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1 Introduction

By construction, the duality-covariant reformulations [1–7] (see [8] for a review) of D =
11 [9] and type II [10–12] supergravities are particularly helpful to investigate the imprint
that these higher-dimensional theories instill on their lower-dimensional counterparts. In
particular, Exceptional Field Theory (ExFT) [3–5] has been recently shown to provide a
powerful framework to compute the spectrum of Kaluza-Klein (KK) perturbations above
a certain class of anti-de Sitter (AdS) backgrounds of string and M-theory [13, 14]. The
relevant class of solutions involves the product, possibly warped, of AdS and a topologically-
spherical manifold equipped with a possibly inhomogeneous metric, supported in general
by fluxes. These solutions typically lie beyond the range of applicability of coset-space
techniques [15–18] for the calculation of KK spectra. Direct calculation methods [19] for
these solutions become hard to the point of essentially unsuitable either. Using these novel
ExFT techniques, the complete KK spectrum of some supersymmetric AdS solutions of
the higher-dimensional supergravities in the relevant class has now been computed [13, 14,
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Supermultiplet (s0,E0) s= 2 s= 3
2 s= 3

2 s= 1 s= 1 s= 1
2 s= 1

2 s= 0 s= 0
Massless graviton (MGRAV) ( 3

2 ,
5
2 ) 3 5

2 − − − − − − −
Graviton (GRAV) ( 3

2 ,E0) E0 + 1
2 E0 +1 E0 E0 + 1

2 − − − − −
Gravitino (GINO) (1,E0) − − E0 + 1

2 E0 +1 E0 E0 + 1
2 − − −

Massless vector (MVEC) ( 1
2 ,

3
2 ) − − − − 2 3

2 − − −
Vector (VEC) ( 1

2 ,E0) − − − − E0 + 1
2 E0 +1 E0 E0 + 1

2 −
Scalar (CHIRAL) (0,E0) − − − − − − E0 + 1

2 E0 +1 E0

Table 1. OSp(4|1) supermultiplets that appear in the N = 1 KK spectra. For each type of
supermultiplet, the spin and energy (s0, E0) of the superconformal primary is given, and the energies
of the constituent states, all of them with spins between 0 and 2, are listed.

20, 21]. The KK scalar [22, 23] and vector [20] spectrum of some non-supersymmetric AdS
solutions in the same class has also been determined.

Specifically, the ExFT methods of [13, 14] apply to D = 10, 11 solutions with lower-
dimensional AdS factors, which consistently uplift on spheres from AdS vacua of gauged
supergravities in lower dimensions with certain gaugings. Under these conditions, infinite-
dimensional mass matrices for each species of fields (scalars, vectors, etc.) on AdS exist
which are block-diagonal KK level by KK level. The consistent truncation requirement is
critical for this block-diagonal structure, as the latter is absent for AdS solutions which do
not uplift from a maximally supersymmetric lower-dimensional gauged supergravity [18,
24]. The infinite-dimensional mass matrices for the KK bosonic perturbations above the
relevant class of AdS solutions have been determined from ExFT in [13, 14]. See also [25]
for an early derivation of a covariant mass matrix for the KK gravitons, and [20] for
an alternative rederivation of the KK vector mass matrix from ExFT. In this paper, we
complete this programme by providing the mass matrices for the fermionic, gravitino and
spin-1/2, KK mass matrices.

For definiteness, we will focus on E7(7) ExFT [5, 6], and extract the KK fermion mass
matrices from the fermionic completion of this theory [26]. We thus focus on fermionic KK
spectra above AdS4 solutions, but our methods are readily extensible to other instances of
ExFT with different duality groups. Also for concreteness, we will restrict our attention
to the AdS4 solutions of D = 11 [9] and massive type IIA supergravity [11] that uplift
consistently on S7 [27] and S6 [28, 29] from AdS vacua of D = 4 N = 8 supergravity [30]
with concrete gaugings. We take these to be, respectively, the SO(8) gauging [31] and the
dyonic, in the sense of [32–34], ISO(7) gauging [35]. The latest classification results for
this type of AdS4 backgrounds of M-theory and type IIA string theory can be found in the
recent references [36, 37]. Section 2 below presents the KK fermionic mass matrices for
this class of AdS4 solutions.

We have then used our mass matrices to compute the KK gravitino and spin-1/2
spectra above concrete AdS4 solutions in this class: those that preserve at least SU(3)
internal symmetry. Prior to the general scans of [36, 37], these particular solutions were
classified in [38] and [35] for the SO(8) and the ISO(7) gaugings, respectively. Their
corresponding D = 11 [39–45] and type IIA uplifts [28, 29, 46] are all known. For some
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of these AdS4 solutions, the complete KK spectrum is also known [14, 20, 47–50], and we
reproduce the corresponding fermionic sectors. More interestingly, there are three N = 1
solutions in this class whose KK spectrum was only known partially [20, 25, 35, 51–53]
until now. One of these AdS4 solutions has internal symmetry G2 in the D = 4 N = 8
SO(8) [38] and D = 11 supergravities [41]. The other two are solutions of D = 4 N = 8
ISO(7) supergravity and type IIA. The first one of these also has residual symmetry G2 in
D = 4 [52] and type IIA [29, 54]. The second one has SU(3) symmetry in D = 4 [35, 55]
and type IIA [46]. Combining our new fermionic spectra and previous partial results on
the bosonic spectra [20, 25, 35, 51–53], we are able to give the complete supersymmetric
spectra for all these three N = 1 solutions. The details can be found in sections 3 and 4.

Interestingly, a pattern emerges. The KK spectra for these three N = 1 AdS4 solutions
are organised in representations of OSp(4|1) × G, with G = G2 or G = SU(3). The
supermultiplets of OSp(4|1) [56] have been reviewed for convenience in table 1 above, and
G, being of rank 2, has its representations labelled by two non-negative integer Dynkin
labels [p, q]. At Kaluza-Klein level n = 0, 1, 2, . . ., the dimension E0 of a given OSp(4|1)
supermultiplet with superconformal primary spin s0, arising in the [p, q] representation of
G, is found to be given by

E0 = 1 +
√

6− s0(s0 + 1) + αn(n+ d− 1)− β C2(p, q) . (1.1)

Here, n(n + d − 1) is the eigenvalue of the scalar Laplacian on the Sd sphere, with d = 7
in M-theory and d = 6 in type IIA; α is a positive constant that takes on the value α = 5

8
in M-theory and α = 5

6 in type IIA for the specific N = 1 solutions with G = G2 or
G = SU(3) symmetry; β is a positive constant that depends on the symmetry preserved
by the solution, β = 5

4 for G = G2 and β = 5
3 for G = SU(3), regardless of whether it lives

in D = 11 or in type IIA; and, finally, C2(p, q) is the eigenvalue of the quadratic Casimir
operator of G in the [p, q] representation.

Although we mainly focus on complete N = 1 spectra, in section 5 we turn to give the
fermionic spectra of the non-supersymmetric solutions in the same class. Of course, these
N = 0 solutions are of limited significance, since they are either manifestly unstable at the
perturbative level [51, 57] or expected to be so in the full string theory [58]. These are
either D = 11 or type IIA solutions preserving G = SO(7) [11, 43, 44, 46, 57], G = SO(6) ∼
SU(4) [45, 46, 57], or G = G2 [46, 52, 59]. A formula (see (5.1)), similar to (1.1) but now
for the individual squared masses, exists in terms of the eigenvalues of the scalar Laplacian
on Sd and the quadratic Casimir operator of G. For the non-supersymmetric type IIA
solution with G2 invariance [46, 52, 59], our fermionic results combined with the previously
known bosonic KK sector [20, 23, 52, 53] allow us to give its complete KK spectrum. For
the other non-supersymmetric solutions, the only sector of the KK spectrum that remains
to be explicitly computed after our analysis is the scalar sector. However, the pattern
displayed by the generic mass formula (5.1) is sufficiently strong to allow us to confidently
conjecture the form of the KK scalar spectra for these solutions.

Section 6 concludes with further discussion. Our conventions are summarised in ap-
pendix A, where some explicit results for the eigenvalues of our fermionic mass matrices
on selected solutions are also included.
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2 KK fermion mass matrices from ExFT

We will now determine the mass matrices for the KK fermion perturbations above the
AdS4 class of solutions of string and M-theory that uplift from four-dimensional gauged
supergravity. We will extract these mass matrices from the fermionic completion [26] of
E7(7) ExFT [5, 6], by setting the ExFT bosonic fields to the Scherk-Schwarz configuration
that gives rise to D = 4 N = 8 supergravity upon consistent truncation, while retaining
the full tower of KK fermion perturbations.

2.1 Generalised Scherk-Schwarz-Kaluza-Klein reduction

The fermionic content of ExFT includes a gravitino ψiµ and a spin-1/2 fermion χijk = χ[ijk],
neutral under local E7(7) but transforming in the 8 and the 56 of global SU(8), respectively.
The bosonic sector of ExFT contains external, eµα, and internal, VM

A =
(
VM

ij ,VM ij

)
,

vielbeine which give rise to metrics gµν = ηαβ eµ
αeν

β and MMN = 2 V(M | ijV |N)
ij . The

indices µ = 0, . . . , 3 and M = 1, . . . , 56 are local fundamental indices of SO(1, 3) and E7(7),
while A =

(
ij , ij

)
and i are global indices in the 28 + 28 and the fundamental of SU(8),

respectively, so that VM ij =
(
VM

ij
)∗ and VM

ij = VM
[ij]. The bosonic sector of E7(7)

ExFT further includes vectors and two-forms which will not play a role in the present
analysis. All these fields depend on both the external and internal coordinates (xµ, YM ),
and are subject to the appropriate section constraints.

Our starting point is the fermionic action of ExFT [26]. The terms that contribute to
the kinetic, mass, and quadratic interaction terms for the D = 4 KK fermions are, in our
conventions [26]

LExFT fermi = −iεµνρσψ̄iµγνDρψσi −
1
6 e χ̄

ijkγµDµχijk

−4i εµνρσ
(
V−1)

ij
M ψ̄iµγν∇M

(
γρψ

j
σ

)
− 4
√

2 e
(
V−1)ij M ψ̄kµ∇M (γµχijk)

+1
9 e εijklmnpq

(
V−1)ij M χ̄klm∇Mχnpq + c.c. (2.1)

Here, e ≡
√
|det gµν |, γα are the SO(1, 3) Dirac matrices subject to the Clifford algebra

{γα, γβ} = 2ηαβ , and γµ ≡ eµ
α γα. The external covariant derivatives featuring in the

kinetic terms (the first two terms in (2.1)) take on the schematic form Dµ ≡ Dµ + 1
4ω

α
µ β +

1
2Q

i
µ j , in terms of SO(1,3) and SU(8) connections, ω α

µ β and Q i
µ j . The portion Dµ ≡

∂µ−LAµ , covariant under generalised diffeomorphisms generated by the ExFT gauge fields,
will not be significant. The second and third lines in (2.1) contain the internal covariant
derivative ∇M . On an SU(8) vector ξi, with suppressed SO(1,3) spinor indices and weight
λ under generalised diffeomorphisms, this derivative acts as [26]

∇Mξi = ∂Mξi −
1
4ωM

αβγαβ ξi + 1
2QM i

jξj −
2
3 λΓKMKξi , (2.2)

in terms of internal SO(1, 3), SU(8) and Christoffel connections ωMαβ ≡ eµ[α∂Meµ
β], QM i

j

and ΓMN
P . There are other terms in the quadratic fermionic action [26] that we have not

retained in (2.1), since they do not contribute to the mass matrices. For example, there is a
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coupling of the gravitino and the spin-1/2 fermion to the spacetime Maurer-Cartan form of
the scalars. For similar reasons, a contribution to the SO(1, 3) connection ωMαβ containing
MMN together with the ExFT gauge field strengths has been disregarded. See [26] for
full details.

We would now like to fix the external and internal vielbeine to the configurations that
give rise to D = 4 N = 8 gauged supergravity upon consistent truncation. We therefore
write for them the generalised Scherk-Schwarz expressions [7, 60–62]

eµ
α(x, Y ) = ρ(Y )−1 eµ

α(x) , VM
A(x, Y ) = UM

M (Y )VMA(x) , (2.3)

in terms of the D = 4 vielbein eµα(x) and E7(7)/SU(8) coset representative VMA(x). The
Y -dependent function ρ and twist matrix UMM (Y ) here obey the consistency conditions [7,
61–63]

∂N (U−1)MN − 3ρ−1(U−1)MN∂N ρ = 0 ,

7ρ−1
(
(U−1)MP (U−1)NQ ∂P UQK

)
912

+ FMN
K = XMN

K , (2.4)

whereXMN
P ≡ ΘM

α (tα)NP is the usual contraction of theD = 4N = 8 embedding tensor
and the E7(7) generators, the subindex 912 denotes projection to that representation of
E7(7), and FMN

P is a deformation [6, 63] of E7(7) ExFT [5]. The latter either vanishes or
codifies the Romans mass for D = 11 and type IIA configurations, respectively. In (2.3)
and elsewhere, M = 1, . . . , 56 is a flat, fundamental E7(7) index.

We would also like to keep the full tower of KK gravitini and spin-1/2 fermion pertur-
bations over every AdS vacuum of the D = 4 N = 8 supergravities under consideration.
Identifying, in our conventions, the 8 of SU(8) with the 8s of SO(8), the D = 4 N = 8 grav-
itino ψiµ and spin-1/2 fermion χijk respectively lie in the 8s ≡ [0, 0, 0, 1] and 56s ≡ [1, 0, 1, 0]
of SO(8) for AdS vacua of the SO(8) gauging (or branchings thereof for vacua with reduced
symmetry G ⊂ SO(8)), and in the 8 ≡ [0, 0, 1] and 48 + 8 ≡ [1, 0, 1] + [0, 0, 1] of SO(7)
(or branchings thereof) for vacua of the ISO(7) gauging. These D = 4 N = 8 states
are identified with the KK level n = 0 states. The n ≥ 1 states up the KK tower lie in
the infinite-dimensional, reducible representation obtained by tensoring the representations
above with the symmetric-traceless representations [13, 20, 47]

⊕∞n=0 [n, 0, 0, 0] of SO(8) or ⊕∞n=0 [n, 0, 0] of SO(7) , (2.5)

at least, for the spin-1/2 fermions, before super-Higgsing takes place: see the discussion
around (2.30) and (2.31) below. It is thus convenient to denote the KK gravitino and
spin-1/2 fermions with a double set of indices carrying this tensor product structure, as
ψiΛµ (x) and χijkΛ(x).

For the ExFT fermions we thus write

ψiµ (x, Y ) = ρ(Y )−
1
2 ψiΛµ (x)YΛ(Y ) , χijk (x, Y ) = ρ(Y )

1
2 χijkΛ(x)YΛ(Y ) , (2.6)

building on [13, 62]. Here, YΛ denotes the infinite tower of scalar spherical harmonics on
the round S7 or S6 spheres. These lie in the representations (2.5) of SO(8) or SO(7). Of
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the YΛ we will only need to note that they are subject to the relation [13, 14]

ρ−1 (U−1)NM∂M YΛ = −(TN )Λ
Σ YΣ , (2.7)

where the constant, real matrices (TN )Λ
Σ are the generators of SO(8) or SO(7) in the

infinite-dimensional, reducible representations (2.5), normalised as [13, 14]

[TM , TN ] = −XMN
P TP . (2.8)

These are of course traceless, (TN )Λ
Λ = 0. Indices Λ, Σ are raised and lowered with δΣΛ,

and the generators with same-level indices are antisymmetric,

(TM )ΛΣ ≡ (TM )Λ
Ξ δΞΣ = −(TM )ΣΛ , (TM )ΛΣ ≡ δΛΞ(TM )Ξ

Σ = −(TM )ΣΛ . (2.9)

At KK level n = 0, Y0 = 1 and (2.6) reduces to the expressions given in [62] for the
consistent truncation of the ExFT fermions down to their D = 4 N = 8 counterparts. For
higher KK levels n ≥ 1, (2.6) is a straightforward extension to the fermion sector of the
expressions given in [13, 14] for the embedding of the bosonic KK modes into the ExFT
bosonic fields.

Finally, we still need to give expressions for the ExFT connections in terms of D = 4
quantities. With the ExFT scalars fixed via the rightmost equation in (2.3) to their N = 8
four-dimensional counterparts (and the latter eventually frozen to their vacuum expectation
values at an AdS critical point of the N = 8 scalar potential), the ExFT connections simply
take on their expressions for consistent truncation configurations [62]. In particular, the
internal SO(1, 3) connection ωMαβ and the relevant components, Qikkj and Q[ij

k
l], of the

flattened SU(8) connection Qijkl ≡
(
V−1)ij M QM k

l are set, in our conventions, to [62]

ωM
αβ(x, Y ) = 0 , Qikkj = −1

4 ρ(Y )Aij1 (x) , Q[ij
k
l] = − 1

12 ρ(Y )A2 k
ijl(x) . (2.10)

Here, Aij1 and A2 k
ijl are the fermion shifts of N = 8 gauged supergravity. Recall that

these arise as contractions [30]

Aij1 = 4
21 T

ikjl
kl , A2h

ijk = 2Tmhmijk , (2.11)

of the D = 4 N = 8 T -tensor [30]

TAB
C =

(
V−1

)
A

M
(
V−1

)
B

N XMN
P VPC . (2.12)

More specifically, Aij1 and A2 k
ijl are the 36 and 420 components of the T -tensor (2.12),

so that
Aij1 = A

(ij)
1 , A2h

ijk = A2h
[ijk] , A2k

ijk = 0 . (2.13)

These are related to the 36 and 420 components A1ij , A2
h
ijk of (2.12) by complex con-

jugation: (A1ij)∗ = Aij1 , (A2
h
ijk)∗ = A2h

ijk. The N = 8 fermion shift A1ij serves also
as the gravitino mass matrix, while the N = 8 spin-1/2 fermion mass matrix A3 ijk,lmn is
symmetric,

A3 ijk,lmn = A3 lmn,ijk , (2.14)
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and related to A2h
ijk via1

A3 ijk,lmn =
√

2
108 εijkpq[rlmA2n]

pqr . (2.16)

Armed with all these definitions, our task now is to obtain from (2.1) the D = 4
quadratic action for the KK fermion pertubations ψiΛ(x) and χijkΛ(x). The calculation
follows closely that described in [62] to obtain the supersymmetry variations of the D = 4
N = 8 fermions from ExFT. One should now take into account the dependence (2.6) of the
ExFT fermions on the spherical harmonics YΛ. On top of the N = 8 contributions [62],
these amount to new terms in the generators (TN )Λ

Σ. As will be shown in sections 2.2
and 2.3, the end result is

LKK fermi = −iεµνρσψ̄iΛµ γν DρψσiΛ −
1
6 e χ̄

ijkΛ γµDµχijkΛ

+eA1 iΛ,jΣ ψ̄iΛµ γµν ψjΣν +
√

2
6 eA2 iΛ

jklΣ ψ̄iΛµ γµ χjklΣ

+
√

2 eAijkΛ,lmnΣ
3 χ̄ijkΛ χlmnΣ + c.c. (2.17)

External indices are now raised and lowered with the D = 4 metric gµν = ηαβ eµ
αeν

β , and
e ≡

√
|det gµν |.

The external covariant derivatives in the kinetic terms of the D = 4 action (2.17)
reduce as in [62], now also including new couplings to the D = 4 N = 8 gauge fields
A
M
µ (x), had we retained them, of the form A

M
µ (TM )Λ

Σ ψνiΣ. More importantly for our
purposes, the gravitino and spin-1/2 mass terms and their quadratic interactions in (2.17)
are codified by new tensors A1 iΛ,jΣ, A2 iΛ

jklΣ, A3
ijkΛ,lmnΣ. These reduce to their gauged

supergravity counterparts A1ij , A2i
jkl, Aijk,lmn3 at KK level n = 0 and extrapolate them at

higher KK levels. Like their n = 0 versions, the new tensors A1 iΛ,jΣ, A2 iΛ
jklΣ, A3

ijkΛ,lmnΣ

depend on the D = 4 N = 8 scalars. Further, they obey

A1 iΛ,jΣ = A1 jΣ,iΛ , A2hΛ
ijkΣ = A2hΛ

[ijk]Σ , A2 kΛ
ijkΛ = 0 ,

A3 ijkΛ,lmnΣ = A3 lmnΣ,ijkΛ , A3 ijkΛ,lmnΣ =
√

2
108 εijkpq[rlmA2n]Σ

pqrΩ δΩΛ , (2.18)

in direct analogy with the relations (2.13), (2.14) and (2.16) satisfied by their D = 4 N = 8
counterparts.

1The relation between A2 and A3 is usually given as [30]

A3 ijk,lmn =
√

2
144 εijkpqr[lmA2n]

pqr , (2.15)

which, unlike (2.16), makes manifest the symmetry (2.14) of A3. Using the tracelessness condition of A2

in (2.13), the expression (2.16) becomes equivalent to (2.15). The KK analogue of A2 satisfies a similar
trace condition only if the KK indices are contracted as well. For this reason, it is (2.16) and not (2.15)
that naturally extrapolates to higher KK levels: see (2.18).
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2.2 The KK gravitino mass matrix

The KK gravitino mass term in the D = 4 action (2.17) derives from the following piece
in the ExFT action (2.1)

Lψψ = −4iεµνρσ
(
V−1)

ij
M ψ̄iµγν∇M

(
γρψ

j
σ

)
. (2.19)

Taking into account the form of the covariant derivative (2.2) with weight λ
(
γρψ

j
σ

)
= 3

4 [26],
using the generalised Scherk-Schwarz expressions (2.3), (2.6), (2.10) and getting rid of the
Levi-Civita tensor (through γµν = i

2 e
−1 εµνρσγρσγ5 and the chirality of the KK gravitini,

γ5 ψ
iΛ
µ = ψiΛµ ), (2.19) becomes

Lψψ = e
(
ρ−2A1ij YΛYΣ − 8 ρ−3 (V−1)ijN (U−1)NMYΛ∂M YΣ

)
ψ̄iΛµ γµνψjΣν . (2.20)

The second term in the parenthesis can be further simplified using (2.7). After this substi-
tution, (2.20) scales with an overall factor of ρ−2, as in fact does the entire ExFT action
upon generalised Scherk-Schwarz reduction. This factor thus drops at the level of the equa-
tions of motion. Also, (2.20) acquires a quadratic dependence on YΛYΣ after (2.7) is used.
This dependence reduces to δΛΣ at the level of the action, by virtue of the orthogonality
of the spherical harmonics.

Thus, (2.19) gives rise to the KK gravitino mass term in the D = 4 action (2.17), with
mass matrix

A1 iΛ,jΣ ≡ A1ij δΛΣ − 8 (V−1)ijM (TM )ΛΣ . (2.21)

Due to the symmetry of A1ij and the antisymmetry of (V−1)ijM and (TM )ΛΣ (in the indices
ij and ΛΣ, respectively), the tensor A1 iΛ,jΣ defined in (2.21) is symmetric in the product
index iΛ, as it must from the action (2.17) and asserted in the first relation of (2.18).
Likewise, the complex conjugate (c.c.) contribution of (2.19) to the ExFT action (2.1)
reduces to a c.c. contribution to the D = 4 action (2.17) with

A1
iΛ,jΣ ≡ Aij1 δ

ΛΣ − 8 (V−1)ijM (TM )ΛΣ , (2.22)

so that
(
A1 iΛ,jΣ

)∗ = A1
iΛ,jΣ manifestly.

By (2.5), the KK gravitino mass matrix (2.21) is an infinite-dimensional, block-diagonal
square matrix. With the conventions specified above (2.5), for D = 11 AdS4 vacua that up-
lift from the SO(8) gauging, the square block at level n comes in the SO(8) representations

[0, 0, 0, 1]× [n, 0, 0, 0] −→ [n, 0, 0, 1] + [n− 1, 0, 1, 0] , (2.23)

or their branchings thereof under G ⊂ SO(8) for AdS4 solutions with residual symmetry
group G. For AdS4 solutions of type IIA that uplift from the ISO(7) gauging, the block at
KK level n comes instead in the SO(7) representations

[0, 0, 1]× [n, 0, 0] −→ [n, 0, 1] + [n− 1, 0, 1] , (2.24)

or their branchings under G ⊂ SO(7) for AdS4 solutions with symmetry group G. In (2.23)
and (2.24) only representations with positive Dynkin labels must be kept. In both cases,
all eigenvalues of the mass matrix (2.21) are physical and contribute to the spectrum of
physical KK gravitini.
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2.3 The KK spin-1/2 fermion mass matrix

Following similar steps, we can determine the contributions of the gravitino-spin-1/2
fermion and fermion-fermion terms from the ExFT quadratic action (2.1)

Lψχ = −4
√

2 e
(
V−1)ij M ψ̄kµ∇M (γµχijk) , Lχχ = 1

9 e εijklmnpq
(
V−1)ij M χ̄klm∇Mχnpq.

(2.25)
The Lψχ term and its complex conjugate give rise to the corresponding KK gravitino-
fermion terms in the D = 4 KK action (2.17), with a KK tensor A2 defined as

A2 iΛ
jklΣ ≡ A2i

jkl δΣ
Λ − 24 δ[j

i (V−1)kl]N (TN )Λ
Σ , (2.26)

and
A2

iΛ
jklΣ ≡ A2

i
jkl δ

Λ
Σ − 24 δi[j (V−1)kl]N (TN )Λ

Σ , (2.27)
so that (A2iΛ

jklΣ)∗ = A2
iΛ
jklΣ. The tensor A2 given in (2.26) manifestly satisfies the

antisymmmetry and tracelessness relations stated in (2.18).
Finally, the term Lχχ in the ExFT action gives rise to the mass terms for the spin-1/2

fields in the D = 4 KK action (2.17) with mass matrix proportional to

A3 ijkΛ,lmnΣ ≡ A3 ijk,lmn δΛΣ +
√

2
18 εijklmnpq (V−1)pqN (TN )ΛΣ , (2.28)

along with its complex conjugate,

A3
ijkΛ,lmnΣ ≡ A3

ijk,lmn δΛΣ +
√

2
18 εijklmnpq (V−1)pqN (TN )ΛΣ , (2.29)

so that (A3 ijkΛ,lmnΣ)∗ = A3
ijkΛ,lmnΣ. The tensor (2.28) is manifestly symmetric in its

product indices, as required by the D = 4 action (2.17) and anticipated in (2.18). Further,
some algebra allows one to verify that the KK tensors A3 and A2 in (2.28) and (2.26) are
indeed related as in (2.18), in analogy with the N = 8 relation (2.16).

The KK spin-1/2 fermion mass matrix (2.28) is infinite-dimensional and block-
diagonal. The block at KK level n is in the representations of SO(8) (or branchings
thereof)

[1, 0, 1, 0]× [n, 0, 0, 0] −→ [n, 0, 0, 1] + [n− 1, 0, 1, 0] + [n+ 1, 0, 1, 0] + [n− 1, 1, 1, 0]
+[n− 2, 1, 0, 1] + [n− 2, 0, 0, 1] , (2.30)

for solutions that uplift from the SO(8) gauging. For solutions that uplift from the ISO(7)
gauging, the blocks lie in the following SO(7) representations (or their branchings):

([1, 0, 1] + [0, 0, 1])× [n, 0, 0] −→ [n, 0, 1] + [n− 1, 0, 1] + [n+ 1, 0, 1] + [n− 1, 1, 1] (2.31)
+[n− 2, 1, 1] + [n− 2, 0, 1] + [n, 0, 1] + [n− 1, 0, 1] ,

for n = 0, 1, 2, . . . Again, only representations with non-negative Dynkin labels are actually
present in both (2.30) and (2.31). Unlike its counterpart (2.21) for the KK gravitini, the
spin-1/2 KK fermion mass matrix (2.28) contains unphysical states that must be removed
from the spectrum. These correspond to the underlined representations in (2.30) and (2.31),
which contain the Goldstini eaten by the massive gravitini at the same KK level n. Only
the eigenvalues of (2.28) that belong to representations not underlined in (2.30) and (2.31)
constitute the physical KK fermion states of spin one-half.
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2.4 KK fermion shifts

Like their D = 4 N = 8 counterparts A1ij , A2i
jkl, the tensors A1 iΛ,jΣ, A2iΛ

jklΣ defined
in (2.21) and (2.26) are also ‘fermion shifts’, in the sense that they analogously appear
in the supersymmetry variations of the KK fermions. Indeed, the ExFT supersymmetry
parameter can be expanded as

εi (x, Y ) = ρ(Y )−
1
2 εiΛ(x)YΛ(Y ) , (2.32)

building again on [13, 62]. Inserting (2.6), (2.32) into the supersymmetry variations of the
ExFT fermions [26] a calculation analogous to [62] using (2.10) allows us to compute

δψiΛµ = 2A1
iΛ,jΣ γµεjΣ + . . . , δχijkΛ = −2

√
2A2hΣ

ijkΛ εhΣ + . . . (2.33)

with A1
iΛ,jΣ and A2hΣ

ijkΛ respectively reproducing (2.22) and (2.26). The terms shown
here contain all the N = 8 scalar contributions with no derivatives, while the ellipses hide
contributions from the N = 8 gauge fields, from derivatives of the scalars, and from deriva-
tives of the supersymmetry parameter εiΛ. All the dependence on the internal coordinates
drops from the ExFT supersymmetry variations when the coefficients of the harmonics YΛ
is equated KK level by KK level on both sides of the equal sign, leaving the supersymme-
try transformations (2.33) for the KK fermions under which the full D = 4 KK action is
invariant.

3 Complete KK spectra of D = 11 N = 1 AdS4 solutions

We can now use our fermionic mass matrices to compute the KK fermion spectra of specific
AdS4 solutions. In this section, we will focus on AdS4 solutions of D = 11 supergravity [9]
that uplift [27] from the D = 4 N = 8 SO(8) gauging [31]. For concreteness, we will restrict
ourselves to the solutions that preserve at least the SU(3) subgroup of SO(8). These were
classified in D = 4 in [38] and uplifted to D = 11 in [39–45]. The bosonic and fermionic KK
level n = 0 spectrum for these solutions is known (see [36, 51]). Our results reproduce the
fermionic spectra and extend them to higher KK levels n ≥ 1. See table 24 in appendix A
for a summary of the spectrum of KK gravitini for these solutions up to KK level n = 2.

There are three supersymmetric solutions in this sector, with (super)symmetry N = 8
SO(8) [39], N = 2 SU(3) × U(1) [38, 40] and N = 1 G2 [38, 41, 42]. The complete
supersymmetric KK spectrum for the former two is known [14, 20, 47–50], and we reproduce
the corresponding fermionic sectors. For the N = 1 G2 solution, the fermionic spectrum is
new. Combining this with previously known sectors of the bosonic spectrum [20, 53], we
can determine the complete supersymmmetric spectrum for this N = 1 solution.

3.1 Spectrum of the N = 1 G2-invariant solution

The N = 1 G2-invariant AdS4 solution was first found as a critical point of D = 4 N = 8
SO(8)-gauged supergravity [31] in [38]. The S7 uplift of this solution to D = 11 was
determined in [41] and [42]. The first of these references provided the D = 11 metric, while
the second completed the uplift to include the three- and four-form fluxes. Geometrically,
the N = 1 G2 solution in D = 11 corresponds to a warped product of AdS4 with a
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topological S7. The metric on the latter can be written as a cohomogeneity-one, SO(7)-
invariant deformation of the sine-cone metric foliated with round S6 leaves. The latter is
naturally equipped with its canonical, homogeneous nearly-Kähler structure. The three-
and four-form fluxes can be written in terms of the nearly-Kähler forms, and break the
SO(7) isometry down to a G2 symmetry for the full solution. See [64] for further details.

The KK spectrum of this solution is partially known. The spectrum at KK level n = 0
may be determined by linearisation of D = 4 N = 8 SO(8) supergravity [31] around
its N = 1 G2 critical point [38]. The n = 0 scalar [51], spin-1/2 (see [36]), vector [52]
and gravitino (see [36]) spectra are thus known. The bosonic KK spectra at higher KK
levels is also known partially. The KK graviton spectrum was calculated [25] following the
standard spin-2 methods of [65]. The KK vector spectrum was computed [20] using ExFT
techniques [13, 14]. Now, we can use the fermionic mass matrices derived in section 2 to
compute the spectrum of KK gravitini and spin-1/2 fermions. The results are summarised
for the gravitini up to KK level n = 2 in table 24 of appendix A. Further, we may use all
these previous and new results to determine the complete N = 1 KK spectrum about this
AdS4 solution, to which we now turn.

The complete KK spectrum arranges itself in representations of the residual supersym-
metry and bosonic symmetry groups, OSp(4|1)×G2. These descend KK level by KK level
from the OSp(4|8) supermultiplets present in the spectrum at the N = 8 SO(8) point [47]
(see also e.g. table 2 of [50] for a convenient summary). At fixed KK level n, the fields of
all spins between 0 and 2 come in the (real) representations [p, q] of G2 determined by the
branching G2 ⊂ SO(8). Fields in the same G2 representations but different spin must then
be allocated into OSp(4|1) supermultiplets, starting from higher to lower spins. Table 1 in
the introduction comes in handy to carry out this exercise. Only the MGRAV and MVEC
(please refer to the table for the acronyms used throughout) OSp(4|1) supermultiplets have
their conformal dimensions E0 fixed in terms of the spin s0 of the superconformal primary.
For all other multiplets present in the spectrum, E0 cannot be determined from group
theory alone. Satisfactorily enough, the dimensions and their multiplicities computed from
the previously known bosonic [20, 25] and from our new fermionic mass spectra match this
OSp(4|1)×G2 structure and bring in the dimensions E0.

We find that the complete supersymmetric KK spectrum of the N = 1 G2 invariant
solution [38, 41, 42] has the following structure. At KK level n = 0, there are, as expected, a
MGRAV and a MVEC, which respectively lie in the trivial and the adjoint representations
of G2. The former corresponds to the N = 1 supergravity multiplet, which includes the
massless graviton and gravitino. The latter contains the vectors that gauge the residual
symmetry G2, along with their spin-1/2 superpartners. KK level n = 0 is completed
with a GINO multiplet containing the 7 massive gravitini, along with 1 and 27 CHIRAL
multiplets. Higher KK levels n ≥ 1 contain all four generic supermultiplets, GRAV, GINO,
VEC and CHIRAL, in suitable representations of G2. The supersymmetric KK spectrum
for the first four levels, n = 0, 1, 2, 3, is summarised in tables 2–5 below. For each OSp(4|1)
supermultiplet with given G2 quantum numbers [p, q], the dimension E0 is shown next to
the corresponding acronym. An entry of the form m× (E0) indicates that there are m such
supermultiplets. Whenever there is only one multiplet, m = 1, we simply write (E0).
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[0, 0] [0, 1]
MGRAV

(
5
2

)
MVEC

(
3
2

)
CHIRAL

(
1 +
√

6
)

[1, 0]

GINO
(

1 +
√

6
2

)
[2, 0]

CHIRAL
(

1 +
√

6
6

)
Table 2. Supermultiplets at KK level n = 0 for the D = 11 N = 1 G2-invariant AdS4 solution.

[0, 0] [0, 1]

GRAV
(

1 +
√

106
4

)
GINO

(
1 + 3

4

√
6
)

CHIRAL
(

1 +
√

166
4

)
VEC

(
1 +

√
74
4

)
[1, 0] [1, 1]

GRAV
(

1 +
√

66
4

)
VEC

(
1 +

√
14
4

)
VEC

(
1 +

√
114
4

)
CHIRAL

(
1 + 3

2

√
7
2

)
GINO

(
1 +

√
94
4

)
[2, 0]

GINO
(

1 + 1
2

√
61
6

)
VEC

(
1 +

√
91
24

)
CHIRAL

(
1 +

√
654
12

)
[3, 0]

CHIRAL
(

1 +
√

3
8

)
Table 3. Supermultiplets at KK level n = 1 for the D = 11 N = 1 G2-invariant AdS4 solution.
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[0, 0] [0, 1] [0, 2]

GRAV
(

9
2

)
GINO 2× (4) CHIRAL

(
1 +

√
7
2

)
CHIRAL 2× (5) VEC 2×

(
1 +

√
41
4

)
[1, 0] [1, 1]

GRAV
(

1 +
√

39
2

)
GINO

(
1 +

√
21
2

)
GINO 2×

(
1 +

√
23
2

)
VEC 2×

(
1 +

√
13
2

)
VEC 2×

(
1 +

√
51
4

)
CHIRAL

(
1 +

√
29
2

)
CHIRAL

(
1 +

√
27
2

)
[2, 0] [2, 1]

GRAV
(

1 +
√

231
6

)
VEC

(
1 +

√
23
12

)
GINO

(
1 + 7√

6

)
VEC 2×

(
1 +

√
113
12

)
CHIRAL 3×

(
1 +

√
61
6

)
[3, 0]
GINO (3)

VEC
(

1 +
√

21
4

)
CHIRAL

(
1 +
√

6
)

[4, 0]
CHIRAL (2)

Table 4. Supermultiplets at KK level n = 2 for the D = 11 N = 1 G2-invariant AdS4 solution.
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[0, 0] [0, 1] [0, 2]
GRAV

(
1 + 3

4

√
34
)

GINO 2×
(

1 +
√

254
4

)
VEC

(
1 +

√
154
4

)
CHIRAL 2×

(
1 +

√
366
4

)
VEC 3×

(
1 +

√
274
4

)
CHIRAL

(
1 +

√
166
4

)
[1, 0] [1, 1] [1, 2]
GRAV

(
1 +

√
266
4

)
GINO 2×

(
1 +

√
194
4

)
CHIRAL

(
1 +

√
86
4

)
GINO 2×

(
1 + 7

√
6

4

)
VEC 3×

(
1 +

√
214
4

)
VEC 2×

(
1 +

√
314
4

)
CHIRAL 2×

(
1 +

√
226
4

)
CHIRAL 2×

(
1 +

√
326
4

)
[2, 0] [2, 1]
GRAV

(
1 +

√
319
24

)
GINO

(
1 +

√
181
24

)
GINO 2×

(
1 + 19

2
√

6

)
VEC 2×

(
1 +

√
211
24

)
VEC 3×

(
1 +

√
391
24

)
CHIRAL

(
1 +

√
229
24

)
CHIRAL 3×

(
1 +

√
409
24

)
[3, 0] [3, 1]
GRAV

(
1 +

√
146
4

)
VEC

(
1 + 3

√
6

4

)
GINO

(
1 +

√
174
4

)
VEC 2×

(
1 +

√
194
4

)
CHIRAL 3×

(
1 +

√
206
4

)
[4, 0]
GINO

(
1 +

√
94
4

)
VEC

(
1 +

√
114
4

)
CHIRAL

(
1 + 3

2

√
7
2

)
[5, 0]
CHIRAL

(
1 + 7

2
√

6

)
Table 5. Supermultiplets at KK level n = 3 for the D = 11 N = 1 G2-invariant AdS4 solution.

From tables 2–5 it is possible to infer that the conformal dimension E0 for each of
the OSp(4|1) supermultiplets present in the spectrum at KK level n = 0, 1, 2 . . ., with G2
quantum numbers [p, q], is

(M)GRAV : E0 = 1 +
√

9
4 + 5

8n(n+ 6)− 5
4 C2(p, q), (3.1)

GINO : E0 = 1 +
√

4 + 5
8n(n+ 6)− 5

4 C2(p, q) , (3.2)

(M)VEC : E0 = 1 +
√

21
4 + 5

8n(n+ 6)− 5
4 C2(p, q) , (3.3)

CHIRAL : E0 = 1 +
√

6 + 5
8n(n+ 6)− 5

4 C2(p, q) . (3.4)

In these expressions, n(n+ 6) are the eigenvalues of the scalar Laplacian on S7, and2

C2(p, q) ≡ 1
3 p(p+ 5) + q(q + 3) + pq , (3.5)

2Recall that the overall normalisation of the Casimir operator is arbitrary. A popular normalisation,
which we use for the eigenvalue C2 of the G2 (3.5), SU(3) (4.10), SO(7) (5.2) and SO(6) (5.3) quadratic
Casimir operator in the representation R, is C2 = dG/(2 dR) IR, where dR, dG and IR are respectively the
dimension of R, the dimension of the adjoint, and the Dynkin index of R, see e.g. [66].
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∆ n G2 N = 1 supermultiplet
1 +

√
3
8 1.38 1 [3, 0] CHIRAL

(
1 +

√
3
8

)
1 +

√
6

6 1.41 0 [2, 0] CHIRAL
(
1 +

√
6

6

)
2 2.00 2 [4, 0] CHIRAL (2)
2 +

√
3
8 2.38 1 [3, 0] CHIRAL

(
1 +

√
3
8

)
2 +

√
6

6 2.41 0 [2, 0] CHIRAL
(
1 +

√
6

6

)
1 + 7

2
√

6 2.43 3 [5, 0] CHIRAL
(
1 + 7

2
√

6

)
3
2 +

√
14
4 2.44 1 [1, 1] VEC

(
1 +

√
14
4

)
1 +

√
7
2 2.87 2 [0, 2] CHIRAL

(
1 +

√
7
2

)
3
2 +

√
23
12 2.88 2 [2, 1] VEC

(
1 +

√
23
12

)
3 3.00 2 [4, 0] CHIRAL (2)

Table 6. All KK scalars with dimension ∆ ≤ 3 around the D = 11 N = 1 G2-invariant AdS4
solution.

is the eigenvalue of the quadratic Casimir operator of G2 in the [p, q] representation. The
dimension (3.1) of the (M)GRAV supermultiplets is in agreement with the masses of the
individual graviton states given in table 2 of [25], with nhere = phere = kthere, qhere = 0. Like-
wise, the individual vector states contained in the supermultiplets with dimensions (3.1)–
(3.3) match the masses reported in table 14 of [20] up to second KK level. More generally,
recalling from table 1 the value of the conformal primary spin s0 for each supermultiplet,
the formulae (3.1)–(3.4) can be collectively written as in equation (1.1) with d = 7, α = 5

8
and β = 5

4 therein, as already advertised in the introduction.
The spectrum of individual KK scalar states can be inferred from the complete super-

symmetric KK spectrum. Table 6 lists all the scalars with conformal dimensions ∆ ≤ 3.
The table includes the analytical value of ∆ together with a convenient numerical approx-
imation. Also shown in the table is the KK level n at which each scalar appears, as well
as its G2 charges [p, q]. The OSp(4|1) supermultiplet with dimension E0, at the same KK
level n and with the same G2 charges [p, q], that contains each scalar is also shown. The
dimension ∆ will only match E0 if the scalar in question is the superconformal primary of
its multiplet. The scalars in table 6 are dual to relevant (∆ < 3) or classically marginal
(∆ = 3) operators in the dual field theory. All scalars with ∆ ≤ 3 turn out to arise at
KK levels n = 0, 1, 2, 3. Each of these KK levels contain scalars dual to irrelevant (∆ > 3)
operators as well. At KK levels n ≥ 4, all scalars are dual to irrelevant operators.

4 Complete KK spectra of N = 1 AdS4 solutions of type IIA

Next we turn to compute the KK fermionic spectra of the AdS4 solutions of massive
type IIA supergravity [11] that are obtained from vacua of D = 4 N = 8 dyonic ISO(7)
supergravity [35] upon consistent uplift on S6 [28, 29]. Again for definiteness, we will
focus on those solutions that preserve at least the SU(3) subgroup of SO(7). From a four-
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dimensional perspective, these were classified in [35]. Their type IIA uplifts were given
in [28, 29, 46]. Using our mass matrices from section 2, we have computed the spectrum of
KK gravitini and spin-1/2 fermions for the first few KK levels. A summary of the gravitino
spectra of these solutions up to KK level n = 2 is provided in table 25 of appendix A.

This sector contains three supersymmetric solutions with residual (super)symmetry
N = 2 SU(3) × U(1) [28], N = 1 G2 [29, 52, 54], and N = 1 SU(3) [35, 46, 55]. The
complete supersymmetric spectrum of the N = 2 solution was recently obtained in [20],
and our results match the fermionic spectrum that can be inferred from the results of
that reference. Here, we will give the complete supersymmetric spectrum of the N = 1
solutions. We now move on to discuss them in turn.

4.1 Spectrum of the N = 1 G2-invariant solution

The AdS4 solution with N = 1 supersymmetry and G2 symmetry was first reported as a
critical point of D = 4 N = 8 dyonic ISO(7) supergravity in [52]. The S6 uplift to massive
IIA [11] was performed in [29, 46] (see (4.6) of the latter reference), and shown to coincide
with a previously known solution first written in [54]. The ten-dimensional solution is
a direct product of AdS4 and the round S6 sphere, endowed with its SO(7)-invariant
homogeneous Einstein metric. The latter is inherited from the canonical homogeneous
nearly-Kähler structure on S6. All type IIA forms are active and take values along the
nearly-Kähler forms, thereby reducing the symmetry of the full solution to G2.

Some details of the KK spectrum about this solution are already known. As always,
the spectrum at KK level n = 0 is found by linearising D = 4 N = 8 ISO(7) supergravity
around the N = 1 G2 critical point [52]. The n = 0 scalar and vector spectrum was given in
that reference. The n = 0 fermion spectrum, which can be deduced by supersymmetry from
the n = 0 bosonic spectrum [52], has been explicitly given in the recent [37]. At higher KK
levels n ≥ 1, the spectrum of KK gravitons [53] and vectors [20] is also known. These were
respectively computed using standard spin-2 techniques [65] and ExFT methods [13, 14].
Here, we have computed the spectrum of KK gravitini and spin-1/2 fermions using the
mass matrices (2.21) and (2.28). Combining these new results with the previously known
ones, we can further obtain the complete N = 1 KK spectrum of this solution.

Like in the D = 11 case of section 3.1, the complete KK spectrum combines itself
in representations of OSp(4|1) × G2. The process to find the multiplet structure of the
spectrum is very similar to that explained in detail in section 3.1 and, for that reason,
we shall be brief. The most important difference with respect to the D = 11 case is that
the G2 representations at fixed KK level n branch from the putative SO(7) representations
summarised in table 1 of [20]. Proceeding as explained in section 3.1, we find the OSp(4|1)×
G2 structure of the spectrum. Except for the massless multiplets, the dimensions E0 of
the multiplets are again left undetermined by group theory. Fortunately, the dimensions
and their multiplicities of the known bosonic KK fields [20, 53] and the new fermionic KK
fields are compatible with this OSp(4|1)×G2 structure and allow us to give explicitly the
supermultiplet dimensions.

– 16 –



J
H
E
P
0
3
(
2
0
2
1
)
1
3
8

[0, 0] [0, 1]
MGRAV

(
5
2

)
MVEC

(
3
2

)
CHIRAL

(
1 +
√

6
)

[1, 0]

GINO
(

1 +
√

6
2

)
[2, 0]

CHIRAL
(

1 +
√

6
6

)
Table 7. Supermultiplets at KK level n = 0 for the N = 1 G2-invariant AdS4 solution of type IIA.

[0, 0] [0, 1]
GINO (4) GINO (3)

CHIRAL
(
1 +
√

6
)

[1, 0] [1, 1]

GRAV
(

1 +
√

19
2

)
VEC

(
1 +

√
3
2

)
VEC

(
1 +

√
31
2

)
CHIRAL

(
1 +

√
34
2

)
[2, 0]

GINO
(

1 +
√

19
6

)
VEC

(
1 +

√
159
6

)
[3, 0]
CHIRAL (2)

Table 8. Supermultiplets at KK level n = 1 for the N = 1 G2-invariant AdS4 solution of type IIA.
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H
E
P
0
3
(
2
0
2
1
)
1
3
8

[0, 0] [0, 1] [0, 2]

CHIRAL
(

1 +
√

53
3

)
GINO

(
1 + 4

√
6

3

)
CHIRAL

(
1 +

√
186
6

)
VEC

(
1 +

√
429
6

)
[1, 0] [1, 1]

GINO
(

1 +
√

474
6

)
GINO

(
1 +

√
249
6

)
VEC

(
1 +

√
519
6

)
VEC

(
1 + 7

√
6

6

)
CHIRAL

(
1 +

√
321
6

)
[2, 0] [2, 1]

GRAV
(

1 +
√

291
6

)
VEC

(
1 +

√
129
6

)
VEC

(
1 +

√
399
6

)
CHIRAL 2×

(
1 +

√
71
6

)
[3, 0]

GINO
(

1 +
√

17
3

)
VEC

(
1 +

√
249
6

)
[4, 0]

CHIRAL
(

1 + 2
√

6
3

)
Table 9. Supermultiplets at KK level n = 2 for the N = 1 G2-invariant AdS4 solution of type IIA.
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H
E
P
0
3
(
2
0
2
1
)
1
3
8

[0, 1] [0, 2]

VEC
(

11
2

)
VEC

(
1 +

√
51
2

)
[1, 0] [1, 1] [1, 2]

CHIRAL
(

1 +
√

47
2

)
GINO

(
1 +

√
61
2

)
CHIRAL

(
1 +

√
34
2

)
VEC

(
1 +

√
33
2

)
CHIRAL

(
1 +

√
69
2

)
[2, 0] [2, 1]

GINO
(

1 +
√

109
6

)
GINO

(
1 + 4

√
6

3

)
VEC

(
1 +

√
699
6

)
VEC

(
1 +

√
429
6

)
CHIRAL

(
1 +

√
114
3

)
[3, 0] [3, 1]

GRAV
(

9
2

)
VEC

(
1 +

√
26
2

)
VEC

(
1 +

√
61
2

)
CHIRAL 2× (5)
[4, 0]
GINO (4)

VEC
(

1 +
√

41
2

)
[5, 0]

CHIRAL
(

1 +
√

31
6

)
Table 10. Supermultiplets at KK level n = 3 for theN = 1 G2-invariant AdS4 solution of type IIA.

At KK level n = 0, the spectrum of the G2 N = 1 solution [29, 52, 54] of type
IIA coincides with the spectrum of its D = 11 counterpart [38, 41, 42], as already noted
in [52]. This spectrum is summarised in table 7 above, which is included for completeness
although this table is identical to table 2 for the D = 11 case. The spectra in the IIA and
D = 11 cases do differ at higher KK levels: see tables 8–10 above for the supersymmetric
spectrum at levels n = 1, 2, 3 in the type IIA case. The dimension (E0) is shown next
to each supermultiplet. An entry of the form m × (E0) indicates that there are m such
supermultiplets, with the label m omitted when m = 1.

Inspection of tables 7–10 allows us to deduce generic expressions for the conformal
dimensions of the OSp(4|1) supermultiplets contained in the KK spectrum. Each type of
supermultiplet in the [p, q] representation of G2 at KK level n = 0, 1, 2, . . . has the following
scaling dimension:

(M)GRAV : E0 = 1 +
√

9
4 + 5

12n(n+ 5), (4.1)

GINO : E0 = 1 +
√

4 + 5
6n(n+ 5)− 5

4 C2(p, q) , (4.2)
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J
H
E
P
0
3
(
2
0
2
1
)
1
3
8

∆ n G2 N = 1 supermultiplet
1 +

√
6

6 1.41 0 [2, 0] CHIRAL
(
1 +

√
6

6

)
2 2.00 1 [3, 0] CHIRAL (2)
2 +

√
6

6 2.41 0 [2, 0] CHIRAL
(
1 +

√
6

6

)
1 + 2

√
6

3 2.63 2 [4, 0] CHIRAL
(
1 + 2

√
6

3

)
3
2 +

√
3
2 2.72 1 [1, 1] VEC

(
1 +

√
3
2

)
3 3.00 1 [3, 0] CHIRAL (2)

Table 11. All KK scalars with dimension ∆ ≤ 3 around the N = 1 SU(3)-invariant AdS4 solution
of type IIA.

(M)VEC : E0 = 1 +
√

21
4 + 5

6n(n+ 5)− 5
4 C2(p, q) , (4.3)

CHIRAL : E0 = 1 +
√

6 + 5
6n(n+ 5)− 5

4 C2(p, q) . (4.4)

Here, n(n + 5) are the eigenvalues of the scalar Laplacian on S6 and C2(p, q) are the
eigenvalues (3.5) of the quadratic Casimir operator of G2 in the [p, q] representation. The
(M)GRAV supermultiplets have dimensions (4.1) that agree with the individual graviton
masses given in (3.1) of [53] with nhere = kthere. In addition, the vector states contained
in the supermultiplets with dimensions (4.1)–(4.3) reproduce the masses given in table 15
of [20] up to KK level n = 2. Like their counterparts (3.1)–(3.4) for the N = 1 G2 spectrum
in D = 11, all the dimensions (4.1)–(4.4) for the type IIA spectrum also conform to the
generic expression (1.1) brought to the introduction, now with d = 6, α = 5

6 , β = 5
4 therein.

This is straightforward to see for the GINO, (M)VEC and CHIRAL dimensions (4.2)–(4.4),
by using the relevant values of s0 from table 1. To see that the (M)GRAV dimension (4.1)
can be also rewritten as in (1.1),

E0 = 1 +
√

9
4 + 5

6n(n+ 5)− 5
4 C2(p, q) , (4.5)

note from tables 7–10 that, at KK level n, there is a unique (M)GRAV supermultiplet that
occurs with G2 quantum numbers p = n, q = 0, and that C2(n, 0) = 1

3n(n+ 5) by (3.5).

Finally, like for the N = 1 G2 solution of D = 11 supergravity, the spectrum of in-
dividual KK scalar states for the N = 1 G2 solution of type IIA can be deduced from
the complete supersymmetric spectrum that we have presented in this section. Table 11
compiles the result for all scalars in the spectrum with conformal dimension ∆ ≤ 3, fol-
lowing the same layout as table 6. In this case, all scalars with ∆ ≤ 3 arise at KK levels
n = 0, 1, 2. Each of these KK levels also contain scalars with ∆ > 3. At KK levels n ≥ 3,
all scalars have dimensions ∆ > 3.

– 20 –



J
H
E
P
0
3
(
2
0
2
1
)
1
3
8

4.2 Spectrum of the N = 1 SU(3)-invariant solution

We finally turn to the N = 1 AdS4 solution of type IIA with SU(3) residual symmetry.
A critical point of maximal supergravity with dyonic gaugings [32–34] with this residual
(super)symmetry was first reported in [55]. This vacuum was more precisely identified as
a critical point of the dyonic ISO(7) gauging in [35]. The resulting ten-dimensional AdS4
solution was constructed in [46] using the uplifting formulae of [28, 29]. The massive type
IIA solution, (4.4), (4.5) of [46], features a warped product of AdS4 with a topological
S6. The latter is equipped with a cohomogeneity-one metric. This may be seen as a
deformation of the usual sine-cone metric over S5, where the U(1) Hopf fibre of the latter
is inhomogeneously squashed against the CP2 base, so that the isometry is SU(3)× U(1).
The S5 is endowed with its canonical Sasaki-Einstein structure, along whose forms take
values the type IIA fluxes. The symmetry of the full solution is thus reduced to SU(3).
The N = 1 supersymmetry is captured by a type of G-structure discussed in [67].

Like in the previous cases, the KK spectrum of this solution is known partially. The
bosonic spectrum at KK level n = 0 was given in [35]. The n = 0 fermion spectrum follows
by supersymmetry from its bosonic counterpart, and has been explicitly given in [37]. At
higher KK levels, only the spectra of KK gravitons [53] and KK vectors [20] are known. In
the present paper, we have determined the spectrum of KK gravitini and spin-1/2 fermions
diagonalising the mass matrices of section 2. These new and previous results allow us to
determine the complete supersymmetric KK spectrum above this N = 1 AdS4 solution.

The complete KK spectrum in this case comes in representations of OSp(4|1)×SU(3).
Other than this, the allocation of the spectra into supermultiplets proceeds as in section 4.1.
The conformal dimensions are again left undertermined by the group theory, but these
can be brought in from [20, 53] and from the explicit calculation of the fermionic sector
described above. The result up to KK level n = 3 is summarised in tables 12–15 below.
Again, the dimension (E0) is shown next to each supermultiplet. An entry of the form m×
(E0) indicates that there arem such supermultiplets, with the labelm omitted whenm = 1.
Recall that the representation [p, q] of SU(3) with p 6= q is complex, and its conjugate is
[q, p]. In order to avoid repetition, the supermultiplets with SU(3) quantum numbers [p, q]
with q > p are simply indicated as the complex conjugates of those with quantum numbers
[q, p]. Supermultiplets in conjugate representations have the same conformal dimension
E0. For example, from table 13, the KK spectrum includes 6 CHIRAL multiplets with
dimension E0 = 10

3 at KK level n = 1.
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J
H
E
P
0
3
(
2
0
2
1
)
1
3
8

[0, 0] [0, 1] [0, 2]
MGRAV

(
5
2

)
conj. to [1, 0] conj. to [2, 0]

GINO (3)
CHIRAL 2×

(
1 +
√

6
)

[1, 0] [1, 1]
GINO

(
7
3

)
MVEC

(
3
2

)
VEC

(
1 +

√
109
6

)
CHIRAL (2)

[2, 0]
CHIRAL

(
5
3

)
Table 12. Supermultiplets at KK level n = 0 for the N = 1 SU(3)-invariant AdS4 solution of type
IIA.

[0, 0] [0, 1] [0, 2] [0, 3]

GRAV
(

1 +
√

29
2

)
conj. to [1, 0] conj. to [2, 0] conj. to [3, 0]

GINO 2× (4)

VEC 2×
(

1 +
√

41
2

)
CHIRAL 2×

(
1 +
√

11
)

[1, 0] [1, 1] [1, 2]

GRAV
(

1 +
√

181
6

)
GINO 2× (3) conj. to [2, 1]

GINO 2×
(

1 +
√

61
3

)
VEC 3×

(
1 +

√
21
2

)
VEC 3×

(
23
6

)
CHIRAL 2×

(
1 +
√

6
)

CHIRAL 3×
(

1 +
√

79
3

)
[2, 0] [2, 1]

GINO
(

1 +
√

31
3

)
VEC

(
13
6

)
VEC 2×

(
19
6

)
CHIRAL

(
1 +

√
19
3

)
CHIRAL

(
10
3

)
[3, 0]
CHIRAL (2)

Table 13. Supermultiplets at KK level n = 1 for the N = 1 SU(3)-invariant AdS4 solution of type
IIA.
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H
E
P
0
3
(
2
0
2
1
)
1
3
8

[0,0] [0,1] [0,2] [0,3] [0,4]

GRAV
(

1+
√

501
6

)
conj. to [1,0] conj. to [2,0] conj. to [3,0] conj. to [4,0]

GINO 2×
(

1+
√

47
3

)
VEC 3×

(
1+

√
609
6

)
CHIRAL 4×

(
1+
√

53
3

)
[1,0] [1,1] [1,2] [1,3]

GRAV
(

1+
√

421
6

)
GRAV

(
1+

√
321
6

)
GINO 4×

(
14
3

)
GINO 4×

(
1+ 4

√
6

3

)
conj. to [2,1] conj. to [3,1]

VEC 6×
(

29
6

)
VEC 7×

(
1+

√
429
6

)
CHIRAL 4×

(
1+

√
139
3

)
CHIRAL 6×

(
1+
√

38
3

)
[2,0] [2,1] [2,2]

GRAV
(

1+
√

301
6

)
GINO 2×

(
1+

√
61
3

)
VEC

(
1+

√
129
6

)
GINO 2×

(
1+

√
91
3

)
VEC 4×

(
23
6

)
CHIRAL 2×

(
1+
√

13
3

)
VEC 4×

(
1+

√
409
6

)
CHIRAL 3×

(
1+

√
79
3

)
CHIRAL 5×

(
1+

√
109
3

)
[3,0] [3,1]

GINO
(

1+
√

17
3

)
VEC

(
1+

√
109
6

)
VEC 2×

(
1+

√
249
6

)
CHIRAL

(
1+

√
34
3

)
CHIRAL

(
1+
√

23
3

)
[4,0]

CHIRAL
(

1+
√

19
3

)
Table 14. Supermultiplets at KK level n = 2 for the N = 1 SU(3)-invariant AdS4 solution of type
IIA.
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H
E
P
0
3
(
2
0
2
1
)
1
3
8

[0
,0

]
[0
,1

]
[0
,2

]
[0
,3

]
[0
,4

]
[0
,5

]

G
R

AV
( 1

+
√

89 2

)
co

nj
.

to
[1
,0

]
co

nj
.

to
[2
,0

]
co

nj
.

to
[3
,0

]
co

nj
.

to
[4
,0

]
co

nj
.

to
[5
,0

]

G
IN

O
2
×
( 1

+
2√

6)
V

E
C

3
×
( 1

+
√

10
1

2

)
C

H
IR

A
L

4
×
( 1

+
√

26
)

[1
,0

]
[1
,1

]
[1
,2

]
[1
,3

]
[1
,4

]

G
R

AV
( 1

+
√

72
1

6

)
G

R
AV
( 1

+
√

69 2

)
co

nj
.

to
[2
,1

]
co

nj
.

to
[3
,1

]
co

nj
.

to
[4
,1

]

G
IN

O
4
×
( 17 3

)
G

IN
O

6
×
( 1

+
√

19
)

V
E

C
7
×
( 1

+
√

82
9

6

)
V

E
C

11
×
( 11 2

)
C

H
IR

A
L

6
×
( 1

+
√

21
4

3

) C
H

IR
A

L
8
×
( 1

+
√

21
)

[2
,0

]
[2
,1

]
[2
,2

]
[2
,3

]

G
R

AV
( 1

+
√

60
1

6

)
G

R
AV
( 1

+
√

48
1

6

)
G

IN
O

2
×
( 1

+
4√

6
3

)
co

nj
.

to
[3
,2

]

G
IN

O
4
×
( 1

+
√

16
6

3

)
G

IN
O

4
×
( 1

+
2√

34 3

)
V

E
C

5
×
( 1

+
√

42
9

6

)
V

E
C

7
×
( 1

+
√

70
9

6

)
V

E
C

8
×
( 1

+
√

58
9

6

)
C

H
IR

A
L

4
×
( 1

+
√

11
4

3

)
C

H
IR

A
L

6
×
( 1

+
2√

46 3

) C
H

IR
A

L
8
×
( 1

+
√

15
4

3

)
[3
,0

]
[3
,1

]
[3
,2

]

G
R

AV
( 9 2

)
G

IN
O

2
×
( 1

+
√

91 3

)
V

E
C
( 1

+
√

22
9

6

)
G

IN
O

2
×
( 1

+
√

14
)

V
E

C
4
×
( 1

+
√

40
9

6

)
C

H
IR

A
L

2
×
( 11 3

)
V

E
C

4
×
( 1

+
√

61 2

)
C

H
IR

A
L

3
×
( 1

+
√

10
9

3

)
C

H
IR

A
L

5
×

(5
)

[4
,0

]
[4
,1

]

G
IN

O
( 1

+
2√

19 3

)
V

E
C
( 1

+
√

21 2

)
V

E
C

2
×
( 1

+
√

34
9

6

)
C

H
IR

A
L
( 1

+
√

6)
C

H
IR

A
L
( 1

+
√

94 3

)
[5
,0

]

C
H

IR
A

L
( 1

+
√

34 3

)

Table 15. Supermultiplets at KK level n = 3 for the N = 1 SU(3)-invariant AdS4 solution of type
IIA.

The OSp(4|1) representations at level n = 0 have recently appeared in [37], and table 12
matches their results. As expected, the n = 0 spectrum contains a singlet MGRAV and 8
MVECs: the former is the N = 1 supergravity multiplet and the latter contains the vectors
that gauge the residual SU(3) symmetry. More generally, like in the previous N = 1 cases
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H
E
P
0
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2
0
2
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∆ n SU(3) N = 1 supermultiplet
5
3 1.67 0 [2, 0] + c.c. CHIRAL

(
5
3

)
+ c.c.

2 2.00 0 [1, 1] CHIRAL (2)
2 2.00 1 [3, 0] + c.c. CHIRAL (2)
1 +

√
19
3 2.45 1 [2, 1] + c.c. CHIRAL

(
1 +

√
19
3

)
+ c.c.

1 +
√

19
3 2.45 2 [4, 0] + c.c. CHIRAL

(
1 +

√
19
3

)
+ c.c.

8
3 2.67 0 [2, 0] + c.c. CHIRAL

(
5
3

)
+ c.c.

8
3 2.67 1 [2, 1] + c.c. VEC

(
13
6

)
+ c.c.

1 +
√

34
3 2.94 2 [3, 1] + c.c. CHIRAL

(
1 +

√
34
3

)
1 +

√
34
3 2.94 3 [5, 0] + c.c. CHIRAL

(
1 +

√
34
3

)
3 3.00 0 [1, 1] CHIRAL (2)
3 3.00 1 [3, 0] + c.c. CHIRAL (2)

Table 16. All KK scalars with dimension ∆ ≤ 3 around the N = 1 SU(3)-invariant AdS4 solution
of type IIA.

discussed in sections 3.1 and 4.1, closed form expressions may be given for the conformal
dimensions at all levels n ≥ 0. From tables 12–15, the conformal dimension E0 of each
type of OSp(4|1) supermultiplet at KK level n with SU(3) Dynkin labels [p, q] turns out to
be given by

(M)GRAV : E0 = 1 +
√

9
4 + 5

6n(n+ 5)− 5
3 C2(p, q) , (4.6)

GINO : E0 = 1 +
√

4 + 5
6n(n+ 5)− 5

3 C2(p, q) , (4.7)

(M)VEC : E0 = 1 +
√

21
4 + 5

6n(n+ 5)− 5
3 C2(p, q) , (4.8)

CHIRAL : E0 = 1 +
√

6 + 5
6n(n+ 5)− 5

3 C2(p, q) . (4.9)

Here, like in (4.1)–(4.4) for the type IIA N = 1 G2 solution, n(n + 5) are the eigenvalues
of the scalar Laplacian on S6, but now

C2(p, q) ≡ 1
3 [p(p+ 3) + q(q + 3) + pq] (4.10)

are the eigenvalues of the quadratic Casimir operator of SU(3) in the [p, q] representation,
normalised as indicated in footnote 2. The (M)GRAV dimensions (4.6) match the masses
for the graviton states, given in (3.1) of [53], with kthere = nhere, `there = phere + qhere,
pthere = phere. The individual vector masses that follow from (4.6)–(4.8) match table 15
of [20] up to KK level 2. As for the previous cases, the dimensions (4.6)–(4.9) can also be
written compactly as (1.1) of the introduction with d = 6, α = 5

6 and β = 5
3 .

Again like in the previous cases, the KK scalar spectrum for the N = 1 SU(3) type
IIA solution follows from the complete supersymmetric spectrum. All KK scalars with
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dimensions ∆ ≤ 3 are summarised in table 16, following the same notation and conventions
as tables 6 and 11. As already noted in [35], massless (∆ = 3) scalars, in the adjoint of
SU(3), already appear at KK level n = 0. This is an unusual feature for this type of AdS4
solutions, for which massless scalars tend to appear at higher KK levels. The massless
scalar spectrum is completed at level n = 1 with 10 + 10 more scalars. All scalars with
dimension ∆ < 3 appear at KK levels n = 0, 1, 2, 3. These levels also contain scalars with
∆ > 3. For KK levels n ≥ 4, all scalars have ∆ > 3.

5 Complete non-supersymmetric KK spectra

Within the class of D = 11 and type IIA AdS4 solutions with at least SU(3) symmetry that
we are considering, there are non-supersymmetric solutions besides the N = 1 cases dis-
cussed in sections 3 and 4. These include solutions with symmetry SO(7)v [43], SO(7)c [44]
and SU(4)c [45] in D = 11, and SO(7) [11, 46, 57], SO(6) [46, 57] and G2 [46, 52, 59] in type
IIA. In addition, there are two type IIA solutions with SU(3) symmetry which are only
known numerically [35, 46] and will be excluded from our discussion. See respectively [64]
and [46] for these eleven- and ten-dimensional AdS4 solutions in our conventions. In this
section we turn to address the KK spectrum for these solutions.

The state-of-the-art for their KK spectra is the following. For all of these, the
bosonic [51, 52, 57] and fermionic [36, 37] spectra at KK level n = 0 are known. At
higher KK levels only the bosonic spectra are known, either partially or completely. The
spectra of KK gravitons [25, 53] and vectors [20] are known and, for the G2 solution of
type IIA, also the KK scalar spectrum is known [23]. Thus, the bosonic KK spectrum
of the G2 solution is completely known. For the other solutions, the bosonic spectrum is
known short of the KK scalars. In this section, we will give the fermionic spectra for all
these solutions, thereby completing the KK spectrum for the type IIA G2 solution. For
all other solutions, we will conjecture a formula for the KK scalar masses based on strong
plausibility arguments. This will effectively complete their KK spectra as well.

Using our fermionic KK mass matrices, we have computed the KK gravitino and spin-
1/2 fermion spectra for all these solutions. We have recorded the gravitino mass eigenvalues
up to KK level n = 2 in tables 24 and 25 of appendix A. For the G2 solution, also the spin-
1/2 fermion spectrum is tabulated in table 23 of the appendix, again up to second KK level.
The fields of different spin present in these spectra are organised KK level by KK level in
representations of the residual symmetry group G, with G = SO(7) or G = SO(6) ∼ SU(4),
with Dynkin labels [p, q, r], or G = G2, with Dynkin labels [p, q]. For the D = 11 solutions,
these representations branch from the SO(8) representations of the spectrum at the N = 8
SO(8) point [47] (see also e.g. table 2 of [50] for a summary). For the type IIA solutions,
the representations split instead from the SO(7) representations given in table 1 of [20].
For the G2 solution, we have recorded the G2 representation content of the spectrum up
to KK level n = 3 in tables 18–21 below. Together with this group theory analysis and
the previously known results for the bosonic sector [20, 23, 52, 53] of the KK spectrum,
our new fermionic results finally complete the spectrum of the non-supersymmetric G2-
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D= 11 sol. s L2M2

N = 0, SO(7)v

2 3
4n(n+6) − 6

5 C2(p,q,r)
3
2

9
2 + 3

4 n(n+6) − 6
5 C2(p,q,r)

1 6 + 3
4 n(n+6) − 6

5 C2(p,q,r)
1
2

15
2 + 3

4 n(n+6) − 6
5 C2(p,q,r)

0(∗) 6 + 3
4 n(n+6) − 6

5 C2(p,q,r)

N = 0, SO(7)c

2 3
4 n(n+6) − 6

5 C2(p,q,r)
3
2

9
2 + 3

4 n(n+6) − 6
5 C2(p,q,r)

1 6 + 3
4 n(n+6) − 6

5 C2(p,q,r)
1
2

15
2 + 3

4 n(n+6) − 6
5 C2(p,q,r)

0(∗) 6 + 3
4 n(n+6) − 6

5 C2(p,q,r)

N = 0, SU(4)c

2 3
4 n(n+6) − 3

2 C2(p,q,r)
3
2

9
2 + 3

4 n(n+6) − 3
2 C2(p,q,r)

1 6 + 3
4 n(n+6) − 3

2 C2(p,q,r)
1
2

15
2 + 3

4 n(n+6) − 3
2 C2(p,q,r)

0(∗) 6 + 3
4 n(n+6) − 3

2 C2(p,q,r)

IIA sol. s L2M2

N = 0, SO(7)

2 n(n+5) − 6
5 C2(p,q,r)

3
2

9
2 + n(n+5) − 6

5 C2(p,q,r)
1 6 + n(n+5) − 6

5 C2(p,q,r)
1
2

15
2 + n(n+5) − 6

5 C2(p,q,r)
0(∗) 6 + n(n+5) − 6

5 C2(p,q,r)

N = 0, SO(6)

2 n(n+5) − 3
2 C2(p,q,r)

3
2

9
2 + n(n+5) − 3

2 C2(p,q,r)
1 6 + n(n+5) − 3

2 C2(p,q,r)
1
2

15
2 + n(n+5) − 3

2 C2(p,q,r)
0(∗) 6 + n(n+5) − 3

2 C2(p,q,r)

N = 0, G2

2 n(n+5) − 3
2 C2(p,q)

3
2

9
2 + n(n+5) − 3

2 C2(p,q)
1 6 + n(n+5) − 3

2 C2(p,q)
1
2

15
2 + n(n+5) − 3

2 C2(p,q)
0 6 + n(n+5) − 3

2 C2(p,q)

Table 17. The complete KK spectra for the analytic non-supersymmetric AdS4 solutions of D = 11
supergravity (left) and massive type IIA supergravity (right) that respectively uplift from critical
points of D = 4 N = 8 SO(8) and ISO(7) supergravities, with residual symmetry groups larger
than SU(3). For each KK field of spin s, its squared mass M2L2 is given at all KK level n. The
spectra also depend on the quadratic Casimir operators C2 specified in the text. The scalar spectra
marked with (∗) are conjectured.

invariant solution of type IIA. Further, closed-form formulae can be given for the masses
at all KK levels, for this and the other solutions, as we will see momentarily.

The spectra of the N = 1 solutions reported in sections 3 and 4 exhibit significant
degeneracy, in the sense that all OSp(4|1) supermultiplets of the same type, at the same
KK level n, and with same SU(3) or G2 quantum numbers [p, q], all have the same conformal
dimension E0. However, individual states with the same spin within the same OSp(4|1)
supermultiplet necessarily have different masses, as their conformal dimensions must differ
by one (see table 1). Obviously, this restriction does not affect the non-supersymmetric
solutions, as the states do not fill out OSp(4|1) supermultiplets in the first place. In fact,
for these N = 0 cases the spectra show an even larger degeneracy: states at the same KK
level, with the same spin and the same G quantum numbers, all have the same mass.

This high degeneracy leads to the existence of closed-form formulae for the mass spectra
of these solutions, as already announced above. Closed formulae were given in [25, 53] for
the KK graviton spectra of all these solutions. A mass formula has been similarly given
for the KK scalar spectrum of the G2 solution [23]. For this solution, the same scalar mass
formula has been shown [23] to also fit the KK vector spectrum given in [20] up to KK level
n = 2. Now, we have derived mass formulae for the vector spectra of all other solutions
using the data in tables 14 and 15 of [20]. For our new fermionic results, we have also been
able to deduce closed-form mass formulae. Table 17 summarises all of these. The D = 11
and IIA graviton spectra listed on the table reproduce the corresponding entries in table
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2 of [25] and equation (3.1) of [53], respectively, with the following dictionary of quantum
numbers. For the D = 11 SO(7)v solution, nhere = nthere, phere = kthere, qhere = rhere = 0;
for the SO(7)c solution, nhere = rhere = nthere, phere = qhere = 0; and for the SU(4)c
solution, nhere = nthere, phere = rthere, qhere = 0, rhere = nthere − rthere. For the type IIA
gravitons we have, for the SO(7) solution, nhere = nthere, qhere = `there, phere = rhere = 0;
for the SO(6) solution, nhere = nthere, qhere = `there, phere = rhere = 0; and for the G2
solution, nhere = phere = nthere, qhere = 0. The KK scalar and vector formulae for the
IIA G2 solution have been imported from (18) of [23] with nhere = `there, phere = n1 there,
qhere = n2 there. All other mass formulae in table 17 are new.

As is apparent from the table, a pattern emerges. The squared mass of a state of spin
s at KK level n, with Dynkin labels [p, q, r] under SO(7) or SU(4) ([q, p, r] for SO(6)), or
[p, q] under G2, is given by

M2L2 = γs + αn(n+ d− 1)− β C2 . (5.1)

Here, d = 7 in M-theory and d = 6 in type IIA, as usual. Also, γs is a constant, the same
for all solutions, that only depends on the spin s of the field in question: γ2 = 0, γ3/2 = 9

2 ,
γ1 = 6, γ1/2 = 15

2 and, for the G2 solution, γ0 = 6 as follows from [23]. The positive
constant α only depends on whether the solution is a solution in M-theory (α = 3

4) or type
IIA (α = 1). The positive constant β is the same for all solutions with the same symmetry
in both M-theory and type IIA, with β = 6

5 for the SO(7) solutions and β = 3
2 for the

SO(6) ∼ SU(4) solutions. The IIA G2 solution happens to have β = 3
2 as well. Finally, C2

is the eigenvalue, normalised as indicated in footnote 2, of the quadratic Casimir operator
in the [p, q, r] representation for SO(7) or SU(4),

SO(7) : C2(p, q, r) = 1
8 [4p(p+ 5) + 8q(q + 4) + 3r(r + 6) + 8pq + 4pr + 8qr] , (5.2)

SU(4) : C2(p, q, r) = 1
8 [3p(p+ 4) + 4q(q + 4) + 3r(r + 4) + 4pq + 2pr + 4qr] , (5.3)

(or in the representation [q, p, r] for SO(6), with CSU(4)
2 (p, q, r) = CSO(6)

2 (q, p, r)) for the
solutions with those residual symmetry groups. For the G2 solution of type IIA, C2 is the
[p, q] quadratic Casimir eigenvalue (3.5).

Although we have not computed the KK scalar spectra for the SO(7) and SO(6) ∼
SU(4) solutions, and to do so is beyond the scope of this paper, it is natural to assume
that these will follow the rigid pattern shown by table 17 and equation (5.1), as the KK
scalar spectrum [23] of the G2 solution does. Assuming that the KK scalar masses for the
other solutions also take on the form (5.1), only by choosing γ0 = 6 and letting β follow
the pattern above, are the known spectra at KK level n = 0 [51, 57] reproduced. Level
n = 0 does not fix the coefficient α, but it is natural to assume that this coefficient will
follow the same pattern as fields of all other spins. Following this logic, one arrives at the
KK scalar mass formulae marked with (∗) in table 17. For the type IIA SO(7) solution,
the proposed mass formula reproduces the G2-singlet masses at KK level n = 2 given in
table 22 of section 6.2 below.
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[0, 0] [0, 1]
(s = 2)× 1 (s = 1)× 1
(s = 3/2)× 1 (s = 1/2)× 1
(s = 1/2)× 1
(s = 0)× 2
[1, 0]
(s = 3/2)× 1
(s = 1)× 2
(s = 1/2)× 2
[2, 0]
(s = 1/2)× 1
(s = 0)× 2

Table 18. States at KK level n = 0 for the N = 0 G2-invariant AdS4 solution of type IIA.

[0, 0] [0, 1]
(s = 3/2)× 1 (s = 3/2)× 1
(s = 1)× 2 (s = 1)× 2
(s = 1/2)× 1 (s = 1/2)× 2

(s = 0)× 2
[1, 0] [1, 1]
(s = 2)× 1 (s = 1)× 1
(s = 3/2)× 2 (s = 1/2)× 2
(s = 1)× 2 (s = 0)× 1
(s = 1/2)× 3
(s = 0)× 3
[2, 0]
(s = 3/2)× 1
(s = 1)× 3
(s = 1/2)× 3
(s = 0)× 1
[3, 0]
(s = 1/2)× 1
(s = 0)× 2

Table 19. States at KK level n = 1 for the N = 0 G2-invariant AdS4 solution of type IIA.
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[0, 0] [0, 1] [0, 2]
(s = 1/2)× 1 (s = 3/2)× 1 (s = 1/2)× 1
(s = 0)× 2 (s = 1)× 3 (s = 0)× 2

(s = 1/2)× 3
(s = 0)× 1

[1, 0] [1, 1]
(s = 3/2)× 1 (s = 3/2)× 1
(s = 1)× 3 (s = 1)× 3
(s = 1/2)× 3 (s = 1/2)× 4
(s = 0)× 1 (s = 0)× 3
[2, 0] [2, 1]
(s = 2)× 1 (s = 1)× 1
(s = 3/2)× 2 (s = 1/2)× 2
(s = 1)× 2 (s = 0)× 1
(s = 1/2)× 4
(s = 0)× 5
[3, 0]
(s = 3/2)× 1
(s = 1)× 3
(s = 1/2)× 3
(s = 0)× 1
[4, 0]
(s = 1/2)× 1
(s = 0)× 2

Table 20. States at KK level n = 2 for the N = 0 G2-invariant AdS4 solution of type IIA.
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[0, 1] [0, 2]
(s = 1)× 1 (s = 1)× 1
(s = 1/2)× 2 (s = 1/2)× 2
(s = 0)× 1 (s = 0)× 1

[1, 0] [1, 1] [1, 2]
(s = 1/2)× 1 (s = 3/2)× 1 (s = 1/2)× 1
(s = 0)× 2 (s = 1)× 3 (s = 0)× 2

(s = 1/2)× 4
(s = 0)× 3

[2, 0] [2, 1]
(s = 3/2)× 1 (s = 3/2)× 1
(s = 1)× 3 (s = 1)× 3
(s = 1/2)× 3 (s = 1/2)× 4
(s = 0)× 1 (s = 0)× 3
[3, 0] [3, 1]
(s = 2)× 1 (s = 1)× 1
(s = 3/2)× 2 (s = 1/2)× 2
(s = 1)× 2 (s = 0)× 1
(s = 1/2)× 4
(s = 0)× 5
[4, 0]
(s = 3/2)× 1
(s = 1)× 3
(s = 1/2)× 3
(s = 0)× 1
[5, 0]
(s = 1/2)× 1
(s = 0)× 2

Table 21. States at KK level n = 3 for the N = 0 G2-invariant AdS4 solution of type IIA.

Except for this minor caveat on the KK scalar sector, table 17 thus gives the masses
in the complete KK spectrum for all the non-supersymmetric AdS4 solutions under con-
sideration in this section. Together with the table, the complete spectra are characterised
by the representation content under the relevant residual symmetry group G, obtained as
described above. For example, the mass formulae given in table 17 for the D = 11 SO(7)v
and SO(7)c solutions are identical. But the KK spectra of these two solutions are not the
same: they differ in their SO(7)-representation content. For the N = 0 G2 solution, the
G2 content of the KK spectrum has been summarised up to KK level n = 3 in tables 18–21
above. In these tables, each cell lists the states with a certain spin s0 and the number
m of them (in the format (s = s0) × m), in an allowed representation [p, q] of G2. The
corresponding masses follow from table 17. For example, table 20 indicates the existence
of one vector, two spin-1/2 fermions and one scalar in the 189 of G2, with masses 14, 35

2
and 14, respectively, at KK level 2.
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6 Discussion

We have derived from ExFT the KK fermionic mass matrices for a class of AdS solutions
of string and M-theory that uplift on spheres from maximal gauged supergravity. We have
focused on E7(7) ExFT, but similar mass matrices can be derived for other instances of
ExFT with other duality groups. We have also used these mass matrices to obtain the
spectrum of KK fermions about some concrete AdS4 solutions of M-theory and massive
type IIA supergravity. These results, together with previously known sectors of the bosonic
spectra, have allowed us to give the complete spectrum for some N = 1 and some non-
supersymmetric solutions in this class.

6.1 A more general pattern for the conformal dimensions

A generic formula, (1.1), exists for the conformal dimensions of the OSp(4|1) supermulti-
plets present in the KK spectra of the N = 1 AdS4 solutions of M-theory and type IIA
that we have covered in this work. The expression (1.1) can be further generalised to
account for all the spectra known so far of supersymmetric D = 11 and type IIA AdS4
solutions that uplift from the SO(8) or ISO(7) maximal supergravities. Consider an AdS4
solution in this class preserving N supersymmetries, invariant under a residual symmetry
group G ⊂ SO(8) in D = 11 or G ⊂ SO(7) in type IIA. We find that the dimension E0
of an OSp(4|N ) supermultiplet3 in the KK spectrum of this solution, with superconformal
primary of spin s0 and arising at KK level n, turns out to be given generically by

E0 = s(2)
0 −

1
2 +

√
9
4 + s(2)

0 (s(2)
0 + 1)− s0(s0 + 1) + αn(n+ d− 1) +Q2 . (6.1)

Here, n(n+ d− 1) is the eigenvalue of the scalar Laplacian on Sd, with d = 7 for D = 11
and d = 6 for type IIA; α is a solution-dependent constant; Q2 is a solution-dependent
homogeneous quadratic polynomial in the integer Dynkin labels of G; and

s(2)
0 =


1
2 (4−N ) , if 1 ≤ N ≤ 4
0 , if 4 ≤ N ≤ 8

(6.2)

is the spin of the superconformal primary of any of the Osp(4|N ) supermultiplets containing
a graviton as its highest spin state. For N = 1 supersymmetry, the massless (MGRAV,
in the notation of table 1) or generic (GRAV) graviton supermultiplets have s(2)

0 = 3
2 ,

and (1.1) is indeed of the form (6.1) with Q2 ≡ −β C2(p, q), for the particular values of
the constant β specified in the text and the relevant quadratic Casimir eigenvalues C2(p, q)
in (3.5) or (4.10).

Formula (6.1) also describes the spectrum for all the N ≥ 2 solutions in the class
we are considering. Specifically, a generic formula that agrees with (6.1) can be written
for the dimensions of the OSp(4|2) supermultiplets present in the KK spectrum of the
N = 2 SU(3)×U(1)-invariant AdS4 solutions of M-theory [40] and type IIA [28]. From the
spectral results for these solutions [14, 20], it follows that the dimension E0 of an OSp(4|2)

3The dimension of a supermultiplet is defined to be the dimension of its superconformal primary.
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supermultiplet with conformal primary spin s0, present in the spectrum at KK level n with
SU(3)×U(1) charges [p, q]y0 is

N = 2 : E0 = 1
2 +

√
17
4 − s0(s0 + 1) + αn(n+ d− 1)− 4

3 C2(p, q) + 1
2 y

2
0 . (6.3)

Here, C2(p, q) is again the SU(3) Casimir eigenvalue (4.10), and now d = 7, α = 1
2 for the

D = 11 solution [40] and d = 6, α = 2
3 for the type IIA one [28]. With these definitions, (6.3)

agrees with the expressions provided in [14, 20] for the various OSp(4|2) supermultiplets,
including the hypermultiplets. In order to compare (6.3) with the expressions provided in
those references recall that N = 2 (massless, short and long) graviton, (short and long)
gravitino, (massless, short and long) vector multiplets, and hypermultiplets respectively
have s0 ≡ s(2)

0 = 1, s0 = 1
2 , s0 = 0 and s0 = 0. Since (massless, short or long) N = 2

graviton multiplets have s(2)
0 = 1, (6.3) is also of the form (6.1) with Q2 ≡ −4

3 C2(p, q)+ 1
2 y

2
0.

A similar observation holds for the N = 3 AdS4 solution of type IIA [68–70] with
SO(3)R × SO(3)F invariance. It follows from [20] that an OSp(4|3) supermultiplet with
conformal primary spin s0, present at KK level n with SO(3)R×SO(3)F quantum numbers
(j, h) has conformal dimension

N = 3 : E0 =
√

3− s0(s0 + 1) + 1
2 n(n+ d− 1) + 1

2 j(j + 1)− 3
2 h(h+ 1) . (6.4)

With d = 6, this formula indeed reproduces (4.6) and (4.7) of [20] for the (massless, short
and long) graviton and the (short and long) gravitino multiplets. These have respectively
s0 ≡ s(2)

0 = 1
2 and s0 = 0, see e.g. appendix B of [20]. Equation (6.4) also reproduces

the dimension for the (necessarily short for N = 3) vector multiplets, which have s0 = 0.
This was given in table 8 of [20]. Indeed, (6.4) reduces to E0 = 1

2(n + 2) as given in that
table upon using that (the unique) vector multiplet at KK level n has quantum numbers
j = h = 1

2(n + 2). Further, (6.4) is also of the generic form (6.1) with α = 1
2 , given

that the (massless, short, or long) N = 3 graviton multiplet has s(2)
0 = 1

2 . In this case,
Q2 ≡ 1

2 j(j + 1)− 3
2 h(h+ 1).

Finally, the dimension of the (unique) Osp(4|8) supermultiplet present at level n in
the KK spectrum [47–49] of the N = 8 Freund-Rubin solution [39] of D = 11 supergravity
is E0 = 1

2(n+ 2) (see e.g. table 9 of [71]). This may be straightforwardly rewritten as

N = 8 : E0 = −1
2 +

√
9
4 + 1

4 n(n+ d− 1) (6.5)

with d = 7. Since these Osp(4|8) multiplets all have scalar, s0 = s(2)
0 = 0, superconformal

primaries, (6.5) also conforms to the generic expression (6.1) with Q2 ≡ 0.
Of course, the formulae (1.1), (6.1) may not necessarily extrapolate to other supersym-

metric AdS4 solutions of M-theory and type IIA that still uplift from the SO(8) or ISO(7)
gaugings, but preserve other symmetry groups.

6.2 G2-singlet spectra in type IIA and consistent truncations

On a different note, table 10 of section 4.1 shows that there are no G2-singlet supermulti-
plets at KK level n = 3 for the N = 1 G2-invariant solution [54] of type IIA. The claim is
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Sol. n s= 2 s= 3
2 s= 3

2 s= 1 s= 1 s= 1
2 s= 1

2 s= 1
2 s= 0 s= 0 s= 0 s= 0 OSp(4|1) supermultiplet

N = 1, G2

0 0 1
√

6 4−
√

6 4+
√

6 MGRAV
(

5
2

)
, CHIRAL

(
1+
√

6
)

1 3 12 6 3 GINO (4)

2
√

53
3

47
3 −

√
53
3

47
3 +

√
53
3 CHIRAL

(
1+
√

53
3

)
N = 0, SO(7)

0 0 3
2

√
3
5 − 6 − 6

5 −
1 7

2

√
3
5 12 24

5
3
2

√
23
5 −

2 1
2

√
367

5 20 64
5 −

N = 0, G2

0 0 3√
2 − 6 6 −

1
√

21
2 12 12 3

√
6

2 −
2

√
43
2 20 20 −

Table 22. All G2-singlet states in the complete KK spectra of the AdS4 solutions of type IIA
indicated on the left-most column. The KK level n at which each state arises, its spin 0 ≤ s ≤ 2,
and the OSp(4|1) supermultiplet with the given dimension to which it belongs, if appropriate, are
indicated. Each entry gives the mass (squared, m2L2, for the bosons and linear, |mL|, for the
fermions) for each state in units of the AdS4 radius L. These G2-singlet spectra are also the spectra
of the D = 4 N = 2 theory of [72] around each of its three AdS vacua.

in fact stronger: the number of G2 singlets in the KK spectrum of this solution is finite,
there are no singlets for n ≥ 3, and all of them appear at levels n = 0, 1, 2. This can
be seen by branching the SO(7) representations in table 1 of [20] under G2 ⊂ SO(7) for
all n. The same holds for the non-supersymmetric G2-invariant solution of type IIA (see
section 5), relative to the individual G2-singlet KK states as there is obviously no supermul-
tiplet structure in that case. For the non-supersymmetric SO(7)-invariant solution of type
IIA, something similar happens: its complete KK spectrum comes in an infinite number of
SO(7) representations, but the number of singlets under the branching SO(7) ⊃ G2 is also
finite. The complete spectrum of G2-singlet states for each of these three AdS4 solutions
of type IIA is summarised in table 22. For the N = 1 G2 solution, the states combine into
the OSp(4|1) supermultiplets indicated in the table, as follows from tables 7–9.

This feature of the KK spectra for these three AdS4 solutions was expected on the
following grounds. Massive type IIA supergravity admits a fully non-linear consistent
truncation on S6 down to a certain D = 4 N = 2 gauged supergravity coupled to a
vector multiplet and a hypermultiplet [72]. This truncation is obtained by expanding the
type IIA fluxes along the forms that define the canonical, homogeneous nearly-Kähler
structure on S6 with D = 4 field coefficients, and is in fact valid for any nearly-Kähler six-
dimensional manifold [73]. This D = 4 N = 2 theory [72] is not contained in D = 4 N = 8
ISO(7) supergravity. Rather, these two theories overlap [29] in the G2-invariant sector [35]
of the latter. The N = 8 supergravity captures the modes at KK level n = 0 in the
compactification of massive IIA on S6 and reconstructs their full non-linear interactions.
It was argued in [29] that the N = 2 theory should do likewise for the G2-singlet states up
the KK towers around any of its three vacua (thereby identified with the three vacua of
the N = 8 ISO(7) theory that appear in table 22).

For this picture to hold, the number of G2-singlets in the KK spectra about any of
these solutions should be finite, precisely as we find. Further, the scalar spectrum for these
solutions computed here and in [23] from ExFT, precisely matches the spectrum computed
within the N = 2 theory of [72] in table 1 of [29]. Table 22 thus gives the full spectrum,
including the fermions, of the N = 2 theory of [72] around each if its three vacua, further
identifying the KK level at which each mode arises.
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The situation in D = 11 is similar, not with respect to G2, but with respect to SU(4)c
or SU(4)s. From section 4.1, the KK spectrum of the N = 1 G2 solution of D = 11 super-
gravity can be seen to include an infinite number of G2-singlet states, unlike its type IIA
counterpart. InD = 11, it is instead the KK spectra of theN = 8 SO(8), theN = 0 SO(7)c,
and theN = 0 SU(4)c solutions that contain a finite number of SU(4)c-singlet states. These
states are retained in a D = 4 N = 2 consistent truncation of D = 11 supergravity on S7

(or any other Sasaki-Einstein manifold) [74, 75], which is different from the N = 8 trun-
cation [27] to the SO(8)-gauged supergravity [31], but overlaps with it [51] in the SU(4)c-
invariant sector of the latter. Thus, the truncation of [74, 75] also retains higher KK modes
in the D = 11 case. The KK spectrum of the N = 8 SO(8) point, and only of this point,
also contains a finite number of modes when branched under SU(4)s. These are simply the
states contained in the N = 2 supergravity multiplet. The resulting truncation to minimal
D = 4 N = 2 gauged supergravity [64] agrees with that discussed more generally in [76].

Other consistent truncations of D = 11 [9] and type IIB [12] supergravities down to
lower-dimensional gauged supergravities are known that, similarly to [72, 74, 75], keep
singlet modes up the corresponding KK towers and reconstruct their non-linear interac-
tions [77–82]. The systematics of this type of “massive mode truncations” has been recently
elucidated [83, 84] using duality-covariant techniques [1–7], yet another demonstration of
the power of these methods for supergravity applications.
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A KK fermion spectra of selected AdS4 solutions

Our conventions for D = 11 [9] and D = 4 N = 8 SO(8) [31] supergravity are those of [85].
For massive type IIA supergravity [11] and D = 4 N = 8 ISO(7) supergravity we follow [29]
and [35], respectively. For generic conventions on D = 4 N = 8 gauged supergravity [30]
we follow [29]. See appendix A of [20] for the explicit expressions of the embedding tensors
that appear in the fermionic mass matrices given in section 2 of the main text. See also
the appendix of [20] for explicit expressions of the SO(8) or SO(7) generators (TN )Λ

Σ in
our conventions.

We have employed our mass matrices to compute the first few levels of the KK fermion
spectrum of some AdS4 solutions of D = 11 and massive IIA supergravity that uplift from
critical points of SO(8) or ISO(7) D = 4 N = 8 supergravities. For concreteness, we
have focused on solutions that preserve at least SU(3) symmetry. The D = 4 critical
points of SO(8) supergravity in this sector were classified in [38], and their D = 11 uplift is
known [39–45]. The entire KK spectrum of the N = 8 SO(8)-invariant solution [39] has long
been known [47–49], and our results reproduce their KK fermion spectrum. The complete
spectrum of the N = 2 SU(3) × U(1) solution [38, 40] is now also known [14, 20, 50]. We
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√
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√
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2

(22)
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2
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2

(81)
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3(128) ,
√

3
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(77)

2
√

43
2

(1)
,
√

37
2

(21)
,
√

31
2

(42)
,
√

29
2

(108)
,
√

11(256),
√

19
2

(231)
,
√

13
2

(77)
,
√

7
2

(182)
,
√

11
2

(378)

Table 23. The KK spin-1/2 spectra up to KK level n = 2 about the massive type IIA AdS4 solution
that uplifts on S6 from the N = 0 G2-invariant vacuum of D = 4 N = 8 ISO(7) dyonically-gauged
supergravity.

again reproduce the KK gravitino and spin-1/2 spectra for this solution. For all other
solutions, only the spectrum of KK gravitons [86] and vectors [25] are known, and our
fermionic spectra are new.

The results are summarised for the KK gravitini at levels n = 0, 1, 2 in table 24. The
table lists the KK gravitini linear masses without sign, |ML|, normalised to the corre-
sponding AdS4 radius, L =

√
−6/V . Here, V < 0 is the cosmological constant of each

AdS4 critical point. The eigenvalues in the table appear as |ML|(p), where p is a positive
integer that denotes the multiplicity. Recall that the scaling dimension of a gravitino [87]
or a spin-1/2 fermion [88] on AdS4 of mass |ML| is given by

∆ = 3
2 + |ML| . (A.1)

This formula has been used throughout to convert the KK fermion mass eigenvalues to
the conformal dimensions reported in the main text. We note that, for the N = 2 AdS4
solution [38, 40], one needs to take (A.1) without absolute value and with negative mass,
ML < 0 for some spin-1/2 states, in order to reproduce the spectrum that can be deduced
from the bosonic calculation of [14, 20]. For completeness, recall that for gravitons and
scalars the relation between dimension and mass is

∆(∆− 3) = M2L2 , (A.2)

while for vectors one has
(∆− 1)(∆− 2) = M2L2 . (A.3)

For the massive type IIA solutions we have again focused on the solutions that preserve
the SU(3) subgroup of SO(7). These solutions have been classified in D = 4 N = 8 ISO(7)
supergravity [35], and uplifted to ten dimensions [28, 46, 69, 70]. The bosonic spectrum
for all these solutions is known at KK level n = 0 [35], and at all KK levels n ≥ 0 for
the gravitons [53], vectors [20] and, for the N = 2 SU(3) × U(1) [20] and N = 0 G2 [23]
solutions in this class, also for the scalars. The complete N = 2 spectrum for the N = 2
SU(3)×U(1) solution is in fact known [20], and we reproduce the fermionic sector. For all
other solutions, the fermion spectra are new. As a sample of our results for the spin-1/2
spectrum, we include table 23 with the eigenvalues up to KK level n = 2 for the N = 0 G2
solution in the ISO(7) gauging. The results for the KK gravitino masses up to level n = 2
are summarised in table 25. The format and conventions are the same as table 24.
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