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1 Introduction

It is well known that Quantum Chromodynamics (QCD) is successful in describing strong
interactions. In the high energy region, the correlation functions could be well determined
by perturbative QCD. However, the situation becomes more complicated in the low energy
region, as the strong coupling constant increases when the energy decreases. Fortunately,
at the very low energy region E �Mρ [Mρ being the mass of the ρ(770)], the spontaneous
chiral symmetry breaking of QCD generates the pseudoscalar octet of Goldstone bosons,
which are treated as degrees of freedom in the effective field theory (EFT) of QCD: chiral
perturbation theory (χPT) [1, 2]. However, χPT is not the EFT in the intermediate
energy region, Mρ . E . 2GeV, where it is populated by dense spectra of resonances.
Resonance chiral theory (RχT) is a reasonable approach to extent the working regime of
χPT by including the resonances as new degrees of freedom [3–6]. The construction of the
lagrangian is guided by Lorentz invariance and by chiral and discrete symmetries, i.e. C-,
P-parity conservation. The lack of a coupling that may guide a perturbative expansion
in the calculations of the amplitudes, is compensated by a model of the large-NC setting
(being NC the number of colours) [7–9]. As in χPT, this approach produces the relevant
operators in the lagrangian, in terms of Goldstone bosons, resonances and external fields,
but leaves undetermined their coupling constants.
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One may use experimental data to obtain information of the couplings. Meanwhile,
there is one theoretical tool that has proven efficient in this task: one can extract infor-
mation on the coupling constants by matching the perturbative Green functions of QCD
currents, using the operator product expansion (OPE) at leading order, with those con-
structed in the RχT framework [10–16]. Actually, RχT can also match, by construction,
with χPT by integrating out the resonances in the Lagrangian [4, 17], allowing to relate
their coupling constants, too. Indeed RχT is successful in dealing with the lightest reso-
nances and their interaction with the lightest pseudoscalars. It has been well applied in
the study of hadron tau decays [18–24], two-photon transition form factors [25–27], and
e+e− annihilation in the nonperturbative regime of QCD [28, 29].

Low-energy processes with many hadrons in the final state involve final-state interac-
tions (FSI) that are notoriously difficult to deal with in a model independent way. The
use of dispersive approaches to deal with them is possible in some instances, namely when
good phenomenological data are available (see for instance refs. [30–36] for some recent
work). In the framework of RχT, this is also achievable as we did in ref. [29], where both
vector-meson dominance and the anomalous terms were considered in a coherent anal-
ysis of the e+e− → π+π−π0, π+π−η channels, in the energy region populated by many
hadron resonances up to E . 2.3GeV. Here we will revisit that work and extend it to two
pseudoscalar production in the light of the new data.

Recent interest on e+e− annihilation into two and three pesudoscalars is driven by their
contribution to the anomalous magnetic moment of the muon aµ = (gµ− 2)/2, with gµ the
muon Landé factor. The theoretical prediction of aµ has become a major tour de force in
the last years because, on the experimental side, it has been measured with high precision,
aexp
µ = 11659208.9(6.3) × 10−10 [37, 38], and there seems to be a 3.3σ [38] or 3.7σ [39]

discrepancy from the standard model (SM) prediction. This fact paves the possibility of
bringing out new physics contributions. Within the standard model [39, 40], the most im-
portant contribution, the electromagnetic one, is accurately calculated up to tenth-order α5

e,
aQED
µ = 11658471.8931(104)×10−10, with very small uncertainty [41, 42]. The electroweak

contribution at the two-loop level is also well determined as aEW
µ = 15.36(0.1)× 10−10 [43–

46]. The hadronic contribution is considered as the major source of uncertainty and has two
components: hadronic light-by-light scattering (HLBL) and hadronic vacuum polarization
(HVP). The HLBL cannot be directly estimated from experimental input, and a combina-
tion of different theoretical models has estimated it as aHLBL

µ = 9.2(1.8) × 10−10 [39, 47–
49]. The lattice calculations on HLBL and HVP can be found in, e.g. refs. [50–53]. A
comprehensive amplitude analysis on γγ → ππ,KK̄ is done in refs. [54–57]. They are
indeed the constraints on HLBL where the photons are real. HVP is the largest hadronic
contribution and it is related with the cross section of e+e− → anything throughout
causality and unitarity.1 The present value for the leading order HVP contribution is
aHVP,LO
µ = 694.0(4.0) × 10−10 [60]. And the next-to-leading order and next-to-next-to-

leading order HVP corrections are derived by considering also higher order hadronic loops,
aHVP,NLO
µ = −9.83(0.07) × 10−10 [61], aHVP,NNLO

µ = 1.24(0.01) × 10−10 [62]. The com-

1We note that in the early works [58, 59], the upper limit of HVP contribution has been given.
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putation of the HVP contribution relies heavily on the available experimental data and,
consequently, its improvement will come from the accurate measurement of the electron-
positron cross-section.

Comparing the theoretical predictions from the SM with the experimental measure-
ment, there is still a discrepancy, as commented above. There are lots of experimental data
available. However, there are discordances among different collaborations, even those with
the highest statistics datasets. The study of three pseudoscalar production was carried
out in ref. [29], but recently new experimental measurements of e+e− → π+π−π0, π+π−η

have become available. SND [63] has given a new measurement of e+e− → π+π−π0 in the
energy range 1.05 − 2.00GeV. BESIII [64] provided a measurement for e+e− → π+π−π0

in a wide energy range between 0.7 and 3.0GeV using the Initial State Radiation (ISR)
method. SND also measured e+e− → ηππ channel with η in η → γγ mode [65] and η → 3π0

mode [66], and a combined results of these two modes were provided in [66]. CMD3 [67]
also measured e+e− → ηππ in η → γγ mode, and the cross section values combined with
its previous measurements were provided. Very recently, BESIII measured e+e− → η′ππ

above 2GeV [68]. Besides, there are also new experimental measurements for the two pseu-
doscalar cases. BaBar [69] measured e+e− → π+π− from threshold up to 3GeV. KLOE
has done three precise measurements of e+e− → π+π− [70–72], using ISR below 1GeV,
and a combined results with all these three measurements were provided in ref. [73]. There
are also precise measurements below 1GeV, such as, SND [74], BESIII [75] and CLEO [76].
Before 2008, there are also lots of experiment datasets, CMD2 [77–79], DM2 [80] and CMD
& OLYA [81]. In contrast, the e+e− → K+K− process has a considerably shorter history
starting from SND [82] in 2001. Later, SND updated the measurements in 2007 [83], and
the most recently one in 2016 [84]. In 2019, a high precision measurement has been given
by BESIII [85]. There are also some other measurements from BarBar [86], CMD2 [87]
and CMD3 [88].

In this paper, we give a coherent analysis of e+e− annihilation into two pseudoscalars
π+π−,K+K− and three pseudoscalars π+π−π0, π+π−η based on the former work [29],
combined with all the recent experimental measurements. In section 2 we will briefly
update the theoretical framework and give the amplitudes calculated by RχT. In section 3,
we fit the amplitudes to the experimental data up to 2.3GeV. In section 4, the leading
order HVP contribution to g − 2 is estimated. Higher-order hadronic contributions are
considered in section 5. Finally, we collect our conclusions in section 6. An appendix
collects detailed expressions for the involved form factors and decay widths.

2 Theoretical framework updates and notations

2.1 RχT and further improvements on the form factors

Massless QCD exhibits a chiral symmetry that rules its effective field theory at low energy.
χPT, valid at E �Mρ, provides the interaction between the lightest octet of pseudoscalar
mesons, and of these with external currents. At higher energies we need to take into account
the hadronic resonance states, and a successful phenomenological approach is provided by
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RχT, which aspects of interest for our case we briefly collect here. We follow the language
and notation of ref. [5].

The structure of the lagrangian has, essentially, three pieces:

LRχT = LGB + LV
kin + LV−GB . (2.1)

The first piece involves interaction terms with Goldstone bosons that cannot be generated
by integrating out the vector resonance states. They are characterized by a perturbative
expansion in terms of momenta (and masses), as in χPT. LV

kin involves the kinetic term
of the vector resonance states and LV−GB the interaction between Goldstone bosons and
vector resonance fields. For the processes that we study in this work only the vector
resonance fields will be needed. All of these lagrangians include also external fields coupled
to scalar, pseudoscalar, vector, axial-vector or tensor currents. The lowest even-intrinsic-
parity O(p2) of the LGB Lagrangian is given by

LGB
(2) ≡ L

χPT
(2) = F 2

4 〈uµu
µ + χ+〉 , (2.2)

being F the decay constant of the pion and 〈. . .〉 indicates the trace in the SU(3) space.
The leading Wess-Zumino-Witten term describing the anomaly with odd-intrinsic-parity is
of O(p4) [89, 90]. The explicit expression of interest for our work is given by

LGB
(4) = i

NC

√
2

12π2F 3 εµνρσ 〈∂
µΦ∂νΦ∂ρΦvσ〉+ · · · , (2.3)

where vσ is the external vector current and Φ the multiplet of Goldstone bosons. Higher
orders of the LGB lagrangian will not be considered, as we assume that their couplings are
dominated by resonance contributions.2

The kinetic term of the vector resonance field is given by

LV
kin = −1

2
〈
∇λVλµ∇νV νµ

〉
+ 1

4M
2
V 〈VµνV µν〉 , (2.4)

Here the resonances are collected as SU(3)V octets and have the corresponding proper-
ties under chiral transformations. The Lagrangian that involves the interaction between
Goldstone bosons and vector resonances, LV−GB, couples the later octets with a chiral ten-
sor constituted by the pseudoscalar nonet and external fields. Hence these chiral tensors
obey a chiral counting O(pn). This allows us to assign a label n to the different pieces
as LV ...(n) , where the numerator indicates the resonance fields in the interaction terms. We
will consider

LV−GB = LV
(2) + LV

(4) + LVV
(2) . (2.5)

For instance, in the antisymmetric formulation for the spin-one vector resonances that
we use,

LV
(2) = 〈Vµν χµν(2) 〉 ,

χµν(2) = FV

2
√

2
fµν+ + i

GV√
2
uµ uν (2.6)

2Up to O(p4) at least, this setting depends on the realization of the spin-1 resonance fields. In ref. [4],
it was proven that this assumption is correct if one uses the antisymmetric formulation for those fields, as
we do.
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where FV and GV are coupling constants not determined by the symmetry. The rest of
terms in eq. (2.5) are collected in ref. [5] for the even-intrinsic-parity terms and refs. [11,
19, 29] for those of odd-intrinsic parity. The coupling constants of the interaction terms of
LV−GB could be extracted from the phenomenology involving those states. As commented
in the introduction the matching between the leading order in the OPE expansion of specific
Green functions of QCD and their expressions within RχT is also a useful tool that has
been employed in the bibliography [10–16]. We will implement this procedure as far as
it helps in our task. In particular we will use the relations between couplings specified
in ref. [29].

However, the large energy region of study cannot be described fully with only one
multiplet of vector resonances Vµν . The lightest one is situated around Mρ, i.e. under
1GeV. Two other vector multiplets populate the interval 1GeV . E . 2GeV, that we will
call V ′µν and V ′′µν . Their couplings to the pseudoscalar mesons will be defined with respect
to the ones of the lightest multiplet as β′ππ,β′′ππ,β′KK ,β′′KK , through their poles, as

1
M2
V − x

→ 1
M2
V − x

+
β′ππ,KK
M2
V ′ − x

+
β′′ππ,KK
M2
V ′′ − x

. (2.7)

The ρ − ω mixing, required by the e+e− → π+π− process, is reconsidered. While a
constant mixing angle δ0 is enough to describe mixing in the three pseudoscalar case as
discussed in ref. [29]: (

|ρ̄0〉
|ω̄〉

)
=
(

cos δ0 − sin δ0
sin δ0 cos δ0

)(
|ρ0〉
|ω〉

)
, (2.8)

an energy dependent mixing angle is discussed in ref. [91], although in the non-relativistic
limit and we need to generalize it to the relativistic case. The energy dependent mixing
angle could be parameterized as(

|ρ̄0〉
|ω̄〉

)
=

 cos δ MV Γρ sin δ
−(M2

V −s)+iMV (Γρ−Γω)
MV Γρ sin δ

−(M2
V −s)−iMV (Γρ−Γω) cos δ

( ∣∣ρ0〉
|ω〉

)

≡
(

cos δ − sin δω(s)
sin δρ(s) cos δ

)( ∣∣ρ0〉
|ω〉

)
, (2.9)

where
∣∣ρ0〉 , |ω〉 denote the physical states. Hence the energy dependence of the mixing

angle is driven by the resonance propagators. Here MV is the mass of the nonet of vector
resonances in the SU(3) limit. We will take MV = Mρ. For the two body final state
processes e+e− → π+π−,K+K−, we always take energy dependent mixing mechanism
according to eq. (2.9). For the three body cases, we adopt two ways. One is to take the
same energy dependent ρ−ω mixing mechanism as that of the two body case. This will be
Fit I. The other is to use the constant mixing angle δ0. This will be our Fit II. Comparison
of both fits will unveil the influence of ρ− ω mixing in the analysis of data.

2.2 Cross sections for two and three pseudoscalar final states

The amplitude for three-meson production in e+e− collisions is driven by the hadronization
of the electromagnetic current, in terms of one vector form factor only:

〈π+(p1)π−(p2)P (p3)|
(
V3
µ + V8

µ/
√

3
)
eiLQCD |0〉 = i FPV (Q2, s, t) εµναβ pν1pα2 p

β
3 , (2.10)
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being V iµ = qγµ(λi/2)q and P = π, η. The Mandelstam variables are defined as s =
(Q − p3)2, t = (Q − p1)2, with Q = p1 + p2 + p3. The cross section and amplitudes
for the three pseudoscalar cases that we are considering, namely e+e− → π+π−π0 and
e+e− → π+π−η, are quite the same as specified in ref. [29], except for a small change in
the treatment of ρ−ω mixing, as illustrated in section 2.1. The corresponding expressions
for the cross-section and the modified form factors for the three pseudoscalar cases are
collected in appendix A.

These form factors depend on several couplings of the RχT lagrangian that are not
determined by the symmetry. However, some of them or, at least, relations between them
can be established by matching Green functions calculated in this framework with their
expressions at leading order OPE expansion of QCD, as it has been commented before.
By implementing these short-distance relations our form factors satisfy both the chiral
constraints in the low-energy region and the asymptotic constraints at the high energy
limit (Q2 → ∞). Hence the only unknown couplings in these form factors will be FV ,
2g4 + g5, d2, c3 and αV [29], to be added to the β′ππ,KK and β′′ππ,KK from eq. (2.7) and the
mixing angles between the octet and singlet pseudoscalar (θP ) and vector (θV ) components,
defined also in [29].

Two-pseudoscalar final states in e+e− annihilation are given by the corresponding
vector form factor

〈P+(p1)P−(p2)|
(
V3
µ + V8

µ/
√

3
)
eiLQCD |0〉 = (p1 − p2)µ FPV (Q2) , (2.11)

with Q = p1 + p2 and P = π,K. The energy in the center of mass frame is given by
Ecm ≡

√
Q2. The cross sections σππ ≡ σ(e+e− → π+π−) and σKK ≡ σ(e+e− → K+K−)

are given by

σPP = α2
e

π

3Q2

(
1− 4m

2
P

Q2

)3/2

|FPV (Q2)|2 . (2.12)

The form factors F πV (Q2) and FKV (Q2) were thoroughly studied in ref. [92] (see also [93–95]
for alternative parameterizations) in the case of tau decays. Hence we need to include
now the new ρ− ω mixing mechanism, present in e+e− into hadrons. We also extend the
described energy region by adding heavier vector multiplets, as commented above. Their
expressions are:

F πV =
(

1 + FVGV
F 2 Q2

(
BW (Mρ,Γρ,, Q2) + β

′
ππBW (Mρ′ ,Γρ′ ,, Q

2)

+β′′ππBW (Mρ′′ ,Γρ′′ ,, Q
2)
)( 1√

3
sin θV sin δρ + cos δ

)
cos δ

− FVGV
F 2 Q2

(
BW (Mω,Γω,, Q2) + β

′
ππBW (Mω′ ,Γω′ ,, Q

2)

+β′′′ππBW (Mω′′ ,Γω′′ ,, Q
2)
)( 1√

3
sin θV cos δ − sin δω

)
sin δω

)
× exp

[ −s
96π2F 2

(
Re
[
A[mπ,Mρ, Q

2] + 1
2A[mK ,Mρ, Q

2]
])]

, (2.13)
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FKV =
(cos θV 2

2
FVGV
F 2

(
1 + 8

√
2αV

2m2
K −m2

π

M2
V

)
M2
φ

(
BW (Mφ,Γφ, Q2)

+ β
′
KKBW (Mφ′ ,Γφ′ ,, Q

2) + β
′′
KKBW (Mφ′′ ,Γφ′′ ,, Q

2))

+ X1
24

FVGV
F 2

(
1 + 8

√
2αV

m2
π

M2
V

)
M2
ω

(
BW (Mω,Γω, Q2)

+ β
′
KKBW (Mω′ ,Γω′ ,, Q

2) + β
′′
KKBW (Mω′′ ,Γω′′ ,, Q

2)
)

× exp
[
−q2

96π2F 2

(3
2Re(A[mK ,Mρ, Q

2])
)]

+ X2
24

FVGV
F 2 M2

ρ

(
1 + 8

√
2αV

m2
π

M2
V

)(
BW (Mρ,Γρ, Q2)

+ β
′
KKBW (Mρ′ ,Γρ′ ,, Q

2) + β
′′
KKBW (Mρ′′ ,Γρ′′ ,, Q

2)
)

× exp
[ −q2

96π2F 2

(
Re
[
A[mπ,Mρ, Q

2] + 1
2A[mK ,Mρ, Q

2]
]) ]

. (2.14)

The functions in eqs. (2.13), (2.14) are given by:[
BW (MV ,ΓV , Q2)

]−1
= M2

V − iMV ΓV (Q2)−Q2 ,

A
(
mP , µ,Q

2
)

= ln
(
m2
P /µ

2
)

+ 8m2
P

Q2 −
5
3 + σ3

P ln
(
σP + 1
σP − 1

)
,

σP ≡
√

1− 4m2
P /Q

2 , (2.15)

and

X1 = − 16
√

3 cos δ sin θV sin δω(Q2)− 6 cos2 δ cos 2θV + 12 sin2 δω(Q2) + 3 cos 2δ + 3 ,
X2 = − 6 cos 2θV sin2 δρ(Q2) + 16

√
3 cos δ sin θV sin δρ(Q2)

+ 6 sin2 δρ(Q2) + 6 cos 2δ + 6 , (2.16)

Notice that X1 = 12 sin2 θV and X2 = 12 in the isospin limit. The angles sin δρ,ω related
with the ρ − ω mixing are defined in eq. (2.9). The Q2 dependence of resonance widths
are a debated issue. A thorough proposal within the chiral framework was proposed in
ref. [96] for wide resonances. We will use this result for Γρ(Q2), while a parameterization in
terms of the on-shell widths, driven by the two-body phase-space decay will be employed
for Γρ′,ρ′′(Q2). The precise expressions are collected in ref. [29]. Meanwhile the rest of
resonances, that are quite narrow, will be taken constant. Notice that the two-body vector
form factors do not include more unknown couplings to those of three-body form factors.

3 Combined fit to experimental data

As we have seen RχT provides a controlled setting to extract information from experimental
data. Part of, but not all, of the couplings have been constrained by demanding that Green
functions, in this framework, match the asymptotic behaviour of QCD, within the leading
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term of the OPE expansion, in the high energy limit. The remaining coupling constants,
the mixing angles and resonance masses and on-shell widths are left to be determined from
the experimental data of cross sections and widths involving vector resonances.

The unknown couplings include FV , 2g4 + g5, d2, c3, αV , the phenomenological param-
eters, β′X and β′′X with X = π, η, ππ,KK, counting for the corresponding strength of the
couplings of the V ′ and V ′′.3 The mixing angles of the pseudoscalar singlet and octet θP ,
that of vector singlet and octet θV , and the ρ − ω mixing angle, the energy dependent
δ and/or constant δ0 are also left free. The masses and widths of resonances belonging
to heavier second and third multiplets are also fitted around the central values listed in
PDG [38].

The last thirty years of experimental work have been very fruitful getting results for
the cross-sections we are interested in, as collected in section 1. In order to get results
for our parameters we decide to fit the experimental data of cross-sections obtained by
dedicated experiments in the last twenty years, i.e. we exclude data older than 2000, with
one exception: BESIII [64] measured the cross section of e+e− → π+π−π0 with high
statistics above 1.05GeV, while it has a relatively large uncertainty below that energy.
Thus we do not fit the data points below 1.05GeV from this dataset. In addition we also
fit the PDG figures [38] for the decay widths of vector resonances whose expressions are
collected in appendix A.

Two fits are performed: Fit I uses a uniform energy dependent ρ−ω mixing according
to eq. (2.9). In Fit II, the two body final state cases take into account the energy dependent
ρ−ω mixing, while the other processes are carried out with a constant ρ−ω mixing angle,
see eq. (2.8). The comparison between cross-section data and the fit is shown in figure 1
for the three-pseudoscalar case and figure 2 for the two-pseudocalar case. The captions in
the figures collect all data used in the plots and in the fits.

The global fit includes decay widths of related resonances and their results are shown
in table 1. The reported errors are obtained, in quadrature, from two components: one
arises from the Bootstrap method by varying the central value of experimental data within
its error bar, and the other comes from the statistics with dozens of solutions which could
also fit to the experimental data sets well. The latter one is the dominant source of error
estimation. The cyan bands of all the solutions of Fit II can be found in figure 1 and
figure 2. In general, both Fit I and Fit II provide overall reasonable approximations to the
experimental figures quoted in the PDG [38].

3.1 Analysis of the results

A comparison between our fitted parameters and those of Fit 4 in ref. [29] is shown in
table 2. We also compare the masses and widths of the resonances with those listed in
PDG [38]. The fitting procedure is carried out with MINUIT [110].

The quoted errors in the fitted parameters are provided by the Bootstrap method. In
general, the parameters in Fit I and Fit II are consistent with those of Fit 4 in ref. [29],

3Notice that X = π, η appear in the three pseudoscalar final state π+π−π0 and π+π−η, respectively and
X = ππ,KK denote the two pseudoscalar final state π+π−and K+K−, respectively.
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Figure 1. Fit to the cross sections of e+e− → πππ, ππη of Fit I (dashed blue line) and Fit II
(solid black line). The cyan bands corresponds to the uncertainty of Fit II. The last graph is about
ηππ channel and the others for πππ. The experimental data displayed for e+e− → πππ are from
DM1 [97], ND [98], DM2 [99], CMD2 [100–102], SND [63, 103, 104], Babar [105], and BESIII [64].
The experimental data displayed for e+e− → ππη are from DM2 [106], ND [98], CMD2 [107],
Babar [108], SND [65, 66, 109], and CMD3 [67].

within a deviation of about 10%. FV , 2g4+g5, θV , δ0 and/or δ are mainly determined by the
experimental data under 1.05GeV, where it has higher statistics and precision. However,
the joint fit including the e+e− → K+K− process constrain θV strongly. This can be
understood from the form factor in eq. (2.14), where the cross section around the φ peak
increases with the descent of θV . In contrast, the cross section of e+e− → π+π−π0 around
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Figure 2. Fit to the cross sections of e+e− → π+π−,K+K− of Fit I (dashed blue line) and
Fit II (solid black line). The cyan bands correspond to the uncertainty of Fit II. The top four
graphs are for e+e− → π+π− ,the bottom two graphs are for e+e− → K+K−. The experimental
data displayed for e+e− → π+π− are from BaBar [69], KLOE [70–73], SND [74], BESIII [75],
CLEO [76], CMD2 [77–79], DM2 [80] and CMD & OLYA [81]. The experimental data displayed
for e+e− → K+K− are from SND [82–84], BaBar [86], CMD2 [87], CMD3 [88] and BESIII [85].

the φ peak decreases when θV goes down, which could be deduced from the expressions in
appendix A. As a consequence, θV is about 1◦ larger than that of ref. [29]. The inclusion of
e+e− → K+K− process also constrains αV , the higher order correction to the FV coupling
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arising from SU(3) symmetry breaking. The cross section of e+e− → K+K− increases
with rising αV . To confront the theoretical predictions to the experimental data of the
cross section of e+e− → K+K−, αV is fixed to be negative. Notice that αV is small as it
is higher order correction.

The energy dependent ρ − ω mixing angle δ is determined by the e+e− → π+π−

process. From eq. (2.13), the cross section of e+e− → π+π− is mainly determined by
δ, since FVGV /F 2 = 1 is constrained by the high energy behaviour and θV could be
determined as above. The two mechanisms of ρ − ω mixing adopted in Fit I and II have
almost no effects on the three body final state case. There is only a very little difference
reflected around the ρ peak in the e+e− → π+π−π0 process. In the energy region around
their masses, ρ and ω mix with a relative phase that results in a larger mode of |F πV |2.
Hence the magnitude of FV and 2g4 + g5 are smaller in Fit I in comparison to Fit II and
the results in ref. [29].

The parameters related with the resonance multiplets are almost the same in Fit I and
Fit II, but some of them are different from those of ref. [29]. They are mainly determined
by the energy region above 1.0GeV. Both e+e− → π+π− and e+e− → ηπ+π− processes are
sensitive to the masses and widths of ρ′ and ρ′′ in this energy region. The e+e− → π+π−

data gives relative smaller masses and larger widths of ρ′ , compared with those provided
by the e+e− → ηπ+π− process. Hence the combined fitted ρ′ mass is about 30MeV smaller
and the ρ′ width is about 100MeV larger than those in ref. [29]. The mass and width of ρ′′

also changes slightly. Consequently, the relative weights of the e+e− → ηπ+π− process β′η
and β′′η have sizable changes compared with those in ref. [29]. Meanwhile, the strengths of
the e+e− → π0π+π− process β′π and β′′π are similar. Notice that in the two-body processes
e+e− → π+π− and e+e− → K+K−, the parameters β

′(′′)
ππ and β

′(′′)
KK turn out to be very

small with magnitudes . 0.2, as expected by lowest meson dominance [10, 111–114].
Since d2, c3 and θP are mainly correlated with the e+e− → ηπ+π− process, they also

have sizable changes, while masses and widths of other resonance multiplets are quite the
same. In summary, and as shown in table 2, the fitted masses and widths of heavier mul-
tiplets are closer to the experimental average values in PDG [38], due to a combination of
updated experimental measurements and the constraints from π+π− and K+K− processes.

Notice however, that the masses and widths of ρ′ and ρ′′ obtained here correspond
to the specific definition of the energy dependent width propagator shown in eq. (40) of
ref. [29], which may not be used by the experimentalists. Hence a precise comparison with
the experimental determinations is not straightforward.

Finally θV and αV change sizeably with respect to the results of ref. [29] due to the
inclusion of the process e+e− → K+K−, so that the partial widths sensitive to θV and
αV become worse. Nevertheless, these partial widths turn out to be bearable with the
experimental data from PDG [38], considering the incertitude associated with the theoret-
ical framework of large-NC expansion implemented in the framework of RχT. In addition,
the difference of partial widths of Γρ0→πππ in Fit I and Fit II are caused by the different
parametrization of the ρ−ω mixing. The ρ0 decays in Fits. I and II have different mixing
angles and also the former one is energy dependent, see eq. (2.9).

The comparison of our solutions for the three pseudoscalar case with experimental data
is shown in figure 1, and that of the two pseudoscalar case is shown in figure 2. The results
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Width Fit 1 Fit II Ref. [29] PDG [38]
Γρ0→πππ (10−5 GeV) 0.86±0.31 0.64±0.49 0.93 1.49+0.94

−0.73

Γω→πππ (10−3 GeV) 7.43±0.78 7.96±0.74 7.66 7.58±0.05
Γφ→πππ (10−4 GeV) 9.08±1.57 9.00±1.14 6.25 6.53±0.14
Γρ→ee (10−6 GeV) 5.56±0.66 5.81±0.52 6.54 6.98±0.07
Γω→ee (10−7 GeV) 7.28±0.85 7.60±0.65 6.69 6.25±0.13
Γφ→ee (10−6 GeV) 0.82±0.09 0.86±0.08 1.20 1.26±0.01
Γρ→ππ (10−1 GeV) 1.30±0.17 1.24±0.11 1.14 1.48±0.01
Γω→ππ (10−4 GeV) 1.33±0.47 1.23±0.11 1.61 1.30±0.05
Γφ→ππ (10−7 GeV) 1.82±0.20 1.91±0.18 2.66 3.10±0.55

Γρ0→π0γ (10−5 GeV) 4.60±0.64 5.38±0.64 5.96 6.95±0.89
Γρ+→π+γ (10−5 GeV) 4.46±0.62 4.53±0.37 4.81 6.65±0.74
Γω→π0γ (10−4 GeV) 3.97±0.47 4.07±0.35 4.43 7.13±0.19
Γφ→π0γ (10−6 GeV) 9.01±2.26 9.17±1.30 7.34 5.52±0.21
Γρ→ηγ (10−5 GeV) 3.95±0.69 4.32±0.38 4.85 4.43±0.31
Γω→ηγ (10−6 GeV) 4.42±0.77 3.77±0.48 4.13 3.82±0.34
Γφ→ηγ (10−5 GeV) 5.92±0.78 6.10±0.48 6.57 5.54±0.11
Γη′→ργ (10−5 GeV) 4.51±1.34 5.10±1.10 5.37 5.66±0.10
Γη′→ωγ (10−6 GeV) 6.24±1.77 5.52±0.94 5.12 4.74±0.13
Γφ→η′γ (10−7 GeV) 3.07±0.71 3.36±0.44 3.93 2.64±0.09

Table 1. Decay widths involving vector resonances compared with the Fit 4 of ref. [29] and
PDG [38].

of Fit I are shown in blue dashed lines and those of Fit II are shown in solid black lines.
In general, Fit I and Fit II are almost indistinguishable. There is slight difference shown
around the ρ peak in e+e− → π+π−π0 process at 0.6 < E < 1 (GeV), due to the different
parametrization of ρ−ω mixing adopted. Noted that Fit II is a little better in this region,
since there is one more parameter δ0 and the energy dependent mixing mechanism designed
for the ππ scattering may not be suitable for the three pion case, where the three body
re-scattering needs to be considered. Fit II seems also a little better at the φ peak in the
e+e− → π+π−π0 process. This is because that, FV and 2g4+g5 in Fit II are allowed to have
larger values than in Fit I, which can slightly compensate the φ peak in e+e− → π+π−π0.
As illustrated above, the θV and αV constrained by the e+e− → K+K− will suppress the
φ peak in e+e− → π+π−π0. The high energy behaviour of e+e− → π+π−, as shown in
figure 2, is balanced with the e+e− → ηπ+π− process through the mass and width of ρ′ .

4 Leading-order hadronic vacuum polarization contributions to aµ

The Hadronic Vacuum Polarization (HVP) corrections to aµ = (gµ − 2)/2 are related to
the e+e− → hadrons cross sections through the optical theorem and analyticity [40, 115].
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Fit I Fit II Ref. [29] PDG [38]

FV (GeV) 0.139±0.001 0.142±0.001 0.148±0.001 —
2g4 + g5 −0.442±0.001 −0.492±0.002 −0.493±0.003 —

d2 0.0273±0.0005 0.0276±0.0006 0.0359±0.0007 —
c3 0.00432±0.00012 0.00435±0.00013 0.00689±0.00017 —
αV −0.00120±0.00012 −0.00113±0.00014 0.0126±0.0007 —
θV (◦) 39.61±0.01 39.56±0.01 38.94±0.02 —
θP (◦) -19.39±0.09 -19.61±0.10 -21.37±0.26 —
δ0(◦) — 1.70±0.05 2.12±0.06 —
δ(◦) -1.83±0.04 -1.80±0.01 — —
β′π −0.434±0.005 −0.454±0.003 −0.469±0.008 —
β′′π 0.239±0.002 0.224±0.005 0.225±0.007 —
β′η −0.452±0.008 −0.438±0.006 −0.174±0.017 —
β′′η −0.0213±0.0031 −0.0233±0.0023 −0.0968±0.0139 —
β′ππ −0.0625±0.0007 −0.0625±0.0009 — —
β′′ππ 0.0115±0.0006 0.0118±0.0007 — —
β′KK −0.0652±0.0023 −0.0712±0.0040 — —
β′′KK −0.202±0.003 −0.197±0.005 — —

Mρ′ (GeV) 1.517±0.001 1.519±0.002 1.550±0.012 1.465(25)
Γρ′ (GeV) 0.340±0.006 0.340±0.001 0.238±0.018 0.400(60)
Mω′ (GeV) 1.256±0.006 1.253±0.003 1.249±0.003 1.410(60)
Γω′ (GeV) 0.310±0.005 0.310±0.003 0.307±0.007 0.290(190)
Mφ′ (GeV) 1.640±0.003 1.640±0.003 1.641±0.005 1.680(20)
Γφ′ (GeV) 0.083±0.001 0.090±0.002 0.086±0.007 0.15(5)
Mρ′′ (GeV) 1.720±0.004 1.720±0.001 1.794±0.012 1.720(20)
Γρ′′ (GeV) 0.150±0.001 0.150±0.005 0.297±0.033 0.25(10)
Mω′′ (GeV) 1.683±0.005 1.725±0.010 1.700±0.011 1.670(30)
Γω′′ (GeV) 0.400±0.002 0.400±0.003 0.400±0.013 0.315(35)
Mφ′′ (GeV) 2.114±0.010 2.126±0.025 2.086±0.022 2.160(80)
Γφ′′ (GeV) 0.108±0.014 0.100±0.014 0.108±0.017 0.125(65)

Table 2. Fitted parameters of Fits I and II compared with the Fit 4 of ref. [29] and PDG [38].
The uncertainty of the parameters are coming from the Bootstrap method.
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The leading order HVP correction can be expressed as

ahad
µ =

(
αe(0)mµ

3π

)2 ∫ ∞
sthr

dsK̂(s)
s2 Rh(s) , (4.1)

where

αe = e2

4π , Rh(s) = 3s
4πα2

e(s)
σ
(
e+e− → hadrons

)
, (4.2)

and the kernel function is defined as,

K̂(s) = 3s
m2
µ

[(
1 + x2) (1 + x)2

x2

(
ln(1 + x)− x+ x2

2

)
+x2

2
(
2− x2

)
+ 1 + x

1− xx
2 ln x

]
,

(4.3)
with

x = 1− βµ(s)
1 + βµ(s) , βµ(s) =

√
1−

4m2
µ

s
. (4.4)

Notice that the lower limit in the integration in eq. (4.1) depends on the starting contri-
bution and its O(αe) order. Hence sthr = m2

π0 when including the π0γ contribution and
sthr = 4m2

π when starting in the ππ contribution.
It is interesting to notice the 1/s2 enhancement factor (leading order) of contributions

of low energies in ahad
µ (3). Thus the kernel gives higher weight, in particular, to the lowest

lying resonance ρ(770) that couples strongly to π+π−. This fact is the reason why the pion
pair production e+e− → π+π− gives, by far, the largest contribution to ahad

µ . However,
we are in the position to determine the contributions to the muon anomalous magnetic
moment relevant to the three and two pseudoscalar final states that we discussed above.
They are shown as aCµ with different energy regions in table 3.

Here aCµ (C = ππ,KK, πππ, ηππ) denotes for the lowest order hadronic vacuum po-
larization contribution of e+e− → ππ,KK, πππ, ηππ, respectively. The error bars for aCµ
are given by the combination of the uncertainty coming from the Bootstrap method and
the statistics from dozens of solutions that also fit to the experimental data sets well.

It is noted that, although different parameterizations of the ρ− ω mixing are adopted
in Fit I and Fit II, the individual contributions of each channel are almost the same. A
look back to the figure 1 shows that the results of Fit I are slightly different from the ones
of Fit II around the ρ peak in the e+e− → π+π−π0 process (see the first three graphs).
However, the total contributions to aπππµ |≤1.8 GeV are almost the same, as the contribution
of Fit I is slightly larger than that of Fit II on the left hand side of he ρ peak, but it is
in the opposite situation on the right hand side of ρ peak. They tend to cancel between
each other. Since there is little difference between the two fits, we will discuss below with
Fit II. The aCµ evaluated here are consistent with those in refs. [60, 116, 117], within their
uncertainty. In addition, aπππµ |≤1.8 GeV is also consistent with that evaluated based on the
cross section fitted in ref. [29]. On the other hand, a slightly larger aηππµ |≤1.8 GeV is obtained
compared with that of refs. [29, 60]. One has to note that the e+e− → ηπ+π− process
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aCµ × 10−10 Ref. [116] Ref. [29] Ref. [117] Ref. [60] Fit I Fit II

aππµ |≤0.63GeV 132.8(0.4)(1.0) — — — 132.11±0.63 132.11±0.67

aππµ |≤1GeV 495.0(1.5)(2.1) — — — 498.48±2.34 498.47±2.33

aππµ |≤1.8GeV — — — 507.85±0.83±3.23±0.55 508.89±2.45 508.89±2.45

aππµ |≤2.3GeV — — — — 509.13±2.48 509.13±2.48

aKKµ |≤.1.1GeV — — — — 20.73±0.94 20.74±0.88

aKKµ |≤.1.8GeV — — — 23.08±0.20±0.33±0.21 24.35±1.02 24.36±0.97

aKKµ |≤2.3GeV — — — — 24.43±1.03 24.44±1.01

aπππµ |≤1.8GeV — 48.55 46.2(8) 46.21±0.40±1.10±0.86 48.55±1.42 48.54±1.39

aπππµ |≤2.3GeV — — — — 48.76±1.45 48.75±1.43

aηππµ |≤1.8GeV 1.135 — 1.19±0.02±0.04±0.02 1.28±0.10 1.29±0.09

aηππµ |≤2.3GeV — — — — 1.52±0.12 1.53±0.12

aHVP.LO
µ — — — 694.0±4.0 699.46±3.41 699.47±3.39

aSM
µ 11659183.1±4.8 11659187.3±3.8 11659187.3±3.9

∆aµ 26.0± 7.9(3.3σ) 21.6± 7.4(2.9σ) 21.6± 7.4(2.9σ)

Table 3. Our predictions of muon anomalous magnetic moment, where other contributions are
from refs. [39, 60] and references therein. We compared the aCµ , aHVP,LO

µ , aSM
µ and ∆aµ with

refs. [29, 60, 116, 117]. The experimental value is measured as aexp
µ = 11659208.9± 6.3 [37].

has a threshold at about 0.73GeV, and therefore has a larger dependence on the resonance
multiplets.

As explained above the largest contribution of the hadronic vacuum polarization comes
from e+e− → π+π−. In our theoretical framework, the cross section of e+e− → π+π− below
1GeV is almost fixed with a small dependence on δ, while other parameters contribute little.
Hence the e+e− → π+π− cross-section shares little uncertainty from the parameters. For
the e+e− → K+K− process, only θV and αV are sensitive, but θV and αV are in tension
with the φ peak in e+e− → π+π−π0. Hence, there is a dedicated balance between these two
data sets, which causes considerable uncertainty. Since we have fitted up to E = 2.3GeV,
we also listed the corresponding aCµ |≤2.3GeV in table 3.

The total contribution is

aHVP,LO
µ = (699.47 ± 3.38)× 10−10 (4.5)

from Fit II, in combination with the left channels fitted in ref. [60]. Note that the four con-
tributions we consider here provide the largest uncertainty among all the channels. Com-
bined with the other contributions (QED [41], EW [43–46], NLHVP [62], NNLHVP [62],
HLBL [39, 47–49]) within the SM, we also give an estimation of the anomalous magnetic
moment of muon in SM. It is about 4.2 × 10−10 larger in total than that in ref. [60].
Hence our estimation of the discrepancy ∆aµ between the theoretical prediction in SM
and that measured by experiment is 0.4σ smaller than that in ref. [60]. Our estimation of
∆aµ = (21.6± 7.4)× 10−10 is 2.9σ smaller than that of the experimental value.
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5 Higher-order hadronic vacuum polarization contributions to aµ

We can also consider the contribution of the hadronic vacuum polarization to higher-
order corrections to the leading result of the previous section 4. These have already been
computed in the past at next-to-leading (NLO) order [118] and nex-to-next-to-leading
(NNLO) order [62]. In our case, however, we will only consider the contribution of two and
three pseudoscalars to HVP, as we have obtained in section 3.

NLO contributions correspond to O(α3
e) with one and two HVP insertions. They are

given by

a(2a,2b)
µ = 1

3

(
αe(0)
π

)3 ∫ ∞
4m2

π

ds

s
Rh(s) K(2a,2b)(s) ,

a(2c)
µ = 1

9

(
αe(0)
π

)3 ∫∫ ∞
4m2

π

ds

s

ds′

s′
Rh(s)Rh

(
s′
)
K(2c) (s, s′) , (5.1)

respectively, where Rh(s) has been defined in eq. (4.2). The label notation and the kernels
K(2a,2b,2c) can be read from ref. [118]. Notice that the lower limit in the integral is taken
to be 4m2

π as we are only including the contribution of cross-sections of two and three
pseudoscalars.
O(α4

e) with up to three HVP insertions corresponds to the NNLO case. Their contri-
butions can be computed as

a(3a,3b,3bLBL)
µ = 1

3

(
αe(0)
π

)4 ∫ ∞
4m2

π

ds

s
Rh(s)K(3a,3b,3bLBL)(s) ,

a(3c)
µ = 1

9

(
αe(0)
π

)4 ∫∫ ∞
4m2

π

ds

s

ds′

s′
Rh(s)Rh

(
s′
)
K(3c) (s, s′) , (5.2)

a(3d)
µ = 1

27

(
αe(0)
π

)4 ∫∫∫ ∞
4m2

π

ds

s

ds′

s′
ds′′

s′′
Rh(s)Rh

(
s′
)
Rh
(
s′′
)
K(3d) (s, s′, s′′) .

Here the label notation and the different kernels K(3a,3b,3bLBL,3c,3d) follow from ref. [62].
Our results are shown in table 4. Since Fit I and Fit II are almost indistinguishable, we

would just derive the higher order HVP corrections with Fit II. We also quote the results
of ref. [62], although we remind that the later include all the cross sections but not only
the two- and three-pseudoscalar contributions (with

√
s ≤ 2.3GeV) to HVP that we have

computed. Hence, the difference between both results can be considered as an estimate of
the HVP contributions, that we have not included, and of the higher-energy contribution
of the two- and three-pseudoscalar channels. The errors have been estimated in the same
way as the leading order contributions to aCµ . It is found that these four processes (with
the quoted energy upper limit) account for roughly 70 percent of the higher-order HVP
corrections to ahad

µ .

6 Conclusions

Combined with the latest experimental data available for e+e− annihilation into three pseu-
doscalar cases e+e− → πππ, ππη, we carried out joint fits including the two pseudoscalar
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×10−12 ππ KK πππ ππη Our total Total [62]

2a −1369±8 −79.8±2.8 −145±3 −5.93±0.46 −1600±9 −2090
2b 776±5 37.6±1.3 74.7±1.8 2.37±0.18 891±5 1068
2c 22.4±0.2 22.4±0.2 35
aNLO
µ −687±10 −987±9

3a 45.4±0.3 3.11±0.11 5.20±0.12 0.267±0.021 54.0±0.3 80
3b −24.8±0.2 −1.62±0.06 −2.78±0.06 −0.131±0.010 −29.3±0.2 −41

3bLBL 58.0±0.3 3.47±0.12 6.19±0.14 0.268±0.021 67.9±0.4 91
3c −2.34±0.02 −2.34±0.02 −6
3d 0.0249±0.0004 0.0249±0.0004 0.05

aNNLO
µ 90.3±0.5 124±1

Table 4. Our estimation of the higher-order HVP contributions to ahad
µ using Fit II results and

with and upper limit of integration of
√
s = 2.3GeV. The sum of the four processes considered here

is given in the penultimate column, while the contributions of all channels, estimated in ref. [62],
are listed in the last column.

cases e+e− → π+π−,K+K−, within the framework of RχT in the energy region up to
E . 2GeV. Taking into account the possible different mixing mechanisms of ρ − ω in
the three and two pseudoscalar cases, two fits have been performed. In Fit I, we apply a
uniform energy dependent ρ− ω mixing parametrization. In Fit II, the energy dependent
ρ−ω mixing parametrization is only used in the two pseudoscalar channel, while a constant
mixing angle is used in the three body case. Overall very reasonable fits for both cases are
found. There is no relevant difference between Fit I and Fit II except for a small difference
around the ρ peak in the π+π−π0 case. This indicates that the ρ − ω mixing mechanism
that plays an important role in the two pion case may not be exactly the one to be applied
in the three body case. However, it will not affect much the descriptions in the three body
case, as well as their contribution to the HVP. Our results have been obtained within a
QCD-based phenomenological theory framework with a joint fit of four different channels
that restrict mutually each other.

The main hadronic contributions to the muon anomalous magnetic moment come from
the lower energy region E < 1.05GeV of the hadronic vacuum polarization input, where
few parameters are dominant. Hence, reliable predictions can be made within our theoreti-
cal framework from our previous analyses of the two- and three-pseudoscalar contributions
to the e+e− cross-section. Accordingly we have computed the leading-order HVP contribu-
tion to the anomalous magnetic moment of the muon by including the four main channels,
studied previously, in our estimate. The central value of these four channels to HVP is
about 5× 10−10 larger than that of ref. [60]. In consequence, the discrepancy between SM
prediction and the experimental measurement decreases to (21.6 ± 7.4) × 10−10. As an
aside, we have also computed the NLO and NNLO HVP contributions to the anomalous
magnetic moment of the muon as given by the two- and three-pseudoscalar contributions
to the cross-section.
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A Three body final state form factors and partial decay widths

A.1 Three body final state form factor

The cross section of the e+e− → π+(p1)π−(p2)P (p3) process (P a pseudoscalar meson) is
driven by the vector form factor in eq. (2.10) through

σP (Q2) = α2

192πQ6

∫ s+

s−
ds

∫ t+

t−
dt φ(Q2, s, t) |FPV (Q2, s, t)|2, (A.1)

where Q = p1 + p2 + p3, s = (Q− p3)2, t = (Q− p1)2 and

φ(Q2, s, t) = st(Q2 − s− t) + sm2
P (t−Q2)

−m2
π[m4

P −m2
P (2Q2 + s) +Q4 −Q2s− 2st]− sm4

π , (A.2)

being mP = mπ,mη, depending on the final state. In eq. (A.1) the integration limits are:

s− = 4m2
π ,

s+ =
(√

Q2 −mP

)2
,

t± = 1
4 s

{(
Q2 −m2

P

)2
−
[
λ1/2(Q2, s,m2

P )∓ λ1/2(s,m2
π,m

2
π)
]2}

, (A.3)

with λ(a, b, c) the Källén’s triangle function.
The vector form factors relevant for the e+e− → π+π−π0, π+π−η cross-sections are

given by:

FPV (Q2, s, t) = FPa + FPb + FPc + FPd , (A.4)

with P = π, η. We give now the expressions for the form factors. When notation is not
fully specified we refer to appendix A.3 of ref. [29].

Hence the vector form factors are

F πa = − NC

12π2F 3 ,

F πb =
8
√

2FV (1 + 8
√

2αV m2
π

M2
V

)

3MV F 3 (
√

2 cos θV + sin θV )GRπ(Q2)
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×
{

(sin θV cos δ −
√

3 sin δω(Q2)) cos δBWR[π, ω,Q2]

+ (sin θV sin δρ(Q2) +
√

3 cos δ) sin δρ(Q2) BWR[π, ρ,Q2]
}

+
8
√

2FV (1 + 8
√

2αV
2m2

K−m
2
π

M2
V

)

3MV F 3 cos θV (cos θV −
√

2 sin θV )BWR[π, φ,Q2] GRπ(Q2),

F πc = − 4
√

2GV
3MV F 3

{
(cos δ +

√
6 cos θV sin δρ(s) +

√
3 sin δρ(s) sin θV ) cos δ

×BWR[π, ρ, s] CRπ(Q2, s) +BWR[π, ρ, t] CRπ(Q2, t) +BWR[π, ρ, u] CRπ(Q2, u)

−
[√

3 cos δ
(√

2 cos θV + sin θV
)
− sin δω(s)

]
sin δω(s) BWR[π, ω, s] CRπ(Q2, s)

}
,

F πd =
8GV FV (1 + 8

√
2αV mπ2

M2
V

)

3F 3 (
√

2 cos θV + sin θV )

×
{

(sin θV cos δ −
√

3 sin δω(Q2)) cos δ(cos2 δ − sin δρ(s) sin δω(Q2))

×BWRR[π, ω, ρ,Q2, s]DRπ(Q2, s)
+ (sin θV cos δ −

√
3 sin δω(Q2)) cos δ BWRR[π, ω, ρ,Q2, t] DRπ(Q2, t)

+ (sin θV cos δ −
√

3 sin δω(Q2)) cos δ BWRR[π, ω, ρ,Q2, u] DRπ(Q2, u)
+ (sin θV cos δ −

√
3 sin δω(Q2))[sin δω(Q2) + sin δω(s)] cos δ sin δω(s)

×BWRR[π, ω, ω,Q2, s]DRπ(Q2, s)
+ (sin θV sin δρ(Q2) +

√
3 cos δ)[sin δρ(Q2) + sin δρ(s)] cos2 δ

× BWRR[π, ρ, ρ,Q2, s] DRπ(Q2, s)
+ (sin θV sin δρ(Q2) +

√
3 cos δ) sin δρ(Q2) BWRR[π, ρ, ρ,Q2, t] DRπ(Q2, t)

+ (sin θV sin δρ(Q2) +
√

3 cos δ) sin δρ(Q2) BWRR[π, ρ, ρ,Q2, u] DRπ(Q2, u)
− (sin θV sin δρ(Q2) +

√
3 cos δ)(cos2 δ − sin δρ(Q2) sin δω(s)) sin δω(s)

×BWRR[π, ρ, ω,Q2, s]DRπ(Q2, s)
}

+
8GV FV (1 + 8

√
2αV 2mK2−mπ2

M2
V

)

3F 3 (cos θV −
√

2 sin θV ) cos θV

×
{

cos2 δBWRR[π, φ, ρ,Q2, s]DRπ(Q2, s)+sin2 δω(s)BWRR[π, φ, ω,Q2, s]DRπ(Q2, s)

+BWRR[π, φ, ρ,Q2, t] DRπ(Q2, t) + BWRR[π, φ, ρ,Q2, u] DRπ(Q2, u)
}
,

F ηa = − NC

12
√

3π2F 3 (−
√

2 sin θP + cos θP ),

F ηb =
8
√

6FV (1 + 8
√

2αV m2
π

M2
V

)

3MV F 3

(
cos δ + 1√

3
sin δρ(Q2) sin θV

)
× cos δ(−

√
2 sin θP + cos θP )BWR[η, ρ,Q2] GRη(Q2, s)

−
8
√

6FV (1 + 8
√

2αV m2
π

M2
V

)

3MV F 3

(
− sin δω(Q2) + 1√

3
cos δ sin θV

)
sin δω(Q2)

× (−
√

2 sin θP + cos θP )BWR[η, ω,Q2] GRη(Q2, s),
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F ηc = − 4
√

2GV
3MV F 3 cos δ

{√
3 cos δ(cos θP −

√
2 sin θP ) + sin δρ(s) [

√
2 cos θV cos θP

− sin θV (cos θP +
√

2 sin θP )]
}
BWR[η, ρ, s] CRη1(Q2, s,m2

η)

− 4
√

2GV
9MV F 3 cos δ{4 sin δρ(s)[

√
2 cos(θV + θP )− 2 cos θP sin θV + cos θV sin θP ]m2

K

+ [3
√

3 cos δ(cos θP −
√

2 sin θP )− sin δρ(s)(
√

2 cos(θV + θP )− 5 cos θP sin θV
+ 4 cos θV sin θP )]m2

π} BWR[η, ρ, s] CRη2

+ 4
√

2GV
3MV F 3 sin δω(s)

{√
3 sin δω(s)(− cos θP +

√
2 sin θP ) + cos δ[

√
2 cos θV cos θP

− sin θV (cos θP +
√

2 sin θP )]
}
BWR[η, ω, s] CRη1(Q2, s,m2

η)

+ 4
√

2GV
9MV F 3 sin δω(s)

{
4 cos δ[

√
2 cos(θV + θP )− 2 cos θP sin θV + cos θV sin θP ]m2

K

− [3
√

3 sin δω(s)(cos θP −
√

2 sin θP ) + cos δ(
√

2 cos(θV + θP )− 5 cos θP sin θV

+ 4 cos θV sin θP )]m2
π

}
BWR[η, ω, s] CRη2,

F ηd =
8FV (1 + 8

√
2αV m2

π

M2
V

)GV
√

6F 3 cos δ
(

cos δ + 1√
3

sin δρ(Q2) sin θV
)

×
{

cos2 δ(
√

2 cos θP − 2 sin θP ) + sin δρ(Q2) sin δρ(s)[cos θP sin θV (4 cos θV

−
√

2 sin θV )− 2 sin θP ]
}
BWRR[η, ρ, ρ,Q2, s] DRη1(Q2, s,m2

η)

+
2FV (1 + 8

√
2αV m2

π

M2
V

)GV
3
√

6F 3 cos δ
(

cos δ + 1√
3

sin δρ(Q2) sin θV
)

×
{

8 sin δρ(Q2) sin δρ(s)[cos θP (−3
√

2 +
√

2 cos 2θV + 4 sin 2θV )

+ (−3 + cos 2θV + 2
√

2 sin 2θV ) sin θP ]m2
K + [12 cos2 δ(

√
2 cos θP − 2 sin θP )

+ sin δρ(Q2) sin δρ(s)(−9
√

2 cos(2θV − θP ) + 18
√

2 cos θP

+ 7
√

2 cos(2θV + θP )− 8 sin(2θV + θP ))]m2
π

}
BWRR[η, ρ, ρ,Q2, s]DRη2

−
8FV (1 + 8

√
2αV m2

π

M2
V

)GV
√

6F 3 sin δω(s)
(
− sin δω(Q2) + 1√

3
cos δ sin θV

)
×
{

cos θP [
√

2 sin δω(Q2) sin δω(s) + cos2 δ sin θV (4 cos θV −
√

2 sin θV )]

− 2 sin θP (cos2 δ + sin δω(Q2) sin δω(s))
}
BWRR[η, ω, ω,Q2, s] DRη1(Q2, s,m2

η)

−
2FV (1 + 8

√
2αV m2

π

M2
V

)GV
3
√

6F 3 sin δω(s)
(
− sin δω(Q2) + 1√

3
cos δ sin θV

)
×
{

8 cos2 δ[cos θP (−3
√

2 +
√

2 cos 2θV + 4 sin 2θV )

+ (−3 + cos 2θV + 2
√

2 sin 2θV ) sin θP ]m2
K

+ [12 sin δω(Q2) sin δω(s)(
√

2 cos θP − 2 sin θP )
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+ cos2 δ(−9
√

2 cos(2θV − θP ) + 18
√

2 cos θP + 7
√

2 cos(2θV + θP )

− 8 sin(2θV + θP ))
]
m2
π

}
BWRR[η, ω, ω,Q2, s] DRη2

+
2FV (1 + 8

√
2αV m2

π

M2
V

)GV
√

6F 3 cos δ
(
− sin δω(Q2) + 1√

3
cos δ sin θV

)
×
{(
− 1

2 cos2 θV cos θp sin δρ(s) + 1
2 sin2 θV cos θp sin δρ(s)

− 2
√

2 sin θV cos θV cos θP sin δρ(s) +
√

2 sin θP sin δρ(s)

+ 1
2 cos θP sin δρ(s)−

√
2 sin θP sin δω(Q2) + cos θP sin δω(Q2)

)
(−4
√

2 cos δ)
}

×BWRR[η, ω, ρ,Q2, s] DRη1(Q2, s,m2
η)

+
2FV (1 + 8

√
2αV m2

π

M2
V

)GV
3
√

6F 3 cos δ
(
− sin δω(Q2) + 1√

3
cos δ sin θV

)
×BWRR[η, ω, ρ,Q2, s] DRη2

×
{
−
√

2 cos δ [m2
π(sin δρ(s)(4

√
2 sin(2θV +θP ) + 9 cos(2θV −θP )− 7 cos(2θV + θP )

− 18 cos θP ) + 12 sin δω(Q2)(cos θP −
√

2 sin θP ))− 4m2
K sin δρ(s)

× (2 cos θP (2
√

2 sin 2θV + cos 2θV − 3) + sin θP (4 sin 2θV +
√

2 cos 2θV − 3
√

2))]
}

−
2FV (1 + 8

√
2αV m2

π

M2
V

)GV
√

6F 3

(
cos δ + 1√

3
sin δρ(Q2) sin θV

)
×BWRR[η, ρ, ω,Q2, s]DRη1(Q2, s,m2

η)

×
{
− 4
√

2 cos δ sin δω(s)(cos θP (sin θV sin δρ(Q2)(sin θV − 2
√

2 cos θV )

+ sin δω(s)) +
√

2 sin θP (sin δρ(Q2)− sin δω(s)))
}

−
2FV (1 + 8

√
2αV m2

π

M2
V

)GV
3
√

6F 3

(
cos δ + 1√

3
sin δρ(Q2) sin θV

)
×
{
−
√

2 cos δ sin δω(s)[m2
π(sin δρ(Q2)(4

√
2 sin(2θV + θP ) + 9 cos(2θV − θP )

− 7 cos(2θV + θP )− 18 cos θP ) + 12 sin δω(s)(cos θP −
√

2 sin θP ))− 4m2
K sin δρ(Q2)

× (2 cos θP (2
√

2 sin 2θV + cos 2θV − 3) + sin θP (4 sin 2θV +
√

2 cos 2θV − 3
√

2))]
}

×BWRR[η, ρ, ω,Q2, s] DRη2

−
4FV (1 + 8

√
2αV 2mK2−m2

π

M2
V

)GV
3
√

2F 3 cos δ cos θV cos θP sin δρ(s)

×
(
−4 cos 2θV +

√
2 sin 2θV

)
BWRR[η, φ, ρ,Q2, s] DRη1(Q2, s,m2

η)

+
4FV (1 + 8

√
2αV

2m2
K−m

2
π

M2
V

)GV
9
√

2F 3
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× cos δ cos θV sin δρ(s)
{

4(2
√

2 cos 2θV − sin 2θV ) sin θP (m2
K −m2

π)

+ cos θP (4 cos 2θV −
√

2 sin 2θV )(4m2
K −m2

π)
}
BWRR[η, φ, ρ,Q2, s] DRη2

+
4FV (1 + 8

√
2αV

2m2
K−m

2
π

M2
V

)GV
3
√

2F 3 sin δω(s) cos θV cos δ cos θP

× (−4 cos 2θV +
√

2 sin 2θV )BWRR[η, φ, ω,Q2, s] DRη1(Q2, s,m2
η)

−
4FV (1 + 8

√
2αV 2mK2−m2

π

M2
V

)GV
9
√

2F 3 sin δω(s) cos θV cos δ

×
{

4(2
√

2 cos 2θV − sin 2θV ) sin θP (m2
K −m2

π) + cos θP

× (4 cos 2θV −
√

2 sin 2θV )(4m2
K −m2

π)
}
BWRR[η, φ, ω,Q2, s] DRη2.

A.2 Decay widths involving vector resonances

A.2.1 Two-body decays

Γω→ππ = G2
V M

3
ω

48πF 4 sin2 δω(M2
ω)
(

1− 4m2
π

M2
ω

)3/2

,

Γρ→`+`− = 4α2 π F 2
V

3Mρ

(
1 + 8

√
2αV

m2
π

M2
V

)2 (
cos δ + 1√

3
sin θV sin δρ(M2

ρ )
)2

×
(

1 + 2m2
`

M2
ρ

)(
1− 4m2

`

M2
ρ

)1/2

,

Γω→`+`− = 4α2 π F 2
V

27Mω

(
1 + 8

√
2αV

m2
π

M2
V

)2

(
√

3 sin θV cos δ − 3 sin δω(M2
ω))2

×
(

1 + 2m2
`

M2
ω

)(
1− 4m2

`

M2
ω

)1/2

,

Fρ0→π0γ = 2
√

2
3MV F

CRπ(0,M2
ρ )
(
cos δ +

√
6 cos θV sin δρ(M2

ρ ) +
√

3 sin δρ(M2
ρ ) sin θV

)

−
4FV

(
1 + 8

√
2αV m2

π

M2
V

)
3M2

ρF
DRπ(0,M2

ρ )(sin θV sin δρ(0) +
√

3 cos δ)

× [sin δρ(M2
ρ ) + sin δρ(0)] cos δ(

√
2 cos θV + sin θV )

−
4FV

(
1 + 8

√
2αV m2

π

M2
V

)
3M2

ωF
DRπ(0,M2

ρ )(sin θV cos δ −
√

3 sin δω(0))

× [cos2 δ − sin δρ(M2
ρ ) sin δω(0)](

√
2 cos θV + sin θV )

−
4FV

(
1 + 8

√
2αV

2m2
K−m

2
π

M2
V

)
3M2

φF
DRπ(0,M2

ρ ) cos θV cos δ(cos θV −
√

2 sin θV ) ,
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Fρ±→π±γ = 2
√

2
3MV F

CRπ(0,M2
ρ )

−
4FV

(
1 + 8

√
2αV m2

π

M2
V

)
3M2

ρF
DRπ(0,M2

ρ ) sin δρ(0)

× (
√

2 cos θV + sin θV )(sin θV sin δρ(0) +
√

3 cos δ)

−
4FV

(
1 + 8

√
2αV m2

π

M2
V

)
3M2

ωF
DRπ(0,M2

ρ )

× cos δ(
√

2 cos θV + sin θV )(sin θV cos δ −
√

3 sin δω(0))

−
4FV

(
1 + 8

√
2αV

2m2
K−m

2
π

M2
V

)
3M2

φF
DRπ(0,M2

ρ ) cos θV (cos θV −
√

2 sin θV ) ,

Fφ→π0γ = 2
√

6
3MV F

CRπ(0,M2
φ)(cos θV −

√
2 sin θV )

−
4FV

(
1 + 8

√
2αV m2

π

M2
V

)
3M2

ρF
DRπ(0,M2

φ)

× (sin θV sin δρ(0) +
√

3 cos δ) cos δ(cos θV −
√

2 sin θV )

−
4FV

(
1 + 8

√
2αV m2

π

M2
V

)
3M2

ωF
DRπ(0,M2

φ)

× (sin θV cos δ −
√

3 sin δω(0)) sin δω(0)(− cos θV +
√

2 sin θV ) ,

Fω→π0γ = 2
√

2
3MV F

CRπ(0,M2
ω)
(√

3 cos δ(
√

2 cos θV + sin θV )− sin δω(M2
ω)
)

−
4FV

(
1 + 8

√
2αV m2

π

M2
V

)
3M2

ρF
DRπ(0,M2

ω)(sin θV sin δρ(0) +
√

3 cos δ)

× (cos2 δ − sin δρ(0) sin δω(M2
ω))(
√

2 cos θV + sin θV )

+
4FV

(
1 + 8

√
2αV m2

π

M2
V

)
3M2

ωF
DRπ(0,M2

ω)(sin θV cos δ −
√

3 sin δρ(0))

× (sin δω(M2
ω) + sin δω(0)) cos δ(

√
2 cos θV + sin θV )

−
4FV

(
1 + 8

√
2αV

2m2
K−m

2
π

M2
V

)
3M2

φF
DRπ(0,M2

ω)

× cos θV sin δω(M2
ω)(− cos θV +

√
2 sin θV ) ,

Fω→ηγ = 2
√

2
3MV F

CRη1(0,M2
ω,m

2
η)

×
{√

3 sin δω(M2
ω)(− cos θP +

√
2 sin θP )
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+ cos δ[
√

2 cos θV cos θP − sin θV (cos θP +
√

2 sin θP )]
}

+ 2
√

2
9MV F

CRη2
{

4 cos δ
(√

2 cos(θV +θP )−2 cos θP sin θV +cos θV sin θP
)
m2
K

−
(
3
√

3 sin δω(M2
ω)(cos θP −

√
2 sin θP )

+ cos δ[
√

2 cos(θV + θP )− 5 cos θP sin θV + 4 cos θV sin θP ]
)
m2
π

}

−
FV

(
1 + 8

√
2αV m2

π

M2
V

)
3
√

2M2
ρF

DRη1(0,M2
ω,m

2
η)(sin θV sin δρ(0) +

√
3 cos δ)

×
{

(−4
√

2 cos δ)
(
− 1

2 cos2 θV cos θp sin δρ(0) + 1
2 sin2 θV cos θp sin δρ(0)

− 2
√

2 sin θV cos θV cos θP sin δρ(0) +
√

2 sin θP sin δρ(0) + 1
2 cos θP sin δρ(0)

−
√

2 sin θP sin δω(M2
ω) + cos θP sin δω(M2

ω)
)}

−
FV

(
1 + 8

√
2αV m2

π

M2
V

)
9
√

2M2
ρF

DRη2(sin θV sin δρ(0) +
√

3 cos δ)

×
{
−
√

2 cos δ [m2
π(sin δρ(0)(4

√
2 sin(2θV + θP ) + 9 cos(2θV − θP )

− 7 cos(2θV + θP )− 18 cos θP ) + 12 sin δω(M2
ω)(cos θP −

√
2 sin θP ))

− 4m2
K sin δρ(0)(2 cos θP (2

√
2 sin 2θV + cos 2θV − 3)

+ sin θP (4 sin 2θV +
√

2 cos 2θV − 3
√

2))]
}

−
2
√

2FV
(

1 + 8
√

2αV m2
π

M2
V

)
3M2

ωF
DRη1(0,M2

ω,m
2
η)(sin θV cos δ −

√
3 sin δω(0))

×
{

cos θP [
√

2 sin δω(0) sin δω(M2
ω) + cos2 δ sin θV (4 cos θV −

√
2 sin θV )]

− 2[sin δω(0) sin δω(M2
ω) + cos2 δ] sin θP

}

−
FV

(
1 + 8

√
2αV m2

π

M2
V

)
9
√

2M2
ωF

DRη2(sin θV cos δ −
√

3 sin δω(0))

×
{

8 cos2 δ
(
cos θP (−3

√
2 +
√

2 cos 2θV + 4 sin 2θV )

+(−3 + cos 2θV + 2
√

2 sin 2θV ) sin θP
)
m2
K

+
(
12 sin δω(0) sin δω(M2

ω)(
√

2 cos θP − 2 sin θP )

+ cos2 δ[−9
√

2 cos(2θV − θP ) + 18
√

2 cos θP
+7
√

2 cos(2θV + θP )− 8 sin(2θV + θP )]
)
m2
π

}

+

√
2FV

(
1 + 8

√
2αV

2m2
K−m

2
π

M2
V

)
3M2

φF
DRη1(0,M2

ω,m
2
η)
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×
{

cos θV cos δ cos θP (−4 cos 2θV +
√

2 sin 2θV )
}

−

√
2FV

(
1 + 8

√
2αV

2m2
K−m

2
π

M2
V

)
9M2

φF
DRη2 cos θV cos δ

×
{

4(2
√

2 cos 2θV − sin 2θV ) sin θP (m2
K −m2

π)

+ cos θP (4 cos 2θV −
√

2 sin 2θV )(4m2
K −m2

π)
}
,

Fρ0→ηγ = 2
√

2
3MV F

CRη1(0,M2
ρ ,m

2
η)
{√

3 cos δ(cos θP −
√

2 sin θP )

+ sin δρ(M2
ρ )[
√

2 cos θV cos θP − sin θV (cos θP +
√

2 sin θP )]
}

+ 2
√

2
9MV F

CRη2
{

4 sin δρ(M2
ρ )
(√

2 cos(θV + θP )− 2 cos θP sin θV

+ cos θV sin θP
)
m2
K +

(
3
√

3 cos δ(cos θP −
√

2 sin θP )

− sin δρ(M2
ρ )[
√

2 cos(θV + θP )− 5 cos θP sin θV + 4 cos θV sin θP ]
)
m2
π

}

−
2
√

2FV
(

1 + 8
√

2αV m2
π

M2
V

)
3M2

ρF
DRη1(0,M2

ρ ,m
2
η)(sin θV sin δρ(0) +

√
3 cos δ)

×
{

cos2 δ(
√

2 cos θP − 2 sin θP )

+ sin δρ(M2
ρ ) sin δρ(0)[cos θP sin θV (4 cos θV −

√
2 sin θV )− 2 sin θP ]

}

−
FV

(
1 + 8

√
2αV m2

π

M2
V

)
9
√

2M2
ρF

DRη2(sin θV sin δρ(0) +
√

3 cos δ)

×
{

8 sin δρ(M2
ρ ) sin δρ(0)

(
cos θP (−3

√
2 +
√

2 cos 2θV + 4 sin 2θV )

+(−3 + cos 2θV + 2
√

2 sin 2θV ) sin θP
)
m2
K +

(
12 cos2 δ(

√
2 cos θP − 2 sin θP )

+ sin δρ(M2
ρ ) sin δρ(0)[−9

√
2 cos(2θV − θP ) + 18

√
2 cos θP

+7
√

2 cos(2θV + θP )− 8 sin(2θV + θP )]
)
m2
π

}

−
FV

(
1 + 8

√
2αV m2

π

M2
V

)
3
√

2M2
ωF

DRη1(0,M2
ρ ,m

2
η)(sin θV cos δ −

√
3 sin δω(0))

×
{

(−4
√

2 cos δ)
(
− 1

2 cos2 θV cos θp sin δρ(M2
ρ ) + 1

2 sin2 θV cos θp sin δρ(M2
ρ )

− 2
√

2 sin θV cos θV cos θP sin δρ(M2
ρ ) +

√
2 sin θP sin δρ(M2

ρ )

+ 1
2 cos θP sin δρ(M2

ρ )−
√

2 sin θP sin δω(0) + cos θP sin δω(0)
)}

−
FV

(
1 + 8

√
2αV m2

π

M2
V

)
9
√

2M2
ωF

DRη2(sin θV cos δ −
√

3 sin δω(0))

×
{
−
√

2 cos δ [m2
π(sin δρ(M2

ρ )(4
√

2 sin(2θV + θP ) + 9 cos(2θV − θP )
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− 7 cos(2θV + θP )− 18 cos θP ) + 12 sin δω(0)(cos θP −
√

2 sin θP ))
− 4m2

K sin δρ(M2
ρ )(2 cos θP (2

√
2 sin 2θV + cos 2θV − 3)

+ sin θP (4 sin 2θV +
√

2 cos 2θV − 3
√

2))]
}

+

√
2FV

(
1 + 8

√
2αV

2m2
K−m

2
π

M2
V

)
3M2

φF
DRη1(0,M2

ρ ,m
2
η) cos θV cos θP sin δρ(M2

ρ )

× (−4 cos 2θV +
√

2 sin 2θV )

−

√
2FV

(
1 + 8

√
2αV

2m2
K−m

2
π

M2
V

)
9M2

φF
DRη2 cos θV sin δρ(M2

ρ )

×
{

4(2
√

2 cos 2θV − sin 2θV ) sin θP (m2
K −m2

π)

+ cos θP (4 cos 2θV −
√

2 sin 2θV )(4m2
K −m2

π)
}
,

Fφ→ηγ = 2
√

2
3MV F

CRη1(0,M2
φ,m

2
η)
{
−
√

2 cos θP sin θV − cos θV (cos θP +
√

2 sin θP )
}

+
√

2
9MV F

CRη2
{
−4
(
3 cos(θV − θP ) + cos(θV + θP ) + 2

√
2 sin(θV + θP )

)
m2
K

+
(
9 cos(θV − θP ) + cos(θV + θP ) + 2

√
2 sin(θV + θP )

)
m2
π

}

+

√
2FV

(
1 + 8

√
2αV m2

π

M2
V

)
3M2

ρF
DRη1(0,M2

φ,m
2
η)(sin θV sin δρ(0) +

√
3 cos δ)

× cos θP sin δρ(0)(−4 cos 2θV +
√

2 sin 2θV )

−

√
2FV

(
1 + 8

√
2αV m2

π

M2
V

)
9M2

ρF
DRη2(sin θV sin δρ(0) +

√
3 cos δ) sin δρ(0)

×
{

4(2
√

2 cos 2θV − sin 2θV ) sin θP (m2
K −m2

π)

+ cos θP (4 cos 2θV −
√

2 sin 2θV )(4m2
K −m2

π)
}

+

√
2FV

(
1 + 8

√
2αV m2

π

M2
V

)
3M2

ωF
DRη1(0,M2

φ,m
2
η)(sin θV cos δ −

√
3 sin δω(0))

× cos δ cos θP (−4 cos 2θV +
√

2 sin 2θV )

−

√
2FV

(
1 + 8

√
2αV m2

π

M2
V

)
9M2

ωF
DRη2(sin θV cos δ −

√
3 sin δω(0)) cos δ

×
{

4(2
√

2 cos 2θV − sin 2θV ) sin θP (m2
K −m2

π)

+ cos θP (4 cos 2θV −
√

2 sin 2θV )(4m2
K −m2

π)
}

−
2
√

2FV
(

1 + 8
√

2αV
2m2

K−m
2
π

M2
V

)
3M2

φF
DRη1(0,M2

φ,m
2
η) cos θV
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×
{
− cos θV cos θP (

√
2 cos θV + 4 sin θV )− 2 sin θP

}

−

√
2FV

(
1 + 8

√
2αV

2m2
K−m

2
π

M2
V

)
9M2

φF
DRη2 cos θV

×
{

(
√

2 cos θV − 2 sin θV )2(
√

2 cos θP − 2 sin θP )m2
π

−4(
√

2 cos θV + sin θV )2(
√

2 cos θP + sin θP )(2m2
K −m2

π)
}
,

Fη′→ωγ = 2
√

2
3MV F

CRη1(0,M2
ω,m

2
η′)
{

cos δ sin θV (
√

2 cos θP − sin θP )

+
√

2 cos δ cos θV sin θP −
√

3 sin δω(M2
ω)(
√

2 cos θP + sin θP )
}

+
√

2
9MV F

CRη2
{

4 cos δ
(
−3 cos(θV −θP )+cos(θV +θP )+2

√
2 sin(θV +θP )

)
m2
K

+
(
−6
√

3 sin δω(M2
ω)(
√

2 cos θP + sin θP )

− cos δ[−9 cos(θV − θP ) + cos(θV + θP ) + 2
√

2 sin(θV + θP )]
)
m2
π

}

−
FV

(
1 + 8

√
2αV m2

π

M2
V

)
3
√

2M2
ρF

DRη1(0,M2
ω,m

2
η′)(sin θV sin δρ(0) +

√
3 cos δ)

×
{

(−4
√

2 cos δ){sin θP [sin θV sin δρ(0)(sin θV − 2
√

2 cos θV )

+ sin δω(M2
ω)] +

√
2 cos θP (sin δω(M2

ω)− sin δρ(0))}
}

−
FV

(
1 + 8

√
2αV m2

π

M2
V

)
9
√

2M2
ρF

DRη2(sin θV sin δρ(0) +
√

3 cos δ)

×
{

(−2
√

2 cos δ){sin δρ(0)[2m2
K (cos θP (4 sin 2θV +

√
2 cos 2θV − 3

√
2)

− 2 sin θP (2
√

2 sin 2θV + cos 2θV − 3)) +m2
π (−2

√
2 cos(2θV + θP )

− 8 sin 2θV cos θP +(cos 2θV −9) sin θP )]+6m2
π sin δω(M2

ω)(sin θP +
√

2 cos θP )}
}

−
2
√

2FV
(

1 + 8
√

2αV m2
π

M2
V

)
3M2

ωF
DRη1(0,M2

ω,m
2
η′)(sin θV cos δ −

√
3 sin δω(0))

×
{

sin δω(M2
ω)× sin δω(0)(2 cos θP +

√
2 sin θP )

+ cos2 δ[2 cos θP + sin θV (4 cos θV −
√

2 sin θV ) sin θP ]
}

−

√
2FV

(
1 + 8

√
2αV m2

π

M2
V

)
9M2

ωF
DRη2(sin θV cos δ −

√
3 sin δω(0))

×
{
−4 cos2 δ

(
cos θP (−3 + cos 2θV + 2

√
2 sin 2θV )− (−3

√
2 +
√

2 cos 2θV

+4 sin 2θV ) sin θP )m2
K +

(
6 sin δω(M2

ω) sin δω(0)(2 cos θP +
√

2 sin θP )

+ cos2 δ
(
4 cos(2θV +θP )+

√
2[8 cos θP sin 2θV − (−9+cos 2θV ) sin θP ]

))
m2
π

}
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+

√
2FV

(
1 + 8

√
2αV

2m2
K−m

2
π

M2
V

)
3M2

φF
DRη1(0,M2

ω,m
2
η′)

×
{

cos θV cos δ(−4 cos 2θV +
√

2 sin 2θV ) sin θP
}

−

√
2FV

(
1 + 8

√
2αV

2m2
K−m

2
π

M2
V

)
9M2

φF
DRη2 cos θV cos δ

×
{
−4 cos θP (2

√
2 cos 2θV − sin 2θV )(m2

K −m2
π)

+(4 cos 2θV −
√

2 sin 2θV ) sin θP (4m2
K −m2

π)
}
,

Fη′→ργ = 2
√

2
3MV F

CRη1(0,M2
ρ ,m

2
η′)
{√

3 cos δ(
√

2 cos θP + sin θP )

+ sin δρ(M2
ρ )[
√

2 cos θP sin θV + (
√

2 cos θV − sin θV ) sin θP ]
}

+
√

2
9MV F

CRη2
{

4 sin δρ(M2
ρ )
(
− 3 cos(θV − θP ) + cos(θV + θP )

+ 2
√

2 sin(θV + θP )
)
m2
K +

(
6
√

3 cos δ(
√

2 cos θP + sin θP )

− sin δρ(M2
ρ )[−9 cos(θV − θP ) + cos(θV + θP ) + 2

√
2 sin(θV + θP )]

)
m2
π

}

−
2
√

2FV
(

1 + 8
√

2αV m2
π

M2
V

)
3M2

ρF
DRη1(0,M2

ρ ,m
2
η′)(sin θV sin δρ(0) +

√
3 cos δ)

×
{

cos2 δ(2 cos θP +
√

2 sin θP )

+ sin δρ(0) sin δρ(M2
ρ )[2 cos θP + sin θV (4 cos θV −

√
2 sin θV ) sin θP ]

}

−

√
2FV

(
1 + 8

√
2αV m2

π

M2
V

)
9M2

ρF
DRη2(sin θV sin δρ(0) +

√
3 cos δ)

×
{
−4 sin δρ(0) sin δρ(M2

ρ )
(
cos θP (−3 + cos 2θV + 2

√
2 sin 2θV )

− (−3
√

2 +
√

2 cos 2θV + 4 sin 2θV ) sin θP
)
m2
K+

(
6 cos2 δ(2 cos θP +

√
2 sin θP )

+ sin δρ(0) sin δρ(M2
ρ )
(
4 cos(2θV + θP ) +

√
2[8 cos θP sin 2θV

− (−9 + cos 2θV ) sin θP ]
))
m2
π

}

−

√
2FV

(
1 + 8

√
2αV m2

π

M2
V

)
6M2

ωF
DRη1(0,M2

ρ ,m
2
η′)(sin θV cos δ −

√
3 sin δω(0))

×
{

(−4
√

2 cos δ){sin θP [sin θV sin δρ(M2
ρ )(sin θV − 2

√
2 cos θV )

+ sin δω(0)] +
√

2 cos θP (sin δω(0)− sin δρ(M2
ρ ))}

}

−

√
2FV

(
1 + 8

√
2αV m2

π

M2
V

)
18M2

ωF
DRη2(sin θV cos δ −

√
3 sin δω(0))
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×
{

(−2
√

2 cos δ){sin δρ(M2
ρ )[2m2

K (cos θP (4 sin 2θV +
√

2 cos 2θV − 3
√

2)

− 2 sin θP (2
√

2 sin 2θV + cos 2θV − 3)) +m2
π (−2

√
2 cos(2θV + θP )

− 8 sin 2θV cos θP +(cos 2θV −9) sin θP )] +6m2
π sin δω(0)(sin θP +

√
2 cos θP )

}}

+

√
2FV

(
1 + 8

√
2αV

2m2
K−m

2
π

M2
V

)
3M2

φF
DRη1(0,M2

ρ ,m
2
η′)

×
{

cos θV sin δρ(M2
ρ )(−4 cos 2θV +

√
2 sin 2θV ) sin θP

}

−

√
2FV

(
1 + 8

√
2αV

2m2
K−m

2
π

M2
V

)
9M2

φF
DRη2 cos θV sin δρ(M2

ρ )

×
{
−4 cos θP (2

√
2 cos 2θV − sin 2θV )(m2

K −m2
π)

+(4 cos 2θV −
√

2 sin 2θV ) sin θP (4m2
K −m2

π)
}
,

Fφ→η′γ = 2
√

2
3MV F

CRη1(0,M2
φ,m

2
η′)
{√

2 cos(θV + θP )− cos θV sin θP
}

+
√

2
9MV F

CRη2
{

8
(√

2 cos(θV + θP ) + cos θP sin θV − 2 cos θV sin θP
)
m2
K

+
(
−2
√

2 cos(θV + θP )− 9 sin(θV − θP ) + sin(θV + θP )
)
m2
π

}

+

√
2FV

(
1 + 8

√
2αV m2

π

M2
V

)
3M2

ρF
DRη1(0,M2

φ,m
2
η′)(sin θV sin δρ(0) +

√
3 cos δ)

×
{

sin δρ(0)(−4 cos 2θV +
√

2 sin 2θV ) sin θP
}

−

√
2FV

(
1 + 8

√
2αV m2

π

M2
V

)
9M2

ρF
DRη2(sin θV sin δρ(0) +

√
3 cos δ) sin δρ(0)

×
{
−4 cos θP (2

√
2 cos 2θV − sin 2θV )(m2

K −m2
π)

+(4 cos 2θV −
√

2 sin 2θV ) sin θP (4m2
K −m2

π)
}

+

√
2FV

(
1 + 8

√
2αV m2

π

M2
V

)
3M2

ωF
DRη1(0,M2

φ,m
2
η′)(sin θV cos δ −

√
3 sin δω(0)){

cos δ(−4 cos 2θV +
√

2 sin 2θV ) sin θP
}

−

√
2FV

(
1 + 8

√
2αV m2

π

M2
V

)
9M2

ωF
DRη2(sin θV cos δ −

√
3 sin δω(0)) cos δ

×
{
−4 cos θP (2

√
2 cos 2θV − sin 2θV )(m2

K −m2
π)

+(4 cos 2θV −
√

2 sin 2θV ) sin θP (4m2
K −m2

π)
}
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−
2
√

2FV
(

1 + 8
√

2αV
2m2

K−m
2
π

M2
V

)
3M2

φF
DRη1(0,M2

φ,m
2
η′) cos θV

×
{

2 cos θP − cos θV (
√

2 cos θV + 4 sin θV ) sin θP
}

−

√
2FV

(
1 + 8

√
2αV

2m2
K−m

2
π

M2
V

)
9M2

φF
DRη2 cos θV

×
{

(
√

2 cos θV − 2 sin θV )2(2 cos θP +
√

2 sin θP )m2
π

−4(
√

2 cos θV + sin θV )2(− cos θP +
√

2 sin θP )(2m2
K −m2

π)
}
.

A.2.2 Three-body decays
The three pion decays of the vector resonances are given by:

Γ(V → π+(p1)π−(p2)π0(p3)) = 1
256π3M3

V

∫ s+

s−
ds

∫ t+

t−
dtP(s, t)|ΩV |2 , (A.5)

for V = ρ, ω, φ, where s = (p1 + p2)2, t = (p1 + p3)2 and

P(s, t) = 1
12
[
(3m2

π +M2
V − s)st− st2 −m2

π(m2
π −M2

V )2
]
. (A.6)

The integration limits are:

s+ = (MV −mπ)2 ,

s− = 4m2
π ,

t∓ = 1
4s

[(
M2
V −m2

π

)2
−
(
λ1/2(s,m2

π,m
2
π)± λ1/2(M2

V , s,m
2
π)
)2
]
. (A.7)

Finally ΩV is defined by

MV→π+π−π0 = iεµναβ p
µ
1 p

ν
2 p

α
3 ε

β
V ΩV , (A.8)

being εµV the polarization of the vector meson. Within resonance chiral theory the corre-
sponding reduced amplitudes, ΩV , are:

Ωω =
(√

2
3 cos θV +

√
1
3 sin θV

)
8 cos δ
MωF 3

{ √
2

MV
GRπ(M2

ω)

+GV (cos2 δ + sin δρ(s) sin δω(M2
ω))BW [ρ, s] DRπ(M2

ω, s)

+GVBW [ρ, t] DRπ(M2
ω, t) +GVBW [ρ, u] DRπ(M2

ω, u)

+GV sin δω(M2
ω) (sin δω(M2

ω) + sin δω(s) )BW [ω, s] DRπ(M2
ω, s)

}
,

Ωφ =
(√

1
3 cos θV −

√
2
3 sin θV

)
8

MφF 3

{ √
2

MV
GRπ(M2

φ)

+GV cos2 δ BW [ρ, s] DRπ(M2
φ, s) +GVBW [ρ, t] DRπ(M2

φ, t)

+GVBW [ρ, u] DRπ(M2
φ, u) +GV sin2 δω(s)BW [ω, s] DRπ(M2

φ, s)
}
,
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Ωρ =
(√

2
3 cos θV +

√
1
3 sin θV

)
8 sin δρ(M2

ρ )
MρF 3

{ √
2

MV
GRπ(M2

ρ )

+ 2GV cos2 δ BWR[ρ, s]DRπ(M2
ρ , s) +GVBWR[ρ, t]DRπ(M2

ρ , t)

+GVBWR[ρ, u]DRπ(M2
ρ , u)

}
−
(√

2
3 cos θV +

√
1
3 sin θV

)

× 8 sin δω(s)
MρF 3 GV (cos2 δ − sin δρ(M2

ρ ) sin δω(s))BWR[ω, s]DRπ(M2
ρ , s),

being u = M2
V + 3m2

π − s− t.
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