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1 Introduction

Axion-like particles (ALPs) are hypothetical pseudoscalar particles appearing in several
extensions of the Standard Model [1]. Original axions were introduced in order to resolve
the strong CP-problem in QCD [2, 3]. Later, it was argued that ALPs can appear in a
low-energy phenomenological description of string theory [4, 5].

The efforts toward the searches for ALPs include such types of experiments as: helio-
scopes [6], haloscopes [7–9], light-shining-through-wall (LSW) experiments [10, 11], space-
based gamma-ray telescopes [12], accelerator-based experiments [13–16], neutrino experi-
ments [17] and reactor experiments [18].

In addition, astrophysics and cosmology observations imply that ALPs are well mo-
tivated candidates for dark matter content [19–21]. Moreover, several exotic scenarios of
DM can be associated with ALPs [22, 23]. A properties of axion dark matter are sensitive
to the self-interaction parameters. In particular, the relevant dark matter can be clumped
into miniclusters [24, 25], or form other inhomogeneous structures [26–28]. Axion field can
also form exotic compact objects (bose stars [29, 30]) providing a possible explanation for
fast radio bursts [31, 32].

More generally, the axion field a with mass ma and dimensionful coupling to photons
gaγγ is described by the Lagrangian

L = −1
4FµνF

µν + 1
2(∂µa)2 − 1

2ma
2a2 + gaγγ

4 aFµνF̃
µν , (1.1)
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where Fµν is the electromagnetic tensor and F̃µν = εµνρσFρσ/2 is its dual. The La-
grangian (1.1) yields the following equations for axion and electromagnetic fields,

(∂µ∂µ +ma
2) a = gaγγ

4 FµνF̃
µν , (1.2)

∂µF
µν = gaγγ F̃

µν∂µa. (1.3)

If the electromagnetic invariant FµνF̃µν = −4( ~E · ~B) is non-vanishing then eq. (1.2) implies
that axion field can be produced. This may be realized in laboratory by combination of
two strong electromagnetic (EM) waves1 or by a single EM wave in a strong magnetic field.
Strong enough EM field with high level of coherence can be produced within optical range
by lasers or within radio-frequency range inside SRF cavities.

The axion field once being produced may interact with the EM field in a non-linear
way according to eq. (1.3). So that the axion-induced EM field may be detected within
the same production cavity [33] or within an additional detection cavity [34–36]. In the
latter case both cavities should be screened in order to suppress the external EM field
penetration. This setup illustrates so-called LSW type of laboratory experiments for axion
searches. For instance, both production and detection cavities are filled with the strong
magnetic field in order to initiate effective axion-photon conversion.

This setup was proposed and realized for both optical [37] and RF ranges [34]. Both
optical LSW experiment ALPS [38] and RF experiment CROWS [39] gives the same order
of magnitude constraints2 (for details see ref. [1]) in the plane (gaγγ ,ma). In particularly,
for small axion masses one has gaγγ . 10−7 GeV−1, which is still the best pure laboratory
constraint. Although significantly better constraints (up to gaγγ . 10−10 GeV−1) come
from null results of dark matter searches or solar axion detection (see, e.g. ref. [6]), these
constraints are sensitive to the model of axion production. On the other hand, the pro-
duction of ALPs in laboratory experiments is straightforward. However, both cosmic and
laboratory methods for ALPs searches complement each others.

The classical LSW setup requires external magnetic field in both production and de-
tection cavities. However, the quality factor of cavities is constrained at level Q . 105 that
implies the limitation on the amplitude of cavity modes. Therefore, sensitivity of ALPs
detection decreases. The much bigger quality factor Q ∼ 1012 can be achieved with super-
conducting radiofrequency (SRF) cavities, but the price to be payed is that one can not
apply strong magnetic field inside the cavity due to degradation of surepconducting state.
The maximal amplitudes for SRF cavity modes are constrained by the overall magnetic
field near the cavity walls. In particular, for superconducting niobium [41] the critical
magnetic field is ∼ 0.2 T. Given that constraint, the authors of ref. [35] suggested the LSW
setup involving cylindrical SRF production cavity and toroidal SRF detector. Moreover,
it was pointed out that sensitivity depends essentially on the geometrical formfactor for
emitter and converter cavities.

In our paper we address this issue in detail. In particular, we discuss spatial distribu-
tions of the produced axion field in cylindrical SRF cavities. We also estimate detection

1For a monochromatic EM wave in vacuum ( ~E · ~B) vanishes.
2The same order of magnitude constraint came from optical polarization experiment PVLAS [40].
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sensitivity of the cylindrical RF cavity (Q ∼ 105) filled with the strong magnetic field, so
that it can reach 10 T. Recently, a similar setup was suggested in ref. [36], particularly,
authors discuss the LSW facility to probe ALPs with two screened cylindrical SRF cavities
which are served as emitter and receiver of axion field respectively. The setup allows to
achieve relatively large quality factors Q ∼ 1012, however, the peak EM field in the cavities
is constrained by . 0.2 T. We show that sensitivity to probe ALPs in our LSW setup
gaγγ . O(1)× 10−11 GeV−1 is comparable to that performed in ref. [36].

In ref. [33] authors suggested the setup to probe ALPs inside a single SRF cavity
filled with different modes. Axion-like particles realize a non-linear coupling between those
modes. Absence of the magnetic field allows to achieve the quality factor Q ∼ 1012.
However, sensitivity is leveraged by relatively small magnitude of magnetic field . 0.2 T
allowed in SRF. We show that our LSW setup is also sensitive to probe ALPs for the region
of parameter space, which is close to one discussed in ref. [33].

This paper is organized as follows. In section 2 we consider ALPs production using
Green function approach. In section 3 we present results of numerical calculation for
time-averaged energy density of axion field initiated by different pairs of cylindrical cavity
eigenmodes. In section 4 we consider ALPs detection in the RF cavity with the strong
magnetic field. We also estimate constraints in the parameter space (gaγγ ,ma). In section 5
we discuss obtained results. Appendices contain technical details.

2 ALP production in superconducting cavity

In this section we consider production of the axion field by electromagnetic radio-frequency
modes pumped into a superconducting cavity. The generated axion field is described by a
solution of eq. (1.2) respecting causality. In particular, it is given by

a(~x, t) =
∫ ∞
−∞

dt′
∫
Vcav

d3x′Gret(~x− ~x′, t− t′) ×
[
−gaγγ

(
~E(~x′, t′) · ~B(~x′, t′)

)]
, (2.1)

where Gret(~x − ~x′, t − t′) is the retarded Green function, ~E(~x′, t′) and ~B(~x′, t′) are the
electric and magnetic fields respectively inside the cavity of volume Vcav. Since for a single
cavity mode the electric field is orthogonal to the magnetic one, at least two cavity modes
are necessary for ALPs productions. Therefore, one reads ~E(~x, t) = ~E1(~x, t) + ~E2(~x, t) and
~B(~x, t) = ~B1(~x, t) + ~B2(~x, t) for the electric and magnetic fields correspondingly, where the
subscripts refer to the cavity modes at given frequencies ω1, 2.

The time dependence for each mode decouples as follows

~Ei(~x, t) =
√

2<e
[
~Ei(~x, ωi)e−iωit

]
, ~Bi(~x, t) =

√
2<e

[
~Bi(~x, ωi)e−iωit

]
,

where ~Ei(~x, ωi) are cavity eigenmodes without proper normalization to take into account
its arbitrary amplitudes. The electromagnetic invariant ( ~E · ~B) for two modes can be
represented as (

~E(~x, t) · ~B(~x, t)
)

= <e
[
F+(~x) · e−iω+t + F−(~x) · e−iω−t

]
, (2.2)
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where we defined ω± = ω2 ± ω1 and

F+(~x) ≡ ~E1(~x) · ~B2(~x) + ~E2(~x) · ~B1(~x) , F−(~x) ≡ ~E∗1 (~x) · ~B2(~x) + ~E2(~x) · ~B∗1(~x) .

Note that we consider cavity modes where the electric and magnetic fields are orthogonal,
so that (~Ei(~x) · ~Bi(~x)) = 0 everywhere inside the cavity.

Since eq. (1.2) is linear with respect to a, one has independent propagation for each
frequency component in eq. (2.2). The produced axion field is then given by a(~x, t) =
a+(~x, t) + a−(~x, t), where a±(~x, t) are independent components for ω±. One can easily
integrate out t′ in eq. (2.1) for two cases depending on axion mass (see e.g. appendix A),

ma < ω± : a±(~x, t) = −gaγγ <e
∫
Vcav

d3x′
F±(~x′)

4π|~x− ~x′|e
−iω±t+i|~x−~x′|k± . (2.3)

ma > ω± : a±(~x, t) = −gaγγ <e
∫
Vcav

d3x′
F±(~x′)

4π|~x− ~x′|e
−iω±t−|~x−~x′|κ± , (2.4)

where k± ≡
√
ω2
± −m2

a. For the case ma > ω± eq. (2.4) is obtained formally by a replace-

ment of ik± in eq. (2.3) by κ± =
√
m2
a − ω2

±, so that the axion field amplitude decreases
exponentially far from the cavity volume. We note that the functions F±(~x′) are generally
complex what may give an additional phase of the integrand in eqs. (2.3)–(2.4).

Since the axion field amplitude harmonically oscillates the time-averaged a±(~x, t) goes
to zero. Instead, we consider the following time-averaging,

〈a2〉 = 1
T

∫ T

0
dt a2(t) = 1

T

∫ T

0
dt (a+(t) + a−(t))2 = 〈a2

+〉+ 〈a2
−〉 , (2.5)

where the mixed term 〈a+a−〉 vanishes because a+a− is a sum of products of two harmonic
functions with different frequencies and averaging over time period yields zero.

For two non-zero terms in eq. (2.5) we obtain

ma < ω± : 〈a2
±〉 = 1

2

((
AC±

)2
+
(
AS±

)2
)
, (2.6)

ma > ω± : 〈a2
±〉 = 1

2B
2
± , (2.7)

where

A
C(S)
± = gaγγ

∫
Vcav

d3x′
|F±(~x′)|

4π|~x− ~x′|

{
cos (k±|~x− ~x′|)
sin (k±|~x− ~x′|)

}
, (2.8)

B± = gaγγ

∫
Vcav

d3x′
|F±(~x′)|

4π|~x− ~x′|e
−κ±|~x−~x′| . (2.9)

For a specific resonant case ma = ω± one has k± = κ± = 0, so that

AC±

∣∣∣
res

= B±|res = gaγγ

∫
Vcav

d3x′
|F±(~x′)|

4π|~x− ~x′| , AS±

∣∣∣
res

= 0 . (2.10)

Next, far away from the cavity the integral
∫
d3x′ |F±(~x′)| /|~x − ~x′| is suppressed for

two transversal magnetic modes in the cavity (TM+TM), since their overlap factor
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∫
d3x′ |F±(~x′)| is negligible. In that case the resonant production of ALPs in SRF cav-

ity is ineffective. In addition we note that for two transversal electric modes (TE+TE)
or transversal magnetic and electric modes (TM+TE) this overlap integral can be signifi-
cant. Therefore the resonant production of ALPs for these combinations of modes is more
efficient.

To conclude this section let us list the formulae for the energy density of the generated
axion field,

ρE± = 1
2 ȧ

2 + 1
2(∂ia)2 + m2

a

2 a2 . (2.11)

In particular, for various masses ma of the axion field the time-averaged value 〈ρE±〉 can be
written as follows,

ma < ω± : 〈ρE±〉 = 1
4
([
m2
a + ω2

±

]
((AS±)2 + (AC±)2) + (∂iAS±)2 + (∂iAC±)2

)
, (2.12)

ma > ω± : 〈ρE±〉 = 1
4
([
m2
a + ω2

±

]
B2
± + (∂iB±)2

)
, (2.13)

where AC(S)
± and B± are given by eqs. (2.8)–(2.9). In section 3 we discuss spatial distribu-

tions for the given quantities and study its properties for the resonant case ma ' ω+.

3 Numerical results for ALP production in cylindrical cavity

In this section we consider axion production in cylindrical cavity. We use TEnpq/TMnpq
notation to classify EM cavity modes [42]. Given a height L and a radius R of the cavity
one has the following dispersion relations for TM and TE modes respectively,

ωTM
npq =

√(
xnp
R

)2
+
(
qπ

L

)2
, ωTE

npq =

√(
x′np
R

)2
+
(
qπ

L

)2
, (3.1)

where xnp and x′np are p-th roots of the n-th order Bessel function Jn(x) and its derivative
J ′n(x) correspondingly. Integers n, p, q enumerate the full set of modes and refer to the
“winding” numbers in φ, ρ, z directions respectively. The explicit expressions for the given
set of modes are presented in appendix B.

One has to consider the following combinations of pump cavity modes: (i) TM+TM,
(ii) TE+TE, (iii) TE+TM. It is straightforward to show using expressions from appendix B
that for (i) and (ii) cases the functions F+ and F− are purely imaginary and for the case
(iii) F+ and F− are purely real. Since ETE

z = BTM
z = 0 one has

(TE + TM) :

|F±| =
∣∣∣ETM
z BTE

z + ETM
ρ BTE

ρ + ETM
φ BTE

φ ±
(
ETE
ρ BTM

ρ + ETE
φ BTM

φ

)∣∣∣ , (3.2)

(TE + TE or TM + TM) :

|F±| =
∣∣∣E1
ρB2

ρ + E1
φB2

φ ±
(
E2
ρB1

ρ + E2
φB1

φ

)∣∣∣ . (3.3)

Functions F± vanish for the cases (i) and (ii) as soon as its “winding” numbers n1 = n2 = 0.
On the other hand, two modes with zero n give non-vanishing terms for the case (iii).
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Figure 1. Results of numerical calculations for TM010+TE011 pump modes. Top: contour plots
for the time-averaged energy densities 〈ρE−〉 and 〈ρE+〉 evaluated on the cylinder axis as function of
axion mass ma and distance z from center of cavity with TM010+TE011 pump modes. Cavity
dimensions: L = 1 m, R = 1 m. Left panel: ω− = 5.1 · 10−7 eV. Right panel: ω+ = 14.7 · 10−7 eV.
Bottom: spatial distribution of the time-averaged energy density 〈ρE−〉 and 〈ρE+〉 on the cavity section
along its axis (ρ, z) with TM010+TE011 pump modes. Cavity dimensions: L = 1 m, R = 1 m.
Left panel: ma = 0, ω− = 5.1 · 10−7 eV. Right panel: ma = ω+ = 14.7 · 10−7 eV.

We performed numerical calculations3 [43] of the time-averaged axion energy density
〈ρE±〉 generated by two TE/TM modes in the cylindrical cavity with various dimensions R
and L. We also assumed gaγγ = 10−10 GeV−1 as a benchmark for ALPs coupling. One
also has to fix the amplitudes E0 (B0), which appears as a normalization constants in the
expressions for mode components ETM

z (BTE
z ) of appendix B. Its maximum value is limited

by a requirement that the magnetic field on the superconducting cavity walls should not
exceed the critical value ∼ 0.1 T. We note that the components ETM

ρ (BTE
ρ ) and ETM

φ (BTE
φ )

can be larger than E0 (B) for a “pancake-like” design of the cylindrical cavity with R� L.
Therefore, in numerical calculations we require typical values |~E|, | ~B| . 0.1 T for both TM
and TE modes.

3Multidimensional numerical integration in [43] is based on the package [44].
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Let us consider the production cavity with dimensions R = L = 1 m and the simplest
combination of pump modes TM010+TE011. The evaluated axion energy density for each
frequency component a± is presented in figure 1. Plots at the top in figure 1 show the time-
averaged energy density on the cylinder axis (ρ = 0) as function of both distance from the
cavity center z and axion mass ma. Top-right panel in figure 1 shows the resonance in
〈ρE+(ma ' ω+)〉 in the center of cavity. On the other hand, on the top-left panel in figure 1
one can see a significant suppression of 〈ρE−〉 in the center of cavity and relatively larger
amplitude at ma = 0. That suppression can be explained as follows. One can see that F−
in eq. (3.2) is a difference between two positive terms of the same order of magnitude, which
compensate each other. However F+ is a sum of the relevant terms. Therefore the energy
density associated with ω+ is almost two orders of magnitude larger than that for ω−.

The spatial distribution of energy density as function of radius ρ and height z is shown
at the bottom in figure 1. These plots respect an axial symmetry since the chosen cavity
modes do not depend on φ. Distributions for ω+ and ω− components of axion field were
calculated for the cases ma = ω+ and ma = 0 respectively. For both cases the axion energy
density is localized close to center of the production cavity and decreases outside the cavity.
In particular, the energy density 〈ρE+〉 near the cavity ends at z = 0.5 m drops by factor 2
with respect to a resonant value at z = 0 m.

The results of numerical calculations for other modes are shown in figures 2–4. For
these modes we consider the ALPs density 〈ρE+〉 only, because 〈ρE−〉 term is negligible. One
has the resonances at ma ' ω+ as expected. However, the intensity of the resonance may
drastically depend on the combination of modes. In particular, for certain combinations of
modes the axion production rate is suppressed by factor ∼ 102 in comparison with other
combinations. This suppression occurs if (i) q1 + q2 is even, or (ii) n1 6= n2. In fact, in
those two cases an overlap factor for two modes is zero,

∫
d3x′F±(x′) = 0 (see appendix

in ref. [45]). Therefore, for given modes the resonant amplitude (2.10) tends to zero more
rapidly far away from cavity.

4 Detection

In order to obtain some information about produced axions we have to include a second
cavity as a detector in the setup.4 There are two detection options, in first one assumes
that the detection cavity filled with the strong magnetic field (the setup similar to halo-
scope [46]). The second option is associated with the oscillating electromagnetic field inside
the detection cavity (see, e.g. recent ref. [45]). The detection cavity in our setup is filled
with the constant magnetic field ~Be(~x). In particular, we consider the setup with two
coaxial cylindrical cavities separated by a screening plate of width ∆, see figure 5, where
indices 1 and 2 refer to the production and detection regions respectively.

The detection cavity response to the external axion field is determined by eq. (1.3).
The latter one decouples into a pair of Maxwell’s equations with axion-induced current,

(~∇ · ~E) = −gaγγ ( ~B · ~∇ a) , [~∇× ~B] = ∂

∂t
~E + gaγγ

(
~B
∂

∂t
a− [ ~E × ~∇ a]

)
. (4.1)

4It is feasible to detect axions within the same cavity as it was proposed in ref. [33]. However, we leave
resonant detection of the ALPs for the given setup to future.
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Figure 2. Contour plot for the time-averaged energy density 〈ρE+〉 evaluated on the cylinder axis
as function of axion mass ma and the distance z from center of cavity (left panels) and spatial
distribution of 〈ρE+〉 on the cavity section along its axis (ρ, z) (right panels) with TM011+TE011
ω+ = 17.8 · 10−7 eV (top), TM011+TE012 ω+ = 22.6 · 10−7 eV (middle), and TM020+TE011
ω+ = 21.0 · 10−7 eV (bottom) pump modes. Cavity dimensions: L = 1 m, R = 1 m.
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Figure 3. Contour plot for the time-averaged energy density 〈ρE+〉 evaluated on the cylinder axis
as function of axion mass ma and the distance z from center of cavity (left panels) and spatial
distribution of 〈ρE+〉 on the cavity section along its axis (ρ, z) (middle panels) and (ρ, ϕ) (right
panels) with TM010+TE111 ω+ = 12.1·10−7eV (top), TM110+TE111 ω+ = 14.9·10−7 eV (bottom)
pump modes. Cavity dimensions: L = 1 m, R = 1 m.

The electric field of a given signal mode ~Esig(~x, t) inside the detection cavity obeys the
following equation

(
∂2

∂t2
+ Γ ∂

∂t
−∆

)
~Esig(~x, t) = gaγγ

(
~∇ ( ~Be(~x) · ~∇ a(~x, t))− ~Be(~x) ∂

2

∂t2
a(~x, t)

)
, (4.2)

where we introduced the damping coefficient Γ to take into account dissipation effects;
r.h.s. is associated with the ALPs and magnetic field ~Be(~x) inside the cavity.

Next, to simplify our considerations we take uniform magnetic field ~Be directed along
z axis inside the cavity. We use a mode expansion for the signal electric field inside the
detection cavity,

~Esig(~x, t) =
∑
m

~Em(~x)Esig
m (t) , (4.3)

where ~Em(~x) are cavity eigenmodes with fixed normalization,

∆ ~Em(~x) + ω2
m
~Em(~x) = 0 ,

∫
2 cav

d3x (~Em(~x) · ~En(~x)) = V2 · δmn , (4.4)

satisfying necessary boundary conditions. We note that index m accounts for n, p, q wind-
ing numbers of the cavity. The integration in (4.4) is performed over the volume of the
detection cavity V2. Since the signal modes are orthogonal, one obtains the following
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Figure 4. Contour plot for the time-averaged energy density 〈ρE+〉 evaluated on the cylinder axis
as function of axion mass ma and the distance z from center of cavity (left panels) and spatial
distribution of the time-averaged energy density 〈ρE+〉 on the cavity section along its axis (ρ, z)
(right panels) with TM010+TE011 pump modes. Cavity dimensions: L = 0.25 m, R = 2 m,
ω+ = 27.8 · 10−7 eV (top), and L = 4 m, R = 0.5 m, ω+ = 25.0 · 10−7 eV (bottom).

Figure 5. A scheme for the setup considered. The detection cavity (R2) is separated from the
production cavity (R1) by a screening plate of width ∆.
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equation by substituting (4.3) into (4.2) and multiplying each cavity mode by ~Em(~x),(
∂2

∂t2
+ Γ ∂

∂t
+ ω2

m

)
Esig
m (t)

= −gaγγ
∫

2 cav

d3x

V2

[
(~Em(~x) · ~Be) ä(~x, t)−

(
~Em(~x) ·

(
~Be~∇

)
~∇a(~x, t)

)]
, (4.5)

where the r.h.s. is an axion-induced driven force. The second term in the r.h.s. of (4.5) is
suppressed compared to the first one if the produced axions are non-relativistic. However,
in the general case these two terms seem to be of the same order. Since the magnetic
field in the detection cavity ~Be is directed along z axis, the scalar product (~Em(~x) · ~Be)
does not vanish if only Ezm does not depend on z, or the winding number for the detection
mode q = 0. Moreover, it is more convenient to use the detection mode TM010. For
that mode the only nonzero component is Ezm. The corresponding electric field, including
normalization factor, reads EzTM010(~x) = 1.92 J0

(x01
a ρ
)
. Thus, (4.5) simplifies,(

∂2

∂t2
+ Γ ∂

∂t
+ ω2

m

)
Esig
m (t) = −gaγγBz

e

∫
2 cav

d3x

V2
Ezm(~x)

(
ä(~x, t)− ∂2

za(~x, t)
)
, (4.6)

If the r.h.s. of eq. (4.6) oscillates as e−iωt, the complex solution of eq. (4.6) reads the r.h.s.
multiplied to (−ω2 − iωΓ + ω2

m)−1. This is exactly the case of aforementioned produced
axion field determined by eqs. (2.3) and (2.4). For ma < ω± the signal electric field
Esig
m (t) reads

Esig
m (t) =

−g2
aγγB

z
e

ω2
± − ω2

m + iω±Γ

∫
2 cav

d3x

V2
Ezm(~x)

∫
1 cav

! d3x′
F±(x′)

4π
(
ω2
± + ∂2

z

) e−iω±t+ik±|x−x′|

|x− x′|
.

(4.7)
The signal field Esig

m (t) has a narrow peak at ωm ' ω±. The frequency ωm of cavity
detection eigenmode can be adjusted to a value ωm ' ω± by fixing the radius R2 of the
detection cavity. The damping coefficient Γ can be expressed via the quality factor Q of
the detection cavity, Γ = ωm/Q. Thus, averaged squared amplitude for electric field of the
signal mode reads

〈|Esig
m (t)|2〉 ≡ 1/2

(
E±cm

)2 + 1/2
(
E±sm

)2
, (4.8)

where

E±c(s)
m =

g2
aγγE

2
0QB

z
c

4π · V1 cav
∆ · κ±c(s)m , κ±c(s)m =

(
α±c(s)
m + β

±c(s)
m

ω2
±L

2
1

)
, (4.9)

and ∆ is a distance between borders of two cavities (see figure 3), and α
±c(s)
m and β

±c(s)
m

are dimensionless geometrical form-factors,

α±c(s)
m =

∫
2 cav

d3x

V2
Ezm(~x)

∫
1 cav

d3x′

V1

|F±(~x ′)|
E2

0
· ∆
|~x− ~x′|

{
cos (k±|~x− ~x′|)
sin (k±|~x− ~x′|)

}
, (4.10)

β±c(s)
m =

∫
2 cav

d3x

V2
Ezm(~x)

∫
1 cav

d3x′

V1

∂2
z′ |F±(~x ′)|

E2
0

· ∆ · L2
1

|~x− ~x′|

{
cos (k±|~x− ~x′|)
sin (k±|~x− ~x′|)

}
(4.11)

−
∫

2 cav

d3x

V2
Ezm(~x)

∫
1 S

ρ′dρ′dϕ′

V1

∂z′ |F±(~x′)|
E2

0
· ∆ · L2

1
|~x− ~x′|

{
cos (k±|~x− ~x′|)
sin (k±|~x− ~x′|)

} ∣∣∣∣z
′=L

z′=0
.
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In deriving the expression (4.11) for simplicity of numerical calculations we transferred the
derivative over z to z′. The last term of eq. (4.11) appeared as the result of integrating by
parts, see appendix C for details.

We estimate the number of signal photons for a given mode in receiving cavity as
follows [1],

Ns '
1

2ω

∫
2 cav

d3x 〈| ~Esig(~x, t)|2〉 ' V2
2ω 〈|E

sig
m (t)|2〉 . (4.12)

Signal-to-noise ratio has the following form [33],

SNR ' Ns

Nth

1
2L2Q

√
t

B
, (4.13)

where t is a time of measurement, B is a bandwidth of the signal, L2 is a receiving cavity
length, Nth = T/ω is a number of thermal photons at T � ω. One has the following limit
on coupling,

gaγγ '

 128π2TL2∆2

E4
0(Bz

c )2Q((κc+m )2 + (κs+m )2)V 2
1 V2

√
B

t
SNR

1/4

. (4.14)

However, the volume of detecting cavity V2 = πR2
2 · L2 is not an independent variable for

fixed detection mode. The resonant condition ωTM010 = ω± for detection with TM010
mode yields R2 = x01/ω±. Thus, we have

gaγγ ' 2.52

 T ·∆2 · ω2
±

E4
0(Bz

c )2Q((κc+m )2 + (κs+m )2)V 2
1

√
B

t
SNR

1/4

. (4.15)

In particular, eq. (4.15) can be expressed as

gaγγ ' 2.7 · 10−12 GeV−1
(

T

1.5K

)1/4 ( ∆
0.2m

)1/2 ( ω±
1.5 · 10−6 eV

)1/2

×
(
V1

1m3

)−1/2 ( Q

105

)−1/4 ((
κ+
c

)2
+
(
κ+
s

)2
)−1/4 ( E0

0.1T

)−1

×
(
Bz
e

10T

)−1/2 ( t

106 sec

)−1/8 ( B

1Hz

)1/8 (SNR
5

)1/4
. (4.16)

The constraints (4.16) at the parametric plane (gaγγ ,ma) are shown in figure 6 for different
sets of pump modes. The magnitudes of the external parameters, T, ∆, Q, E0, B

z
e , t, B

and SNR correspond to their typical values in brackets. The resonant constraints on gaγγ
for larger number of different pump mode combinations and for different ratio R1/L1 are
shown in table 1.

Let us discuss the parametric dependence in eq. (4.16). First, these bounds are sen-
sitive to the magnitude of the field E0. In particular, factor 0.1 in the amplitude implies
suppression of the bound (4.16) by factor 10. Second, the dependence on the linear sizes of
the setup can be seen from eq. (4.14). We note that dimensionless form-factors κ±c(s) feebly
depend on V1 and V2. Therefore, by increasing the linear sizes of the setup by factor of 2
one can achieve the improved limit on gaγγ by factor 23/2 ' 2.8.
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Cavities parameters
κc gaγγ ,GeV−1

R1,m L1,m Prod. modes ω+, eV R2,m

1 1

TM010+TE011 1.47 · 10−6 0.33 9.71 · 10−3 1.55 · 10−11

TM011+TE012 2.26 · 10−6 0.21 4.72 · 10−3 2.75 · 10−11

TM012+TE013 3.38 · 10−6 0.14 4.07 · 10−3 3.62 · 10−11

TM020+TE011 2.10 · 10−6 0.23 5.45 · 10−3 2.46 · 10−11

TM011+TE011 1.78 · 10−6 0.27 6.60 · 10−4 6.53 · 10−11

TM021+TE011 2.26 · 10−6 0.21 5.87 · 10−4 7.79 · 10−11

TM021+TE021 2.81 · 10−6 0.17 7.42 · 10−4 7.72 · 10−11

TM013+TE014 4.57 · 10−6 0.11 3.89 · 10−3 4.30 · 10−11

TM013+TE015 5.18 · 10−6 0.09 7.88 · 10−4 1.02 · 10−10

TM110+TE111 1.49 · 10−6 0.32 2.85 · 10−2 2.88 · 10−11

2 0.25

TM010+TE011 2.78 · 10−6 0.17 3.61 · 10−3 3.49 · 10−11

TM011+TE012 7.57 · 10−6 0.06 3.01 · 10−3 6.29 · 10−11

TM012+TE013 1.26 · 10−5 0.04 3.00 · 10−3 8.14 · 10−11

TM020+TE011 3.09 · 10−6 0.16 2.16 · 10−3 4.76 · 10−11

TM011+TE011 5.07 · 10−6 0.09 2.60 · 10−6 1.75 · 10−9

TM021+TE011 5.12 · 10−6 0.09 4.67 · 10−6 1.31 · 10−9

TM021+TE021 5.18 · 10−6 0.09 7.20 · 10−6 1.07 · 10−9

TM013+TE014 1.76 · 10−5 0.03 2.99 · 10−3 9.63 · 10−11

TM013+TE015 2.01 · 10−5 0.02 7.01 · 10−5 6.72 · 10−10

TM110+TE111 2.90 · 10−6 0.17 1.65 · 10−3 5.26 · 10−11

0.5 4

TM010+TE011 2.50 · 10−6 0.19 4.53 · 10−3 2.95 · 10−11

TM011+TE012 2.54 · 10−6 0.19 3.66 · 10−3 3.31 · 10−11

TM012+TE013 2.62 · 10−6 0.18 3.35 · 10−3 3.51 · 10−11

TM020+TE011 3.75 · 10−6 0.13 2.52 · 10−3 4.84 · 10−11

TM011+TE011 2.52 · 10−6 0.19 1.18 · 10−3 5.79 · 10−11

TM021+TE011 3.75 · 10−6 0.13 6.69 · 10−4 9.41 · 10−11

TM021+TE021 5.02 · 10−6 0.10 7.47 · 10−4 1.03 · 10−10

TM013+TE014 2.73 · 10−6 0.18 3.23 · 10−3 3.65 · 10−11

TM013+TE015 2.79 · 10−6 0.17 1.91 · 10−3 4.81 · 10−11

TM110+TE111 2.29 · 10−6 0.21 1.47 · 10−3 4.96 · 10−11

Table 1. Resonant sensitivities for gaγγ for different combinations of pump modes. R2 is the radius
of detecting cavity. gaγγ is the detectable lower bound.
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Figure 6. Projected sensitivity of the proposed setup to ALP mass ma and gaγγ parameter
for different sets of pump modes in the production cavity. The black line shows the solar axion
constraint from CAST [6].

5 Discussion

In the present paper we have calculated numerically the time-averaged axion energy density
〈ρE〉 generated by two electromagnetic modes in the superconducting cylindrical cavity. In
particular, we have studied the spatial distribution of 〈ρE〉 for various axion masses and for
different types of cylindrical cavity. We have shown numerically that there is a parametric
resonance if axion produced in nonrelativistic regime for the frequency component ω+ =
|ω1 + ω2| and for certain combination of pump modes. On the contrary, for the frequency
component ω− = |ω1 − ω2| there is no significant resonance in that regime.

Considering different combinations of pump modes in the production cavity we have
shown that they may have different efficiency for axion production. In particular, the
highest amplitude for the produced axion field came from TEn1p1q1+TMn2p2q2 modes
with n1 = n2 and even q1 + q2. Concerning different radius-to-length ratio R/L for the
cavity, we have shown that for a “pancake-like” cavity, L/R . 1, the maximum ALP
energy density outside the cavity is produced along the cylinder axis z. Otherwise, for
“prolonged” design of the cavity, L/R � 1, the maximum energy density outside the
cylinder is produced near the side surface (this case was studied in ref. [35]).

We also discuss the detection of ALPs in the additional separated cavity, which is filled
with the strong magnetic field. We estimated the projected sensitivity of the proposed setup
on the ALPs parameter space (ma, gaγγ). We have shown that the best constraint came
from the mode combination TM010+TE011 in the production cavity.
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In addition, we have calculated the sensitivity curves for high order pump modes of
the production cavity. The advantage of generating high order pump modes is that one can
probe the region with higher masses of ALPs. However the peak sensitivity to the ALPs
coupling is decreased in that case. Although the resonances at figure 6 are quite narrow,
we can test larger area of parameters by exciting different set of high order pump modes.
Nevertheless, for fixed cavity geometry there are still spaces between resonant peaks at
the exclusion plot. One can modify eigenmodes by adjusting the geometry of given cavity.
Therefore, the relevant unconstrained area can be probed.

Note that our setup can be easily generalized to other designs of the detection cavity.
In particular, the analysis can be easily applied the toroidal detection cavity [35]. By
exciting high order pump modes one can shift the resonant bounds of [35] to the area of
higher ALP masses. Another interesting task is to consider parametric resonances for the
single cavity which produces and detects ALPs [33]. In addition, it is instructive to probe
hidden photon [47] in SRF cavity. We leave these tasks for further work.
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A Retarded Green function

In this appendix we show some details of deriving eqs. (2.3), (2.4). The Klein-Gordon’s
retarded Green function can be written as follows [48],

Gret(~x, ~x′, t, t′) = 1
4π

(
δ(t− t′ −R)

R
− θ(t− t′ −R)ma

u
J1(mau)

)
, (A.1)

where u ≡
√

(t− t′)2 −R2 and R ≡ |~x − ~x′|. The first term in eq. (A.1) describes the
retarded Green function of the massless scalar field, so that the mass dependence is only
in the second term. In eq. (2.1) the retarded Green function should be integrated over t′

with the electromagnetic invariant ~E(x′, t′) · ~B(x′, t′). For considered modes t′ dependence
decouples as e−iωt′ . For purpose of integration of the second term of eq. (A.1) the textbook
integral [49] can be used,∫ ∞

R
dt̃

eiωt̃√
t̃2 −R2

J1(ma

√
t̃2 −R2) = 1

maR

(
eiRω − eiR

√
ω2−m2

a

)
. (A.2)

Integrating the Green function (A.1), one obtains∫ t−R

−∞
dt′Gret(~x, ~x′, t, t′) e−iωt′ = 1

4πR e−iωt+iRk , (A.3)

where k =
√
ω2 −m2

a. If ma < ω, ik should be replaced by κ =
√
m2
a − ω2. As a result,

one immediately obtains eqs. (2.3), (2.4).
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B Exact form of T Mnpq and T Enpq modes

TMnpq and TEnpq modes are expressed in terms of the electric and magnetic fields [42] as

ETMnpq
z = E0Jn

(
xnp
R
ρ

){ sinnϕ
cosnϕ

}
cos

(
qπ

L
z

)
, (B.1)

ETMnpq
ρ = −E0

k2
npq − (qπ/L)2 ·

qπ

L
· xnp
R
· J ′n

(
xnp
R
ρ

){ sinnϕ
cosnϕ

}
sin
(
qπ

L
z

)
, (B.2)

ETMnpq
ϕ = −E0

k2
npq − (qπ/L)2 ·

1
ρ
· nqπ
L
· Jn

(
xnp
R
ρ

){ cosnϕ
− sinnϕ

}
sin
(
qπ

L
z

)
, (B.3)

BTMnpq
z = 0, (B.4)

BTMnpq
ρ =

−iωTM
npqE0

k2
npq − (qπ/L)2 ·

n

ρ
· Jn

(
xnp
R
ρ

){ cosnϕ
− sinnϕ

}
cos

(
qπ

L
z

)
, (B.5)

BTMnpq
ϕ =

iωTM
npqE0

k2
npq − (qπ/L)2 ·

xnp
R
· J ′n

(
xnp
R
ρ

){ sinnϕ
cosnϕ

}
cos

(
qπ

L
z

)
; (B.6)

BTEnpq
z = B0Jn

(
x′np
R
ρ

){ sinnϕ
cosnϕ

}
sin
(
qπ

L
z

)
, (B.7)

BTEnpq
ρ = B0

k2
npq − (qπ/L)2 ·

qπ

L
·
x′np
R
· J ′n

(
x′np
R
ρ

){
sinnϕ
cosnϕ

}
cos

(
qπ

L
z

)
, (B.8)

BTEnpq
ϕ = B0

k2
npq − (qπ/L)2 ·

1
ρ
· nqπ
L
· Jn

(
x′np
R
ρ

){
cosnϕ
− sinnϕ

}
cos

(
qπ

L
z

)
, (B.9)

ETEnpq
z = 0, (B.10)

ETEnpq
ρ =

iωTE
npqB0

k2
npq − (qπ/L)2 ·

n

ρ
· Jn

(
x′np
R
ρ

){
cosnϕ
− sinnϕ

}
sin
(
qπ

L
z

)
, (B.11)

ETEnpq
ϕ =

−iωTE
npqB0

k2
npq − (qπ/L)2 ·

x′np
R
· J ′n

(
x′np
R
ρ

){
sinnϕ
cosnϕ

}
sin
(
qπ

L
z

)
. (B.12)

C The gradient of axion field

For the case ma < ω± let us calculate the axion field’s gradient (calculation for ma > ω±
is similar). Using eq. (2.3) and the relation ~∇x f(|~x− ~x′|) = −~∇x′ f(|~x− ~x′|) one finds

~∇a±(~x, t) = −gaγγ <e
∫
Vcav

d3x′
F±(~x′)

4π

{
−~∇x′

e−iω±t+i|~x−~x′|k±
|~x− ~x′|

}
. (C.1)

Next, integrating this equation by parts and using Stokes’ theorem one gets

~∇a±(~x, t) = −gaγγ <e
∫
Vcav

d3x′
~∇x′F±(~x′)
4π|~x− ~x′| e

−iω±t+i|~x−~x′|k±

+gaγγ <e
∮
∂Vcav

~n dσ′
F±(~x′)

4π · e−iω±t+i|~x−~x′|k±
|~x− ~x′|

. (C.2)
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Direct substitution yields the condition F±(~x′) = 0 on the cavity walls. Therefore, the
second term in the last formula is zero and we get

~∇a±(~x, t) = −gaγγ <e
∫
Vcav

d3x′
~∇x′F±(~x′)
4π|~x− ~x′| e

−iω±t+i|~x−~x′|k± . (C.3)

Let us derive the expression ~Em · ~∇ ( ~Be(~x) · ~∇ a(~x, t)) given the conditions ~Be = Bz
e ·~ez,

Bz
e = const, and ~Em(~x) = Ezm(~x) · ~ez. Integrating by parts and taking into account that

∂z′F±(~x′) 6= 0 on the cavity wall we arrive at the formula

~Em · ~∇( ~Be · ~∇a±(~x, t))

= −gaγγBz
eEzm(~x) <e

∫
Vcav

d3x′
∂2
z′F±(~x′)

4π|~x− ~x′|e
−iω±t+i|~x−~x′|k±

+gaγγBz
eEmz (~x) <e

∫
∂Vcav

ρ′dρ′dϕ′
∂z′F±(~x′)
4π|~x− ~x′|e

−iω±t+i|~x−~x′|k±
∣∣∣∣z
′=L

z′=0
. (C.4)

Taking out dimensionful values, one comes to (4.11).

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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