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ABSTRACT: A coherent study of eTe™ annihilation into two (777, KTK~) and three
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still by (21.6 + 7.4) x 10719 (2.90) from the experimental value.
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1 Introduction

It is well known that Quantum Chromodynamics (QCD) is successful in describing strong
interactions. In the high energy region, the correlation functions could be well determined
by perturbative QCD. However, the situation becomes more complicated in the low energy
region, as the strong coupling constant increases when the energy decreases. Fortunately,
at the very low energy region E < M, [M, being the mass of the p(770)], the spontaneous
chiral symmetry breaking of QCD generates the pseudoscalar octet of Goldstone bosons,
which are treated as degrees of freedom in the effective field theory (EFT) of QCD: chiral
perturbation theory (xPT) [1, 2]. However, xPT is not the EFT in the intermediate
energy region, M, S E < 2GeV, where it is populated by dense spectra of resonances.
Resonance chiral theory (RxT) is a reasonable approach to extent the working regime of
XPT by including the resonances as new degrees of freedom [3—6]. The construction of the
lagrangian is guided by Lorentz invariance and by chiral and discrete symmetries, i.e. C-,
P-parity conservation. The lack of a coupling that may guide a perturbative expansion
in the calculations of the amplitudes, is compensated by a model of the large- No setting
(being N¢ the number of colours) [7-9]. As in xPT, this approach produces the relevant
operators in the lagrangian, in terms of Goldstone bosons, resonances and external fields,
but leaves undetermined their coupling constants.



One may use experimental data to obtain information of the couplings. Meanwhile,
there is one theoretical tool that has proven efficient in this task: one can extract infor-
mation on the coupling constants by matching the perturbative Green functions of QCD
currents, using the operator product expansion (OPE) at leading order, with those con-
structed in the RyT framework [10-16]. Actually, RxT can also match, by construction,
with xPT by integrating out the resonances in the Lagrangian [4, 17], allowing to relate
their coupling constants, too. Indeed RxT is successful in dealing with the lightest reso-
nances and their interaction with the lightest pseudoscalars. It has been well applied in
the study of hadron tau decays [18-24], two-photon transition form factors [25-27], and
eTe™ annihilation in the nonperturbative regime of QCD [28, 29].

Low-energy processes with many hadrons in the final state involve final-state interac-
tions (FSI) that are notoriously difficult to deal with in a model independent way. The
use of dispersive approaches to deal with them is possible in some instances, namely when
good phenomenological data are available (see for instance refs. [30-36] for some recent
work). In the framework of RxT, this is also achievable as we did in ref. [29], where both
vector-meson dominance and the anomalous terms were considered in a coherent anal-
ysis of the ete™ — ntn 7% 7t7n~n channels, in the energy region populated by many
hadron resonances up to E < 2.3 GeV. Here we will revisit that work and extend it to two

pseudoscalar production in the light of the new data.

Recent interest on e™ e~ annihilation into two and three pesudoscalars is driven by their
contribution to the anomalous magnetic moment of the muon a, = (g, —2)/2, with g,, the
muon Landé factor. The theoretical prediction of a, has become a major tour de force in
the last years because, on the experimental side, it has been measured with high precision,
a = 11659208.9(6.3) x 1071% [37, 38], and there seems to be a 3.30 [38] or 3.70 [39]
discrepancy from the standard model (SM) prediction. This fact paves the possibility of
bringing out new physics contributions. Within the standard model [39, 40], the most im-
portant contribution, the electromagnetic one, is accurately calculated up to tenth-order a2,
aRFD = 11658471.8931(104) x 107, with very small uncertainty [41, 42]. The electroweak
contribution at the two-loop level is also well determined as aj;"" = 15.36(0.1) x 1070 [43-
46]. The hadronic contribution is considered as the major source of uncertainty and has two
components: hadronic light-by-light scattering (HLBL) and hadronic vacuum polarization
(HVP). The HLBL cannot be directly estimated from experimental input, and a combina-
tion of different theoretical models has estimated it as aELBL = 9.2(1.8) x 10710 [39, 47—
49]. The lattice calculations on HLBL and HVP can be found in, e.g. refs. [50-53]. A
comprehensive amplitude analysis on vy — 77, KK is done in refs. [54-57]. They are
indeed the constraints on HLBL where the photons are real. HVP is the largest hadronic
contribution and it is related with the cross section of eTe~™ — anything throughout
causality and unitarity.! The present value for the leading order HVP contribution is
aEVPvLO = 694.0(4.0) x 1071° [60]. And the next-to-leading order and next-to-next-to-
leading order HVP corrections are derived by considering also higher order hadronic loops,
a VPNEO = —9.83(0.07) x 10710 [61], af VPNNLO = 1.24(0.01) x 10710 [62]. The com-

We note that in the early works [58, 59], the upper limit of HVP contribution has been given.



putation of the HVP contribution relies heavily on the available experimental data and,
consequently, its improvement will come from the accurate measurement of the electron-
positron cross-section.

Comparing the theoretical predictions from the SM with the experimental measure-
ment, there is still a discrepancy, as commented above. There are lots of experimental data
available. However, there are discordances among different collaborations, even those with
the highest statistics datasets. The study of three pseudoscalar production was carried
out in ref. [29], but recently new experimental measurements of ete™ — 7T7 =70 7tz 7n
have become available. SND [63] has given a new measurement of eTe™ — 77770 in the
energy range 1.05 — 2.00 GeV. BESIII [64] provided a measurement for ete™ — atn =70
in a wide energy range between 0.7 and 3.0 GeV using the Initial State Radiation (ISR)
method. SND also measured e*e~ — nm channel with 7 in  — 7y mode [65] and  — 37
mode [66], and a combined results of these two modes were provided in [66]. CMD3 [67]
also measured ete”™ — nmw in 7 — vy mode, and the cross section values combined with
its previous measurements were provided. Very recently, BESIII measured ete™ — n/nm
above 2 GeV [68]. Besides, there are also new experimental measurements for the two pseu-
doscalar cases. BaBar [69] measured eTe™ — 77~ from threshold up to 3GeV. KLOE
has done three precise measurements of ete™ — 777~ [70-72], using ISR below 1 GeV,
and a combined results with all these three measurements were provided in ref. [73]. There
are also precise measurements below 1 GeV, such as, SND [74], BESIII [75] and CLEO [76].
Before 2008, there are also lots of experiment datasets, CMD2 [77-79], DM2 [80] and CMD
& OLYA [81]. In contrast, the ete™ — K™K~ process has a considerably shorter history
starting from SND [82] in 2001. Later, SND updated the measurements in 2007 [83], and
the most recently one in 2016 [84]. In 2019, a high precision measurement has been given
by BESIII [85]. There are also some other measurements from BarBar [86], CMD2 [87]
and CMD3 [88].

In this paper, we give a coherent analysis of eTe™ annihilation into two pseudoscalars
7t~ ,KtK~ and three pseudoscalars 7*7~ 7% 7+t7~n based on the former work [29],
combined with all the recent experimental measurements. In section 2 we will briefly
update the theoretical framework and give the amplitudes calculated by RxT. In section 3,
we fit the amplitudes to the experimental data up to 2.3 GeV. In section 4, the leading
order HVP contribution to g — 2 is estimated. Higher-order hadronic contributions are
considered in section 5. Finally, we collect our conclusions in section 6. An appendix
collects detailed expressions for the involved form factors and decay widths.

2 Theoretical framework updates and notations

2.1 RxT and further improvements on the form factors

Massless QCD exhibits a chiral symmetry that rules its effective field theory at low energy.
xPT, valid at E' < M,, provides the interaction between the lightest octet of pseudoscalar
mesons, and of these with external currents. At higher energies we need to take into account
the hadronic resonance states, and a successful phenomenological approach is provided by



RxT, which aspects of interest for our case we briefly collect here. We follow the language
and notation of ref. [5].
The structure of the lagrangian has, essentially, three pieces:

Lryr = LB + L + Lv-cB - (2.1)

The first piece involves interaction terms with Goldstone bosons that cannot be generated
by integrating out the vector resonance states. They are characterized by a perturbative
expansion in terms of momenta (and masses), as in yPT. £} involves the kinetic term
of the vector resonance states and Lv_gp the interaction between Goldstone bosons and
vector resonance fields. For the processes that we study in this work only the vector
resonance fields will be needed. All of these lagrangians include also external fields coupled
to scalar, pseudoscalar, vector, axial-vector or tensor currents. The lowest even-intrinsic-
parity O(p?) of the Lgp Lagrangian is given by
F2
LY = L)' =~ (upw + X4) (22)
being F' the decay constant of the pion and (...) indicates the trace in the SU(3) space.
The leading Wess-Zumino-Witten term describing the anomaly with odd-intrinsic-parity is
of O(p*) [89, 90]. The explicit expression of interest for our work is given by

£GB . ]\7(1\/§

4) = ZW Euvpo <8M¢6V¢8p@l}0> + -, (23)
where v? is the external vector current and ® the multiplet of Goldstone bosons. Higher
orders of the Lgp lagrangian will not be considered, as we assume that their couplings are
dominated by resonance contributions.?

The kinetic term of the vector resonance field is given by
1 1
Lhin = =5 (PVaV V) + I ME (Vi V™) (2.4)

Here the resonances are collected as SU(3)y octets and have the corresponding proper-
ties under chiral transformations. The Lagrangian that involves the interaction between
Goldstone bosons and vector resonances, Ly _gg, couples the later octets with a chiral ten-
sor constituted by the pseudoscalar nonet and external fields. Hence these chiral tensors
obey a chiral counting O(p"). This allows us to assign a label n to the different pieces
as CXi)"v where the numerator indicates the resonance fields in the interaction terms. We
will consider

Ly_cB =Ly + Ly + LY - (2.5)
For instance, in the antisymmetric formulation for the spin-one vector resonances that

we use,

Ll = (VarX(z))
Xy = i S (26)

w2t Ve

2Up to O(p*) at least, this setting depends on the realization of the spin-1 resonance fields. In ref. [4],

it was proven that this assumption is correct if one uses the antisymmetric formulation for those fields, as
we do.



where Fy and Gy are coupling constants not determined by the symmetry. The rest of
terms in eq. (2.5) are collected in ref. [5] for the even-intrinsic-parity terms and refs. [11,
19, 29] for those of odd-intrinsic parity. The coupling constants of the interaction terms of
Lv_gB could be extracted from the phenomenology involving those states. As commented
in the introduction the matching between the leading order in the OPE expansion of specific
Green functions of QCD and their expressions within RxT is also a useful tool that has
been employed in the bibliography [10-16]. We will implement this procedure as far as
it helps in our task. In particular we will use the relations between couplings specified
in ref. [29].

However, the large energy region of study cannot be described fully with only one
multiplet of vector resonances V). The lightest one is situated around M,, i.e. under
1 GeV. Two other vector multiplets populate the interval 1 GeV < E < 2 GeV, that we will
call Vj, and V. Their couplings to the pseudoscalar mesons will be defined with respect
to the ones of the lightest multiplet as 5,87 .8% i ,0% k- through their poles, as

1 . 1 n ;rw,KK n B;:TF,KK (2.7)
M‘Q/—.CL’ Ma—l’ M‘Q//_x M‘Q///_x‘ '

The p — w mixing, required by the ete™ — w7~ process, is reconsidered. While a
constant mixing angle Jg is enough to describe mixing in the three pseudoscalar case as

%)\ [ cosdy —sind 10°)
( |co) ) B (sin&? cos(goo> < ) ) , (2.8)

an energy dependent mixing angle is discussed in ref. [91], although in the non-relativistic

discussed in ref. [29]:

limit and we need to generalize it to the relativistic case. The energy dependent mixing
angle could be parameterized as

) My T, sind
(’p0>> _ MC?S(S' . ,(Ma,s)ﬂ’fwv(ppfrw) <‘po>>
‘(D> —(M‘Q,—s)v—z’/}\/S[V(I‘p_rw) cos 9 |w>

_ [ cosd  —sind¥(s) |p0>>
N (Sindp(s) cos o ) < lw) )’ (2:9)

where |p0> , |w) denote the physical states. Hence the energy dependence of the mixing

angle is driven by the resonance propagators. Here My, is the mass of the nonet of vector
resonances in the SU(3) limit. We will take My = M,. For the two body final state
processes ete”™ — 7t7~, KTK~, we always take energy dependent mixing mechanism
according to eq. (2.9). For the three body cases, we adopt two ways. One is to take the
same energy dependent p —w mixing mechanism as that of the two body case. This will be
Fit I. The other is to use the constant mixing angle dp. This will be our Fit II. Comparison
of both fits will unveil the influence of p — w mixing in the analysis of data.

2.2 Cross sections for two and three pseudoscalar final states

The amplitude for three-meson production in eTe™ collisions is driven by the hadronization

of the electromagnetic current, in terms of one vector form factor only:

(" (p1)7 (p2) P(p3)| (Vf; +Vﬁ/\/§) Qe |0y = i FE(Q%, 5, 1) epvap PV PSP, (2.10)



being Vﬁ = qv,(\/2)g and P = m,n. The Mandelstam variables are defined as s =
(Q —p3)?, t = (Q — p1)?, with Q@ = p1 + p2 + p3. The cross section and amplitudes

0 and

for the three pseudoscalar cases that we are considering, namely eTe™ — 77 7
ete”™ — whrn, are quite the same as specified in ref. [29], except for a small change in
the treatment of p —w mixing, as illustrated in section 2.1. The corresponding expressions
for the cross-section and the modified form factors for the three pseudoscalar cases are
collected in appendix A.

These form factors depend on several couplings of the RxT lagrangian that are not
determined by the symmetry. However, some of them or, at least, relations between them
can be established by matching Green functions calculated in this framework with their
expressions at leading order OPE expansion of QCD, as it has been commented before.
By implementing these short-distance relations our form factors satisfy both the chiral
constraints in the low-energy region and the asymptotic constraints at the high energy
limit (Q? — 00). Hence the only unknown couplings in these form factors will be F,
294+ g5, da, c3 and ay [29], to be added to the 3] rjc and 87, xp from eq. (2.7) and the
mixing angles between the octet and singlet pseudoscalar (6p) and vector (6y ) components,
defined also in [29].

Two-pseudoscalar final states in eTe™ annihilation are given by the corresponding
vector form factor

(PH(p1) P~ (p2)] (Vi + Vi/VB) €990]0) = (p1 —p2)u FY(Q%), (2.10)

with Q = p1 + p2 and P = 7, K. The energy in the center of mass frame is given by
Eem = /Q?%. The cross sections o, = o(ete™ — 777 ) and ogx = o(eTe”™ - KTK™)
are given by

9\ 3/2
opp = o 3%2 <1 - 42”2‘1;) \FE(Q2)]2. (2.12)
The form factors F{}(Q?) and F{¥ (Q?) were thoroughly studied in ref. [92] (see also [93-95]
for alternative parameterizations) in the case of tau decays. Hence we need to include
now the new p — w mixing mechanism, present in e*e™ into hadrons. We also extend the
described energy region by adding heavier vector multiplets, as commented above. Their
expressions are:

FyGy
2

Fp = (14 205V Q7 (B, T, Q)+ 5 BW (M T . Q)

" 1
+Bran BW (M, Ty Q2)> <\/§ sin Oy sin 6 + cos 5) cos d

FyG :
— QY (BW (M, T, Q) + B BW (M, T, , Q)

F2

" 1
+Brn BW (M, T Q2)> <\/§ sin 6y cos 6 — sin 5‘”) sin 5‘”)

(Re {A[mw,Mp, Q2] + ;A[mK,Mp,QQ]}ﬂ , (2.13)

—S
X exp [967r2F2



K cos 2 Fy Gy Qm%—mi 9 2
R = (S0 1 8v2ay =R )M (B (Mo, T, Q%)

+ B BW(My Ty Q%) + Bree BW (M, Ty, Q%))
X, FyGy

24 F?

2
<1 + 8\/§avmg)M3 (BW (M., T, Q2)
MV
+ B BW(M,, Ty, Q%) + B g BW(M, T v , Q%))

xexp[ 4" (2Re(A[mK,Mp,Q2D>1

9672 F2
X2 FyGy m2
T M <1 + 8\604/%7;}) (BW(M,,T,, Q%)

+ B BW(M,,T Q%) + B BW (M1, T o, Q)
2

—q 2 1 2
X eXp I:W (Re |:A[m7r,Mp, Q ] + QA[mK7Mp7Q ]:|) :l . (214)

The functions in egs. (2.13), (2.14) are given by:
23]t 2 . 2 2
[BW(My, Ty, QY| = M —iMyTv(Q) - Q2
8mp 5 op+1
2\ _ 2,2 p_° 3 p
A(mP,M,Q)—ln(mp/H)+ +0P1n<0_P_1>7

Q* 3

op =/1—4m%/Q?, (2.15)

and

X| = — 16V/3 cos  sin fy sin 6“(Q?) — 6 cos® § cos 20y + 12sin? 6,(Q?) + 3cos 25 + 3,
Xy = —6.cos 20y sin 6°(Q?) + 16v/3 cos § sin By sin 6°(Q?)
+65in? 67 (Q?) + 6 cos 28 + 6, (2.16)

Notice that X; = 12sin? 6y and X, = 12 in the isospin limit. The angles sin 6”* related
with the p — w mixing are defined in eq. (2.9). The Q? dependence of resonance widths
are a debated issue. A thorough proposal within the chiral framework was proposed in
ref. [96] for wide resonances. We will use this result for I',(Q?), while a parameterization in
terms of the on-shell widths, driven by the two-body phase-space decay will be employed
for T}y ,7(Q?). The precise expressions are collected in ref. [29]. Meanwhile the rest of
resonances, that are quite narrow, will be taken constant. Notice that the two-body vector
form factors do not include more unknown couplings to those of three-body form factors.

3 Combined fit to experimental data

As we have seen RxT provides a controlled setting to extract information from experimental
data. Part of, but not all, of the couplings have been constrained by demanding that Green
functions, in this framework, match the asymptotic behaviour of QCD, within the leading



term of the OPE expansion, in the high energy limit. The remaining coupling constants,
the mixing angles and resonance masses and on-shell widths are left to be determined from
the experimental data of cross sections and widths involving vector resonances.

The unknown couplings include Fy,2g4 + g5, do, c3, oy, the phenomenological param-
eters, B/X and [3/;( with X = 7, n, nm, KK, counting for the corresponding strength of the
couplings of the V' and V”.? The mixing angles of the pseudoscalar singlet and octet 0p,
that of vector singlet and octet 6y, and the p — w mixing angle, the energy dependent
0 and/or constant dy are also left free. The masses and widths of resonances belonging
to heavier second and third multiplets are also fitted around the central values listed in
PDG [38].

The last thirty years of experimental work have been very fruitful getting results for
the cross-sections we are interested in, as collected in section 1. In order to get results
for our parameters we decide to fit the experimental data of cross-sections obtained by
dedicated experiments in the last twenty years, i.e. we exclude data older than 2000, with
one exception: BESIII [64] measured the cross section of ete™ — 77~ 7" with high
statistics above 1.05GeV, while it has a relatively large uncertainty below that energy.
Thus we do not fit the data points below 1.05GeV from this dataset. In addition we also
fit the PDG figures [38] for the decay widths of vector resonances whose expressions are
collected in appendix A.

Two fits are performed: Fit I uses a uniform energy dependent p —w mixing according
to eq. (2.9). In Fit II, the two body final state cases take into account the energy dependent
p —w mixing, while the other processes are carried out with a constant p —w mixing angle,
see eq. (2.8). The comparison between cross-section data and the fit is shown in figure 1
for the three-pseudoscalar case and figure 2 for the two-pseudocalar case. The captions in
the figures collect all data used in the plots and in the fits.

The global fit includes decay widths of related resonances and their results are shown
in table 1. The reported errors are obtained, in quadrature, from two components: one
arises from the Bootstrap method by varying the central value of experimental data within
its error bar, and the other comes from the statistics with dozens of solutions which could
also fit to the experimental data sets well. The latter one is the dominant source of error
estimation. The cyan bands of all the solutions of Fit II can be found in figure 1 and
figure 2. In general, both Fit I and Fit II provide overall reasonable approximations to the
experimental figures quoted in the PDG [38].

3.1 Analysis of the results

A comparison between our fitted parameters and those of Fit 4 in ref. [29] is shown in
table 2. We also compare the masses and widths of the resonances with those listed in
PDG [38]. The fitting procedure is carried out with MINUIT [110].

The quoted errors in the fitted parameters are provided by the Bootstrap method. In
general, the parameters in Fit I and Fit II are consistent with those of Fit 4 in ref. [29],

3Notice that X = m, 7 appear in the three pseudoscalar final state 777~ 7% and =77 5, respectively and
X = 7w, KK denote the two pseudoscalar final state 7+7~and KK ™, respectively.
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Figure 1. Fit to the cross sections of eTe™ — wwm, wan of Fit I (dashed blue line) and Fit 1T
(solid black line). The cyan bands corresponds to the uncertainty of Fit II. The last graph is about
nmr channel and the others for mmm. The experimental data displayed for et e™ — 7 are from
DM1 [97], ND [98], DM2 [99], CMD2 [100-102], SND [63, 103, 104], Babar [105], and BESIII [64].
The experimental data displayed for eTe™ — wmn are from DM2 [106], ND [98], CMD2 [107],
Babar [108], SND [65, 66, 109], and CMD3 [67].

within a deviation of about 10%. Fy, 2g4+gs, 0y, dp and/or ¢ are mainly determined by the
experimental data under 1.05 GeV, where it has higher statistics and precision. However,
the joint fit including the eTe™ — KTK~ process constrain 6y strongly. This can be
understood from the form factor in eq. (2.14), where the cross section around the ¢ peak
increases with the descent of 6y. In contrast, the cross section of etTe™ — 7t7~ 70 around
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Figure 2. Fit to the cross sections of ete~

— 7=, K* K~ of Fit T (dashed blue line) and

Fit II (solid black line). The cyan bands correspond to the uncertainty of Fit II. The top four
graphs are for ete™ — 777~ ,the bottom two graphs are for ete™ — KTK~. The experimental
data displayed for ete™ — 777~ are from BaBar [69], KLOE [70-73], SND [74], BESIII [75],
CLEO [76], CMD2 [77-79], DM2 [80] and CMD & OLYA [81]. The experimental data displayed
for ete~ — K+ K~ are from SND [82-84], BaBar [86], CMD2 [87], CMD3 [88] and BESIII [85)].

the ¢ peak decreases when 6y goes down, which could be deduced from the expressions in
appendix A. As a consequence, 0y is about 1° larger than that of ref. [29]. The inclusion of
ete™ — KK~ process also constrains ay -, the higher order correction to the Fy coupling

~10 -



arising from SU(3) symmetry breaking. The cross section of ete™ — KTK~ increases
with rising ay. To confront the theoretical predictions to the experimental data of the
cross section of ete™ — KTK ™, ay is fixed to be negative. Notice that ay is small as it
is higher order correction.

The energy dependent p — w mixing angle § is determined by the ete™ — 77~
process. From eq. (2.13), the cross section of ete™ — 7t7~ is mainly determined by
§, since FyyGy/F? = 1 is constrained by the high energy behaviour and 6y could be
determined as above. The two mechanisms of p — w mixing adopted in Fit I and II have
almost no effects on the three body final state case. There is only a very little difference
reflected around the p peak in the ete™ — 77~ 70 process. In the energy region around
their masses, p and w mix with a relative phase that results in a larger mode of |FJ}|?.
Hence the magnitude of Fy, and 2g4 + g5 are smaller in Fit I in comparison to Fit IT and
the results in ref. [29].

The parameters related with the resonance multiplets are almost the same in Fit I and
Fit II, but some of them are different from those of ref. [29]. They are mainly determined
by the energy region above 1.0 GeV. Both eTe™ — 777~ and eTe™ — naTn~ processes are
sensitive to the masses and widths of p/ and p" in this energy region. The ete™ — wta™
data gives relative smaller masses and larger widths of p,, compared with those provided
by the eTe™ — nmtm~ process. Hence the combined fitted p/ mass is about 30 MeV smaller
and the p’ width is about 100 MeV larger than those in ref. [29]. The mass and width of p”
also changes slightly. Consequently, the relative weights of the ete™ — nr T~ process 67’7
and ﬁg have sizable changes compared with those in ref. [29]. Meanwhile, the strengths of
the ete™ — 70777~ process B. and 37 are similar. Notice that in the two-body processes
ete™ — 7mt7~ and efe”™ — KTK~, the parameters ﬁ;(;rl) and ﬁ/[g;z turn out to be very
small with magnitudes < 0.2, as expected by lowest meson dominance [10, 111-114].

Since do, c3 and fp are mainly correlated with the eTe™ — nrt 7~ process, they also
have sizable changes, while masses and widths of other resonance multiplets are quite the
same. In summary, and as shown in table 2, the fitted masses and widths of heavier mul-
tiplets are closer to the experimental average values in PDG [38], due to a combination of

Tn~ and K™K~ processes.

updated experimental measurements and the constraints from

Notice however, that the masses and widths of p’ and p” obtained here correspond
to the specific definition of the energy dependent width propagator shown in eq. (40) of
ref. [29], which may not be used by the experimentalists. Hence a precise comparison with
the experimental determinations is not straightforward.

Finally 6y and ay change sizeably with respect to the results of ref. [29] due to the
inclusion of the process ete™ — KTK ™, so that the partial widths sensitive to 6y and
ay become worse. Nevertheless, these partial widths turn out to be bearable with the
experimental data from PDG [38], considering the incertitude associated with the theoret-
ical framework of large- N¢o expansion implemented in the framework of RxT. In addition,
the difference of partial widths of I'jo_, . in Fit I and Fit II are caused by the different
parametrization of the p — w mixing. The p° decays in Fits. I and II have different mixing
angles and also the former one is energy dependent, see eq. (2.9).

The comparison of our solutions for the three pseudoscalar case with experimental data
is shown in figure 1, and that of the two pseudoscalar case is shown in figure 2. The results
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Width Fit 1 Fit I Ref. [29] PDG [38]
Tposmnr (107°GeV) | 0.86+£0.31  0.64+0.49  0.93 1.4915:23
Tosrrn (1073GeV) | 7.43£0.78 7.96£0.74  7.66  7.58+0.05
Mgsmnn (107%1GeV) | 9.0841.57 9.00£1.14  6.25  6.53+0.14
T)yee (1076GeV) | 5.56+0.66 5.81+0.52  6.54  6.9840.07
(1077 GeV) | 7.2840.85 7.60+£0.65  6.69  6.2540.13
Tpsee ( ) | 0.8240.09 0.86+0.08  1.20  1.26+0.01
Cposnn (1071GeV) | 1.304£0.17 1.24+0.11  1.14  1.4840.01

( )

(

Fw—me

1.334£0.47 1.23+0.11  1.61  1.30£0.05
10°7GeV) | 1.8240.20 1.91+0.18  2.66  3.10+0.55
Tho im0y (1075GeV) | 4.6040.64 5.38+0.64 596  6.9540.89
Ty pty (1075 GeV) | 4.4640.62 4.5340.37  4.81  6.65+0.74
Tuspoy (1074GeV) | 3.9740.47 4.0740.35 443 7.1340.19

Tymoy (1076GeV) | 9.01£2.26 9.17+1.30  7.34  5.52+0.21
(10-° G 3.9540.69 4.3240.38  4.85  4.43+0.31

Fw—>7r7r

%

Lposny )
Tuisyy (1076GeV) | 4.4240.77 3774048 413  3.8240.34
Tyony (1075GeV) | 5924078 6.10+£0.48  6.57  5.54+0.11
Typy (1075GeV) | 45141.34 5104110 537  5.66£0.10
(10
(

1076 GeV) 6.24+1.77 5.52+0.94 5.12 4.74£0.13
1077 GeV) | 3.074£0.71 3.3640.44 3.93 2.64+0.09

Lo sy

FdJ%n Y

Table 1. Decay widths involving vector resonances compared with the Fit 4 of ref. [29] and
PDG [38].

of Fit I are shown in blue dashed lines and those of Fit II are shown in solid black lines.
In general, Fit I and Fit II are almost indistinguishable. There is slight difference shown
around the p peak in eTe™ — 77770 process at 0.6 < E < 1 (GeV), due to the different
parametrization of p —w mixing adopted. Noted that Fit II is a little better in this region,
since there is one more parameter §p and the energy dependent mixing mechanism designed
for the w7 scattering may not be suitable for the three pion case, where the three body
re-scattering needs to be considered. Fit IT seems also a little better at the ¢ peak in the
ete™ — ntn~n¥ process. This is because that, Fy and 2g4+ g5 in Fit II are allowed to have
larger values than in Fit I, which can slightly compensate the ¢ peak in ete™ — 77 70,
As illustrated above, the 0y and ay constrained by the eTe™ — K™K~ will suppress the

0

¢ peak in eTe™ — 7T~ 7w’. The high energy behaviour of ete™ — 77—, as shown in

figure 2, is balanced with the eTe™ — nata~ process through the mass and width of p'.

4 Leading-order hadronic vacuum polarization contributions to a,

The Hadronic Vacuum Polarization (HVP) corrections to a, = (g, — 2)/2 are related to
the eTe™ — hadrons cross sections through the optical theorem and analyticity [40, 115].
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Fit I Fit 11 Ref. [29] PDG [38]
Fy (GeV) 0.139-£0.001 0.142+0.001 0.148+0.001 —
204 + g5 —0.44240.001 —0.492-0.002 —0.493:£0.003 —

dy 0.02730.0005 0.027640.0006 0.0359+0.0007 —

c3 0.0043240.00012  0.004354:0.00013  0.0068940.00017 —
ay —0.00120£0.00012  —0.0011340.00014  0.0126--0.0007 —
oy (°) 39.6140.01 39.5640.01 38.94+0.02 —

05 (%) -19.3940.09 -19.6140.10 -21.37+0.26 —
50(°) — 1.70-£0.05 2.1240.06 —
5(°) -1.834+0.04 -1.8040.01 — —

B —0.434+0.005 —0.45440.003 —0.46940.008 —

Bl 0.239+0.002 0.22440.005 0.22540.007 —

g —0.452+0.008 —0.438+0.006 —0.17440.017 —

;; —0.0213£0.0031  —0.0233£0.0023  —0.0968-:0.0139 —

- —0.0625-£0.0007  —0.0625-20.0009 — —

s 0.01150.0006 0.01184:0.0007 — —
Bl —0.06520.0023  —0.07120.0040 — —
Bl —0.202+0.003 —0.197-0.005 — —

M, (GeV) 1.51740.001 1.51940.002 1.55040.012 1.465(25)
T, (GeV) 0.34040.006 0.3404:0.001 0.23840.018  0.400(60)
M, (GeV) 1.25640.006 1.25340.003 1.249+0.003  1.410(60)
T (GeV) 0.3104:0.005 0.3104:0.003 0.30740.007  0.290(190)
My (GeV) 1.6404:0.003 1.640-£0.003 1.641+0.005 1.680(20)
Ty (GeV) 0.08340.001 0.090:0.002 0.08640.007 0.15(5)

M, (GeV) 1.7204:0.004 1.72040.001 1.79440.012 1.720(20)
T, (GeV) 0.15040.001 0.15040.005 0.29740.033 0.25(10)

M., (GeV) 1.683-£0.005 1.725:0.010 1.700£0.011 1.670(30)
T (GeV) 0.40040.002 0.40040.003 0.40040.013  0.315(35)
My (GeV) 2.114+0.010 2.126+0.025 2.086+0.022  2.160(80)
Ty (GeV) 0.10840.014 0.10040.014 0.10840.017  0.125(65)

Table 2.

The uncertainty of the parameters are coming from the Bootstrap method.
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The leading order HVP correction can be expressed as

0)m,\? [ . K(s)
g — <O‘(”) a5 R (s, (4.1)
" 3 Sthr 52
where
Qe = ﬁ Ry(s) = 3730 (e+e_ — hadrons ) (4.2)
¢ 4n’ BT dra2(s) ’ '
and the kernel function is defined as,
. 3s |(14+2%) (1+2)? 2\ 2? 9y | 1+
K(s):m—z 2 ln(l—i—x)—x—i—? —1—5(2—@')—1—1_3?:6 Inz| ,
(4.3)
with
1= Bu(s) Amj;
€r = — S) = ]_ — 44
S 5uls) i (44)

Notice that the lower limit in the integration in eq. (4.1) depends on the starting contri-
bution and its O(«.) order. Hence sy, = mfro when including the 7TO’Y contribution and
Sihr = 4m§r when starting in the 77 contribution.

It is interesting to notice the 1/s? enhancement factor (leading order) of contributions
of low energies in a; (3). Thus the kernel gives higher weight, in particular, to the lowest
lying resonance p(770) that couples strongly to 77 ~. This fact is the reason why the pion

had
e
we are in the position to determine the contributions to the muon anomalous magnetic

pair production eTe™ — w7~ gives, by far, the largest contribution to a However,

moment relevant to the three and two pseudoscalar final states that we discussed above.

They are shown as ag with different energy regions in table 3.

C

Here a}, (C = 7, KK, nnwm,num) denotes for the lowest order hadronic vacuum po-

C
n

are given by the combination of the uncertainty coming from the Bootstrap method and

m
larization contribution of ete™ — 7w, KK, wrm, nrrw, respectively. The error bars for a

the statistics from dozens of solutions that also fit to the experimental data sets well.

It is noted that, although different parameterizations of the p — w mixing are adopted
in Fit I and Fit II, the individual contributions of each channel are almost the same. A
look back to the figure 1 shows that the results of Fit I are slightly different from the ones
of Fit II around the p peak in the ete™ — 77~ 7% process (see the first three graphs).
However, the total contributions to aﬂ”|§1.8 Gqev are almost the same, as the contribution
of Fit I is slightly larger than that of Fit II on the left hand side of he p peak, but it is
in the opposite situation on the right hand side of p peak. They tend to cancel between
each other. Since there is little difference between the two fits, we will discuss below with
Fit II. The ag evaluated here are consistent with those in refs. [60, 116, 117], within their
uncertainty. In addition, aZ”]Sl.g Gev 1s also consistent with that evaluated based on the
cross section fitted in ref. [29]. On the other hand, a slightly larger azﬂ—ﬂ"gl.g Gev is obtained
compared with that of refs. [29, 60]. One has to note that the ete™ — nrtn™ process
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a$ x 10710 Ref. [116] Ref. [29] Ref. [117] Ref. [60] Fit I Fit IT
aj"|<oescev  132.8(0.4)(1.0)  — — — 132.11£0.63 132.1140.67
afl<icev  495.0(1.5)(2.1) — — — 498.48+2.34 498.47+2.33
ar™|<1.8Gev — — — 507.85+0.83+3.23£0.55  508.89+2.45 508.89+2.45
a"|<2.36ev — — — — 509.13+2.48 509.1342.48
ap l<aacev — — — — 20.73+0.94 20.74+0.88
ar ®|<1scev — — — 23.0840.2040.33+0.21 24.3541.02 24.36+0.97
af Kl<ascev — — — — 24.43+1.03 24.44+1.01
am™™| <1.8Gev — 48.55 46.2(8)  46.2140.40+1.10+0.86 48.55+1.42 48.54+1.39
a;™™ | <2.3Gev — — — — 48.76+£1.45 48.75+1.43
al™™ | <1 8cev 1.135 — 1.19+40.0240.0440.02 1.28+0.10 1.29+0.09
a" " <2.3Gev 1.5240.12 1.5340.12
aftVP-LO 694.0+4.0 699.46+3.41 699.47+3.39
asM 11659183.1+4.8 11659187.3+£3.8  11659187.3+3.9
Aay, 26.0 + 7.9(3.30) 21.6 £ 7.4(2.90) 21.6 + 7.4(2.90)

Table 3. Our predictions of muon anomalous magnetic moment, where other contributions are

from refs. [39, 60] and references therein. We compared the afj , aEVP’LO, aISLM and Ag, with

refs. [29, 60, 116, 117]. The experimental value is measured as a;® = 11659208.9 & 6.3 [37].

has a threshold at about 0.73 GeV, and therefore has a larger dependence on the resonance
multiplets.

As explained above the largest contribution of the hadronic vacuum polarization comes
from ete™ — 777~ . In our theoretical framework, the cross section of ete™ — 777~ below
1 GeV is almost fixed with a small dependence on 9, while other parameters contribute little.
Hence the ete™ — ™
the ete™ — KK~ process, only 6y and ay are sensitive, but 6 and «y are in tension

cross-section shares little uncertainty from the parameters. For

with the ¢ peak in eTe™ — 7770, Hence, there is a dedicated balance between these two
data sets, which causes considerable uncertainty. Since we have fitted up to E = 2.3 GeV,
we also listed the corresponding aE| <93QeV in table 3.
The total contribution is

a; VPO = (699.47 + 3.38) x 10710 (4.5)
from Fit II, in combination with the left channels fitted in ref. [60]. Note that the four con-
tributions we consider here provide the largest uncertainty among all the channels. Com-
bined with the other contributions (QED [41], EW [43-46], NLHVP [62], NNLHVP [62],
HLBL [39, 47-49]) within the SM, we also give an estimation of the anomalous magnetic
moment of muon in SM. It is about 4.2 x 10719 larger in total than that in ref. [60].
Hence our estimation of the discrepancy Aa, between the theoretical prediction in SM

and that measured by experiment is 0.40 smaller than that in ref. [60]. Our estimation of
Aa, = (21.6 £ 7.4) x 1079 is 2.90 smaller than that of the experimental value.
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5 Higher-order hadronic vacuum polarization contributions to a,

We can also consider the contribution of the hadronic vacuum polarization to higher-
order corrections to the leading result of the previous section 4. These have already been
computed in the past at next-to-leading (NLO) order [118] and nex-to-next-to-leading
(NNLO) order [62]. In our case, however, we will only consider the contribution of two and
three pseudoscalars to HVP, as we have obtained in section 3.

NLO contributions correspond to O(a2) with one and two HVP insertions. They are

given by
1 /ae(0)\?® [ ds
(20.20) — = (=2 (20.20)
a’u 3( v ) AmZSR() (S)a
© dsds’
(2¢) _ dsds’ , 20) /
ap " = < ) /[mﬂ S SRh s) Ry (s") K% (s,s) (5.1)

respectively, where Ry (s) has been defined in eq. (4.2). The label notation and the kernels
K (2a:26.2¢) can be read from ref. [118]. Notice that the lower limit in the integral is taken
to be 4m2 as we are only including the contribution of cross-sections of two and three
pseudoscalars.

O(a?) with up to three HVP insertions corresponds to the NNLO case. Their contri-
butions can be computed as

4 o
aELSa,3b,3bLBL) 1 <04e(0)) / ﬁRh(s) J(3a.3b3bLBL) (g
4

3 T m2 S

al(fc) = ( (0) ) /AOO @d—sRh (8) Ry () K30 (5,8, (5.2)

m2 s
1 [a.(0) 4 © dsds' ds"
(Ba) _— = (ZelY) os &5 ! " (3d) 1
o = 5 (“2) )] ST TR B ) B () KO ()

Here the label notation and the different kernels K (3¢:30:30LBL,3¢3d) follow from ref. [62].
Our results are shown in table 4. Since Fit I and Fit I are almost indistinguishable, we
would just derive the higher order HVP corrections with Fit II. We also quote the results
of ref. [62], although we remind that the later include all the cross sections but not only
the two- and three-pseudoscalar contributions (with /s < 2.3 GeV) to HVP that we have
computed. Hence, the difference between both results can be considered as an estimate of
the HVP contributions, that we have not included, and of the higher-energy contribution
of the two- and three-pseudoscalar channels. The errors have been estimated in the same
way as the leading order contributions to ag. It is found that these four processes (with
the quoted energy upper limit) account for roughly 70 percent of the higher-order HVP

had

corrections to a 1

6 Conclusions

Combined with the latest experimental data available for e*e™ annihilation into three pseu-
doscalar cases ete™ — wrm, wmn, we carried out joint fits including the two pseudoscalar
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x10712 T KK T 7 Our total Total [62]
2a —136948  —79.842.8 —14543 —5.93+0.46 —1600+9 —2090
2b 77645 37.6+1.3 74.741.8 2.3740.18 89145 1068
2 22.440.2 22.440.2 35

apo —687+10 —98749
3a 454403  3.1140.11  5.2040.12  0.267+0.021 54.0+0.3 80
3b —24.840.2 —1.62+0.06 —2.7840.06 —0.13140.010 | —29.340.2 —41

3bLBL | 58.0+0.3  3.47+0.12  6.1940.14  0.26840.021 67.940.4 91
3c —2.3440.02 —2.3440.02 —6
3d 0.0249+0.0004 0.0249+0.0004 0.05

ahNEO 90.3+0.5 12441

Table 4. Our estimation of the higher-order HVP contributions to afﬁd using Fit II results and
with and upper limit of integration of \/s = 2.3 GeV. The sum of the four processes considered here
is given in the penultimate column, while the contributions of all channels, estimated in ref. [62],
are listed in the last column.

cases eTe” — wrr, KTK ™, within the framework of RxT in the energy region up to
E < 2GeV. Taking into account the possible different mixing mechanisms of p — w in
the three and two pseudoscalar cases, two fits have been performed. In Fit I, we apply a
uniform energy dependent p — w mixing parametrization. In Fit II, the energy dependent
p—w mixing parametrization is only used in the two pseudoscalar channel, while a constant
mixing angle is used in the three body case. Overall very reasonable fits for both cases are
found. There is no relevant difference between Fit I and Fit II except for a small difference

0 case. This indicates that the p — w mixing mechanism

around the p peak in the 777~ 7
that plays an important role in the two pion case may not be exactly the one to be applied
in the three body case. However, it will not affect much the descriptions in the three body
case, as well as their contribution to the HVP. Our results have been obtained within a
QCD-based phenomenological theory framework with a joint fit of four different channels

that restrict mutually each other.

The main hadronic contributions to the muon anomalous magnetic moment come from
the lower energy region £ < 1.05GeV of the hadronic vacuum polarization input, where
few parameters are dominant. Hence, reliable predictions can be made within our theoreti-
cal framework from our previous analyses of the two- and three-pseudoscalar contributions
to the eTe™ cross-section. Accordingly we have computed the leading-order HVP contribu-
tion to the anomalous magnetic moment of the muon by including the four main channels,
studied previously, in our estimate. The central value of these four channels to HVP is
about 5 x 10719 larger than that of ref. [60]. In consequence, the discrepancy between SM
prediction and the experimental measurement decreases to (21.6 & 7.4) x 1070, As an
aside, we have also computed the NLO and NNLO HVP contributions to the anomalous
magnetic moment of the muon as given by the two- and three-pseudoscalar contributions
to the cross-section.
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A Three body final state form factors and partial decay widths

A.1 Three body final state form factor

The cross section of the eTe™ — 77 (p1)7~ (p2) P(p3) process (P a pseudoscalar meson) is
driven by the vector form factor in eq. (2.10) through

70l = fga [ s [ ato(@ s 0 @00, (A1)

where Q = p1 +p2 + p3, s = (Q — p3)?, t = (Q — p1)? and

0(Q% 5,1) =st(Q” — 5 — 1) + smp(t — Q)
—mZ[mp — mH(2Q* + 5) + Q* — Qs — 2st] — sm?, (A.2)

being mp = my, my,, depending on the final state. In eq. (A.1) the integration limits are:

s_ = 4m2
se = (V@ -me)",
= (@ mp) - [N ) FA e )T (a)

with A(a, b, ¢) the Kéllén’s triangle function.

0 -+

The vector form factors relevant for the ete™ — nta~ 7Y, 771 cross-sections are

given by:
FP(Q% s,t)=FF + FF + FF + F} | (A.4)

with P = 7,n. We give now the expressions for the form factors. When notation is not
fully specified we refer to appendix A.3 of ref. [29].
Hence the vector form factors are

Ne¢
FTI' - -
a 1272 F3’
2
8V2Fy (1 + 820y 1)
Fr = T V—(v2cos Oy + sinfy) Gp, (Q?)
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X {(sin By cos § — V/3sin 0¥ (Q?)) cos S BWg [, w, Q%]
+ (sin By sin 6°(Q?) + V/3 cos §) sin 6°(Q?) BWg[, p, QQ]}

m2 _m2
8V2Fy (1 + 8v/2ay 255" ) 2 2
ST V— cos Oy (cos Oy — V2sinfy) BWg[r, ¢, Q%] Gr,(Q?),
”

_|_

B 142Gy,
3My F3

X BWR[T(7p’ S] CRW(QQ, S) + BWR[Wa pat] CRW(Q27t) + BWR[Wa pau] CRTF(QQau)
- {\/gcosé (\/ﬁcos Oy + sin 9V) — sin 6“(5)} sin 0¥ (s) BWg[m,w, 5] Crx(Q?, s)} ,

.
Fj = Bev ;}783\/?&\/ My )(\/icos Oy + sin Oy)

X {(sin By cos § — V/3sin 0°(Q?)) cos §(cos? § — sin 6°(s) sin 0 (Q?))

x BWRg[m,w, p, Q% s] Dpx(Q?, 5)

+ (sin y cosd — V3sin 5“(@2)) cos 0 BWgg[m,w, p, QQ,t] DR,T(QQ,t)

+ (sin Oy cosd — V/3sin 5“’(@2)) cos § BWgg[m,w, p, QQ,u] DRW(QQ, w)

+ (sin By cos & — V/3sin ¥ (Q?))[sin “(Q?) + sin §*(s)] cos § sin 6 (s)

x BWgg[m,w,w,Q?, s|Drx(Q?, s)

+ (sin By sin 6 (Q?) 4+ V/3 cos §)[sin 67 (Q?) + sin §°(s)] cos® §

x BWRg[m, p, p, Q% s] Drr(Q%, )

+ (sin Oy sin (5”(@2) + V3 cos J) sin (5’)(Q2) BWRgRlm, p, p, Q2,t] DR,T(QQ,t)

+ (sin By sin 6°(Q?) + v/3 cos §) sin 6”(Q?) BWgg|[r, p, p, Q*,u] Dpxr(Q?, 1)

— (sin By sin 6°(Q?) 4 v/3 cos §)(cos? § — sin 67 (Q?) sin 6 (s)) sin 6 ()

X BWgglm, p,w, Q% s|Drx(Q?, 8)}

8Gy Fy (1 + SﬁaV%)
3F3

X { COSQ 5BWRR[777 (Z)v P, Q27 S]DRW(sz S)+Sin2 5W(S)BWRR[7T7 ¢7w7 Q27 S]DRW(Q27 S)

+BWgr(r, ¢, p, Q% t] Drr(Q*,t) + BWrglm, ¢, p, Q% u] DRW(QQ?U)} ;
N¢

 12V/372F3

8V6Fy (1 + 8\/§av$—2) 1

F = SN v ((3085 + 7 sin 6*(Q?) sin 9\/)
x cos §(—v/2sin @p + cos 0p) BWr[n, p, Q%] Gry(Q?, )

m2
SVORLESVRV ) (a1 st
_ ST 3 (—sm (Q )—l—\/gcos sin V) sin

x (—V2sin0p + cos 0p) BWg[n,w, Q] Gry(Q?, s),

{(cos § + /6 cos By sin 6°(s) + v/3sin 67 (s) sin fy,) cos &

+ (cos by — V2sin Oy) cos by

FIl = (—ﬂsin9p+COS9P),

~19 —



B 4v/2Gy
3My F3

— sin By (cos Op + v/2sin Qp)]}BWR[n, p, 8] Cri(Q%, s, m727)

B 4/2Gy

9My, F3
+ [3v/3 cos d(cos Op — V/2sin 0p) — sin 6°(s)(V2 cos(By + Op) — 5cosOp sin Oy
+4cosfy sinfp )Jm2} BWg[n, p, s] Crip

4/2Gy,
3My F3
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9My, F3
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sin 6“(5){\/§sin 6“(s)(— cosBp 4+ V2sinfp) + cos 6[v/2 cos By cos Op

8Fy (1 + 820y 15 )Gy .
NTE = cos 0 (0085 + 7 sin 6”(Q?) sin 9v)
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3V6F?
X {8 sin 07 (Q?) sin 6 (s)[cos Op(—3v2 4+ V2 cos 20y + 4 sin 26y,)
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X {8 cos? 3[cos Op(—3V2 + V2 cos 20y + 4sin 20y)
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X BWRR[”: P, W, Q27 S]DRnl(sz S, m%)
X { — 4+/2 cos & sin 8% (5) (cos Op(sin Oy sin 6”(Q?)(sin Oy — 2v/2 cos By)
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4Fy (1 + 8y/2ay M) Gy,
- %4

3v/2F3
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1
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X cos § cos Oy sin 67 (s) {4(2\/§ cos 20y — sin 20y) sin @p(m% — m?2)

+ cos Op(4 cos 20y — /2sin 20y ) (4m% —m )} BWgrn, ¢, p, Q% 8] Dri2

2
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_|_

3V2F3
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A.2 Decay widths involving vector resonances

A.2.1 Two-body decays
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SMZF Dpgx(0, M;)(sin Oy sin 6”(0) + V3 cos )
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DRTI’(O Mcz))

DRTI’(O M¢)

Dpgy(0, M?)(sin 6y sin 6°(0) + V/3 cos §)
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- Drn1(0, M2, m?)(sin 8y sin 6°(0) + v/3 cos &
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— 2v/2sin By cos By cos p sin 67(0) + V/2sin fp sin 6°(0) + 5 c08 fp sin 6”(0)
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X {(—2\/§COS 8){sin 67 (0)[2m% (cosfp (4sin 20y + v/2 cos 20y — 3/2)
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x {208 0p — cos Oy (V2 cos Oy + 4sin By sin Op |
VEFy (1+ 8v/3ay 27 )

B IM2F

X {(\/icos Oy — 2sin HV)2(2 cosOp + v/2sin t9p)m2
—4(v/2 cos By + sin By )%(— cos Op + V2sin 0p)(2m% — mfr)} .

A.2.2 Three-body decays

DRnl(O,Mq%,m%/)COSQV

D Rya cos By

The three pion decays of the vector resonances are given by:

DV = 7t (p)m (p2)70(ps)) = W/ ds/ dtP(s, )| 2,

for V = p,w, ¢, where s = (p1 + p2)?, t = (p1 + p3)? and

1
T {(3m + M2 — s)st — st> —m2(m?2 — M‘Q/)Q} .

The integration limits are:

P(s,t) =

S+ = (MV _mﬂ)27

2

s_ =4m;,
1 2 22 1/2 2 2 1/2( 72 21)?
= [0 ) (et £ 000 )]

Finally €y is defined by

— e B
MV—>7r+7r*7r0 = € uvaB P1 pg pg &y QV s

(A.5)

(A.6)

(A7)

(A.8)

being £/, the polarization of the vector meson. Within resonance chiral theory the corre-

sponding reduced amplitudes, (), are:

8cosd [ V2
Q, = <\/>cosev+ \/781119‘/) L ;3 { GRW(MQ)

+ Gy (cos? & + sin 6°(s) sin 6 (M2)) BW [p, s| Drx(M?2, s)

+ Gy BW p,t] Dpr(M2,t) + Gy BW |p,u] Dr(M?2,u)

+ Gy sin 6% (M?2) (sin 6% (M2) + sin 6*(s) ) BW |w, s] D (M2, s)},

Qy = (\/700s0\/ - \/781n9‘/> W, F { \[G’RW(M@

+ Gy cos” § BW(p, s| Drx(M3, s) + Gv BW [p, 1] Dpx(M, 1)

+ Gy BW(p,u] Drx(M},u) + Gy sin® 6*(s) BW[w, s] D (M, s)},
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2 1. 8sin 6P (M?2) [ 2
Q, = (\/;COSGV + \/;51119‘/) Mp}; P){MVGRW(M/?)

+2Gy cos® § BWg|p, s|Dpx(M7, 5) + Gy BWg[p, t] D (M}, 1)

+ Gy BWgRlp, u]DRW(Mg,u)} — (\/zcos Oy + \/gsin 9\/)

8 sin 0¥(s) 9 . N i w 2
WG\/(COS 6 — sin 6”(M) sin 6“(s)) BWg[w, s|Drr(M,, s),

being u = MZ + 3m2 — s — t.
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