , (D.17d)

as well as the following conditions on the special conformal connections

R(S)AB
k
γ = 2D[AFB)

k
γ + TAB

DFD,
k
γ + iεklδA

δ
l (γc)γδFB,

c(−1)εB

−iεklδB
δ
l (γc)γδFA,

c , (D.18a)

R(K)AB
c = 2D[AFB)

c + TAB
DFD,

c + iFA,
k
γFB,δk(γ̃

c)γδ(−1)εB

−iFB,
k
γFA,δk(γ̃

c)γδ(−1)εAεB+εA . (D.18b)

At dimension-3/2 only the S-curvature equation, eq. (D.18a), with A = i
α and B = j

β

gives nontrivial constraints. In particular, by using R(S)iα
j
β
k
γ = 0 and (D.16a), one obtains

0 = D i
αF

j
β
k
γ + D j

βF
i
α
k
γ + 2iεij(γa)αβFa

k
γ − iεki(γa)γαFa

j
β − iεkj(γa)γβFa

i
α

+
i

8
εijεαβγδD

k
ρW

δρ . (D.19)

Its solution implies the differential constraints

D
(i
(αCβ)γ

jk) = 0 , D i
(αNβγ) = 0 , (D.20)

which indicates that the decomposition into irreducible and nontrivial tensors of the spinor

derivatives of dimension-1 torsions is

Dk
γCa

ij = (γa)γδCδkij − εk(iCa γj) − εk(i(γa)γδCδj) , (D.21a)

Dk
γNabc = −3

4
(γ[ab)γ

βNc]βk , (D.21b)

Dk
γWabc = i(γabc)αβXγ

αβk + i(γabc)γδX
δk . (D.21c)
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Equation (D.19) then implies

Fa
j
β = − 5i

24
(γa)βδX

δj − 1

2
(γa)βδCδj +

1

2
Caβj −

1

2
Naβj . (D.22)

To conclude the analysis at dimension-3/2 we derive the corresponding torsion and

curvatures. For the dimension-3/2 torsion it holds that

Tab
γ
k = Tab

γ
k − 2i(γ̃[a)

γδFb]δk , (D.23)

which leads to

Tab
γ
k = (γab)β

α

(
Xα

βγ
k −

3

4
δγαX

β
k

)
+ i(γ̃[a)

γδ
(
Nb]δk − Cb]δk

)
+(γab)ρ

γ

(
5

12
Xρ
k − iCρk

)
. (D.24)

The dimension-3/2 Lorentz curvature can be computed by using

Ra
j
β
cd = R(M)a

j
β
cd − 4δ[c

a F
j
β
d] − 2δγβδ

j
k(γ

cd)γ
δFa

k
δ , (D.25)

which becomes

Ra
j
β
cd = 2i(γa)βγ(γcd)δ

ρXρ
γδj + (γa

cd)βγ

(
2i

3
Xγj + Cγj

)
+ δ[c

a (γd])βγ

(
− 4i

3
Xγj + 4Cγj

)
+2δ[c

a

(
N d]

β
j − Cd]

β
j
)

+ (γcd)β
γ
(
Naγj − Caγj

)
. (D.26)

Finally, the SU(2)R curvature derives from

Ra
j
β
kl = R(J)a

j
β
kl + 8δρβδ

j
p Fa

(k
ρ ε

l)p (D.27)

which implies

Ra
j
β
kl =

{
(γa)βγ

(
10i

3
Xγ(k − 4Cγ(k

)
− 4
(
Naβ(k − Caβ(k

)}
εl)j . (D.28)

One can then prove that these results coincide with the dimension-3/2 results of sec-

tion (2.1) upon using (D.14) and identifying

Xγk
αβ = − i

4
Wγk

αβ , Xβ
k = − i

4
Wβ
k . (D.29)

It is straightforward to continue the degauging procedure and obtain results at dimen-

sions higher than 3/2. We will not pursue such an analysis here.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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