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ABSTRACT: General N = (1,0) supergravity-matter systems in six dimensions may be
described using one of the two fully fledged superspace formulations for conformal super-
gravity: (i) SU(2) superspace; and (ii) conformal superspace. With motivation to develop
rigid supersymmetric field theories in curved space, this paper is devoted to the study of
the geometric symmetries of supergravity backgrounds. In particular, we introduce the
notion of a conformal Killing spinor superfield €%, which proves to generate extended su-
perconformal transformations. Among its cousins are the conformal Killing vector £* and
tensor ¢™ superfields. The former parametrise conformal isometries of supergravity back-
grounds, which in turn yield symmetries of every superconformal field theory. Meanwhile,
the conformal Killing tensors of a given background are associated with higher symme-
tries of the hypermultiplet. By studying the higher symmetries of a non-conformal vector
multiplet we introduce the concept of a Killing tensor superfield. We also analyse the
problem of computing higher symmetries for the conformal d’Alembertian in curved space
and demonstrate that, beyond the first-order case, these operators are defined only on a
limited class of backgrounds, including all conformally flat ones.
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1 Introduction

The superconformal tensor calculus for AV = (1,0) supergravity in six dimensions was for-
mulated by Bergshoeff, Sezgin and Van Proeyen in 1986 [1], as a natural generalisation of
that for d = 4, N' = 2 supergravity [2-7]. More recently it was further developed [8, 9],
including the construction of the complete off-shell action for minimal Poincaré supergrav-
ity [8] and a higher-derivative extension of chiral gauged supergravity [9], see [10] for a
pedagogical review.

The tensor calculus [1] has found numerous applications, in particular the explicit
construction of off-shell curvature squared supergravity actions [9, 11-13]. It is a powerful
approach to formulate supergravity-matter systems. However, similar to its d = 4, N’ = 2
and d = 5, N = 1 cousins, it has two limitations. Firstly, it does not offer tools to
describe off-shell charged hypermultiplets. Secondly, it is rather impractical from the point
of view of constructing nonlinear supergravity actions such as invariants for conformal
supergravity, see, e.g., [14] for a related discussion. These limitations are avoided by
resorting to superspace techniques. There exist two fully fledged superspace formulations
for N'= (1, 0) conformal supergravity and its general off-shell couplings to supersymmetric
matter: (i) SU(2) superspace [15]; and (ii) conformal superspace [16]. Both formulations
have analogues in d < 6 dimensions.

The SU(2) superspace of [15] is a particular d = 6 realisation of the general ap-
proach to formulate A -extended conformal supergravity in 3 < d < 6 dimensions using
the so-called G g[d; N] superspace, where Gg[d; N] is the R-symmetry subgroup of the N-
extended superconformal group in d dimensions.! By definition, G'r[d; N] superspace is a
supermanifold M4~ | with d bosonic and §r fermionic dimensions.? Its structure group is
Spin(d—1,1) x Gg|d; N, where Spin(d—1, 1) is the double covering group of the connected
Lorentz group SOg(d—1,1). This means that the differential geometry of M4 is realised
in terms of covariant derivatives of the form

Da = (Do, Ds) =Ea—Qa— Qs . (1.1)

Here E4 = E M 8/62M denotes the inverse superspace vielbein, Q4 = %Q AbeMy,. is the
Lorentz connection, and ® = ®4'J; the R-symmetry connection. The index & of the
fermionic operator Dy is, in general, composite; it is comprised of a spinor index « and an
R-symmetry index. The supergravity gauge group includes a subgroup generated by local

transformations
1
0xDa = [K,Da], K= &"Dp + S K" Mye + K'J1 (1.2)
where the gauge parameters ¢4, K* = —K® and K! obey standard reality conditions

but are otherwise arbitrary. Given a tensor superfield ¢ (with suppressed Lorentz and
R-symmetry indices), its transformation law under (1.2) is dxp = K.

! According to the Nahm classification [17], superconformal algebras exist in spacetime dimensions d < 6.
The d = 5 case is truly exceptional, for it allows the existence of the unique superconformal algebra F(4).

2Here 6ar = 22N for d = 3,4 and 6, and 6 = 8 for d = 5. We denote by zM = (2™, 0") the local
coordinates for MV, Without loss of generality, we assume that the zero section of M~ defined by
6" = 0 corresponds to the spacetime manifold M¢.



In order to describe conformal supergravity, the superspace torsion T4g¢ in
C 1 cd I
[Da,Dp} = —Tap Do — o Rap“ Mea — Rap™ Jr ., (1.3)

must obey certain algebraic constraints, which may be thought of as generalisations of the
torsion-free constraint in gravity. A fundamental requirement on the superspace geome-
try, in order to describe conformal supergravity, is that the constraints on the torsion be
invariant under super-Weyl transformations of the form

06Dy = 0Dy + -+, 06Dg = =0Dg + -+, (1.4)

where the scale parameter ¢ is an arbitrary real superfield. The ellipsis in the expression
for 0,D, includes, in general, a linear combination of the spinor covariant derivatives DB
and the structure group generators M.; and Jx. The ellipsis in 6,Dg4 stands for a linear
combination of the generators of the structure group. The resulting curved superspace will
be denoted (M D). In many dynamical systems of interest, matter superfields may be
chosen to be primary under the super-Weyl group, é,¢ = w, 0, where the parameter w,
is the super-Weyl weight of ¢.

The approach sketched above was pioneered in d = 4 by Howe [18, 19] who put forward
the concept of U(N) superspace. In particular, he introduced the U(1) and U(2) superspace
geometries [19], corresponding to A/ =1 and N = 2 conformal supergravity, respectively.
Howe’s analysis was purely geometric in the sense that he did not address the problem of
constructing supergravity-matter actions. The full power of U(1) superspace was revealed
in the book [20], which provided a unified description of the off-shell formulations for N' = 1
supergravity and their couplings to matter. General off-shell N' = 2 supergravity-matter
systems in d = 4 were constructed in U(2) superspace in [21], building on the concepts of
rigid projective superspace [22-24] and superconformal projective multiplets [25, 26]. The
four-dimensional results of [21] provided a natural extension of the earlier construction of
the SU(2) superspace formalism in five dimensions [27]. The d = 3 realisation of Gg[d; N]
superspace is known as SO(N) superspace. Its geometry was developed in [28, 29]. This
formalism was used in [29] to construct off-shell supergravity-matter couplings for N < 4.

As compared with the d = 6, N/ = (1,0) superconformal tensor calculus of [1], the
important advantage of the SU(2) superspace approach [15] is that it offered off-shell for-
mulations for general supersymmetric nonlinear o-models coupled to supergravity.? This
was achieved by making use of the concept of covariant projective supermultiplets.?

The superspace formalism of [16] is a particular d = 6 realisation of the universal
approach to N-extended conformal supergravity in d < 6 dimensions, which is based on
gauging the entire A-extended superconformal group, of which Spin(d—1,1) x Gg[d; N is
a subgroup. This approach, known as conformal superspace, was originally developed for

3The component reduction of these locally supersymmetric o-models can be carried out using the tech-
niques developed by Butter in the d = 4, N’ = 2 case [30, 31].

4The concept of covariant projective supermultiplets was introduced earlier in d < 6 dimensions, first in
the framework of d = 5, N = 1 [27, 32, 33], followed by d = 4, N' = 2 [21, 34], then in d = 3, N' = 3 and
N =4 [29], and finally in d = 2, N' = (4, 4) supergravity [35, 36].



N =1 and N = 2 supergravity theories in four dimensions by Butter [37, 38]. More re-
cently, it has been extended to the cases of d = 3, N-extended conformal supergravity [39],
d = 5 conformal supergravity [40], and d = 6, N’ = (1,0) conformal supergravity [16].
Conceptually, conformal superspace is a superspace analogue of the famous formulation
for conformal (super)gravity as the gauge theory of the (super)conformal group pioneered
by Kaku, Townsend and van Nieuwenhuizen [41, 42], and further developed by Kugo and
Uehara [43].

One of the important achievements of the conformal superspace approach [16] is that
it provided the first ever construction of all the invariants for N/ = (1,0) conformal su-

> Several months later, these invariants were reduced to

pergravity in six dimensions.
components in [45], which resulted in the first tensor calculus description of the conformal
supergravity actions. Conformal superspace has also been used to describe the supersym-
metric completion of several curvature-squared invariants for N/ = (1,0) supergravity in
six dimensions [46, 47].

Conformal superspace is an ultimate formulation for conformal supergravity in the
sense that any different off-shell formulation is either equivalent to it or is obtained from it
by partially fixing the gauge freedom. In particular, Ggr[d; N] superspace can be obtained
from a partial gauge fixing of conformal superspace, see [37-40] for the technical details. In
the case of six dimensions, it was demonstrated in [45] that the N' = (1, 0) superconformal
tensor calculus of [1] is a gauged fixed version of the conformal superspace developed in [16].

Recently, local supertwistor formulations for N' = (1,0) and N' = (2,0) conformal su-
pergravity in six dimensions have been constructed [48], and analogous formulations have
been proposed in diverse dimensions [49]. Ref. [48] offered the first superspace description
of the N = (2,0) Weyl supermultiplet, which was originally formulated using the supercon-
formal tensor calculus [50]. In accordance with the above discussion, the local supertwistor
formulation should be equivalent to conformal superspace.® The latter is at present much
more developed and is thus the one favoured in this paper. We should also mention that
the harmonic superspace formulation for N' = (1,0) conformal supergravity was briefly
described in [52]. Unfortunately, this approach has not been pursued for over thirty years.

The present work is devoted to new applications of the supergravity formula-
tions [15, 16]. Their fundamental property is that they offer a universal setting to generate
off-shell supersymmetric field theories in curved space. In particular, all N' = (1,0) super-
symmetric theories that were originally constructed in terms of ordinary fields, may be read
off from a superfield theory upon elimination of the auxiliary fields. In order to develop
supersymmetric field theory in a given supergravity background, one needs a formalism
to determine the (conformal) isometries of the background superspace. Such a formalism
was developed long ago [53] within the framework of d = 4, N' = 1 old minimal supergrav-
ity. The approach described in [53] is universal, for in principle it may be generalised to
curved backgrounds associated with any supergravity theory formulated in superspace, see

®A simple by-product of the analysis in [16] was the first construction of the locally supersymmetric
FOF action coupled to conformal supergravity. In Minkowski space, the N' = (1,0) supersymmetric FOF
action was described for the first time in [44] within the harmonic superspace approach.

5Both constructions are based on Cartan connections, first discussed in the superspace context in [51].



the discussion in [54]. In particular, this approach has been properly generalised to study
supersymmetric backgrounds in N' = 2 supergravity in three [55] and four [56] dimensions,
and N = 1 supergravity in five dimensions [57]. One of the goals of this paper is to work
out the structure of (conformal) isometries of a given N' = (1,0) supergravity background
in six dimensions.

Within the Gr[d; N] superspace formulation, there exists a universal description of all
conformal isometries of a given curved background (./\/ld“sN , D). Following the discussion
in [54], a real supervector field £ = ¢ Ep on (M D) is called conformal Killing if

(0 +05)Da =0, (1.5)

for some Lorentz K%, R-symmetry K and super-Weyl o parameters. For any dimension
3 < d < 6 and any conformal supergravity, the following general properties are expected
to hold:

e All parameters K%, KT and ¢ are uniquely determined in terms of €2, which allows
us to write K% = K*[¢], K! = K'[¢] and o = o[€].

e The spinor component £B is uniquely determined in terms of &°.

e The vector component £ obeys a closed equation that contains all information about
the conformal Killing supervector field.

The properties have been established for d < 6 in several publications [53, 55-57]. The d =
6, N = (1,0) case will be studied in this paper. By construction, the set of conformal Killing
vectors on (./\/ld|5N , D) is a Lie superalgebra with respect to the standard Lie bracket. This
is the superconformal algebra of (M9~ D). One may show that it is finite-dimensional.
In the d = 6, N = (1,0) case, the proof will be given in section 3.

Given a conformal Killing supervector field £4 on (MCMN , D), the first-order operator
@él) = K[¢] + d5(¢ is a symmetry of any supersymmetric wave equation Oy = 0, where
O is the kinetic operator for some matter supermultiplets . For every solution ¢ of the

(1)
3

mass-shell equation, ®; /¢ is also a solution. It is of interest to study higher symmetries

of supersymmetric wave equations, nt"-order operators CDén) taking solutions to solutions,
for instance in the context of higher-spin superalgebras [58-62]. Higher symmetries of
relativistic wave equations have extensively been studied in the literature, see, e.g., [63—71]
and references therein. In the supersymmetric case, however, the program of studying the
higher symmetries of the so-called super-Laplacians and related geometric structures in
diverse dimensions has been initiated only a few years ago [72-74], mostly in Minkowski
superspace (M®°¥, D). So far there has been only one publication [75] devoted to the
higher symmetries of supersymmetric wave equations in curved supergravity backgrounds.
The present paper is aimed, in part, at a study of the higher symmetries of several on-shell
supermultiplets in a background of N/ = (1,0) conformal supergravity in six dimensions.
Their non-supersymmetric analogues are also examined in diverse dimensions, and bring
with them new insights for the supersymmetric story.



This paper is organised as follows. Section 2 reviews the SU(2) and conformal su-
perspace formulations for conformal supergravity. The conformal isometries of a fixed
superspace are then studied in section 3. In section 4, we introduce the notion of a confor-
mal Killing spinor superfield, which generates extended superconformal transformations.
By a systematic study, it is shown that among its cousins are the conformal Killing vectors
and tensors, which generate conformal isometries and higher symmetries, respectively. In
section 5 we review the higher symmetries of the conformal d’Alembertian and present
some new observations pertinent to the supersymmetric story. Following this, we study
the higher symmetries of the hypermultiplet and vector multiplet in sections 6 and 7, re-
spectively. Section 8 is devoted to the study of N' = (1,0) maximally supersymmetric
backgrounds. Concluding comments are given in section 9.

The main body of this paper is accompanied by several technical appendices. Ap-
pendix A recounts our conventions. We review the conformal Killing supervector fields of
N = (2,0) Minkowksi superspace in appendix B. In appendix C, we detail a formalism
for the study of supersymmetric backgrounds from a superspace perspective. Finally, in
appendix D, we detail how to ‘degauge’ from conformal to SU(2) superspace.

2 Conformal supergravity in superspace

As discussed in the introduction, there exist two fully fledged superspace formulations for
N = (1,0) conformal supergravity and its couplings to supersymmetric matter. In the lit-
erature they are referred to as (i) SU(2) superspace [15]; and (ii) conformal superspace [16].
Since both approaches will be used in the present paper, in this section we briefly review
these formulations.

2.1 SU(2) superspace

We consider a supermanifold M6/® parametrised by six bosonic (z) and eight fermionic ()
coordinates zM = (™, 61"), where m = 0,1,---,5, y = 1,--- ,4 and 2 = 1,2. The name
“SU(2) superspace” derives from the fact that its structure group, Spin(5,1) x SU(2)g,
includes the R-symmetry group SU(2)g in addition to the spin group. Therefore, the
superspace covariant derivatives, Da = (D,, D), have the form

1 )
Dy =FEy— 5QAbCMbC — O T (2.1)

Here E4 = EsM0y, is the frame field, with E4™ being the inverse superspace vielbein,
Q4% the Lorentz connection, and ® 4% the SU(2) g connection. The Lorentz (M) and the
R-symmetry (J%) generators are defined to act on Weyl spinors, vectors and isospinors as
follows:

1 1
Moy = 547 — 20007, Moty = 2000y = 8¢, (2:20)
MaypVe = 277(:[(1%] ) JUXk = 5k(ZX]) ) (22b)

where the Lorentz generator with spinor indices, M,?, is defined in accordance with the
general rule (A.19), Mo® = —1(7%)o" Mg For further details regarding our spinor con-
ventions we refer the reader to appendix A.l.



The covariant derivatives are characterised by graded commutation relations
1
[Da,Dp} = —Tap“De — iRABCndd — Rap"™ i, (2.3)

where T4p€ is the torsion, Rap® the Lorentz curvature, and Rap" the R-symmetry
curvature. In order to describe conformal supergravity, the torsion must obey certain
constraints [15]

T = 2867 (1) ag (dimension-0) (2.4a)
1

TOZ/BZ =0, =0, (dimension—i) (2.4b)

T =0, T, B(j g =0 (dimension-1) (2.4c)

Their general solution is given by the relations
{DL,, D)} = —2ie" (v")apDa + 2CT (v"")as Mpe — 27 W™ (74) 5 Mpe
— 4 N (7)) 05 M + 61 O (4®) o Ty — %N“bc(vabc)agﬁj . (2.5a)
[Da,D};] = C% 4 (yap) s’ D — iWacd( ) 59DI — Noyea(v°?) 59D}
—%Ragchcd — R T, (2.5b)

where the curvature tensors in the second line of (2.5b) have the following form:

R = =3[08 — 2005, ()5 W7

_[(% ) gy + 401 (v ) 6 ( WY — Cw‘)

(5788 + 2030k ™ | (Mo — €y ) | (2.6a)
Raf™ = =(3)8,C"M = 5(7a) gy <C7 WV( ) v

— (4N = 35 ) (2.6b)

The algebra of the covariant derivatives is determined by three dimension-1 real tensors,
Wabe = Wiabes Nabe = Nape and O = CJ', and their covariant derivatives. The 3-forms
Ngpe and Wy are self-dual and anti-self-dual, respectively,
L abed b L abed b
geac edeef = N, geac edeef: —Wwee (2.7)
They are equivalently described in terms of the symmetric chiral rank-2 spinors W# .=
W abe ( abc)a,@ and Naﬁ = 7Nabc(’}/abc)aﬂ.
The curvature tensors (2.5a) and (2.5b) involve several dimension-3/2 descendants of
Caij, Nag and W8 defined by

D Cuij = (’Ya)’y(gcf?jk + 5k(ica'yj) + Ek(z’(’Ya)véC?) ) (2.8a)
k (A k a k _

D’ykNozB = 3 (D[7 alB +D[7Nﬁ]a> = (7 )W(a/\/’aﬂ) ) (’7 )[Va-/\/’am =0, (28b)

DW= W28 4 slew) (2.8¢)



In accordance with the general discussion in section 1, the curved superspace introduced
above will be denoted (M58, D).

In SU(2) superspace, the gauge group of conformal supergravity is generated by three
types of local transformations: (i) general coordinate transformations; (ii) structure group
transformations; and (iii) super-Weyl transformations. An infinitesimal transformation of
the combined type (i) and (ii) acts on the covariant derivatives as

1
0kDa = [K,D4], K =KD+ §KCndd + KM, (2.9)

Given a tensor superfield U (with its indices suppressed), its transformation law with
respect to (2.9) is

5cU = KU . (2.10)

An infinitesimal super-Weyl transformation of the covariant derivative [15] is

: 1 : g
05Dy = 50D — 2(Dho) Mo" — 4(Dyjo) 7 (2.11a)
55D = 0Da — (52)*(DE0)Dgi — (DY) Muy — - (30)* (DEDh o) . 2.11b
ola = 0Llqg 2(%) (Dao)Dpr, — (D7) Mayp 8(’7@) (Dq 50) ki, (2.11b)
where the real parameter ¢ is unconstrained. The crucial feature of these transformations
is that they preserve the supergravity constraints (2.4).
A tensor superfield U is said to be primary of Weyl weight (or dimension) w if it
transforms homogeneously under (2.11)

U = woU . (2.12)

The torsion Wy proves to be a primary superfield of dimension +1. It is the N' = (1,0)
supersymmetric extension of the Weyl tensor [15, 76].

In what follows, we will need a finite form of the super-Weyl transformations (2.11).
Direct calculations lead to

D'h, = €37 (D}, - 2Dho) Mo’ — 4(Dajo) 1Y) (2.13a)
i P
Da = ( Dy = 5307 (Dho)Di — (PP)Mas — 50)(PEDho)
i ~, C o Si jod o
—5(3a*)*? (Do) (Dpr) Mea — 7 () ﬁ(YDQU)(iDga)Jkl) . (2.13b)

Such a transformation acts on the dimension-1 torsion superfields as follows:

L W, (2.14a)
1

;bc =e’ <Nabc - @(’Yabc) ﬁ(DloczDﬂka + 4(D§U)Dﬁk0)) ’ (2.14b)

Cli = o (caij + £ ()7 (DiDY o - 2(@8@@?0)) ~ (2.14¢)



2.2 Conformal superspace

In the conformal superspace approach of [16] (see also [45] for the component analysis) the
whole superconformal algebra is gauged in superspace by introducing covariant derivatives
Va = (Vq, V.) of the following form

1
Va=E4s— QQAZ’CMZ,C—@A“JM — BaAD — §apK? . (2.15)

The difference compared with the SU(2) superspace covariant derivatives of (2.1) is the
presence of dilatation (B4) and special conformal (F4p) connections, where D is the di-
latation generator and K4 = (K®,S) are the special conformal generators. The complete
list of graded commutation relations defining the N' = (1,0) superconformal algebra are
given in appendix A.2.

To describe the standard N = (1,0) Weyl multiplet in conformal superspace, one
constrains the algebra of covariant derivatives

1
[Va,Vp}=—T4p°Ve — 5%(M)ABCndd — Z(J) 4™ T
— R(D)apD — Z(K)apc K, (2.16)

to be completely determined in terms of the super-Weyl tensor W#
KAW® =0, DWW =we?, (2.17)

which satisfies the constraints

VIvIW = —s0vEvIwer, (2.18a)
1
VAV WHY — Z(SQV,’?VMW'Y& = 8iV,, W . (2.18b)

Additionally, we require that the algebra of covariant derivatives resembles a d = 6, N =
(1,0) super Yang-Mills theory

{Vi, V5} = —2ie" (¥")apVa, [Va, Vi] = (a)as? ™" (2.19)

Here #“ is a primary dimension 3/2 operator valued in the superconformal algebra.
Moreover, one imposes that the structure group generators act on the covariant derivatives
V 4 precisely as if they were the generators Pa.

By solving the Bianchi identites, one obtains
i
[V V3] = —5 (e (V5. 740}, (220)
and the additional constraints

. . 1 . .
(VO P} = Zag{vgl, Dy, {VE W =0. (2.21)



The operator #® is then constrained to be
A . . 1. 1 I
W= W+ VW M — VWM™ 4 Vg, WP 4 oV WD
1 .. i .
) v By - B
16V5V3YWO”S]- + QVMWWS ¢
1

) 1 .
ab i « a7 §
-5 )"V (Vi —567V5W5 VK, . (2.22)

Results at mass-dimension higher than 3/2 can be found in [16].

It is convenient to define the following

X7 i= — VWO XE0P i kel gl O, (2.23a)
Y, U = —g <vgxﬁﬂ) — 45§v$xw)> = —gvgxﬁﬁ : (2.23b)
1 kY
Y= VEXT, (2.23c)
1 1
Yap?® = Vi, Xap"’ — EagWV’;Xaﬁ)P — é(séyv’;xﬁkﬁp . (2.23d)

Due to the constraints (2.18), these superfields are the only independent descendants of
WP, As described in detail in [45], the multiplet of superconformal field strengths of the
standard Weyl multiplet is described by the 6 = 0 projection of the previous superfields.
A reduction to components is straightforward and discussed in [45].

In conformal superspace, the gauge group of conformal supergravity, G, is generated by
covariant general coordinate transformations, associated with a local superdiffeomorphism
parameter £4 and standard superconformal transformations, associated with the following
local superfield parameters: the Lorentz A% = —A%?, SU(2)r AY = AJ? dilatation o, and
special conformal transformations A4 = (A4, AY). The covariant derivatives transform as

1 .
6aVa=[R V4], R=6BVp+ iAbchc + AR T+ oD+ ApKP . (2.24)
While the transformation law for a tensor superfield U is
0gU = RU . (2.25)
The superfield U is said to be primary and of dimension w if
KAU =0, DU =uwU . (2.26)
It is important to point out that the dimension of U coincides with its super-Weyl
weight (2.12).
We conclude by mentioning that SU(2) superspace is a gauge-fixed version of the

conformal superspace geometry and thus their physical multiplets are equivalent. We refer
the reader to appendix D for a description of the degauging procedure.

~10 -



3 Conformal isometries

In this paper a central role is played by the conformal isometries of a given supergravity
background (MO8 D) and their extensions.” We will say that a real supervector field
¢ = ¢BEg on (MO8 D) is conformal Killing if there exist Lorentz (K®[¢]), R-symmetry
(K7*[¢]) and super-Weyl (o[€]) parameters such that

1 .
0D 4 = (Sxcje) + 0o1¢))Pa = [£°Dp + EKbC[E]Mbc + K% €T, Da| + 6,Da=0, (3.1)

where the super-Weyl transformation 6,D4 is defined in (2.11). Such transformations
render the superspace geometry invariant, in particular

6CY = §Wape = ONgpe = 0, (3.2)
and thus are said to be superconformal.

3.1 Conformal Killing vector superfields

The solution to (3.1) is:

a i Ba i
@ _ D, -
& = o Peit 12

1 7 1 % 1 a c 1 a
Kaﬁ[é] = 5 (Daff - 45523767) + 55 (Wabc + 2Nabc)(ryb )aB = *Z(’Y b)aﬁpa&)v (33b)

(¥*")**Dgika , (3.3a)

1 i

Ki5[¢] = ZDa(z‘ Ja) = _&(’?a)aﬁpa(ipﬁj)éa’ (3.3¢)
1 apet _1 a
ol¢] = 7 Da&" = gDat”, (3.3d)
where £% obeys
. 1 ‘
D& = =2 (1")a" Dt - (3.4)

We have shown that every infinitesimal superconformal transformation, dx(¢) + o), Of
(MO8, D) is parametrised by the vector superfield €%, and eq. (3.4) is the fundamen-
tal constraint defining this transfromation. All other conditions are implications of (3.3)
and (3.4). For instance, the latter implies the usual conformal Killing equation for the
superfield &,:

D(aéb) = énachgc . (3.5)

While the analysis above was carried out in the SU(2) superspace setting, equivalent
results can be derived using the conformal superspace approach. Here we will say that & =
¢BEp is conformal Killing if there exist Lorentz (A*[¢]), R-symmetry (A7*[¢]), dilatation
(c]€]) and special conformal (Ap[¢]) parameters such that

SaVa =[PV + %Abc[g]Mbc + AK€ T + o[ED + AB[E]KB, VAl =0.  (3.6)

"The conformal isometries of N = (1,0) Minkowski superspace in six dimensions were studied in [16, 77].
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Since this transformation preserves the superspace geometry, it must also leave the super-
Weyl tensor invariant,

S W = WP = 0. (3.7)

The solution to (3.6) is:

S S P
G = Vel 12

1/_. 1, 1
AS[€] = 2<V££f - zéﬁvlﬁ? > + e WA = —Z(v“b)aﬁva&, + € WP (3.8D)

(3)* Vil , (3.8a)

1 « i ~a\Q
Aij[f] = Zva(iﬁj) = —E(V ) 5va(ivﬁj)faa (3.8c)
1_. 1
o] = ;Va&l' = £ Vat", (3.8d)
AL = 2viole - Leaviwsr = Dviveg, - Le i (3.8¢)
als] = 5 Vallsl 7 gsaf Yyt = g Va ¥ Sa = qgtald ¥yt o '
~ \a i 4 1. « 7
Aalg] = 2(50)*"Va'Agi = 3VaV'G — £ (3) Vo €3y Ve W), (3.86)

where &% obeys the conformal Killing vector equation
, 1 .
Val" = =2 (1")a Vi . (3.9)
This equation is conformally invariant provided £% is primary and of dimension —1,
KBer =0, DE? = —£2 . (3.10)

These relations determine the superconformal properties of the parameters in (3.8). An
important corollary of (3.9) is

1
v(aéb) = gnabvcfc . (3.11)

In what follows, we will often make use of the first-order operator
(1) b awi |, L abe ik B
D’ =&V + Vo + A Mye + AVEjp + o [E]D + Ap[E K7, (3.12)

where £ is characterised by the superconformal properties (3.10), and the remaining pa-
rameters are given by (3.8). The operator @él) is superconformal and of dimension 0 in
the sense that it takes every primary superfield U of dimension w to a primary superfield
of the same dimension,

KAU=0, DU=wU = K2U=0, DOU=wd{’U. (3.13)

If €% is a solution to (3.9), then @él) generates a conformal isometry,

Vel ==z ()" = [0, V4] =0. (3.14)
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Since SU(2) superspace is a gauge fixed version of conformal superspace, it must nec-
essarily be true that (3.6) reproduces (3.1) upon degauging. In particular, it is trivial to
see that (3.9) degauges to (3.4).

It is clear from (3.1) that the commutator of superconformal transformations must
result in another such transformation

[Okciea] + 0025 Oxler] + 001 ] Pa = (Okcjes) + 005) Da =0, (3.15a)
Klés] = [Kleal, Kléil] (3.15b)

From this we may extract the form of £3 and o3

i , i .
& = &Dus — DT — (7)Y Dokt Daitn + 15 (1) Dol Dpics - (3.162)

03 = 4D yoy — EMD Y0 . (3.16b)

This analysis implies that the conformal Killing supervector fields generate a finite di-
mensional super Lie algebra. The independent parameters are set of superfields T =
(6B, K% Ki* 5, Dco) and one can prove that applying any number of covariant deriva-
tives to Y gives a linear combination of T.

The statement above is most easily proven when working in Minkowski superspace,
MOI8. Here the superspace covariant derivatives D4 = (9, D?)) take the form

0 ; 0 A
_ i _i(aa Bi
Oa B’ D, o0 i(v")apt0”" 0a , (3.17)

and satisfy the algebra
{D,, D)} = —2ic¥003, (02, D] =0, [0a,05] =0. (3.18)

In this context, one may readily derive the following constraints

Dh.1e] = 25 Dkole] — 5ot Dkoe], (3.192)
D, E[¢] = 4e'Y DPalg], (3.19D)
D}, Dlolg] = —ic¥0as01¢], (3.19¢)
Didyole] = 0. (3.19d)

Thus, our claim holds for this geometry.

The proof above readily generalises to curved superspace. For example, by analysing
the invariance 6C,% = 0 and § Nyp = 0 one can derive the following relations for the second
spinor derivative of o

_émwpgmgm — £°D.Co + §DECT + K LGy + 2K 0,00 + 0C,1, (3.20)
1 abeyydk _ vk d
33(7 )*DyDsko = £ DalNave + § Dy Nave + 3K[o" Nija + 0 Nabve - (3.21)

Another implication of (3.3) and (3.4) is

i

- ; 1
Dut] = 5(70) Doro + (vab)a €7 CVji + 5 ()76 Wabe + 2Nave) — €' Tu], . (3.22)

~13 -



which implies the following expression for the spinor derivative of the super-Weyl parameter

1 4 . i i
Doro = —gDagﬁ,f + gg(sjca&jkz - 6(7abc)6a£g(Wabc + 2Nape) — ggbﬁa)aﬁTabg . (3.23)

Note that equation (3.22) plays a fundamental role in the study of supersymmetric space-
times.

We also note that by imposing the invariance of the super-Weyl tensor §Wp. = 0 one
obtains

EDaWape + & DEWape + 3K, Wiga + oWape = 0, (3.24)

which hints at the fact that superspace backgrounds admitting non-trivial conformal isome-
tries are in general constrained.

3.2 Conformally related superspaces

By definition a superspace (M6|8,15) is said to be conformally related to (MSI8 D) if
the corresponding covariant derivatives D4 and Dy are related by a finite super-Weyl
transformation,

Di — e%r)(pg — 2(Dhp) M, — 4(1)&]-[)),]@'1) , (3.252)
~ i 1,
B = o (D = o) (PPt — (D) — §(30)°” (D)

~a N DEN Do) Mo — 5 G PE Pl ) . (3250
for some super-Weyl parameter p. The torsion superfields are then mapped from a curved
superspace to the other according to (2.14) with o replaced by p. The two superspaces
(MO8 D) and (MO D) prove to have the same conformal Killing vector superfields. In
fact an efficient way to analyse conformal isometries is by mapping their conformal Killing
supervector fields from one superspace to its conformally related one — see for instance the
case of conformally flat superspaces. Given such a supervector field € = £4E, = EAE A, it
may be shown that

KIE] := &Ds + L K™[E My + KM = K[e], (3.260)
o8] = ol — €. (3.26D)
3.3 Isometries

In order to describe Poincaré supergravity in 3 < d < 6 dimensions, the Weyl multiplet
of conformal supergravity has to be coupled to some compensating multiplets Z. Two
compensators are required for theories with eight supercharges such as N’ = (1,0) super-
gravity in six dimensions. The conceptual setup is actually universal, which is why it is
suitable to start with a general discussion of the situation in d dimensions where conformal
supergravity is described using Gg[d; N] superspace (MUN D), see section 1.
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In general, the compensators are Lorentz scalars, and at least one of them must have
a non-zero super-Weyl weight w= # 0,

0o

[1]
[1]

(3.27)

= w=0o

They may also transform in some representations of the R-symmetry group. The compen-
sators are required to be nowhere vanishing in the sense that the R-symmetry singlets |=|?
should be strictly positive. Different off-shell supergravity theories correspond to different
choices of =. The superspace corresponding to Poincaré supergravity is identified with a
triple (M99 D, =). The notion of conformally related superspaces, which was introduced
in section 3.2, is naturally generalised to the case under consideration. Specifically, two
curved superspaces (M®ow ,5,%) and (M~ D, =) are conformally related if their co-
variant derivatives related to each other according to (3.25), and the compensators = and
= are connected by the same finite super-Weyl transformation,

Wz p

(1
[1]

=e

(3.28)

Once = has been fixed, the off-shell supergravity multiplet is completely described in
terms of the following data: (i) a superspace geometry for conformal supergravity; and
(ii) the conformal compensators. Given a supergravity background, its isometries should
preserve both of these inputs. This leads us to the concept of Killing supervector fields.

Let ¢ = ¢BEp be a conformal Killing supervector field on (/\/ldwf\/, D),

(Oxje) + 9g¢))Pa =0, (3.292)

for uniquely determined parameters K*°[¢], K'[¢] and o[¢]. It is called a Killing supervector
field on (Md|5/\/ ,D,E) if the compensators are invariant,

(K[§] + w=o[()E=0. (3.29b)

The set of Killing vectors on (Md|§/\f ,D,E) is a Lie superalgebra. The Killing equa-
tions (3.29a) and (3.29b) are super-Weyl invariant in the sense that they hold for all
conformally related superspace geometries.

Using the compensators = we can always construct a superfield E = f(Z) that is a
singlet under the structure group and has the properties: (i) it is an algebraic function of =;
(ii) it is nowhere vanishing; and (iii) it has a non-zero super-Weyl weight we, 6oE = wgoE.
It follows from (3.29b) that

(PDp +wgol¢)E=0. (3.30)
The super-Weyl invariance may be used to impose the gauge condition
=2=1, (3.31)
Then eq. (3.30) reduces to

ol¢] =0, (3.32)
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and the Killing equations (3.29a) and (3.29b) take the following form:

0, (3.33a)
K[EE=0. (3.33Db)

Now we specialise the Killing equations (3.29a) and (3.29b) to the case of N' = (1,0)
supergravity in six dimensions. The equations read

[gBDB + %Kbc[f]Mbc + K’“le,,DA} +6,9DPa =0, (3.34a)
(€7D + KM[E)Ju + wsolg] )2 = 0. (3.34D)

The most convenient set of compensators for N' = (1,0) Poincaré supergravity [1] consists
of a tensor multiplet ® and a linear multiplet G = GJ%. The former is a primary real
scalar of super-Weyl weight we = 2, which obeys the constraint [15, 78, 79]

(DUDY) +4iC) @ = 0 (3.35)

and is nowhere vanishing in the sense that ® ! exists. The latter is a real SU(2) triplet
(that is, GV = G;; = sikslekl), which is a primary superfield of super-Weyl weight wg = 4
and obeys the constraint [15, 78]

DUGIF =0 . (3.36)

The linear compensator is required to be nowhere vanishing in the sense that G~! exists

for G := 1/%Gij Gij. There are two natural choices for Z: either ¢ or G.

The above formalism will be employed in section 8 and appendix C to study supersym-
metric spacetimes in the superspace setting. Now we will turn to describing the extension
of (conformal) Killing vector superfields to the case of (conformal) Killing tensor superfields
and higher symmetries of N' = (1,0) supermultiplets.

4 Conformal Killing spinor superfields and their higher rank cousins

In this section we introduce various cousins of the conformal Killing vector superfields £¢,
eq. (3.4). Some of them can be used to describe extended superconformal transformations
(conformal Killing spinor superfields) and higher symmetries of A” = (1, 0) supermultiplets
(conformal Killing tensor superfields).

In SU(2) superspace, a conformal Killing spinor superfield € is defined to satisfy the
constraint

) 1 .
Dl = ngpga . (4.1)

This equation is super-Weyl invariant provided the super-Weyl transformation of €* is

1
0p€" = —5060‘ . (4.2)
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In conformal superspace, € is required to (i) be primary and of dimension —1/2; and (ii)
obey the constraint obtained from (4.1) by replacing D’s with V’s.

Equation (4.1) imposes significant restrictions on the component content of ¢*. In
particular, the following corollary of (4.1)

DDl = —gleljpagﬁﬁ +161C7¢% + 16i€ Noge? | (4.3)

implies that €¥|g—g and D:e*|y—q are the only independent component fields. Making
further use of (4.3) leads to

2
'Dagefy = —gév[aDﬁ](;e(s - EQBU(;WU’YEJ, (4.48,)

DapDLe’ = capys BWW — 166“”} € +8[Nagy' —Clple” (4.4D)
where the torsion superfields on the right-hand side of (4.4b) are defined in (2.8).

Associated with €* is its conjugate €* defined by (A.12). The latter is also a conformal
Killing spinor superfield. We can combine €* and € into a symplectic Majorana spinor
¢ that carries a new SU(2) # SU(2)g index. Such objects naturally arise from an N =
(2,0) — N = (1,0) superspace reduction, see appendix B for more details. Given an
N = (2,0) superconformal theory realised in N’ = (1, 0) superspace, ¢ describes extended
superconformal transformations.

Let € and €§ be two conformal Killing spinor superfields. Associated with them is a
vector superfield

€ = (1" )apés (4.5)

which is primary and of dimension —1. As follows from (4.1), £ satisfies the conformal
Killing vector equation (3.4). As was shown in the previous section, these generate the
conformal isometries of superspace.

Given n conformal Killing vector superfields £}, ..., &4, we find that their symmetric
and traceless product

Ca(n) - gfal . 3"} = é‘” . g") — traces (4.6)

has the following super-Weyl transformation law

5,¢%M = —ng¢e™ | (4.7)
and satisfies the constraint
7 ~a(n n a i ~a9...0n
Di ¢ = m(’Yb( Do Djo )y, (4.8)

We will say that any solution (*1-n = (lat-an} o (4.8) is a conformal Killing tensor
superfield.® It is clear from (4.6) and (4.8) that the symmetric and traceless product of

80ur definition is equivalent to the one proposed in [73], although the SU(2) superspace formulation was
not used.
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two such tensors is also conformal Killing. As will be shown shortly, such tensors generate
higher symmetries of the kinetic operators of superconformal field theories with at most
two derivatives, in accordance with [72]. An immediate consequence of (4.8) is the usual
conformal Killing tensor equation

D{a1Ca2...an+1} =0. (49)

The above definition of the conformal Killing tensor superfield can be recast in con-
formal superspace. A symmetric traceless tensor superfield ¢9-an = ¢{a1-an} ig called
conformal Killing if it has the superconformal properties

KB =0, D¢ = —p¢e™ (4.10)
and solves the equation
i ra(n) _ n b(a1\ By7i ~az...an) 411

For a given curved superspace, the set of conformal Killing tensor superfields may
be endowed with an additional algebraic structure. Let Cf ™) and Cg ™ he two such ten-
sors, then

[Cl;CQ]a(ernil) _ mCi{al...am—l|b|DbC;m...am+n_1} . nC;[alman_l|b|DbCilnmam+n_1}

mn .
_ ~{a1 Oz,BD’L a2---am|b|D . am+1---am+n71}
8(m+n+2) (FY ) aCl ﬁlCQ b
imn ,
~{a1 a,BD’L a2v--am|b|D . am+1-~~am+n—l}c 4 12

is a conformal Killing tensor superfield. This generalises the Lie bracket for conformal
Killing vector superfields (3.16a) and coincides with the one presented in [73], where it was
called the supersymmetric even Schouten-Nijenhuis bracket.”

Having investigated the structure of conformal Killing tensors, we now return to the

master equation (4.1). This constraint admits non-trivial generalisations!”
ngl Bz imi1) _ " 35&511),(;1652..‘ﬂn)'yi2‘..im+1) . (4.13)
It is conformally invariant provided
8,e2Mim) — [Zm - n} oe?mitm) (4.14)
2

Given two solutions €?()im1) and #(n2)im2) to (4.13), one can show that

Bnitn2)i(mitmsa) _ egﬁl"ﬂnl(il'"iml 6§”1+1"'5711-'-n2)imﬁrl"'iml-*-mz)

, (4.15)

also satisfies this constraint.

9The supersymmetric extension of the even Schouten-Nijenhuis bracket was proposed for the first time
in the framework of A" =1 AdS supersymmetry in four dimensions [80], although no mention of the even
Schouten-Nijenhuis bracket was made.

0The case n = 2, m = 0 describes a conformal Killing-Yano tensor superfield, introduced in a flat
superspace context in [74].
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Let €}, €5 and €§ be conformal Killing spinors (4.1). It is clear from the analysis above
that their totally symmetric product is a solution to (4.13), while their antisymmetric
product is dual to a right-handed spinor

Xa = Eapyae G365, (4.16)
which satisfies
DiaXp) =0 - (4.17)
This constraint may be immediately generalised
(i1 d9eime1)
Diar Xamomyn) = 0 (4.18)

and is conformally invariant provided

i(m) 3| i(m)
5‘7Xa(n) - |:2m B 2:| Jon(n) : (419)
If Xié((rzl) and Xi(m” are solutions to this constraint then
1) a(nz)
i(m1+m2) o (Zl’bm tmq +1---bmq +im )
Oc(nl-‘r’VLQ) - (al---ail an11+1---an11+n2)2 ’ (420)

also solves (4.18).
We may also construct a hook field from our three spinors

1
07 = (g - i) = -, (1.21)

which satisfies the Young condition
0B 4 pPre L el — (4.22)
Further, it satisfies the conformally invariant constraint

[e% « € « € 5 « € (0% €

1

3
2 ,

_55373256[5#] ) (4.23)

5 Higher symmetries of the conformal d’Alembertian

There has been extensive study of the higher symmetries of the conformal d’Alembertian
in dimensions d > 2, including the important publications [67, 69, 71]. Here we will
review known results and present some new observations. The outcomes of the non-
supersymmetric analysis in this section will guide our study in the next two sections.

Let ¢ be a solution to the conformal wave equation in d dimensions

06 = V'Vaé =0, (5.1)
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where V, is the conformally covariant derivative (compare with (2.15))
_ . } be - ¢ b
Va=c¢eq Wa Mpe — b, D —§," Ky, (5.2)
with the commutation relations [16, 39]

1 1
[Va, Vb] =3 Mg+ mvccadeKd . (5.3)

Equation (5.1) is known to be conformally invariant if ¢ has the transformation properties
1
Kip=0, Dé=_(d-2)p. (5.4)

A differential operator © is called a symmetry of the conformal d’Alembertian, O, if it
obeys the following conditions:

09¢ =0, (5.5a)
1
K¢ =0, DD¢ = §(d —2)9¢ . (5.5b)
Condition (5.5b) means that ®© is a conformal dimension-0 operator. The symmetry oper-
ators of O naturally form an associative algebra.

In the algebra of all symmetry operators of O, it is natural to introduce the equivalence
relation

@1 ~ 5‘32 < (@1 — @2)(;5 =0. (5.6)

Utilising (5.6), it is possible to show that every symmetry operator ® of order n can be
reduced to the canonical form

n

o =3¢V, ... V., n>0, (5:7)
k=0

where the parameters (*(%) are symmetric and traceless. Making use of the condition (5.5a),
one observes that ¢ satisfies the conformal Killing tensor equation

v{a1Ca2...an+1} =0. (58)
Due to (5.5b), ¢*™ is primary, K,¢*™ = 0, and of dimension —n.

Let us first study the n = 0 and 1 cases in more detail. It is easily seen that zeroth-order

symmetry operator ’}320) is a constant,

0V =0 <= Vi(=0. (5.9)
Given a conformal Killing vector field £%, the following first-order operator

d—2
Dy = €2V, + 7 Vat", (5.10)
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is a symmetry of the conformal d’Alembertian,
1
09 =0. (5.11)

The second term on the right-hand side of (5.10) is uniquely determined by each of the
conditions (5.5a) and (5.5b).
Actually, the operator (5.10) is simply a special case of the conformal isometry

1 1 1
o) = ¢, + 5 VO Moy + - V6D + VOV Ko (5.12a)

[0, va] =0, (5.12b)

which reduces to (5.10) when acting on any primary scalar field of dimension 3(d — 2). In

addition to (5.12b), the other fundamental property of @él) is the following:
K,T=0, DT=wl = K®'T=0, DOMT=wo'T,  (513)

for every primary tensor field 7" (with suppressed indices) of dimension w. The rela-
tions (5.12b) and (5.13) tell us that @él) satisfies the conditions (5.5a) and (5.5b), and

therefore @él) is a symmetry of the conformal d’Alembertian. An immediate corollary of
the above consideration is that, for any conformal Killing vector fields £{,£5,...&5, the
operator

o™ =pol) . . .ol (5.14)

is a symmetry of the conformal d’Alembertian. Therefore, the algebra of symmetries of
O includes the universal enveloping algebra of the conformal algebra of the background
spacetime.

Our consideration above allows for important generalisations. Consider a dynamical
system described by primary fields ¢ coupled to conformal gravity. We place this theory
on a fixed gravitational background and consider a conformal Killing vector field, £, on
spacetime. Since the operator (5.12a) preserves the background geometry, the matter
action S[p] is invariant under the conformal transformation d¢p’ = ’Dél)gpi. Consequently,

’}Dél) is a symmetry of the corresponding equation of motion, S;[p] = 0.

Let us now return to the general symmetry operator (5.7) for n > 1. Similar to the
first-order operator (5.10), we would like @én) to be determined by its top component,
which is the conformal Killing tensor ¢*("™). Imposing the condition (5.5b) leads to

¢v0) = Ay, . Yy, CHRPTR) g < k< (5.15a)

where the constants A are given by the solution to the recurrence relation

Aj1 k(4 — 2k — d)
_ A, =1. 5.15b
A, 2k(k+d—3)—nn+d—1)—d+2)’ (5.15b)

It may be readily shown that the constructed operator is a symmetry of O in any confor-
mally flat background. However, when the background Weyl tensor is non-vanishing, the
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existence of a higher symmetry implies non-trivial restrictions on its structure. To prove
this claim it suffices to analyse the n = 2 case.
We assert that the second-order operator

(2) ab d ab d(d - 2) ab
VoV + ——=V("V, —VaV , 5.16
=6 AL Md+ D+ Ve (5.16)
only results in a symmetry in backgrounds satisfying
d(d — 2
Cabcdvccbd + QVCCadede =0. (5.17)

d—3

The direct computation necessary to verify (5.17) is tedious, thus here we will present
a simpler proof. Consider two conformal Killing vectors £ and £5 and the corresponding
first-order symmetry operators 9(1) and ’D(l) defined via (5.10). Then their product DO .=

CD(l)CD( ) is a second-order symmetry operator. Modulo the equivalence relation (5.6), i
may be expressed as a sum of operators of the form (5.7):

@ . p® (1) d—=2 )
0 @ + 9[51 &) 4(d + 1)®<§1752> ’ (5.18)
where
¢ = el (5.19a)
[61,6]" = Vi — 53%5%, (5-19b)
(6,6) = ViiVat — T 20,6V - 2 (VN + 6V.TE) - (5190)
As ) = CDS)CDS) is a symmetry operator by construction, we obtain
@y 0@y 172 00 L _
0D®¢ ~ 0D "¢ it 1)D©<§1’£2>¢_ 0, (5.20)
which has the immediate consequence
1076 =0 <= Val€.6)=0. (5.21)
Now a direct computation leads to
d(d—2
Valér, &) = —Capea V¢ — (d)VcCabch (5.22)

Hence, ”DE_Q) only results in a symmetry when the right-hand side vanishes. We thus expect

that for n > 2 the operator @én) is a symmetry only on a limited class of backgrounds,
such as conformally flat ones.

A natural extension of the analysis above is to determine if there exists a symmetry
operator of the form

dd=2) Geey b (5.23)

2 _ n® _ crbd
D ”DC +Z, V.2 CabeaVC 1-3
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when the conformal Killing tensor is irreducible (¢%° # & g}). This fails since Z must be

primary, of dimension 0 and first order in ¢%. It is easily verified that no such term exists.

Our analysis in this section has lead to several non-trivial results regarding the struc-
ture of higher symmetry operators. The most important observation is that, beyond the
first-order case, their existence implies previously unknown constraints on the spacetime
Weyl tensor.!! It may be shown that our arguments immediately generalise to the higher
symmetries of superconformal operators. In particular, the existence of such symmetries
should lead to non-trivial restrictions on the super-Weyl tensor W%,

6 Higher symmetries of the hypermultiplet

The study of symmetries of relativistic wave equations has a long-standing history in math-
ematical physics. More recently their supersymmetric generalisations have also been ex-
plored. Specifically, in flat superspace it was shown in [72] that the higher symmetries
of so-called ‘super-Laplacians’ (superspace differential operators containing the spacetime
Laplacian as their highest-dimensional component) are in one-to-one correspondence with
conformal Killing tensor superfields. Further, the higher symmetries of the Wess-Zumino
operator in curved d = 4, N' = 1 superspace were analysed in [75]. It is now time to extend
this analysis to the hypermultiplet.

The off-shell formulation for a hypermultiplet coupled to conformal supergravity is
given in [15]. On the mass shell, the hypermultiplet is described by an isospinor superfield
q¢* satisfying the equation

vigh =0. (6.1)
The constraint is conformally invariant provided ¢’ is a primary superfield of dimension 2
Kag' =0, D¢ =2q¢" . (6.2)

Additionally, (6.1) yields the useful corollary
ViVig = —4iVasq' . (6.3)

Here we will study the higher symmetries of this model. We will say that a differential
operator © is a symmetry operator (of the hypermultiplet) if

ViDg) =0. (6.4)

It is useful to introduce an equivalence relation on the space of symmetries so that redun-
dant structures can be discarded. Specifically, we say that two symmetry operators ®;
and ®9 are equivalent if

@1 ~ @2 S (@1 — Qz)qi =0. (6.5)
Owing to (6.2), we will also require
Ka9q¢'=0, DD¢ =294, (6.6)

which means that © is a superconformal dimension-0 operator.

1This is in keeping with the fact that the background geometry generally restricts Killing tensors, see,
e.g., [81, 82].
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Given a positive integer n, the most general n'"-order symmetry operator ™ is

n n—1
DI =N (AT LV + Y AR VA Ty (6.7)
k=0 k=0

where the coefficients may be chosen to be graded-symmetric in their superspace indices

<A1-~'AmAm+1~~-Ak _ (71)5AmaAm+1CAIH-AerlAm“'Ak , 68&)

CA1-~~AmAm+1~--Ak7ij — (_1)€Am€Am+1CAl"'Am+1Am"'Ak7ij . (68b

The equivalence relation (6.5) allows us to bring ®(™ to the canonical form

n n—1
2 = Z MV, . Va, + Z ("B, Va Vi
k=0 k=0

n—1

+> ¢RI, L Ve i (6.9)
k=0

Here all parameters are symmetric and traceless in their vector indices, ()8, is gamma-
traceless, (yb)aﬂga%—l)bﬁi =0, and ¢“®¥ is symmetric in its isospinor indices.
Equation (6.4) yields numerous constraints on the parameters of D™ including

1 ~a(n n a 1 ~Q2...0n
Vi = —n+4(~yb< NPV cean)y (6.10a)
a(n—1)8i _ i i ra(n—1)brz \afB 1
C 4(n+2)vac (’Yb) ) (6 Ob)
a(n—1)ij _ _ ln(n + 1) (iz v7j) ra(n—1)b 1
¢ Smr2)nra) . PVC ' (6.10¢)

Hence, we obtain expressions for ¢*("~15% and ¢(»=Di in terms of ¢ which is neces-
sarily a conformal Killing tensor (4.10), (4.11). Further, if © is completely determined
in terms of (%™ we will denote it by ’Dén).

If the supergravity background admits a conformal Killing vector superfield £¢, it may
be shown that the corresponding conformal isometry (3.12) yields the unique first-order
symmetry operator

Vi) = Vi [e8V g + Al + 200€) [ =0 . (6.11)
Thus, given conformal Killing vector superfields £,&9, ... &%, the operator

oM .— ppl) o

&1 T & &n (6'12)

satisfies (6.4). Therefore, the algebra of such symmetries contains the universal enveloping
algebra of the conformal algebra of the background superspace. As was discussed in the
previous section, (6.12) admits a decomposition as a sum of symmetry operators determined
by their top component

D) :@é") + G, (6.13)
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if the superspace is conformally-flat. Therefore, it is of interest to construct the symmetry

(n)

operators O ¢ in backgrounds with vanishing super-Weyl tensor, W? = 0.

Here we will restrict our attention to the evaluation of ”}DEQ). When acting on the
hypermultiplet it takes the form

A 1. A A A 1 .
D¢ = ("VaVid' = SCVaVai’ + Vet + Vg — 50 Vo]
1+ g (6.14)

The unique solution compatible with (6.4) and (6.6) is

coi _ _ﬁ(~ yericat, (6.15a)
ol — 7%iv(i%vj)cab’ (6.15D)
¢ = §Vb<ab, (6.15¢)
(= g U VHVC 4 g Gl GV VT, (615
¢4 = _%v( A AVACLE (6.15€)
¢=- 3 5V AV + 8(1)0 (32)* () V(o V 5)i V1, V)¢ . (6.15f)

In particular, we find that all parameters are expressed solely in terms of the conformal
Killing tensor (.
(2

For completeness, we also present the SU(2) superspace form of @C . A routine de-

gauging leads to
A 1. L A 1. .
QEQ)q’ = (“"DyDyq’ — 56" PaDajq’ + (" jDaq’ + ¢*Pag’ — 5" Dajd’
+C'd +Cd (6.16)

where have employed the definitions

Faci e aBmyi ra
R (6.172)
L 3 9

aij _ 2 D D]) ab ©J ~ab 1
¢ = — 2ipliz DI - G, (6.17b)

. 3

¢ = D™, (6.17¢)
e %) 1 e ab L ~ \YIyi 1y ab

¢ = —5;(%) DyDi¢ + 500 (72)” % () DDy Ds) i€

o o i' a 11, « ira i « ira
+55 (%) POy Dsi¢" = £5100) PNpsic® + 75(3) BCygic®, (6.17d)

Fij _i])(i~ DI, cab _ L ~ \afB zDJ ab 3 ~ \afB (iDj) ab

¢ 30 Ya bC 0 ('Ya) Coa 8 ¢ 8Q1(7a) Nia 8 ¢

i DI A a - o i ) ~a I~ \« i i) ~a
+fC§(ZDJ)foDk< b 170(,)/&) 'BDéCbﬁj)C b + E('Ya) /BD((INbﬂj)( b

5 aBo G )rah B ors xaBar (im.)ra .
+T61(7a) IBCb D ])C ’ El(’}/a) ﬁNba( Dﬁ])c b +DaCb]C b7
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I
||

3 ab I aB(z \Y0yi J ab 73 i ab
ODDC + g0 (3a) ™ ()" Do Py D(, Ds € +%IC D D¢

1 af %) N D D ab 1. aBDz ab 1 ﬂDz ab
10 (7 ) ('Yb) ay = (pH9) C 50( ) Nb,@ C 10 ('Ya) Cbﬁ C
12 91

~ \aB(z \Yo ab | Y% i~ \af i ab
10 = (3a)™ (3)" Nay NasC™ + 7 561(5a) ™ Coa DiiC

AT
—501(0)* " Noo DsiC*" . (6.17¢)

Cl] wa Cab

It may be verified that (6.16) is a superconformal dimension-0 operator
2) 4 2) 4
0,07 =2007¢’ (6.18)
and yields a symmetry on conformally-flat superspace backgrounds

Dio?¢) = 0. (6.19)

As a result, we have shown the existence of the higher symmetry operator 922), which
is completely determined in terms of (?. We expect that, in conformally-flat superspaces,

this is true for symmetries of all orders; every @én)

is uniquely determined in terms of
its top component, the conformal Killing tensor superfield ¢*(™, as was shown for the

non-supersymmetric case in section 5.

7 Higher symmetries of the vector multiplet

The higher symmetry operators (6.7) belong to a broader family of symmetry operators
acting on tensor superfields of arbitrary index structure. Here we will generalise these
operators by adding Lorentz dependent terms via an analysis of the higher symmetries of
the vector multiplet.

7.1 Superconformal vector multiplet

Consider a vector multiplet coupled to conformal supergravity. Its dynamics is descried by
the higher-derivative action constructed in [16], which is a locally supersymmetric extension
of FOF. The vector multiplet can be realised in terms of the field strength F* subject to
the Bianchi identities [16, 78, 83]

o1 o .
Vs — ngvgmﬂ =0, VLF*=0. (7.1)
;. . . . 3
The field strength F'** is a primary superfield of dimension 3,
SR =0 DFei — 2 poi (7.2)
p =0, =5 . .

The equation of motion for the superconformal vector multiplet [84] is

GY = VIV, XY — 2V, P gxwmw =0, (7.3)
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where we have defined S ?GT = SV,T — (V,S)T, for arbitrary superfields S and 7', and
introduced the following descendants of F*:

1

y o i 1 i
XU = VIFD R = —i <v’;F,f - 45§V§Fg> = —iv’;F,f . (7.4)

The equation of motion (7.3) involves the torsion superfields Y,¥ and X which are
defined according to (2.23).

Let F'* be a solution of the equations (7.1) and (7.3). A superconformal dimension-0
operator ® is called a symmetry of these equations if ®F* is also a solution. Given a
conformal Killing vector superfield £, the first-order operator 3321) defined by (3.12) is a
symmetry. Higher-order symmetries of the equations (7.1) and (7.3) may be generated by
considering products of the first-order symmetries,

oM =pol) o). (7.5)

7.2 Supersymmetric Maxwell theory
In SU(2) superspace, the off-shell vector multiplet is described by a superfield F*¢ subject
to the constraints

L 1 L A
ngFﬁﬂ—Zang’Fw):o, DIFY=0. (7.6)

These constraints are super-Weyl invariant provided F® is a primary superfield with the
super-Weyl transformation

So F = gaFo‘i : (7.7)
When the vector multiplet is placed on-shell, it obeys the additional equtation

DiFY) =0 = DUFF) =0 (7.8)

It is important to note that the equation (7.8) is not super-Weyl invariant, since
the super-Weyl invariance has been fixed by imposing an appropriate gauge condition.
In the superconformal setting to Poincaré supergravity, the vector multiplet couples to
the tensor compensator ® introduced in section 3.3. The compensator appears in the
superspace action for the vector multiplet [15], and the action is super-Weyl invariant.
The corresponding equation of motion for the vector multiplet is

1 L . .
ZCI)D&’FO‘J) +DUSF) =0 . (7.9)

Choosing the super-Weyl gauge

=1 (7.10)

reducing the equation of motion to (7.8). In this subsection we make use of the super-Weyl
gauge (7.10).
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We now turn to the analysis of the higher symmetries of this theory. The operator ©
is said to be a symmetry of the (on-shell) vector multiplet if

DUDFA) =0, DIDF*=0. (7.11)

The most general n‘"-order symmetry operator for the vector multiplet is

n n—1
D™ =3¢ WD,, ... Dy, + Y ¢*WED,, ... D, D
k=0 k=0

n—1 n-1
) 1
+ WDy Dy Jij + 5 Y ¢ OD,, Do M

k=0 k=0
1 n—1 ' 1 n—2 3
+5 > ¢tk hebe,p, L Dy, Dh My + 5 > ¢HRAD, Dy Myedij , (7.12)
k=0 k=0

where ¢**) is a conformal Killing tensor (4.8). When n = 1, its action on F* reduces to
. , 1 .
DI F = 5 F = (€5Dp + Kjule] % + SE M) Fo (7.13)

As the procedure to compute (7.12), say for n = 2, is analogous to that of (6.9) for
the hypermultiplet, we will not pursure such analysis here. Instead, we will extract some
non-trivial information regarding the structure of this operator for general n via (7.11).
Our analysis reveals the following restrictions on its parameters:

a(n—=1)pi _ i i ra(n—1)b/z \af
C 4(n + 2) Vocc (’Yb) ) (714)
a(n—1)ij _ _ in(n +1) (iz i) ra(n—1)b 1
¢ St 2)mt3) " V¢ ’ (7.15)
a(n-1) g _ ___ 1 =\ 7 LsBpyiz 1y | ra(n—1)b
C « 8(71, + 2) ((’71)) DaD71 4604D foDZ>§
+n¢ N, ()P (7.16)

as well as the Killing condition for tensor superfields
DbCa(nfl)b =0 = D(al gag.‘.an_H) =0. (717)

Equations (4.8) and (7.17) define N' = (1,0) Killing tensor superfields in six dimen-

sions.'? Given two Killing tensor superfields ¢} ™) and Cg(n), it may be shown that their

bracket, defined by (4.12), is also Killing

D¢, Coagmin—2yp =0 - (7.18)

12The concept of a Killing tensor superfield was introduced for the first time in [80] in the framework of

N =1 AdS supersymmetry in four dimensions.
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8 Maximally supersymmetric backgrounds

The existence of (conformal) Killing vector and tensor superfields places non-trivial restric-
tions on the superspace geometry. So far we have not examined the constraints imposed
by such conditions. In this section the case of Killing vectors (where eq. (3.32) is imposed)
is further elaborated on. More results are given in appendix C, where we discuss how to
obtain component results from superspace.

Here we restrict ourselves to the case of eight supercharges, i.e. maximally A" = (1,0)
supersymmetric backgrounds, and derive constraints on the superspace geometry. By a
similar analysis'® to [57], in such backgrounds it may be shown that (C.1) implies

DICHK =0, D Wue=0, DiNgy.=0. (8.1)
Additionally, the Killing spinor equation (3.22) reduces to

. 1 c
Do) = (Yab) " €7 CP + 5(7” )87€ (Wabe + 2Nape) - (8.2)

Equation (8.1) leads to severe restrictions on the backgroud superspace geometry.
In particular, the integrability conditions {Dg,Dé}Cgl = 0, {Di,D]B}Wabc = 0, and

«

{Di, Dé}Nabc = 0 imply the following differential equations

DiWapbe = —6(Wapa® + 2Nge)Whee » (8.3a)

DyNape = —6(Wapa® + 2N41a°) Noce » (8.3b)

DyCaf' = —2(Waap + 2Ngap) CF — 6C47FCypY (8-3c)

together with the algebraic conditions

(0™ apWpgaCe? =0, (8.4a)

(™) apNpgaCe? =0, (8.4b
(Yabe)apC*' CIF = —ngCd(’chd)aﬁ(Ej(iCal)k +eMicyy (8.4c)

Note that (8.3) can be compactly rewritten as

DaWape =0,  DaNue =0,  DyC,F' =0, (8.5)

where we have defined
Dy := Dy — 30 Ty + (Wape + 2Ngpe) MO (8.6)

A lengthy, though straightforward, analysis of the consistency of (8.3) and (8.4) together
with the superspace Bianchi identities leads to the following algebraic constraints

c,M = c,cr, CICy; =2, (8.7a)
WapeCa =0, (8.7b)
NapeCq = 0, (870)

1
W' Ng, = Z5;;14/7‘51\% (8.7d)

13For any background admitting eight supercharges, if there is a tensor superfield T such that its bar-
projection vanishes, T'| = 0, and this condition is supersymmetric, then the entire superfield is zero, T = 0.
See [57] for a more detailed discussion.
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as well as the conditions
DsCy =0, DaC*" =0, DyNpey=0, DaWpa=0. (8.8)

It should be emphasised that, due to (8.7b) and (8.7c), two branches of solutions exist,
defined by: (i) C, = 0; and (ii) Wype = Nape = 0.

Note that the algebraic constraint (8.7d), due to the (anti-)self-duality conditions on
Wabe and Nype, is equivalent to any of the following relations

N[adeWb]de =0~ Na[bech}e =0 Wa[beNCd]e =0~ N[abeWCd]e =0, (89)
while the following relations hold identically

W[adeWb} =0=W, alb eWCd] =0 W[abe cdle = 0 <= W[achdef] =0, (8.10&)
Nig®Nyjge = 0 = Nop"Negie = 0 <= Ny “Negie = 0 <= NigpeNgeyy =0 . (8.10b)

By a routine calculation it may be shown that

Nape = a(w[(o)wlg ) E]) + w[(S) (4) £]5)> ) (8.11a)
Wate = (@ — D) (3.11b)

(4)

is a solution to (8.7d), provided that wg’, 0 < i < 5, are orthogonal one-forms, that is,

wWwlle =0, (i#j). (8.12)

a

This result was originally derived in [85] (see also [86]). These one-forms may be normalised
to constitute an orthonormal basis, and then the expressions for Ng,. and Wy, will, in
general, involve overall factors a and /5 as in (8.11).

In accordance with our analysis, for every maximally supersymmetric N' = (1, 0) back-
ground the algebra of covariant derivatives is given by the following graded commutation
relations:

(D, D}} = ~2ic¥(7%)apDa +( 20 (1) o5 (W 4 2N) 4 2i(774) ,5C, CJ)Md

# (617078 CuCH + 5 07) N 217 ) 1, (8.13)
1
[Da, D] = <(vab>$0”0’“z = 5 (Wane + zzvabc)(v“)féf) D, (8.13b)
(D, Dy] = (sa{ch}cd}— 5{5{06’0) »
o+ (80N Nypep + 20/ W Wi 4+ 16N, Wy 1) Mo (8.13¢)

The algebra is determined by the four tensors Cy, C*, Nyeq and Wy, which are covari-
antly constant, eq. (8.8), and obey the algebraic constraints (2.7) and (8.7). In conjunc-
tion with the Lorentz and R-symmetry commutation relations, [M.q, Da] and [Jy, D4l,
the graded commutation relations (8.13) define the most general superalgebras with eight
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supercharges, which are associated with the maximally supersymmetric backgrounds of
N = (1,0) Poincaré supergravity. These superalgebras were derived two years ago [87]
using sophisticated algebraic techniques. Here we have demonstrated that the superspace
techniques allow one to derive these superalgebras via a simple calculation.

In accordance with the discussion in appendix C, the commutation relation (8.13c) is
equivalent to that of the spacetime covariant derivatives. Therefore we can immediately
read off the Ricci tensor, the scalar curvature and the Weyl tensor:

8
Rap = =16CoCh + 1600,C°Ce = 16No Ny — AW Wiea = napN“Weae , - (8.14a)

R = 80C°C,. — 16N W 4, , (8.14b)
1 1
Cabed = Rabed — 5 (na[cRd]b - nb[cRd]a) + ﬁRna[cnd}b )
e e 16 e
= 16Na[c Wd]be - 16J\fb[c Wd}ae + Bna[cnd}bN fgWefg . (814(3)

Note that the condition Wy, = 0 implies that the superspace is conformally flat [16]. As a
result of (8.14c) it is clear that Wy, = 0 implies Cypeq = 0, though the reverse is not true
in general.

It should be remarked that the algebra of covariant derivatives (8.13) takes a particu-
larly simple form if the torsion-free covariant derivative D, is replaced with the torsionful
one defined by (8.6). One obtains

. y - ) i )
(DL, D)} = 216 (1")asDa + 21(7°) s CaC' Mg — gl(’yabc)agNach”, (8.15a)

[f)aa ’D'];] = { [('Yab)'yécb - 30(15%5/] Ckl - (Wabc + 2Nabc>(’7bc)’yéél]€}pé ) (8'15b)

[Da, Dy] = 4(War + 2Ny Dy + (sa[fcb] Cl— 455, cece>Mcd . (8.15¢)

We see that the R-symmetry curvature vanishes if Ny = 0. The graded commutation
relations take a remarkably simple form if Ny, = 0 and C, = 0; the bosonic body of this
superspace is a conformally flat AdS3 x S3 spacetime or a pp-wave, see later.

We now employ the above analysis to identify all possible maximally supersymmetric
spacetimes, which are the bosonic bodies of the superspaces with geometry (8.13), or
equivalently (8.15). The most obvious solution is Minkowski space, M® = R>!, which
corresponds to the choice C, = 0 and Ny = Wype = 0. When this is not the case,
it follows from (8.7b) and (8.7c) that there are two disconnected branches of solutions,
defined by C, # 0 or C, = 0.

Solutions belonging to the branch C, # 0, which necessarily have Nype = Wgpe = 0,
are characterised by the existence of a parallel, nowhere vanishing vector field. Thus, since
C? = (C°C, is constant, the possible backgrounds are locally equivalent to the following
three cases, R x S° for C? < 0, AdS5 x R when C? > 0 and a pp-wave spacetime if
C? =0 [87].

When C, = 0, the corresponding geometries are described by the covariantly con-
stant three-forms Ny, and Wyp., which decompose as the sum of two orthogonal simple
forms (8.11). If either of the corresponding simple forms are null, the background is a
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pp-wave spacetime [88]. When this is not the case, it follows that locally the spacetime
decomposes into the product of two three-dimensional symmetric spaces. This can be in-
ferred by the structure of the three-form fluxes given in (8.11). In particular, the possible
solutions are [87]: (i) AdSs x S3; (ii) AdSz x R?; and (iii) R*! x $3.

In general, for backgrounds belonging to (i) the radii of the AdS3 and S® do not
necessarily coincide — in particular, (ii) and (iii) are degenerate cases of (i). Additionally,
if Ngpe = 0 and Wype # 0, their radii must be equal (proportional to § in (8.11)). This
background is one of the well-known solutions to minimal N' = (1,0) supergravity in six
dimensions [89]. It is also an example of a superspace which is not superconformally flat,
Wape # 0, though its bosonic body is conformally flat, Cypeq = 0.14

So far we have not specified any conformal compensators =. We have worked in the
super-Weyl gauge (3.31), where Z is a descendant of the compensators = which is a singlet
under the structure group and has the properties: (i) it is an algebraic function of Z; (ii)
it is nowhere vanishing; and (iii) it has a non-zero super-Weyl weight wg, 6,2 = wgoE.
Additional constraints on supergravity backgrounds often occur once a specific choice of
compensators is made.

Let us analyse the case of the compensators introduced in section 3.3, specifically: the
tensor multiplet ® and the linear multiplet G¥ = G7°. Then it is possible to identify =
with ®. In the super-Weyl gauge (7.10), the tensor multiplet constraint (3.35) reduces to

Ci =0. (8.16)
Every Killing supervector field €8 must leave the linear compensator G% invariant,
(¢7D5 + KMglI) G =0, (8.17)

in accordance with (3.34b). In the case of a maximally supersymmetric background, this
equation implies that G is annihilated by the spinor covariant derivatives,

DGk =0 . (8.18)
Now, the integrability condition {D?,, Dé}le = 0 leads to the constraint
N (yupe)ap (MG 4+ £10GIF) = 0, (8.19)
which is solved by
Nupe =0 . (8.20)

We have shown that the conditions (8.16) and (8.20) hold for all maximally supersymmetric
backgrounds of Poincaré supergravity with the tensor and linear compensators.

Instead of identifying & = & as has been done above, we can instead choose 2 = G.
Next, we impose the super-Weyl gauge

GP=1 = GG =-5. (8.21)

“The reader can consult [90] for an interesting discussion of superconformal flatness of AdS, x S9
superspaces based on coset constructions.
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Then the analyticity constraint (3.36) and the super-Weyl gauge condition (8.21) tell us
that G is annihilated by the spinor covariant derivatives, eq. (8.18), and thus the integra-
bility condition {D¢, Dé}le = 0 must hold. The latter contains nontrivial information, in
accordance with the anti-commutation relation (2.5a). Specifically, the integrability condi-
tion tells us that the condition (8.20) holds. Every Killing supervector field ¢ must leave

the tensor compensator ® invariant,
8Dpd =0, (8.22)

in accordance with (3.34b). In the case of a maximally supersymmetric background, this
equation implies that ® is annihilated by the spinor covariant derivatives, and therefore

® = const . (8.23)

As a result, the tensor multiplet constraint (3.35) reduces to (8.16).

We have discussed the two possible choices: (i) E = ®; and (ii) 2 = G. Both of
them lead to the same maximally supersymmetric backgrounds, which are characterised
by the conditions (8.16) and (8.20). The superspace torsion is determined by the super-
Weyl tensor W, which is covariantly constant. Such a superspaces are the only maximally
supersymmetric solutions of Poincaré supergravity. Let us discuss this point in more detail.

The equations of motion for Poincaré supergravity have the simplest form in conformal
superspace. In this setting, the tensor compensator ® and the linear compensator G* obey
the constraints

vivle =0, (8.24a)
vigit =0 . (8.24b)

For more details, including the Poincaré supergravity action, we refer the reader
to [47, 84, 91]. The superfield equations of motion for N' = (1,0) Poincaré supergrav-
ity were derived in [84]. They have the form

wei =0, viv) (g) =0, (8.25)

where W is the field strength of a composite vector multiplet

.1 .4 , | 3
Wi = avaﬂrg + E(Waﬁrg + 10iX§GY) — ﬁij(VQBG”)T’g
1 . i y
+2—G3G”Faﬂrﬁj + Tocm PPV X kY5 GUGH (8.26)

with Y¢, := %VajGij and F,g = in”aka. To make contact with our previous results, we
now degauge to SU(2) superspace. Upon degauging, the tensor multiplet constraint (8.24a)
turns into (3.35), while the linear multiplet constraint (8.24b) takes the form (8.18). The

second equation of motion for Poincaré supergravity in (8.25) becomes

(DSDY) + 407, (g) =0. (8.27)
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The analysis given above tells us that the following properties hold for all maximally su-
persymmetric backgrounds: (i) both compensators ® and G% are covariantly constant;
and (ii) the conditions (8.16) and (8.20) hold. Now eq. (8.27) is satisfied. The first equa-
tion of motion in (8.25), W* = 0, is also satisfied, since all maximally supersymmetric
backgrounds have no covariant background spinor superfields.

9 Conclusion

To conclude, we summarise the main results of this paper and outline some interesting
areas for future work. Our main outcomes are as follows:

e We have described the structure of (conformal) isometries of N' = (1,0) supergravity
backgrounds within the SU(2) and conformal superspace formulations. In the in-
finitesimal case they were shown to form a closed algebra on any fixed supergravity
background. Further, we detailed how these may be utilised to trivially read off the
(conformal) Killing spinor equation at the component level. Its solutions may be
uplifted to a unique (conformal) Killing vector superfield on M6I8,

e The conformal Killing spinor superfields €*, which generate extended conformal su-
persymmetries, were introduced. In addition, their relation to the conformal Killing
vector &% and tensor (%™ superfields was shown. The former parametrise the confor-
mal isometries of superspace, while the latter are associated with the higher symme-
tries of the kinetic operators of on-shell multiplets. Additionally, it was proven that
the conformal Killing tensors of a fixed superspace form a superalgebra with respect
to the bracket (4.12).

e We studied the higher symmetries of three on-shell models in curved backgrounds,
namely: (i) the conformal scalar field; (ii) the hypermultiplet; and (iii) the non-
conformal vector multiplet. In our analysis of (i) we have, for the first time, derived
the explicit form of every higher symmetry operator on curved backgrounds. For (ii),
it was proven that the conformal Killing tensor superfields ¢ generate all (non-
trivial) symmetries of their kinetic operators. Finally, in the case of (iii), we deduced
that its higher symmetries are parametrised by Killing tensor superfields, which were
also introduced in this work (7.17).

e The maximally supersymmetric backgrounds of N' = (1, 0) supergravity in six dimen-
sions were classified. Our analysis leads to the superalgebra (8.13), or equivalently
(8.15), which contains three distinct branches. Further, their corresponding space-
time backgrounds are derived, reproducing the results of [87-89].

Interesting open problems include the following:

e Our approach to the higher symmetries of the conformal d’Alembertian in section 5
may be immediately generalised to the study of more complex conformal field theories.
In particular, it would be interesting to extend this analysis to Maxwell electrody-
namics in four dimensions.
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e We believe that, as was shown for the conformal d’Alembertian, every higher sym-
metry operator for the hypermultiplet and vector multiplet is uniquely determined
in terms of its top component. It would be interesting to prove this explicitly.

e As an extension of our analysis of the higher symmetries of the (massless) hyper-
multiplet in section 6, it would be interesting to study the higher symmetries of the
massive hypermultiplet on d = 4, V' = 2 and d = 5, N’ = 1 supergravity backgrounds.
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A Conventions

A.1 Spinors in six dimensions

Our 6D notation and conventions are similar to to those of [15], with a few minor modifi-
cations. All relevant details are summarized here.
The Minkowski metric is 14, = diag(—1,1,1,1,1,1), the Levi-Civita tensor eqpcdey is

_ 012345

normalised by €g12345 = = 1, and the Levi-Civita tensor with world indices is

mnpqrs abcde f e m
a

given by € =c epeLeqle e’

We exclusively use four component spinors in the body of the paper, but it is useful
to relate these to eight component spinor conventions. The Dirac 8 x 8 matrices I'* and
the charge conjugation matrix C' obey the relations

(D0, Ty} = —2na 1, Tt = -1, cr,0—t = -1t
clc=1, c=ct=cr. (A.1)

In particular, I';C~! is antisymmetric. The chirality matrix I', is defined by
I‘[aI‘bFCFdI‘eFﬂ = 5abcd€fl“* . (A2)
As a consequence of the above conditions, one can show that

r*=pB(Ir**B=',  B=TI.0T,C". (A.3)

5However the entire responsibility of the publication belongs to the owners of the publication. The
financial support received from TUBITAK does not mean that the content of the publication is approved
in a scientific sense by TUBITAK.
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The charge conjugate W€ of a Dirac spinor is conventionally defined by
¥ =0T, = (v9)TC = U= T, C'¥* = -T,BU*. (A.4)

Because B*B = —1, charge conjugation is an involution only for objects with an even
number of spinor indices, so it is not possible to have Majorana spinors in six dimensions.
One can instead have a symplectic Majorana condition when the spinors possess an SU(2)
index. Conventionally this is denoted

(T) =0 — T =-TyC )" =-T.B(F)* (A.5)

for a spinor of either chirality. We raise and lower SU(2) indices ¢ = 1, 2 using the conven-
tions

V=90, U= 0, =y =1 (A.6)

We employ a Weyl basis for the gamma matrices so that an eight-component Dirac
spinor ¥ decomposes into a four-component left-handed Weyl spinor ¥“ and a four-
component right-handed spinor . so that

\IJ:C/:) r*:<505_§6>, a=1,-,4. (A7)

The spinors ¥® and y, are valued in the two inequivalent fundamental representations of
su*(4) = so(5,1). We further take

a __ O (,?a)aﬁ _ O 5046
(LT @) e

The Pauli-type 4 x 4 matrices (7%)as and (7)*? are antisymmetric and related by

~ A\ 1 (07 a a\ * ~
(3% = 56 (195, (1) =7a (A.9)

where €279 is the canonical antisymmetric symbol of su* (4). They obey

(
COR

and as a consequence of (A.3),

6

afl
afB

a

Das (1) + (1)
gl

g (P = —2p67 (A.10a)
b),é"y + ('71)) Y )By

(Y")gy = =212, (A.10D)

()as = Ba B ((7)ra)" s ()7 = B B5((G) B‘(BSB Boxé)' (A1)

A dotted index denotes the complex conjugate representation in su*(4). It is natural to
use the B matrix to define bar conjugation on a four component spinor via

00 = BY(%) . Xa = Ba’(xs)", (A.12)
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with the obvious extension to any object with multiple spinor indices. For example,

(7)ap = (7*)ap using (A.11) and similarly for 4. We also note that, as a consequence of
B*B = —1, -

P = —p®, (A.13)
with the natural extension to any tensor carrying an odd number of spinor indices. A
symplectic Majorana spinor ¥;, decomposed as in (A.7) and obeying (A.5), has Weyl
components that obey

PO =8 Xai =X - (A.14)

The Grassmann coordinates 6 and the parameters n, of S-supersymmetries are both
symplectic Majorana-Weyl using this definition.
We define the antisymmetric products of two or three Pauli-type matrices as
1, - - -
i(PYa’Yb —WYa)s  Vab = VaVb] = _(’Yab)T ) (A-153)
Yabe ‘= ’Y[a’%%} ) Yabe = :Y[aﬁ)/b:}/c] . (A.15b)

Yab = V[a:}/b] =

Note that v, and 4, are traceless, whereas vqp. and 45 are symmetric. Further antisym-
metric products obey

1 . 1
Yabe = 3|5abcdef'7 f Yabe = 3,5abcdef')/ f (A.lﬁa)
1 N 1
Yabed = 55abcdef’7€f ) Yabed = _§€abcd5f’}’ f (A.16b)
Yabede = 5abcdef7f s Yabede = _gabcdef:}/ ) (AlGC)
Yabedef = —Eabedef S/abcdef = Eabedef - (Alﬁd)

Making use of the completeness relations

(Y)as(Fa)?® = 46,785 , (A.17a)
(V) (V)1 = —864°8,7 +26,7%6.° (A.17b)
(V") (Fabe)® = 48612 165)° (A.17¢)
(V") ap (Fabe)rs = (1) (Fape) ™ = 0, (A.17d)
it is straightforward to establish natural isomorphisms between tensors of so(5,1) and
matrix representations of su*(4). Vectors V* and antisymmetric matrices V5 = —Vjp, are
related by

Vag = (1)asVe = Vo= 100)"Vas (A.18)

Antisymmetric rank-two tensors Fy;, are related to traceless matrices F,? via
Rl im0l Fa, B =0 = Fu= (w)s R = —Fu . (A19)

()

Self-dual and anti-self-dual rank-three antisymmetric tensors T, ”,

1 abcde (£ abc
3 Iy = +7® (A.20)
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are related to symmetric matrices T,,3 and T via

1 1

Taﬁ = g(’yabc)aﬂTabc = Tga < chljc) = S(Vabc)aBTaﬁa (A.21a)
1 1

T8 — ﬁ(fyabC)aﬁTabc — B — T,)= 8(%8)&5@[3 . (A.21D)

A.2 The N = (1,0) superconformal algebra

The bosonic sector of the A' = (1, 0) superconformal algebra contains the translation (P,),
Lorentz (Mg), special conformal (K,), dilatation (D) and SU(2) generators (.J;;), where
a,b=0,1,2,3,4,5 and 7,7 = 1,2. Their algebra is

[Map, Mea] = 2n1o My — 2n0aa My (A.22a)
[Map, Pe] = 2neja ), (D, Po] = Pa, (A.22D)
[(Map, K] = 2000 Ky, [D, Ko] = =Ko, (A.22¢)

[Ka, Py] = 206D + 2Mqy, , (A.22d)
[T, JM) = Rt gl gk, (A.22¢)

with all other commutators vanishing.

Its superconformal generalisation is obtained by extending the translation generator
to Py = (P,, Q%) and the special conformal generator to K4 = (K¢, S¢). The fermionic
generator Q°, obeys the algebra

(QL, QL) = —2eY(1)apPe, QL Pu] =0, 0,01 = Qi (A.23)
(Mo, @) = —5 ()" @5, 17,k = HiQ), (4.23b)
while the generator S{* obeys the algebra

[50,8)) = 2y ()P Ke,  [SP K] =0, [DS7=-5S¢,  (A24a)

(Mas, 7] = 5(1a)s"S1 7,55 = 6158 (A.240)
Finally, the (anti-)commutators of K4 and Pp are

(o, Qo] = ~i(1a)ap 8™, [F, Pa] = ~1(3) Qi (A.250)

{52, Q%) = 20507D — 46] Mg™ + 803 J;7 . (A.25D)

B The conformal Killing supervector fields of M®/16

The aim of this appendix is to study the structure of conformal Killing supervector fields
of N = (2,0) Minkowski superspace in six dimensions. Such analyses were previously
conducted in [77, 92]. By employing this construction, we will explicitly prove our earlier
claim that the proposed conformal Killing spinor superfields (4.1) naturally arise from an
N =(2,0) — (1,0) superspace reduction.
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We recall that N' = (2,0) Minkowski superspace, M6 is parametrised by the coor-

dinates z4 = (z*,6¢), where a =0,1,---,5, a=1,--- ;4and [ =1,---,4. Its covariant

derivatives take the form

Oy = Dl = — _ '(ya)aﬂeﬁfaa, (B.1)

and satisfy the algebra
{Dl,Dj} = —-21Q" 055, [0a.DL] =0, [04,0] =0. (B.2)

Here Q7 = —Q77 is an invariant tensor of the N' = (2,0) R-symmetry group USp(4). It is
convenient to choose a basis for Q7 such that it takes the form

i 0 R
QU:<8 ) ii=1,2. (B.3)

0 et
We will say that the real supervector field

£ =E=¢"0.+ &7 Dy, (B.4)
is conformal Killing if it satisfies

¢, Di] = =(DiEHDE . (B.5)
This constraint implies the fundamental equation

Dot = =2i(y")apt” (B.6)
which yields

i

§F = — 15 (3a) Darg” . (B.7)

By a routine computation, we may bring (B.5) to the form

1
[, D] = —wa"[€]Df + AT [E)DY — Sol€lD;, (B.8)
where we have made use of the definitions
1
waﬁ[ﬂ = _i(vab)aﬁaagba
1 1
Ayl = 1 Dl¢g — 15§D§5§)‘< ,
1
ol = 20 - (B.9)

It is clear that the above parameters generate Lorentz, R-symmetry and scaling transfor-
mations, respectively.

We now briefly consider the problem of performing a reduction to N' = (1,0) Minkowski
superspace. Without loss of generality, we will assume that this coincides with the section
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of M6 defined by 0 = (65, 6?;3‘) = (0,0). It then follows that, upon such a reduction,
every solution to (B.5) decomposes into an N = (1,0) conformal Killing supervector field,
a spinor superfield and an additional triplet of scalar superfields defined by

N 1 2 o
6? _ 5?’0?:0’ A\Y = ZD((]Zé-a])’e?:o . (BlO)

The spinor e? and A" generate non-manifest extended superconformal symmetries in MOI8,

where \iJ generates the hidden SU(2) R-symmetry within USp(4). By making use of the
fundamental equation (B.6), one may show that e?‘ satisfies

D’ ¢ 4551);67 (B.11)

which implies that €' and €3 are conformal Killing spinor superfields (4.1). As a result, we
have proven our original claim.

C Bosonic backgrounds

In this appendix, we introduce a formalism to study 6D N = (1,0) supersymmetric back-
grounds starting from a superspace perspective. Qur analysis will be restricted to bosonic
backgrounds, meaning that the following conditions hold

i Ok =0, D Wape| =0, D! Ngpe| =0 . (C.1)
Following [20, 93, 94], the bar-projection of a superfield is defined as usual:
Ul :=U(@,0)]p_ (C2)

for any superfield U(z) = U(z,6). The coordinates ™ parametrise a curved spacetime M5,
the bosonic body of the superspace MO8, The bar-projection of the superspace covariant
derivatives is defined similarly by:

1
Da|l = ExM|0p — 5QA”Cuwbc—<I>A’“l|J,d. (C.3)

Due to (C.1), one can completely gauge away the gravitini such that the projection of
the vector covariant derivatives takes the simple form

Dol =D, <= 9Ypd =0, (C4)
where
_ . 1 be . kl L m
D,=¢e, 2wa Mye — &0 T, €q = €4 Om (C.5)

is a spacetime covariant derivative with Lorentz (w,”) and SU(2)g (¢4*!) connections. In
what follows, the gauge (C.4) will be assumed. The covariant derivatives D, obey

Dy, Dy] = —*Rab Mg — Rap™ 1, Rap™ = Ry, Rap™ = Rap™| . (C.6)
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For convenience, we also make the definitions
kl kl
e =C,4 | y  Wabe = Wabc’ y  Nabe = Nabc| . (07)

An important feature of such backgrounds (C.1) is that every conformal Killing vector
superfield (3.4) can be uniquely decomposed as a sum of even and odd ones. We will say
that the conformal Killing supervector £4 is even if

v =E#0, =0, (C.8)
or odd if
=0, €:=&#0. (C.9)

The fields v* and € encode complete information about the parent conformal Killing
vector superfield. This appendix is devoted to the study of symmetries they induce at the
spacetime level.

C.1 Conformal Killing vectors

Let €4 be an even conformal Killing supervector field (C.8). By bar-projecting (3.5) we
obtain

Doy = kap[v] + napw|v] (C.10)
where we have defined

kap[v] := Kap[€]| = Dpgvy,  wlv] :=o[¢]| = éD“va . (C.11)

In particular, it follows from (C.10) that v* is a conformal Killing vector field
1
Dvy = gﬁachUC : (C.12)

By employing the results of section 3, it may be shown that every conformal Killing vector
field on M6 may be lifted to a unique even conformal Killing vector superfield on MOI8.
We also note that, at the component level, SU(2)r transformations are generated by

Kil] = K] (C.13)
which satisfies the differential equation
D k9 [v] = Rap0b + "Dy + kab[v]czj + 2k [0] P 4+ wlv]ed . (C.14)

It should be remarked that in the case of Poincaré supergravity, we must supplement
the constraints above with

o] =0 = wv]| =0, (C.15)
which implies that v* is a Killing vector field
Dy =0 . (C.16)
Further, by making use of (3.20) equation (C.14) reduces to
D, kY [v] = Rap0® . (C.17)
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C.2 Conformal Killing spinors

Our analysis in this subsection will be restricted to those backgrounds which admit at
least one conformal supersymmetry. Such spacetimes are associated with a superspace
possessing an odd conformal Killing supervector field ¢4 (C.9), from which one can
identify a conformal Killing spinor €' as the bar projection of £*. The spinor €' gen-
erates a @-supersymmetry transformation, while S-supersymmetry transformations are

parametrised by
ne :=Diole]] . (C.18)

With the previous assumptions at hand, bar-projecting equation (3.22) gives

, 1 1
Daeg = (’Yab)ﬁ’yeﬂjcbjk + 5(7%)5765(1”@170 + 2nape) + E(va)ﬁvnﬁk : (C.19)

Moreover, eq. (3.23) implies

i 4i . i
Ngk = —§D66€i + 56530553‘1@ - g(vabc)aﬁﬁi(wabc + 2nape) 5 (C.20)
and (C.19) becomes
. 1 i, . j
DaEZ - Cakjej' - i(wabc + 27’Labc)(7bc)f3’y€£ - 5(711)57 (nﬁk - 21(7b)5566]cbjk) ) (C'21)
or, equivalently,
A i : ; 1. R
Dae], = 5 (5a)™ (nar — 2i(m)sse™c’jt) = 5 (3a) 51 (C.22)
where we have defined
D, =Dy + ¢ T — (Wape + 2nape) M, (C.23)
and .
A 1 A
ek = —g(’ya)aigDaef : (C.24)
The conformal Killing spinor equation then takes the particularly simple form
. 1 . . 2 .
Dge) = —g(%)w (7*)psDped == Dgge) = —ga[CﬂDﬁ]gei (C.25)

In particular, we see that the gamma-traceless part of f)aez is identically zero.
Associated with a non-zero commuting spinor €' is the 6-vector

Va = (a)apeee; | (C.26)
which proves to be a conformal Killing vector field when € is a solution to (C.19):
1 Cc
DVy) = 5nanDVe - (C.27)

Furthermore, it is a null vector
Vi=V,=0. (C.28)
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By construction, the following identities hold
§(DLCI*) =0, S(DiWape) =0, §(DLNape) =0, (C.29)

which implies the conditions (C.1) are superconformal. The bar-projection of the above
conditions imply the following constraints

(3.)"' D, DYDY o| = 4ief< — [P}, DEC7*| — 2ie"Dggea?™ — 4i(vape)apc’c7*

+4ie™ ('yb)ag (Wape + 2nabc)ccj ko 12isilca5p (g capk)
8

—gleCd(’chd)a,B (70 + Ek(icai)j)> (C.30a)

+81(Yap)a " M* — 32ina (90, DF 4 eblie DI 4 8int c,7F

1

0=¢ ( — 5[Dfl, D) Wabe| — e Dagwape + 61(71a™)apwpeace”

+6ic™ (v4)ap (W™, + 2nde[a)wbc]e)
=305 (7" a)a” Whela + Ny wabe (C.30b)

i

i . 1 o . g
(Fabe) D, DEDsro| = 6}5 ( - 5[9&, D} Nape| — i Dagnase + 61(Vja™)asnpeace”

+6ic™ (v4) ap (W™, + Qnde[a)nbc]e>
_37716 (Vd[a)O/Bnbc]d + ngnabc . (C3OC)

Restrictions on higher mass-dimension component parameters may be obtained from the
invariance of higher-order spinor derivatives of Co7%, Wy and Ngp.. These results exem-
plify how results in components can be efficiently obtained from a superspace setting.
In the case of Poincaré supergravities, the equations given above must be supplemented
by the additional condition
olf]=0 = 5}, =0, (C.31)

which is a consequence of (3.32). The conformal Killing spinor equation (C.19) becomes

Dae} = (3a)”" () 5o i (C.32)
which implies
Dispel = 6(7)5p” i (C.33)
and
eak]f)(gpez =0. (C.34)
This implies that A
DV, =0 =D"V,, (C.35)

thus V, is a Killing vector field

DVy =0. (C.36)
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D From conformal to SU(2) superspace

As is well known, SU(2) superspace exists as a gauge-fixed version of conformal superspace.
The process of moving from the latter to the former is known as ‘degauging’ and we outline
it here extending previous analysis in 3 < D < 5, see [37-40].

The first step in this procedure is to eliminate the dilatation connection. Under an
infinitesimal special conformal gauge transformation the one-form B = E°B, + E*B;
transforms as

S (A)B = —2E%A, — 2E3 A’ . (D.1)

Thus, in exchange for a loss of unconstrained special conformal gauge freedom,' one can
gauge away B.

By=0. (D.2)

As a result, the special conformal connection becomes auxiliary and must be manually
extracted from V4.
The degauged covariant derivatives are given by

1 g
@A =V —{—SABKB =F4— §QAbCMbc - (pAlJJij . (D.3)

Since their structure group is SO(5, 1) x SU(2)g it is clear that they are SU(2) superspace
covariant derivatives. They satisfy the algebra

1
(D4, P8} = —Tap® Zc — iRABCndd — Ry (D.4)

The degauged special conformal connections §a? provide new contributions to the torsion,
and by extension to the other curvatures.

We use different symbols for the degauged derivatives and the SU(2) ones of section 2.1
since, as we will see, they satisfy slightly different torsion constraints. Since the vielbein,
Lorentz, and SU(2) connections are exactly those of conformal superspace, it is easy to
give expressions for the new torsion and curvature tensors in terms of their conformal
counterparts. This can be done by using the expression of the conformal superspace torsion
and curvature two-forms in terms of the vielbein and connection superfields [16]

T4 =dE*+ E* A + E* A B, (D.5a)

T = ABY B AQ" 4 JEfAB B NGy B AFs(3)Y, (D5D)
D) = dB+2E* AFo +2EX N T, (D.5¢)
R(M)™ = dQ™ + QA Q. — 4B A F + 2B AFL(v)a” (D.5d)
Z(J) = ddV7 — dF0 A BTy — 8B A FI) | (D.5e)
R(K)" = dF* + T AW —FA B —iF% A Farn(3)7, (D.5f)
Z(S),, = d§l, — F5 A Q" — %gg AB—=FL AN —iEY AF(Ve)ap - (D.5g)

16 There exists a class of combined local dilatations and special conformal transformations preserving the
gauge B = 0. These exactly reproduce the super-Weyl transformations (2.11), see e.g. [29, 37, 95].
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For example, in the gauge B = EAB4 = 0, one finds the torsion tensors are related by
T = 7%, T =T +iE°AFs(5:)*° . (D.6)

By investigating (D.6), one can extract the structure of the torsion constraints in the
degauged geometry. We find that these are all the same as for the covariant derivatives
D4, except that

Tap;r) #0, Tap® #0. (D.7)

In the SU(2) superspace geometry of section 2.1, both of these torsions are required to
vanish. As we will see, these conditions can be satisfied by redefining the degauged vector
covariant derivative. Then, the resulting geometry exactly reproduces the SU(2) superspace
geometry of section 2.1.

To elaborate further, we must analyse the additional superfields introduced by the
special conformal connections F42. In the gauge (D.2) the dilatation curvature, eq. (D.5¢c),
is given by

A (D) ap =2Fap — 2Fpa(—1)%4°8 . (D.8)

The vanishing of the dilatation curvature at dimension-1, see (2.19), constrains the special
conformal connection as

84 = —Fh = — A + 1Yo, 0.9)
where the superfields Aa@ij , and Y,z satisfy
Aus = (V) apha? = A’ = —Aga?',  Yap = Yo = E(Vflfw)aﬁyabc : (D.10)

At this point it is possible to derive the degauged algebra of covariant derivatives. An
efficient way to do this is to consider a weight-zero primary superfield Uy transforming
as a tensor in some representation of the remainder of the superconformal algebra. For
example, to determine the anti-commutator of spinor derivatives we consider

{2, D5} = {Vi,, Vi}Uo + FLolKC, ViU + Fhe K, ViU - (D.11)
The resulting algebra is

{-@ciw -@g’} = *Qieij (Va)oaﬁ-@a + 4isijyb6d(’7b)a,3Mcd + Qieij (WG)aﬁAalikl

+§Abw (fyde)aﬂMcd + g(’yabc)aﬁyabcjw . (D12)

To match (2.5a) it is necessary to make the following identifications

Aaij = 4Caij ) Yabc = *Nabc 3 (D13)
and
2, =Dhy  Da=Da+ WM™ +Cl Ty . (D.14)
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Next, we compute [Z,, @é] at dimension-1. One finds
(D, Z3)Uo = [Va, VEUo + Fac K, V500 — §c[KC, Va} U,
which implies
[‘@a’ '@é] - Cajk‘@l’; + ijk(’)/ab)ﬂé‘@éc - Wacd(’YCd)“/é@g - Nacd(VCd)ﬁégg + -
Finally, we turn to Sa%. Since at mass dimension-3/2, (D.5¢) implies
ZD)al = 28aly — 28pa (D.15)
by employing the dilatation curvatures of eq. (2.22), one obtains
j L ia i Olp
Ba = Bap+ 5 Z5W =8+ gxﬁ : (D.16a)

By examining the expressions for the conformal superspace torsion and curvatures of
eq. (D.5), one can obtain

Tag’ = Tupt, (D.17a)
Tap] = Tan) —i65(3) " Fn,ok + 105(3e) T sk, (D.17b)
Rup = Z(M)ap® — 465357 + 40534 Y +2647(v), Fp f(—1)°®

~265] (v, 5 a b (D-17¢)
Rap' = 2(J)ap™ — 86,035 P (—1)7 + 8650 Fa (e, (D-17d)

as well as the following conditions on the special conformal connections

R(S)ABE = 22485t + Tap”Fpt +ie"647 (Ve) 1685, (—1)°P

—ie5 B0 (7e)16T 4.C (D.18a)
R(K)aB® = 2948p)° + Tap”Fp, +184. 8 ,61(7°)° (—1)°8
—i%p 5 4,00 (7)1 (1) FEA (D.18h)

At dimension-3/2 only the S-curvature equation, eq. (D.18a), with A = ¢ and B :Jé

gives nontrivial constraints. In particular, by using %Z(S )Za%fy = 0 and (D.16a), one obtains

0 = D55 + DEFLE + 216 (1) apBal — i€ (v) 08l — 1€ (191580

e eap s DEW (D.19)
Its solution implies the differential constraints
(i k) _ j —
P,Cs"" =0, | Ny =0, (D.20)

which indicates that the decomposition into irreducible and nontrivial tensors of the spinor
derivatives of dimension-1 torsions is

géccaij = (’Ya)wécékij - 5k(ica’yj) - 5k(i(7a)7666j) ) (D'Qla)
3

-@'I;Nabc = _Z(’V[ab)’yﬁ-/\/’c]ﬁka (D21b)

DEWabe = 1(Vabe)asX*F +i(Vabe)1s X °F . (D.21c)
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Equation (D.19) then implies

5
pY!

lNaﬂj : (D.22)

1 1
—(Va)ps X% — 2( Va) 3sC + §Caﬂj ~ 3

ga[‘g =

To conclude the analysis at dimension-3/2 we derive the corresponding torsion and
curvatures. For the dimension-3/2 torsion it holds that

Tasy, = Taby — 21(31a) " Sojon (D.23)
which leads to
« 3 s
Tary = (Yab)p (Xaﬂwk - 453X§f) + ()" (M}dkz - Cb]ék)
b :
+(Vab) " <12X,’§ - 1C,’j> : (D.24)
The dimension-3/2 Lorentz curvature can be computed by using
RQ%Cd _ %(M) Jed — 45 CS] d 2625i(,}/cd)’y§galg 7 (D25)
which becomes
j . c ; e 21 i ; c 4i .- .
R = 2000 (07X, + (0 (5004 CW) #2507+ a0
+6le (Nd] i_ Cdlﬁj) (v 5 (/\/ i = Cy ) _ (D.26)

Finally, the SU(2)g curvature derives from

Rajékl - () Ikl 85”63 gagkgl)p (D.27)
which implies

Omne can then prove that these results coincide with the dimension-3/2 results of sec-
tion (2.1) upon using (D.14) and identifying

X

i
Vkaﬁ _ _ wakaﬂ

CX =) (D.29)

It is straightforward to continue the degauging procedure and obtain results at dimen-
sions higher than 3/2. We will not pursue such an analysis here.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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