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1 Introduction

The remarkable recent progress in applying integrability techniques to the models of the
gauge-string correspondence has given further impetus to the study of possible origins
and general properties of integrable field theories. In particular, it was shown in [1] that
many classical integrable field theories can be viewed as specific realisations of dihedral
affine Gaudin models, associated with an untwisted affine Kac-Moody algebra supplied
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with an action of a dihedral group. A characteristic feature of these field theories is that
their Poisson structure is non-ultralocal and the known examples include, for instance, the
principal chiral model and its integrable deformations, affine Toda field theories, etc. In
fact, one can turn the logic around and ask whether it is possible to employ the general
framework of dihedral affine Gaudin models that have built-in integrability to construct
novel examples of integrable field theories. This is precisely what has been exploited in
the recent work [2, 3], where this approach was used to construct a new class of integrable
sigma models that couple together an arbitrary number of principal chiral model fields on
the same Lie group.

The aim of the present work is to make a further step towards the exploration of the
panorama of affine Gaudin models. Namely, we will show how to construct integrable
sigma models on a coset of the direct product of N copies of an arbitrary real semi-simple
Lie group G over some diagonal subgroup, generalising the standard symmetric space
construction corresponding to the N = 1 case (the existence of such models has been
conjectured in [2, 3]).

To explain the logic of our construction, we recall that affine Gaudin models are natu-
rally defined in the Hamiltonian setting. The Poisson structure on the phase space given in
terms of Takiff currents admits different realisations: the one we are interested in here is in
terms of canonical fields parametrising N copies of the cotangent bundle T ∗G [3]. Follow-
ing [1], the Hamiltonian of the model is chosen to ensure that the dynamics takes the form
of the zero curvature condition for a Lax connection. Further, we define G(0) as a subgroup
of G invariant under the action of an involutive automorphism σ and embed it into GN as
the diagonal subgroup G(0)

diag ⊂ GN . The current group of G(0)
diag acts on the phase space by

gauge transformations and, in particular, on GN -valued fields by multiplications from the
right. This action is Hamiltonian and it gives rise to a moment map which, under a certain
condition, is a first-class constraint. As a next step, we perform the standard Hamiltonian
reduction by fixing the value of the moment map to zero. The corresponding locus of the
phase space should be then factorised by the action of the local G(0)

diag leaving us with a
model on the reduced phase space corresponding to a coset GN/G(0)

diag. This is how the
coset construction is performed in the Hamiltonian setting. Note that the affine Gaudin
model, i.e. its Poisson structure and its Hamiltonian, depends on 3N − 2 free parameters
which are all encoded in its so-called twist function.

Since we are primarily interested in the Lagrangian description of the coset model, we
need to perform the inverse Legendre transform and this constitutes the most non-trivial
technical part. In particular, to integrate out the momenta, we first derive their Lagrangian
description in terms of time derivatives of group elements and this derivation involves solv-
ing the Hamiltonian constraint in an explicit manner. For simplicity we restrict ourselves
to the case N = 2 and obtain a sigma model action with a Wess-Zumino term that couples
two group elements g1, g2 ∈ G, see (3.6). This action exhibits a gauge G(0)

diag-symmetry
acting on g1 and g2 by right multiplication, therefore rendering the model to be defined
on the coset G×G/G(0)

diag. The emergence of gauge symmetry is natural, as in the process
of eliminating the momenta we have only solved the Hamiltonian constraint, postponing
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factorisation by the local G(0)
diag. As a result, G(0)

diag shows up at the Lagrangian level as a
gauge symmetry. Finally, we also present the Lagrangian form of the Lax connection that
guarantees integrability of the sigma model equations of motion.

The sigma model part of the action we obtain is given by the sum of quadratic com-
binations of currents with coefficients depending on 3N − 2 = 4 free parameters. What is
remarkable is that this action can be recast in a very simple form involving the classical
R-matrix that underlies the integrability of the model. Moreover, this form of the action
admits a straightforward generalisation (3.15) to any N , which we verify for N = 3.

Having obtained these general results, it is interesting to consider some limits or to
focus on some particular models. First, it appears that for the N = 2 case one can define
a scaling limit in which one of the four parameters decouples leaving behind a three-
parameter (λ, λ1, λ2) family of integrable models. We then observe that at the particular
point λ1 = λ2 = λ the corresponding action coincides with the one of the Guadagnini-
Martellini-Mintchev model [4] on the homogeneous space G×G/G(0)

diag. This model defines
a two-dimensional conformal field theory and its integrability has already been established
in [5]. We then show that the general Lax connection specified to this model acquires a
very simple form.

Finally, in the above N = 2 three-parameter model we specify G = SU(2) and G(0) =
U(1) and obtain a gauged sigma model on the coset SU(2)×SU(2)/U(1). Fixing the gauge
by putting one of the Cartan angles to zero, we obtain the gauge-fixed action from which
we read off the sigma-model metric and the B-field. The metric turns out to coincide with
the three-parameter family of metrics on the T 1,1 manifolds

ds2 = λ2
1(dθ2

1 + sin2 θ1 dφ2
1) + λ2

2(dθ2
2 + sin2 θ2 dφ2

2) + λ2(dψ + cos θ1 dφ1 + cos θ2 dφ2)2 .

Particularly interesting configurations of parameters correspond to λ2
1 = λ2

2 = 3λ2/2 and
λ1 = λ2 = λ. In the first case, we get a sigma model on an Einstein manifold, in the second
case we obtain the already mentioned conformal model which, in particular, was used in [6]
to construct pure NS-NS supergravity solutions.

Although integrability of the geodesic flow on T 1,1 has been already established in [7, 8],
what follows from our consideration is that the sigma model on a generic three-parameter
T 1,1 is integrable and we present the corresponding Lax connection. For integrability to
hold the presence of the B-field

B = λ2(dψ + cos θ1 dφ1) ∧ (dψ + cos θ2 dφ2)

is crucial. In particular, changing the overall coefficient λ2 to any other value destroys
integrability. To support this claim, we consider an isometry-preserving setting where the
B-field is allowed with an arbitrary coefficient. In order to probe (non-)integrable properties
of this generalised model, we reduce the sigma-model equations to a mechanical system by
plugging in them the so-called spinning string ansatz, in the spirit of [9–13] where spinning
(or wrapped) strings on T 1,1 were studied. At the end we obtain a coupled system of
differential equations for the two angle coordinates θ1 and θ2. We then observe that only
when the coefficient of the B-field is λ2, the equations for θ1 and θ2 decouple (separate)
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and can be integrated by quadrature. In any other case there is no decoupling and most
probably the corresponding dynamical system exhibits a non-integrable behaviour, similar
to what has been found in [11–13].

The paper is organised as follows. In the next section we construct the coset models
in the Hamiltonian formulation. In section 3 we derive the action of the coset sigma model
for N = 2, rewrite this action in a new form involving the classical R-matrix and discuss
further generalisations for arbitrary N . We also consider a limiting case where one of
the parameters is scaled away and at a special point in the parameter space we find the
match of the corresponding model with the conformal model of Guadagnini, Martellini and
Mintchev. Section 4 is devoted to integrable sigma models on T 1,1 manifolds. We relegate
some technical details to three appendices.

2 Construction of the models in the Hamiltonian formulation

Let G be a connected semi-simple real Lie group, σ an involutive automorphism of G and
G(0) the subgroup of fixed-points of σ. Our goal in this section is to construct integrable
σ-models on GN/G(0)

diag, where N is a positive integer and G(0)
diag = {(h, · · · , h), h ∈ G(0)}.

As we shall see, they will be more precisely obtained as models on GN with a G(0)
diag gauge

symmetry. For N = 1, the construction will yield the standard σ-model on the symmetric
space G/G(0), which is well known to be integrable.

The formalism we will use to construct these integrable field theories is the one of
dihedral affine Gaudin models, introduced in [1], which is naturally defined in the Hamil-
tonian formulation of classical field theories. In this context, the phase space of the models
will consist of canonical fields on the cotangent bundle T ∗GN , together with a first-class
constraint encoding the G(0)

diag gauge symmetry. The approach followed in this section is
reminiscent of the one developed in [2, 3] to construct integrable σ-models on GN , with-
out taking quotients by a subgroup. A reformulation of these models on the quotient
GN+1/Gdiag, closer to the approach used here, was proposed in [14].

We will start by reviewing the phase space of canonical fields on one copy of T ∗G
in subsection 2.1. We will then proceed to define the structure of the models as dihedral
affine Gaudin models in subsection 2.2. In subsection 2.3, we will define the Hamiltonian of
these field theories as well as the constraint corresponding to their G(0)

diag gauge symmetry.
Subsection 2.4 will be concerned with space-time symmetries of the models and in particular
with the determination of a simple condition ensuring their relativistic invariance. In
subsection 2.5 we will prove that these models are integrable. Finally, in subsection 2.6
we describe the panorama of models obtained through this construction and in particular
discuss their defining parameters.

2.1 Phase space of canonical fields on T ∗G

Conventions and notation. Let g be the Lie algebra of the group G. We denote by
κ the opposite of the Killing form of g: it defines a non-degenerate ad-invariant bilinear
form on g, which is definite positive if G is compact. Let us also fix a basis of g, which
we will denote by (Ia)a∈{1,...,n}. We will indicate the dual of this basis with respect to κ
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by (Ia)a∈{1,...,n}. In the following we will often make use of the so called split quadratic
Casimir of g, which is defined as the following element:

C12 = Ia ⊗ Ia (2.1)

in g⊗ g and which is independent of the choice of basis (here and in the following, we use
the standard tensorial notations i). From the definition of C12 and the ad-invariance of
the bilinear form κ, one checks that

κ2
(
C12, X2

)
= X and

[
C12, X1 +X2

]
= 0

for all X ∈ g.
Let σ be an involutive automorphism of G and G(0) ⊂ G be the subgroup of fixed-

points of σ. It induces an involutive automorphism of the Lie algebra g, which we also call
σ by a slight abuse of notation. As σ is of order two, it has eigenvalues +1 and −1. We
define the corresponding eigenspaces

g(0) = {X ∈ g : σ(X) = X}, and g(1) = {X ∈ g : σ(X) = −X} .

These eigenspaces form a Z2-gradation of g: g = g(0) ⊕ g(1), with

[g(0), g(0)] ⊂ g(0), [g(0), g(1)] ⊂ g(1) and [g(1), g(1)] ⊂ g(0) .

The converse is also true, i.e. given a Z2-gradation of g, there is a unique automorphism σ

which leaves g(0) invariant and acts on g(1) as multiplication by −1. In particular, g(0) is a
subalgebra of g, which is the Lie subalgebra corresponding to the subgroup G(0) in G.

In the following we will use the notation X(i) to indicate the component of an element
X ∈ g in g(i), i ∈ {0, 1}. More precisely, if we call π(0) = (Id + σ)/2 and π(1) = (Id− σ)/2
the projectors on g(0) and g(1) respectively, we then have X(i) = π(i)X, for X = X(0) +X(1)

a generic element of g.
It is a standard result that the automorphism σ preserves the bilinear form κ. Hence,

g(0) and g(1) are orthogonal with respect to the bilinear form κ, or, in other words,
κ
(
g(0), g(1)

)
= 0. Moreover, the split quadratic Casimir (2.1) satisfies

σ1σ2C12 = C12 .

For i ∈ {0, 1}, we define the projection C
(ii)
12 = π

(i)
1 π

(i)
2 C12 of the split quadratic Casimir

on g(i)⊗ g(i). Let us note that the orthogonality of g(0) and g(1) implies that π(i)
1 π

(j)
2 C12 =

δijC
(ii)
12 , for i, j ∈ {0, 1}. Moreover, we have

κ2
(
C

(ii)
12 , X2

)
= X(i), ∀X ∈ g . (2.2)

Canonical fields on T ∗G. Let us consider canonical fields depending on a single space
coordinate x ∈ D and taking values in the cotangent bundle T ∗G. In this paper we fix D
to be either the real line R or the circle S1 and choose boundary conditions for the fields
accordingly.
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Since T ∗G ' G×g, these fields can be described by a pair of fields (g,X) : D→ G×g,
which encode the coordinate and momentum fields respectively. Being a cotangent bundle,
T ∗G has a natural Poisson bracket. Therefore, fields with values in T ∗G form the phase
space of an Hamiltonian field theory. In terms of the fields g and X, the Poisson bracket
is given by:

{g1(x), g2(y)} = 0 , (2.3a)
{X1(x), g2(y)} = g2(x)C12δxy , (2.3b)
{X1(x), X2(y)} = [C12, X1(x)]δxy , (2.3c)

where C12 is the split quadratic Casimir (2.1) of g and δxy = δ(x − y) is the Dirac delta-
distribution.

Current j(x) and momentum. Let us define the following g-valued current:

j(x) = g−1(x)∂xg(x) .

From (2.3), it satisfies the Poisson brackets

{g1(x), j2(y)} = 0 , (2.4a)
{j1(x), j2(y)} = 0 , (2.4b)
{X1(x), j2(y)} = [C12, j1(x)]δxy − C12δ

′
xy , (2.4c)

where δ′xy = ∂xδ(x− y) is the derivative of the Dirac delta-distribution with respect to x.
Let us also consider the quantity

PG =
∫
D
dx κ(j(x), X(x)) . (2.5)

From (2.3) and (2.4), one can check that its Hamiltonian flow generates the spatial deriva-
tives on both g(x) and X(x):

{PG, g(x)} = ∂xg(x) and {PG, X(x)} = ∂xX(x) .

Hence, it is the momentum of the phase space.

Wess-Zumino term and current W (x). For this paragraph, let us consider the field
g to also depend explicitly on a time coordinate t ∈ R (in the Hamiltonian formulation, this
time dependence is implicitly defined by the choice of a Hamiltonian). Let us further extend
the space-time D×R (with coordinates (x, t)) to a 3-dimensional manifold B with boundary
∂B = D×R (parametrised by coordinates (x, t, ξ)) and let us consider an extension of the
field g to B (which restricts to the initial field g on ∂B). The Wess-Zumino term of g is
then defined as [15–17]

IWZ[g] =
∫∫∫

B
dx dt dξ κ

([
g−1∂xg, g

−1∂tg
]
, g−1∂ξg

)
. (2.6)

Up to the addition of a constant term, it does not depend on the choice of extension of g from
D×R to B. It is a standard result that the 3-form κ

([
g−1∂xg, g

−1∂tg
]
, g−1∂ξg

)
dx∧dt∧dξ
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is closed and thus locally exact. Therefore, the Wess-Zumino term can be rewritten, at
least locally, as a 2-dimensional integral on ∂B = D× R, which takes the form

IWZ[g] =
∫∫

D×R
dx dt κ(W, g−1∂tg) , (2.7)

where W is a g-valued current depending on the coordinate fields in g and their spatial
derivatives. We will not need here the precise definition of W and refer for instance to [3]
for more details.

In the Hamiltonian formalism, this current can be seen as a g-valued local observable
W (x) on the phase space of canonical fields on T ∗G. One can then show that it satisfies
the following Poisson bracket with the fields g, X and j introduced above:

{g1(x),W2(y)} = 0 , {j1(x),W2(y)} = 0 (2.8a)

and
{X1(x),W2(y)}+ {W1(x), X2(y)} = [C12,W1(x)− j1(x)]δxy . (2.8b)

Moreover, let us note that it satisfies the following orthogonality property:

κ
(
j(x),W (x)

)
= 0 . (2.9)

2.2 Definition of the models as realisations of affine Gaudin models

In this section, we define the models that we will consider in this article as realisations of
dihedral affine Gaudin models (AGM), following [1]. We will not review here the complete
construction of dihedral AGM and will instead restrict ourselves to the definition and
description of the main ingredients that are useful to construct these models: their sites,
their twist function and their Gaudin Lax matrix.

The adjective dihedral used above refers to certain equivariance properties under an
action of the dihedral group D2T (T ∈ Z≥1) which are satisfied by the twist function
and the Gaudin Lax matrix of the models [1]. These properties have to do with reality
conditions and with the choice of a ZT -grading of the Lie algebra g. For the models that
we are considering in this article, we have T = 2. The corresponding choice of Z2-grading
g(0) ⊕ g(1) of g is then given by the choice of an involutive automorphism σ, as described
in the previous section. We will come back to the equivariance properties encoding the
dihedrality at the end of this subsection.

Sites, levels and twist function. Following the formalism and terminology of [1], let
us consider a dihedral AGM with N ∈ Z≥1 real sites of multiplicity two, whose positions
will be denoted by zr with r ∈ {1, . . . , N} and will be supposed to be non zero (zr ∈ R∗).
Since each site zr is of multiplicity two, it is associated with two constant numbers `r,0 ∈ R
and `r,1 ∈ R∗, called the levels. Altogether this data specifies the twist function ϕ(z) of
the model, which depends on an auxiliary complex parameter z ∈ C, called the spectral
parameter. This function takes the following form [1]:

ϕ(z) = 1
2

N∑
r=1

1∑
p=0

1∑
k=0

(−1)k`r,p
((−1)kz − zr)p+1 . (2.10)
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The sum over p ∈ {0, 1} in this expression and thus the presence of double poles at zr
reflect the fact that the sites of the model are of multiplicity two. Moreover, the sum over
k ∈ {0, 1} and the factors (−1)k encode the T = 2 dihedrality of the model.

In the rest of this article, we will suppose that the levels `r,0 satisfy the following addi-
tional hypothesis, which for reasons to be explained later we call the first-class condition:

N∑
r=1

`r,0 = 0 . (2.11)

As we shall see in subsection 2.3, this condition will be necessary to ensure that the models
that we construct possess a gauge symmetry.

Takiff currents and phase space. To each site zr, r ∈ {1, · · · , N}, of the model
is attached two g-valued fields Jr,[0](x) and Jr,[1](x), called Takiff currents . These are
observables on the phase space of the model, which satisfy the following Poisson bracket,
determined by the choice of levels `r,p:

{Jr,[0]1(x),Js,[0]2(y)} = δrs
(
[C12,Jr,[0]1(x)]δxy − `r,0C12δ

′
xy

)
, (2.12a)

{Jr,[0]1(x),Js,[1]2(y)} = δrs
(
[C12,Jr,[1]1(x)]δxy − `r,1C12δ

′
xy

)
, (2.12b)

{Jr,[1]1(x),Js,[1]2(y)} = 0 . (2.12c)

So far, we did not specify what is the phase space of the model: this requires discussing the
distinction between a formal AGM and its realisations. The phase space of the formal AGM
underlying the present construction simply consists of configurations of the Takiff currents
Jr,[p](x) (r ∈ {1, · · · , N} and p ∈ {0, 1}), equipped with the Poisson bracket (2.12). Taking
a realisation of this AGM consists of considering a more general phase space, describing
configurations of fields φi(x) with a certain Poisson bracket, such that there exist well-
chosen combinations Jr,[p](x) of the fields φi(x) that satisfy the Takiff brackets (2.12). The
construction of the formal AGM can then be completly transfered to this new phase space,
thus yielding an integable field theory with observables on this space.

In the present case, we will consider a particular realisation of this AGM, whose phase
space consists of canonical fields on the cotangent bundle T ∗GN . We described the phase
space of canonical fields on one copy of T ∗G in subsection 2.1: we will use the notations and
conventions introduced in this subsection to describe the fields on T ∗GN . In particular,
these fields can be encoded into N G-valued fields g1(x), · · · , gN (x) and N g-valued fields
X1(x), · · · , XN (x), which are the equivalents of the fields g(x) and X(x) introduced in
subsection 2.1 for one copy of T ∗G and which then satisfy N independent copies of the
Poisson bracket (2.3). Similarly, we introduce currents jr(x) and Wr(x), r ∈ {1, · · · , N},
as the equivalent of the currents j(x) and W (x) of subsection 2.1. Let us then define

Jr,[0](x) = Xr(x) + `r,0
2 jr(x) + `r,0

2 Wr(x) , (2.13a)

Jr,[1](x) = `r,1 jr(x) . (2.13b)

– 8 –



J
H
E
P
0
3
(
2
0
2
1
)
0
6
2

It is a standard result (see for instance [3]) that these satisfy the Takiff brackets (2.12), as
can be checked directly from the brackets (2.3), (2.4) and (2.8). Thus, one can construct a
realisation of the AGM considered above in the phase space of canonical fields on T ∗GN .

Gaudin Lax matrix. Let gC denote the complexification of g. The other fundamental
piece needed for the construction of the model is the so-called Gaudin Lax matrix. It is
defined as the following gC-valued field [1]:

Γ(z, x) = 1
2

N∑
r=1

1∑
p=0

1∑
k=0

(−1)kσkJr,[p](x)
((−1)kz − zr)p+1 . (2.14)

In this expression, the T = 2 dihedrality of the model is encoded in the sum over k ∈ {0, 1}
and the presence of the involutive automorphism σ. This is how the choice of σ and thus
the choice of the subgroup G(0) enters the definition of the model as AGM. From (2.12),
one can compute the Poisson bracket of the Gaudin Lax matrix:

{Γ1(z, x),Γ2(w, y)} = [R0
12(z, w),Γ1(z, x)]δxy − [R0

21(w, z),Γ2(w, x)]δxy

−
(
R0

12(z, w)ϕ(z) +R0
21(w, z)ϕ(w)

)
δ′xy , (2.15)

with R0
12 given by

R0
12(z, w) = 1

2

1∑
k=0

σk1C12

w − (−1)kz , (2.16)

where we recognise the standard R-matrix twisted by the automorphism σ. In particular,
it satisfies the classical Yang-Baxter equation:

[R0
12(z1, z2),R0

13(z1, z3)]+[R0
12(z1, z2),R0

23(z2, z3)]+[R0
32(z3, z2),R0

13(z1, z3)] = 0 . (2.17)

Dihedrality. As mentioned at the beginning of this subsection, the AGM that we are
considering here possesses certain equivariance properties under the dihedral group D4.
Let us now discuss these properties.

The general dihedral group D2T contains the cyclic group ZT as a subgroup. Recall
that for the models considered in this article, we have T = 2: the corresponding cyclic
group Z2 acts on the complex plane by multiplication by −1 and on the Lie algebra g by
the involutive automorphism σ, which we extend to the complexification gC by C-linearity.
One checks from their expressions (2.10) and (2.14) that the twist function and the Gaudin
Lax matrix are equivariant 1-forms with respect to these actions, i.e. that

σ(Γ(z, x)) = −Γ(−z, x) and ϕ(z) = −ϕ(−z) . (2.18)

Let us note that the sums over k ∈ {0, 1} and the presence of the factors (−1)k and σk in
equations (2.10) and (2.14) are crucial for the above conditions to hold.

In addition to the cyclic group ZT , the dihedral group D2T contains an order two cyclic
group Z2 (which is not to be confused with the Z2 group discussed above, which arises
since we have T = 2 in the case considered in this article). The equivariance properties
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corresponding to this Z2 subgroup encode the reality conditions of the model. It acts on
the complex plane by conjugation z 7→ z̄ and on the complexified Lie algebra gC by the
antilinear involutive automorphism τ , defined such that the real form g is the subalgebra of
fixed points of τ . One checks that the automorphisms σ and τ of gC satisfy the dihedrality
confition σ ◦ τ = τ ◦ σ: the group generated by σ and τ is thus isomorphic to the direct
product Z2 × Z2, which is the dihedral group1 D4. Using this dihedrality condition and
the facts that the Takiff currents Jr,[p] are valued in the real form g and the positions zr
and levels `r,p are real numbers, one checks that the twist function (2.10) and the Gaudin
Lax matrix (2.14) satisfy the reality conditions

τ(Γ(z, x)) = Γ(z̄, x) and ϕ(z) = ϕ(z̄) ,

which can be seen as equivariance conditions under the aforementioned action of Z2. Com-
bining these with the conditions (2.18), we then get that Γ(z, x) and ϕ(z) are equivariant
under the action of the full dihedral group D4, as expected from the general construction
of dihedral AGM in [1].

2.3 Hamiltonian, constraint and gauge symmetry

Zeroes of the twist function. Let us begin by studying the zeroes of the twist func-
tion (2.10). Firstly, we note that z = 0 is always a zero of ϕ(z). We will suppose that this
zero is simple, i.e. that ϕ′(0) 6= 0. Moreover, the behaviour of ϕ(z) at z = ∞ is described
by the following asymptotic expansion:

ϕ

(1
u

)
= 2Ku3 +O(u5) , where K = 1

2

N∑
r=1

zr (zr `r,0 + 2 `r,1) . (2.19)

Let us make a few comments on this expansion. From the equivariance property (2.18) of
ϕ(z), it is clear that only odd powers of u can appear in the expansion of ϕ(u−1) around
u = 0. Moreover, in general, the function ϕ(z) as defined in equation (2.10) also possesses
a term of order O(u) in its expansion at infinity, which is proportional to the sum ∑N

r=1 `r,0:
as we supposed that this sum vanishes (see the first-class condition (2.11)), the first term
in the expansion is then of order u3. Let us now consider the 1-form ϕ(z)dz. To study its
behaviour at infinity, let us consider the change of coordinate z = u−1. We then have

ϕ(z)dz = χ(u)du , with χ(u) = − 1
u2ϕ

(1
u

)
. (2.20)

According to the asymptotic expansion (2.19), the 1-form ϕ(z)dz thus has a zero at infinity.
Moreover, the derivative of this 1-form at z =∞ is given by χ′(0) = −2K. We will suppose
that this zero at infinity is simple, i.e. that K 6= 0.

As ϕ(z)dz possesses 4N poles (counted with multiplicities), it possesses 4N − 2 zeroes
in the Riemann sphere: in addition to the one at the origin z = 0 and the one at infinity

1For a general T (i.e. when we have σ of order T ), the dihedrality condition reads σ ◦ τ = τ ◦ σ−1 and
the dihedral group D2T has the structure of a semi-direct product ZT oZ2 instead of a direct product. For
T = 2, we have σ−1 = σ, so that the dihedrality condition becomes the commutation of σ and τ .
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z =∞, it thus possesses 4(N −1) zeroes in C\{0}. From the equivariance property (2.18),
one sees that these zeroes come as pairs ζi and ζ−i = −ζi, with i ∈ {1, · · · , 2N − 2}. We
will suppose that the ζi’s are pair-wise distinct and are thus simple zeroes of ϕ(z), hence
ϕ′(ζi) 6= 0. In terms of the zr’s and the ζi’s, the twist function can then be rewritten as

ϕ(z) = 2Kz
∏2N−2
i=1 (z2 − ζ2

i )∏N
r=1(z2 − z2

r )2
. (2.21)

Hamiltonian. Let us consider the following quantity:

Q(z) = − 1
2ϕ(z)

∫
D
dx κ(Γ(z, x),Γ(z, x)) , (2.22)

which depends on the spectral parameter z ∈ C. We define:

Q±i = res
z=±ζi

Q(z)dz, i = 1, . . . , 2N − 2 , (2.23a)

Q0 = res
z=0
Q(z)dz and Q∞ = res

z=∞
Q(z)dz . (2.23b)

These quantities are local charges quadratic in the currents Jr,[p]. It is straightforward
to show that Qi = Q−i, from the equivariance property (2.18) of the Gaudin Lax matrix
and twist function. Moreover, from (2.15), one can prove that they are also in involution
i.e. they mutually Poisson commute. Given a collection of real numbers {ε0, εi, ε∞}, i =
1, . . . , 2N − 2, we define the naive Hamiltonian of the model (the term naive will be
explained later in this section) as the following sum over the charges introduced above:

H = ε0Q0 + 2
2N−2∑
i=1

εiQi + ε∞Q∞ , (2.24)

where we introduce the factor of 2 for future convenience. Due to the reality conditions
introduced in the previous subsection, H can be shown to be real.

Constraint. In this paragraph, we introduce a constraint on the phase space of canonical
fields on T ∗GN and show its consistency with the choice of Hamiltonian made in the
previous paragraph. We will use the Dirac theory of constraints in Hamiltonian systems:
we refer to [18, 19] for reviews of this formalism. Following the general construction of [1],
we define the constraint as

C(x) = − res
z=∞

Γ(z, x)dz = lim
u→0

1
u

Γ
(1
u
, x

)
. (2.25)

Using the expression (2.14) of the Gaudin Lax matrix Γ(z, x) and the fact that 1
2(Id + σ)

is the projector on the grading g(0) of g, one checks that the constraint explicitly reads

C(x) =
N∑
r=1
J (0)
r,[0](x) . (2.26)

In particular, it is a g(0)-valued field. The models we are interested in are then defined on
a reduced phase space, obtained from canonical fields on T ∗GN by imposing

C(x) ≈ 0 .
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In this equation, and in the rest of this article, we use the notation ≈ to denote weak
equalities, i.e. equalities that are true when the constraint is imposed. The standard equal-
ity sign = will then indicate strong equalities, which are true even without imposing the
constraint.

Poisson bracket of the constraint with the naive Hamiltonian. From the Poisson
bracket (2.15) of the Gaudin Lax matrix with itself, one checks that the local charge Q(z),
defined in equation (2.22), satisfies the following Poisson bracket with the constraint:

{Q(z), C(x)} = −∂xΓ(z, x)(0) .

In particular, as Γ(z, x) is regular at z = 0 and z = ζi for i = 1, · · · , 2N − 2, one has

{Qi, C(x)} = 0, ∀ i ∈ {0, · · · , 2N − 2} , (2.27)

for the charges Qi introduced in equation (2.23). Moreover, the residue of Γ(z, x)(0)dz at
z =∞ is equal to −C(x). Thus we also have

{Q∞, C(x)} = ∂xC(x) . (2.28)

Recall that the naive Hamiltonian of the model H is defined in terms of the charges Qi,
i ∈ {0, · · · , 2N − 2,∞}, by equation (2.24). Thus, we get

{H, C(x)} = ε∞∂xC(x) .

In particular, we see that the naive Hamiltonian weakly Poisson commutes with C(x):

{H, C(x)} ≈ 0 . (2.29)

This ensures that the Hamiltonian flow of H preserves the constraint C(x) ≈ 0.

First-class property. The Poisson bracket of the constraint with itself can be obtained
from its definition (2.25) and the Poisson bracket (2.15) of the Gaudin Lax matrix (or
equivalently from its expression (2.26) and the Poisson bracket (2.12) of the currents Jr,[0]).
It reads {

C1(x), C2(y)
}

=
[
C

(00)
12 , C1(x)

]
δxy , (2.30)

where C(00)
12 ∈ g(0) ⊗ g(0) is the split Casimir of g(0). In fact, this bracket also contains

in general a non-ultralocal term −
(∑N

r=1 `r,0
)
C

(00)
12 δ′xy: as we supposed in equation (2.11)

that the levels `r,0 sum to zero, this term vanishes. In particular, this shows that the
Poisson bracket of the constraint with itself weakly vanishes:{

C1(x), C2(y)
}
≈ 0 . (2.31)

Thus, the constraint C(x) ≈ 0 is first-class (see for instance [18, 19]). This justifies a
posteriori the name of first-class condition for the assumption (2.11) that we made: indeed,
without this assumption, the bracket of the constraint would contain a non-ultralocal term
which would not vanish weakly and the constraint would then not be first-class.
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Total Hamiltonian and Lagrange multiplier. In the beginning of this subsection, we
defined the naive Hamiltonian H through equation (2.24). As we are considering models
subject to the constraint C(x) ≈ 0, we have to define the total Hamiltonian of the system
as the sum of the naive Hamiltonian and a generic term proportional to the constraint, so
that it coincides weakly with the naive Hamiltonian. It thus takes the form

HT = H+
∫
D
dx κ

(
µ(x), C(x)

)
, (2.32)

where µ is a g(0)-valued field, called the Lagrange multiplier. It is a new dynamical field,
independent of the canonical fields on T ∗GN . As we shall see in the next paragraph,
the existence of this Lagrange multiplier reflects the presence of a gauge symmetry in the
model.

The dynamic of the model is defined by the Hamiltonian flow of HT , i.e. the time
evolution of any observable O is given by

∂tO ≈ {HT ,O} ≈ {H,O}+
∫
D
dx κ

(
µ(x), {C(x),O}

)
. (2.33)

The facts that the naive Hamiltonian Poisson commutes with the constraint (see equa-
tion (2.29)) and that the constraint is first-class (see equation (2.31)) ensure that the
constraint C(x) ≈ 0 is conserved under time evolution:

∂tC(x) ≈ 0 . (2.34)

Gauge symmetry. It is a standard result that the presence of first-class constraints in
Hamiltonian systems implies the existence of gauge (local) symmetries (see for instance [18,
19]). The infinitesimal action of this gauge symmetry on the observables of the model is
given by the Hamiltonian flow generated by the constraint. In the case at hand, the
constraint satisfies the bracket (2.30), which is a copy of the Kirillov-Kostant bracket of
the Lie algebra g(0) for every point x ∈ D. Thus, the gauge symmetry takes the form
of a local action of the group G(0). The corresponding infinitesimal transformation of an
observable O, with gauge parameter ε(x, t) ∈ g(0), is given by

δεO ≈
{∫

D
dx κ

(
ε(x, t), C(x)

)
,O
}
≈
∫
D
dx κ

(
ε(x, t), {C(x),O}

)
. (2.35)

One can then observe that the terms involving the Lagrange multiplier µ in the total Hamil-
tonian (2.32) and the dynamic (2.33) of the model correspond to a gauge transformation
and thus account for the freedom of performing such a transformation in the time evolution
of the system.

Let us study in more details the action of the gauge symmetry on the canonical fields
on T ∗GN . For that, recall the expression (2.26) of the constraint C(x) in terms of the Kac-
Moody currents Jr,[0]. It is clear from the definition (2.13a) of the latter and the Poisson
brackets (2.3), (2.4) and (2.8a) that{

C1(x), gr2(y)
}

= gr2(x)C(00)
12 δxy . (2.36)
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Thus, using equation (2.35), one finds that the infinitesimal gauge transformation of the
field gr(x) is given by:

δεgr(x) = gr(x)ε(x, t) . (2.37)

Similarly, one can determine the gauge transformation of the fields Xr. It is in fact more
convenient to consider the gauge transformation of the field Yr = Xr+`r,0Wr/2, which reads

δεYr(x) = [Yr(x), ε(x, t)] + `r,0
2 ∂xε(x, t) . (2.38)

The transformations (2.37) and (2.38) are infinitesimal actions with local parameter ε(x, t)
valued in g(0). They can be lifted to an action of the group G(0), depending on a local
parameter h(x, t) in G(0), which takes the form:

gr 7−→ grh and Yr 7−→ h−1Yrh+ `r,0
2 h−1∂xh . (2.39)

In particular, we see that the gauge symmetry acts on the set of fields (g1, · · · , gN ) ∈ GN
by right translation of the diagonal subgroup

G
(0)
diag =

{
(h, · · · , h), h ∈ G(0)} .

Let us summarise what are the physical degrees of freedom of the model. By construc-
tion, we start from the phase space of canonical fields on T ∗GN . One then needs to restrict
to the field configurations such that the constraint C(x) ≈ 0 is satisfied. Furthermore,
one needs to quotient out by the action of the gauge symmetry (2.39) (the fact that this
gauge symmetry preserves the constraint C(x) ≈ 0 is a direct consequence of the first-class
property (2.31) of C(x)). As explained above, this gauge symmetry acts on the coordinate
fields (g1, · · · , gN ) ∈ GN by right translation of the subgroup G(0)

diag: one can then see the
“physical” coordinate fields of the model as fields on the quotient GN/G(0)

diag, by gauging
away the coordinate fields in G(0)

diag. The constraint C(x) ≈ 0 can then be seen as eliminat-
ing the corresponding superfluous conjugate momentum fields. The physical phase space
of the model can thus be identified with canonical fields on T ∗(GN/G(0)

diag): in particular,
the Lagrangian formulation of the model will then describe a field theory on GN/G(0)

diag. In
this article, we will however keep working with the unreduced phase space T ∗GN , together
with the constraint and the gauge symmetry, to avoid having to consider the quotient.

Gauge transformation of the Gaudin Lax matrix. From the expression (2.26) of
the constraint and the Poisson bracket (2.12) of the Takiff currents Jr,[p](x), one checks
that the gauge transformation of the latter is given by

δεJr,[p](x) = [Jr,[p](x), ε(x, t)] + `r,p ∂xε(x, t) . (2.40)

The corresponding lifted action of the group G(0), with local parameter h(x, t) ∈ G(0), reads

Jr,[p] 7−→ h−1Jr,[p]h+ `r,p h
−1∂xh . (2.41)
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Recall that σ is an automorphism of G whose fixed-points form the subagroup G(0) and
which induces an automorphism of g that leaves the elements of the subalgebra g(0) invari-
ant. As h ∈ G(0) and h−1∂xh ∈ g(0), the gauge transformation of σ

(
Jr,[p]

)
is given by

σ
(
Jr,[p]

)
7−→ h−1σ

(
Jr,[p]

)
h+ `r,p h

−1∂xh .

From equations (2.10) and (2.14), we then see that the gauge symmetry acts on the Gaudin
Lax matrix Γ(z) as

Γ(z) 7−→ h−1Γ(z)h+ ϕ(z) h−1∂xh . (2.42)

Gauge transformation of the Lagrange multiplier. It is a standard result that
the equations of motion of the model are invariant under gauge symmetries, as one should
expect, if one also transforms the Lagrange multiplier appropriately [18, 19]. In the present
case, the transformation rule of the Lagrange multiplier is

δεµ(x) =
[
µ(x), ε(x, t)

]
+ ∂tε(x, t)− ε∞∂xε(x, t) . (2.43)

This infinitesimal transformation can be lifted to the following action of the gauge group
G(0), with local parameter h(x, t) ∈ G(0):

µ 7−→ h−1µh+ h−1∂th− ε∞ h−1∂xh . (2.44)

2.4 Space-time symmetries

In this section, we discuss the space-time symmetries of the models constructed in this
article and in particular find a simple condition for their relativistic invariance.

Momentum. Recall that the momentum of the phase space consisting of canonical fields
on T ∗G is given by equation (2.5). The model constructed in the previous subsections is
defined on N copies of this phase space and thus has the following momentum:

P =
N∑
r=1
Pr =

N∑
r=1

∫
D
dx κ

(
Xr(x), jr(x)

)
. (2.45)

Using the fact that

Γ(z) = 1
2

`r,1jr
(z − zr)2 + 1

2
Xr + `r,0Wr/2 + `r,0jr/2

z − zr
+O

(
(z − zr)0) , (2.46a)

1
ϕ(z) = 2(z − zr)2

(
1
`r,1
− `r,0
`2r,1

(z − zr) +O
(
(z − zr)2)) , (2.46b)

together with the definition (2.22) of Q(z) and the orthogonality relation (2.9), one
checks that

res
z=zr
Q(z)dz = −1

2Pr . (2.47)

Similarly, one finds that the residue at −zr gives the exact same result. Thus, one has

P = −
N∑
r=1

(
res
z=zr
Q(z)dz + res

z=−zr

Q(z)dz
)
. (2.48)
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Recall from subsection 2.3 that, in addition to its poles at the sites zr and their opposites
−zr, Q(z)dz has poles at the zeroes of the twist function 0, ζ1,−ζ1, · · · , ζ2N−2,−ζ2N−2,∞,
with corresponding residues Q0,Q1,Q1, · · · ,Q2N−2,Q2N−2,Q∞ (in particular the residues
of Q(z)dz at ζi and −ζi are equal for i ∈ {1, · · · , 2N−2}). Combining the above expression
of P with the fact that the sum of the residues of Q(z)dz vanishes, we finally get

P = Q0 + 2
2N−2∑
i=1
Qi +Q∞ . (2.49)

This shows that the momentum of the model possesses a simple expression in terms of
the charges Qi. Let us note the similarity of this expression with the one (2.24) of the
naive Hamiltonian H: one sees that the momentum would correspond to the choice of
all coefficients εi equal to 1 in equation (2.24). This allows a parallel treatment of the
conserved charges associated to spatial translation (momentum) and temporal translation
(Hamiltonian).

Energy-momentum tensor. To explore further the space-time symmetries of the
model, let us describe its energy-momentum tensor Tµµν (we will use greek labels µ and
ν to describe space-time components, with µ, ν = 0 corresponding to temporal compo-
nents and µ, ν = 1 to spatial ones). The components T 0

00 and T 0
01 are defined as the

densities of respectively the Hamiltonian and the momentum of the model:2

H =
∫
D
dx T 0

00(x) and P =
∫
D
dx T 0

01(x) . (2.50)

Let us introduce, for i ∈ {0, · · · , 2N − 2,∞},

qi(x) = res
z=ζi

q(z, x)dz , where q(z, x) = − 1
2ϕ(z)κ(Γ(z, x),Γ(z, x)) . (2.51)

The fields qi(x) are then the densities of the local charges Qi =
∫
D dx qi(x). From the

expressions (2.24) and (2.49) of the Hamiltonian and momentum of the model, we then get

T 0
00 = ε0 q0 + 2

2N−2∑
i=1

εi qi + ε∞ q∞ and T 0
01 = q0 + 2

2N−2∑
i=1

qi + q∞ . (2.52)

The other two components T 1
10 and T 1

11 of the energy-momentum tensor are defined through
the local conservation law ∂µT

µ
µν = 0 obeyed by Tµµν as a consequence of the space-time

translation invariance of the model. Decomposing this conservation equation in compo-
nents, we get

∂tT
0
0µ + ∂xT

1
1µ = 0 , for µ = 0, 1 . (2.53)

In order to find the expression of T 1
1µ, we thus need to determine the time evolution of T 0

0µ.
A direct computation starting from the bracket (2.15) shows that the densities qi defined
above satisfy

{
qi(x), qj(y)

}
≈ −δijλi

(
∂xqi(x)δxy+2qi(x)δ′xy

)
, where λi =

 1 if i = 0,∞ ,

1/2 if i = 1, · · · , 2N − 2 .
2As we are discussing conserved charges, we can work with weak equalities and thus define T 0

00 from the
naive Hamiltonian and not the total one.
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From this equation, one easily deduces the evolution of qi(x) under the Hamiltonian flow
of Qj , namely {Qj , qi(x)} ≈ δijλi ∂xqi(x). To obtain the time evolution of qi(x), one needs
to take into account the Lagrange multiplier term in the dynamics (2.33). One shows that
this term in fact does not contribute, as the densities qi(x) are first-class and more precisely
satisfy {C(y), qi(x)} = δi∞C(x)δ′xy ≈ 0. Thus, the time evolution of qi(x) is given by (note
that the factor 2 in front of the charges Qi in the Hamiltonian for i ∈ {1, · · · , 2N − 2}
cancels with the factor λi)

∂tqi = εi ∂xqi . (2.54)

Using the expressions (2.52) of T 0
00 and T 0

01, we get

∂tT
0
00 = ε20 ∂xq0 + 2

2N−2∑
i=1

ε2i ∂xqi + ε2∞ ∂xq∞ ,

∂tT
0
01 = ε0 ∂xq0 + 2

2N−2∑
i=1

εi ∂xqi + ε∞ ∂xq∞ .

Comparing to the conservation equation (2.53), we get the components T 1
10 and T 1

11 of the
energy momentum tensor:

T 1
10 = −ε20 q0 − 2

2N−2∑
i=1

ε2i qi − ε2∞ q∞ and T 1
11 = −ε0 q0 − 2

2N−2∑
i=1

εi qi − ε∞q∞ . (2.55)

Classical scale invariance. From equations (2.52) and (2.55), we note that Tµµµ =
T 0

00 + T 1
11 = 0. The energy momentum tensor is thus traceless. It is a standard result in

field theory that this implies the classical scale invariance of the model. In general, this
scale invariance is expected to be broken at the quantum level. However, as we shall see
in subsection 3.4, some particular limit of the model that we are constructing will also
maintain this scale invariance at the quantum level and define a conformal field theory.

Relativistic invariance. Let us introduce the two-dimensional Minkowski metric ηµν ,
defined by η00 = −η11 = 1 and η01 = η10 = 0, and the tensor Tµν = ηµρT

ρ
ρν obtained

by lowering one of the index of the energy-momentum tensor. From equations (2.52)
and (2.55), we get

T01 = q0 + 2
2N−2∑
i=1

qi + q∞ and T10 = ε20 q0 + 2
2N−2∑
i=1

ε2i qi + ε2∞ q∞ . (2.56)

It is a standard result of field theory that the model is invariant under Lorentz symmetries
(preserving the metric ηµν) if the tensor Tµν is symmetric and thus if T01 = T10. It is clear
from the above equation that this is the case if and only if the coefficients εi all square
to 1, i.e.

εi = ±1 , ∀ i ∈ {0, · · · , 2N − 2,∞} . (2.57)

This gives a particularly simple condition ensuring the relativistic invariance of the model.3

3Let us briefly discuss the converse of this result. In general, the sufficient and necessary condition
for relativistic invariance of the model is that the energy-momentum tensor is symmetric up to a total
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2.5 Integrability

Lax matrix. Following [1], we define the Lax matrix of the model as the following gC-
valued field:

L(z, x) = Γ(z, x)
ϕ(z) . (2.58)

To give an explicit description of this Lax matrix, let us determine its partial fraction
decomposition. As Γ(z) and ϕ(z) have the same poles (at the points zi and −zi), of
the same order, L(z) has poles at the zeroes of the twist function ϕ(z), i.e. at z = 0,
z = ±ζi for i ∈ {1, · · · , 2N − 1} and z = ∞. One easily checks that the residues of
L(z) at z = 0 and ζi are respectively equal to Γ(0)/ϕ′(0) and Γ(ζi)/ϕ′(ζi). Moreover,
using the equivariance properties (2.18), one finds that the residue of L(z) at z = −ζi is
equal to Γ(−ζi)/ϕ′(−ζi) = −σ

(
Γ(ζi)

)
/ϕ′(ζi). This fixes the non-polynomial part of the

partial fraction decomposition of L(z). To determine the polynomial part, let us study the
behaviour of L(z) around z = ∞. The asymptotic expansion of the Gaudin Lax matrix
Γ(z, x) around infinity reads

Γ
(1
u
, x

)
= u C(x)− u2B(x)− u3B1(x) +O(u4) ≈ −u2B(x)− u3B1(x) +O(u4) , (2.59)

where B(x) and B1(x) are the following g-valued currents:

B(x) = −
N∑
r=1

(
zrJ (1)

r,[0] + J (1)
r,[1]

)
, (2.60a)

B1(x) = −
N∑
r=1

zr
(
zrJ (0)

r,[0] + 2J (0)
r,[1]

)
. (2.60b)

Moreover, using the expression (2.21) of the twist function, we get

1
ϕ(1/u) = 1

u3

( 1
2K +O(u2)

)
. (2.61)

Using the asymptotic expansions (2.59) and (2.61), one can then express the O(u−1) and
O(u0)-terms in the expansion of L(1/u) around u = 0, which correspond to the linear and
constant terms in the polynomial part of the partial fraction decomposition of L(z). In the
end, we then get

L(z, x) ≈ 1
ϕ′(0)

Γ(0, x)
z

+
2N−2∑
i=1

1∑
k=0

1
ϕ′(ζi)

(−1)kσk
(
Γ(ζi, x)

)
z − (−1)kζi

− B1(x)
2K − B(x)

2K z . (2.62)

derivative. In the present case, this is equivalent to T01−T10 = (1− ε2
0)q0 +2

∑2N−2
i=1 (1− ε2

i )qi +(1− ε2
∞)q∞

being a total derivative. From the definition of the densities qi, there is no apparent choice of εi’s which
would make this combination a total derivative, expect for taking all coefficients 1 − ε2

i equal to 0. Thus,
we expect the condition (2.57) to also be a necessary condition for the relativistic invariance of the model.
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Lax connection and zero curvature equation. Together with another gC-valued field
M(z, x), L(z, x) forms the Lax connection of the model, i.e. the equations of motion of the
model can be recast as the zero curvature equation

∂tL(z, x)− ∂xM(z, x) + [M(z, x),L(z, x)] = 0 . (2.63)

This was proven for general affine Gaudin models in [1]. Let us briefly re-derive it in the
present case and show the explicit expression of M(z, x). For that, we have to study the
dynamic of the Lax matrix L(z), which is induced by the Hamiltonian flow (2.33) of the
total Hamiltonian HT . From the Poisson bracket (2.15), one finds that the Poisson bracket
of the charge Q(w) (defined in equation (2.22)) with the Lax matrix L(z, x) is given by{

Q(w),L(z, x)
}

=
[
L(z, x),M(w ; z, x)

]
+ ∂xM(w ; z, x) (2.64)

− ∂x
( 1
ϕ(z)κ2

(
R0

21(w, z),Γ2(w, x)
))

, (2.65)

where we defined
M(w ; z, x) = − 1

ϕ(w)κ2
(
R0

12(z, w),Γ2(w, x)
)
. (2.66)

Let us note that the Hamiltonian flow (2.64) induced by Q(w) on L(z, x) almost takes
the form of a zero curvature equation, up to the last term. To deduce the Hamiltonian
flow induced by the charges Qi, i ∈ {0, · · · , 2N − 2,∞}, defining the Hamiltonian, one
has to take residues of the bracket (2.64) at w = ζi, where for uniformity we introduce
the notation ζ0 = 0 and ζ∞ = ∞. Let us note that R21(w, z) and Γ(w, x) are regular
at w = ζi if ζi is finite, i.e. if i ∈ {0, 1, · · · , 2N − 2}: thus, in this case, the last term in
the bracket (2.64) does not possess a residue at w = ζi. A similar statement holds for the
residue at infinity: Γ(1/u, x) and R21(1/u, z) are both of order O(u) around u = 0, so that
the last term in the bracket (2.64) for w = 1/u is of order O(u2) and thus defines a regular
1-form at w = ∞. We then get that the Hamiltonian flow of Qi, i ∈ {0, · · · , 2N − 2,∞},
on L(z, x) takes the form of a zero curvature equation:

{Qi,L(z, x)} − ∂xMi(z, x) +
[
Mi(z, x),L(z, x)

]
= 0 ,

with Mi(z, x) = res
w=ζi

M(w; z, x)dw .

For i ∈ {0, · · · , 2N − 2}, a direct computation gives

Mi(z, x) = 1
2ϕ′(ζi)

1∑
k=0

(−1)kσk
(
Γ(ζi, x)

)
z − (−1)kζi

.

From the equivariance property (2.18), one finds that σ
(
Γ(0, x)

)
= −Γ(0, x). Thus, we get

in particular thatM0(z, x) = Γ(0)/zϕ′(0). To computeM∞(z, x), we use the asymptotic
expansions (2.59) and (2.61), as well as

R0
12

(
z,

1
u

)
= uC

(00)
12 + u2z C

(11)
12 +O(u3) . (2.67)
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After a short computation, we get:

M∞(z, x) ≈ −B1(x) + z B(x)
2K . (2.68)

To complete the derivation of the temporal part M(z, x) of the Lax connection, we fi-
nally need to compute the contribution of the Lagrange multiplier µ to the dynamics of
L(z, x). From the Poisson bracket (2.15), the definition (2.25) of the constraint and the
expansion (2.67) we get

{
C2(y),L1(z, x)

}
= −

[
C

(00)
12 ,L1(z, x)

]
δxy + C

(00)
12 δ′xy . (2.69)

Thus, ∫
D
dy κ2

(
µ2(y), {C2(y),L1(z, x)}

)
= −

[
µ(x),L(z, x)

]
+ ∂xµ(x) .

Combining all the results above, we find that the dynamics of L(z, x) follows the zero
curvature equation (2.63), forM(z, x) given by

M(z, x) ≈ ε0
ϕ′(0)

Γ(0, x)
z

+
2N−2∑
i=1

1∑
k=0

εi
ϕ′(ζi)

(−1)kσk
(
Γ(ζi, x)

)
z − (−1)kζi

− ε∞
B1(x)
2K − ε∞

B(x)
2K z + µ(x) . (2.70)

Maillet bracket and integrability. Since the equations of motion of the model take
the form of a zero curvature equation, one can extract an infinite number of conserved
charges from the monodromy of the Lax matrix L(z, x). The integrability of the model
is a consequence of the fact that these charges are in involution. In order to show this,
one starts from the bracket of the Lax matrix. In our case it is simply computed from the
Poisson bracket (2.15) of the Gaudin Lax matrix with itself and reads:

{L1(z, x),L2(w, y)} = [R12(z, w),L1(z, x)]δxy − [R21(w, z),L2(w, x)]δxy
− (R12(z, w) +R21(w, z))δ′xy , (2.71)

where R12(z, w) = R0
12(z, w)ϕ(w)−1 and R0 is the twisted standard R-matrix (2.16). The

bracket (2.71) is an example of a Maillet non-ultralocal bracket [20, 21]. It satisfies the
Jacobi identity due to the fact that the R-matrix is a solution of the classical Yang-Baxter
equation:

[R12(z1, z2),R13(z1, z3)] + [R12(z1, z2),R23(z2, z3)] + [R32(z3, z2),R13(z1, z3)] = 0 ,

which is a consequence of the fact that R0 is also a solution (see equation (2.17)). It is
a standard result that the Maillet bracket implies the involution of the charges extracted
from the monodromy of the Lax matrix L(z, x).
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Integrable local hierarchies. Let us consider the charges Qi, i ∈ {0, · · · , 2N − 2,∞},
defined in equation (2.23). For i 6=∞, a direct computation shows that

Qi = − 1
2ϕ′(ζi)

∫
D
dx κ

(
Γ(ζi, x),Γ(ζi, x)

)
. (2.72)

Similarly, one shows that the charge Q∞ admits the following weak expression:

Q∞ ≈ −
1

2χ′(0)

∫
D
dx κ

(
B(x),B(x)

)
. (2.73)

The function χ(u) was introduced in equation (2.20) to describe the 1-form ϕ(z)dz around
infinity, while the field B(x) can be seen as the evaluation of the 1-form Γ(z, x)dz at z =∞.
The above expression is then a natural generalisation for i =∞ of equation (2.72).

The quadratic charges Qi are naturally associated with the zeroes of the twist function.
In fact, it was shown in [22] that in addition to the non-local charges extracted from the
monodromy, models with twist function admit infinite towers of local conserved charges in
involution, obtained from the zeroes of the twist function and which generalise the con-
struction of the quadratic charges Qi. These towers, which are called integrable hierarchies,
consist of charges of increasing degrees whose densities are well-chosen invariant polyno-
mials4 of Γ(ζi, x) for i 6=∞ and of B(x) for i =∞ (only weakly in this case). The charge
of lowest degree in each tower is quadratic and the corresponding invariant polynomial is
simply the bilinear form κ(·, ·), thus giving back the charges Qi considered above. We refer
to [22] for more details about the construction of these hierarchies (for completeness, let
us note that these local charges were first constructed in [23, 24] for the Principal Chiral
Model, with and without Wess-Zumino term, and in [25] for the symmetric coset σ-model,
which corresponds to the model considered here for N = 1).

Lax connection in light-cone coordinates. For completeness, let us briefly comment
on the expression of the Lax connection in light-cone components. Let us consider the
light-cone coordinates x± = (t±x)/2 and the corresponding derivatives ∂± = ∂t±∂x. The
zero curvature equation (2.63) can then be rewritten as

∂+L−(z)− ∂−L+(z) + [L+(z),L−(z)] = 0 ,

where we have introduced the light-cone Lax connection

L±(z) =M(z)± L(z) .

From the expressions (2.62) and (2.70) of L(z) andM(z) respectively, we observe that they
contain the same terms. For the case of M(z), these terms are multiplied by one of the
coefficients εi, i ∈ {0, · · · , 2N−2,∞}, which we recall can be either +1 or −1 to ensure the

4The degrees of these polynomials follow a specific pattern, which depends on the underlying Lie algebra
g and the zero which is considered. For zeroes ζi, i ∈ {1, · · · , 2N − 2}, which are not fixed under the Z2-
transformation z 7→ −z, these degrees are given by one plus the exponents of the untwisted affine algebra
of g. For the zeroes 0 and ∞, which are fixed under z 7→ −z, only a subset of the exponents appears, which
depends on the choice of automorphism σ (see [22] for more details).
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relativistic invariance of the model. Hence, depending on the values of these numbers, these
terms will be present only in one of the two light-cone components of the Lax connection.
More precisely, they will appear in the expression of L+(z) if the corresponding εi is equal
to +1 and in the expression of L−(z) if εi is equal to −1. This determines the pole structure
of these two quantities.

Gauge symmetry and integrable structure. Let us now discuss how the integrable
structure of the model behaves under the G(0)

diag gauge symmetry introduced in subsec-
tion 2.3 and in particular determine how the Lax connection transforms under this sym-
metry. From its definition (2.58) and the transformation (2.42) of the Gaudin Lax matrix,
one simply finds that L(z) transforms as

L(z) 7−→ h−1L(z)h+ h−1∂xh . (2.74)

Let us now focus on M(z). From (2.42), we obtain that the evaluations of the Gaudin
Lax matrix at finite zeros of the twist function vary covariantly as Γ(0) 7→ h−1Γ(0)h and
Γ(ζi) 7→ h−1Γ(ζi)h. Moreover, inserting the asymptotic expansions (2.59) and (2.19) in
equation (2.42), we get

B 7−→ h−1Bh and B1 7−→ h−1B1h− 2K h−1∂xh .

Combining the above results with the transformation (2.44) of the Lagrange multiplier µ
and the expression (2.70) ofM(z), one then finds thatM(z) transforms as

M(z) 7−→ h−1M(z)h+ h−1∂th . (2.75)

Re-expressing the equations (2.74) and (2.75) in light-cone components, we finally arrive at

L±(z) 7−→ h−1L±(z)h+ h−1∂±h . (2.76)

Let us make a few comments. Firstly, we note that the transformation (2.76) takes the
form of a formal gauge transformation L±(z) 7→ Lh±(z) of the Lax connection. Such formal
gauge transformations are a general feature of integrable field theories, regardless of whether
they possess a gauge symmetry or not. They can be performed for any h = h(z, x, t) in
the group G and leave the zero curvature equation invariant: they therefore encode the
non-uniqueness of the Lax connection in the integrable field theory under consideration.
In the present case, this field theory also possesses a G(0)

diag gauge symmetry, which encodes
the presence of unphysical degrees of freedom in the model. The above computation thus
shows that the action of this gauge symmetry, with local parameter h(x, t) ∈ G(0), on
the Lax connection coincides with a formal gauge transformation with parameter h. Since
such a transformation preserves the zero curvature equation, which is a reformulation of
the equations of motion of the model, this provides an alternative check of the invariance
of these equations of motion under the G(0)

diag gauge symmetry.
Moreover, it is a standard result that the conserved charges extracted from the mon-

odromy of the Lax matrix are invariant under formal gauge transformations. As a conse-
quence, the above results show that these charges are also invariant with respect to the
G

(0)
diag gauge symmetry of the model.
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Recall that in addition to these charges extracted from the monodromy matrix, the
model also admits an infinite number of local conserved charges in involution (see above).
The latter are also gauge invariant, as was proven in general in [22]. This fact can also be
checked directly using the results derived above. Indeed, we have shown that the currents
Γ(0, x), Γ(ζi, x) and B(x) are covariant under gauge transformations. As mentioned earlier
in this subsection, the densities of the local conserved charges are obtained by taking
conjugacy invariant polynomials of these currents, which are then gauge invariant.

2.6 The panorama of the models

Let us end this section by briefly discussing the panorama of integrable models constructed
above. A model in this class first depends on the number of sites N of the underlying
AGM, which fixes its target space GN/G(0)

diag. Moreover, following the different steps of the
construction of the model, one sees that it is characterised by the following parameters:

• the positions z1, · · · , zN of the sites;

• the levels `1,0, · · · , `N,0 and `1,1, · · · , `N,1;

• the coefficients ε0, · · · , ε2N−2, ε∞ entering the definition of the Hamiltonian (2.24).

In particular, the parameters in the first two bullets are encoded in the twist function (2.10).
As explained in subsection 2.4, the coefficients εi cannot take arbitrary values as they are
required to be either +1 or −1 to ensure the relativistic invariance of the model. Recall
also that the levels `r,0 are subject to the first-class condition (2.11), which imposes one
relation between them. Moreover, one shows that the model obtained by considering a
dilation of the spectral parameter z 7→ az is equivalent to the inital model: this induces a
redundancy among the parameters of the model, which can be fixed for instance by setting
one of the position zr to a fixed value, say z1 = 1. Thus, the model depends in the end on
3N − 2 continuous free parameters.

Recall from subsection 2.3 that the definition of the Hamiltonian of the model involves
the zeroes {0,∞, ζ1, · · · , ζ2N−2} of the twist function. In general, expressing these zeroes
in terms of the positions zr and the levels `r,p is a complicated, if not impossible, task, as
it requires solving a polynomial equation of degree 2N − 2. To circumvent this difficulty,
one can choose another set of parameters of the model, given by:

• the positions z2, · · · , zN of the sites (fixing z1 = 1);

• the constant term K in the twist function (2.21);

• the zeroes ζ1, · · · , ζ2N−2 of the twist function and the corresponding coefficients εi ∈
{+1,−1};

• the coefficients ε0 and ε∞ in {+1,−1}.

This set of parameters is encoded in the choice of the twist function in its factorised
form (2.21) (except for the discrete parameters εi = ±1). In particular, if these are chosen
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as the defining parameters of the model, the levels `r,p are defined in terms of this expression
of the twist function as the residues

`r,0 = 2 res
z=zr

ϕ(z)dz and `r,1 = 2 res
z=zr

(z − zr)ϕ(z)dz .

Note that in this parametrisation, the first-class condition (2.11) is automatically satisfied,
as the factorised form (2.21) of the twist function ensures that ϕ(z)dz is regular at z =∞.
The 3N − 2 continuous parameters listed above are thus unconstrained.

Let us end this section by discussing briefly the simplest example in this panorama of
models, the model with one site, i.e. N = 1. This model was first considered in [1], where
it was shown that it coincides with the standard σ-model on the symmetric space G/G(0).
In the parametrisation discussed above, this model possesses one site with fixed position
z1 = 1 and no zeroes ζi (0 and ∞ are the only zeroes of the twist function). The only
continuous free parameter of the model is then the constant term K. The twist function
simply reads

ϕ(z) = 2Kz
(z2 − 1)2 . (2.77)

We fix the coefficients εi to5 ε∞ = +1 and ε0 = −1. The phase space of the model consists
of canonical fields on a single copy of T ∗G, described by the two fields g(x) and X(x) (as
N = 1, we drop the indices r). A direct computation shows that the naive Hamiltonian of
the model (2.24) is given in this case by

HN=1 = 1
2

∫
D
dx

( 1
K
κ
(
X(1), X(1))+Kκ

(
j(1), j(1))+ 2κ

(
X(0), j(0))) , (2.78)

where j = g−1∂xg as above. As expected, this coincides with the Hamiltonian of the
symmetric space σ-model on G/G(0), formulated as a model on G with a G(0) gauge
symmetry. In the present case, the constraint associated with this gauge symmetry simply
reads X(0) ≈ 0.

3 Lagrangian formulation of the models with two copies

The Lagrangian formulation of the models we are concerned with in this article consists
of field theories with fundamental fields gr(x, t), r ∈ {1, · · · , N}, taking values in G. We
will obtain these Lagrangian theories by performing an inverse Legendre transform of the
models constructed in section 2 in the Hamiltonian formulation. In order to make the
computation of the inverse Legendre transform more explicit, we will restrict to the case
of two copies, i.e. we will fix N = 2.

Before that, let us briefly describe, as a simple illustration, the model with only one
copy. The model is described in its Lagrangian formulation by a unique G-valued field

5The choice ε∞ = −1 and ε0 = +1 would simply lead to the opposite Hamiltonian, while the choices
ε∞ = ε0 = ±1 would lead to the Hamiltonian coinciding with (plus or minus) the momentum of the theory,
as one can see from equation (2.49).
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g(x, t). Performing the inverse Legendre transform of the Hamiltonian (2.78), one finds
that its action takes the form:

SN=1[g] = K

2

∫∫
D×R

dx dt κ
(
j

(1)
+ , j

(1)
−
)
,

where j± = g−1∂±g. As expected, this is the action of the standard symmetric space σ-
model on G/G(0) in its gauged formulation. One easily checks that this action is invariant
under the gauge transformation g(x, t) 7→ g(x, t)h(x, t) for h(x, t) ∈ G(0).

Let us return to the models with N = 2. Before proceeding to the computation of
the inverse Legendre transform, let us describe the parameters of these models. From the
discussion in subsection 2.6, they depend on four continuous parameters: the position z2
of the second site (having fixed the position of the first site to z1 = 1), the global factor in
the twist function K, and the zeroes ζ1 and ζ2. In the following we will rename z2 = x to
avoid unnecessary indices, although we will sometimes use the notation z1 and z2 so that
some formulae assume a more compact form. In addition to these continuous parameters,
the models are characterised by the choice of four discrete coefficients (ε0, ε1, ε2, ε∞) in
{−1,+1}. We will fix these coefficients to the values6 ε0 = −1, ε1 = −1, ε2 = +1 and
ε∞ = +1. Motivated by this choice and for future convenience, we will rename ζ1 as ζ−
and ζ2 as ζ+.

3.1 Lagrangian expression of the momentum fields

In order to perform the inverse Legendre transform of the models, we first need to express
their momentum fields, encoded in the fields Xr introduced in the previous section, in terms
of the time derivatives of the coordinate fields gr, encoded in the temporal Maurer-Cartan
currents j0,r = g−1

r ∂tgr.
For that, let us calculate the dynamics of the fields gr, given by the Poisson bracket

of gr with the total Hamiltonian introduced in subsection 2.3. We start by seeking a more
explicit expression of the naive Hamiltonian (2.24) in terms of the fields jr and

Yr = Xr + `r,0
2 Wr ,

which we introduce for future convenience. After a few manipulations, one rewrites it in
the form

H =
2∑

r,s=1

1∑
k=0

a(k)
rs

∫
D
dx κ

(
j(k)
r , j(k)

s

)
+ b(k)

rs

∫
D
dx κ

(
Y (k)
r , j(k)

s

)
+ c(k)

rs

∫
D
dx κ

(
Y (k)
r , Y (k)

s

)
, (3.1)

where the coefficients a(k)
rs , b

(k)
rs have slightly long expressions and are hence written in

appendix A, while the coefficients c(k)
rs are given by

c(0)
rs = ζ2

−
2K

z2
r̄z

2
s̄/ζ

2
− − z2

r̄ − z2
s̄ + ζ2

−
ζ2
− − ζ2

+
and c(1)

rs = zrzs
2K

z2
r̄z

2
s̄/ζ

2
+ − z2

r̄ − z2
s̄ + ζ2

−
ζ2
− − ζ2

+
, (3.2)

where we introduced the notation r̄ = 3− r for r = 1, 2.
6Other choices would give either equivalent models, up to a redefinition of the parameters, or models for

which the inverse Legendre transform is singular and thus which do not possess a Lagrangian formulation.
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The form (3.1) of the Hamiltonian allows us to calculate easily what j0,r reads in terms
of the Hamiltonian fields jr and Yr. From the Poisson brackets (2.3), (2.4) and (2.8a), as
well as the identity (2.2), one shows that

g−1
r {H, gr} =

2∑
s=1

1∑
k=0

b(k)
rs j

(k)
s + 2c(k)

rs Y
(k)
s .

Hence, taking into account the form (2.32) of the total Hamiltonian and the Poisson
bracket (2.36), we have:

j0,r ≈ g−1
r {HT , gr} ≈

2∑
s=1

1∑
k=0

b(k)
rs j

(k)
s + 2c(k)

rs Y
(k)
s + µ . (3.3)

The above equation is a linear system that can be projected into the gradings and solved
to express the fields Y (k)

r in terms of the currents j0,r. However, we take a different path
to eliminate the Lagrange multiplier µ. For the grading zero, subtracting the equations for
r = 1 and r = 2, we arrive at:

2
2∑
s=1

(
c

(0)
1s − c

(0)
2s

)
Y (0)
s ≈ j(0)

0,1 − j
(0)
0,2 −

2∑
s=1

(
b
(0)
1s − b

(0)
2s

)
j(0)
s .

In order to obtain a second equation independent of the Lagrange multiplier µ, we make
use of the constraint (2.26), rewritten in the form:

Y
(0)

1 + Y
(0)

2 ≈ −`1,02 j
(0)
1 − `2,0

2 j
(0)
2 .

Altogether, the solution for the grading zero is given by:

Y (0)
r ≈ 1

2∑2
s=1

(
c

(0)
ss − c(0)

ss̄

) (j(0)
0,r − j

(0)
0,r̄ −

2∑
s=1

(
b(0)
rs − b

(0)
r̄s − `s,0

(
c

(0)
rr̄ − c

(0)
r̄r̄

))
j(0)
s

)
. (3.4)

For the grading one, one has the following equations:

j
(1)
0,r ≈

2∑
s=1

b(1)
rs j

(1)
s + 2c(1)

rs Y
(1)
s .

If we rename the components of the inverse matrix of (c(1))rs = c
(1)
rs as c̄(1)

rs = (c(1))−1
rs , the

solution then reads:

Y (1)
r ≈ 1

2

2∑
s=1

c̄(1)
rs

(
j

(1)
0,s −

2∑
t=1

b
(1)
st j

(1)
t

)
. (3.5)

3.2 Action of the model

Inverse Legendre transform. Using the definition of Xr in terms of the canonical fields
(see for instance [3] for more details), one shows that the action of the model is given by
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the following inverse Legendre transform:7

S[g1, g2] =
2∑
r=1

∫∫
dx dt κ (Xr, j0,r)−

∫
dt H .

In terms of the fields Yr introduced in the previous subsection, we can rewrite the above
equation as

S[g1, g2] =
2∑
r=1

∫∫
dx dt κ (Yr, j0,r)−

∫
dt H−

2∑
r=1

`r,0
2 IWZ

[
gr
]
,

where the Wess-Zumino terms of gr have now appeared, using equation (2.7). To obtain the
explicit expression of the action, we now have to replace the Hamiltonian fields Yr by their
Lagrangian expression, given by equations (3.4) and (3.5), including in the Hamiltonian H,
using its expression (3.1). Let us introduce the light-cone components of the Maurer-Cartan
currents j±,r = g−1

r ∂±gr = j0,r ± jr. After some manipulations, one finds

S[g1, g2] =
2∑

r,s=1

∫∫
dx dt

(
ρ(0)
rs κ

(
j

(0)
+,r, j

(0)
−,s

)
+ ρ(1)

rs κ
(
j

(1)
+,r, j

(1)
−,s

))
+ k IWZ

[
g1
]
− k IWZ

[
g2
]
.

(3.6)
In terms of the defining parameters of the model K, x, ζ+ and ζ−, the coefficients corre-
sponding to the grading zero in this action are given by

ρ
(0)
11 = ρ

(0)
22 = K

2
ζ2
− − ζ2

+
(1− x2)2 , ρ

(0)
12 =K

(
1− ζ2

+
) (
x2 − ζ2

−
)

(1− x2)3 ,

ρ
(0)
21 = −K

(
1− ζ2

−
) (
x2 − ζ2

+
)

(1− x2)3 , (3.7a)

while the ones corresponding to the grading one are

ρ
(1)
11 = K

2

(
1− 2ζ2

+ + ζ2
−ζ

2
+
)

(1− x2)2 , ρ
(1)
12 = K

x
(
1− ζ2

+
) (
x2 − ζ2

−
)

(1− x2)3 ,

ρ
(1)
21 = −K

(
1− ζ2

−
) (
x2 − ζ2

+
)

x (1− x2)3 , ρ
(1)
22 = K

2

(
x4 − 2ζ2

+x
2 + ζ2

−ζ
2
+
)

x2 (1− x2)2 . (3.7b)

Finally, the Wess-Zumino coefficient k is defined as k = −`1,0/2 = `2,0/2 and explic-
itly reads

k = K
2x2 + 2ζ2

−ζ
2
+ − (1 + x2)(ζ2

− + ζ2
+)

(1− x2)3 . (3.7c)

Gauge symmetry. Let us check explicitly that the action (3.6) is invariant under the
gauge transformation gr(x, t) 7→ gr(x, t)h(x, t) with h(x, t) ∈ G(0), as expected from the

7As we are now working in the Lagrangian formulation, in which the constraint always holds, we drop
the distinction between weak and strong equalities. In particular, one can use the naive Hamiltonian (and
not the total one) to compute the inverse Legendre transform.
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Hamiltonian construction. Under this transformation, the Wess-Zumino terms change
according to the Polyakov-Wiegmann formula [26]:

IWZ
[
grh

]
= IWZ

[
gr
]

+ IWZ
[
h
]
− 1

2

∫∫
dx dt

[
κ
(
j

(0)
+,r, (∂−h)h−1

)
− κ

(
j

(0)
−,r, (∂+h)h−1

)]
.

Moreover, the light-cone components of the Maurer-Cartan currents transform as:

j
(0)
±,r 7−→ h−1(j(0)

±,r + (∂±h)h−1)h and j
(1)
±,r 7−→ h−1j

(1)
±,rh .

It is then clear that in an action of the form (3.6) with general coefficients ρ(k)
rs the terms

of grading one are invariant under this gauge transformation. The variation of the action
thus only contains terms in the grading zero, coming from the variation of the factors
κ
(
j

(0)
+,r, j

(0)
−,s
)
and of the Wess-Zumino terms. Computing explicitly this variation, one finds

that gauge invariance is verified if and only if the following conditions are satisfied:

ρ
(0)
11 + ρ

(0)
12 −

k
2 = ρ

(0)
12 + ρ

(0)
22 −

k
2 = ρ

(0)
21 + ρ

(0)
22 + k

2 = ρ
(0)
11 + ρ

(0)
21 + k

2 = 0 . (3.8)

The above relations are indeed all identically satisfied for the choice of coefficients (3.7).
Note that one can also rewrite the action (3.6) in a manifestly gauge invariant way.

Using the Polyakov-Wiegmann identity [26] to make the Wess-Zumino term IWZ
[
g1g
−1
2
]

appear, as well as the relations (3.8), one finds

S[g1, g2] = ρ
(0)
11

∫∫
dx dt κ

(
j

(0)
+,1 − j

(0)
+,2, j

(0)
−,1 − j

(0)
−,2

)
+ k IWZ

[
g1g
−1
2
]

+
2∑

r,s=1

(
ρ(1)
rs −

k
2 εrs

)∫∫
dx dt κ

(
j

(1)
+,r, j

(1)
−,s

)
,

where ε12 = −ε21 = 1 and ε11 = ε22 = 0. As announced, this form of the action is
manifestly invariant under a gauge transformation gr(x, t) 7→ gr(x, t)h(x, t) with h(x, t) ∈
G(0). Indeed, the field g1g

−1
2 is itself invariant and the currents j(0)

±,1 − j
(0)
±,2 and j

(1)
±,r are

covariant, i.e. they transform as

j
(0)
±,1 − j

(0)
±,2 7−→ h−1(j(0)

±,1 − j
(0)
±,2
)
h and j

(1)
±,r 7−→ h−1j

(1)
±,rh .

Global symmetries. Let us briefly discuss the global symmetries of the model (3.6),
which are given by the left (G×G)-translations on g1 and g2:

(g1, g2) 7−→ (f1g1, f2g2), (f1, f2) ∈ G×G . (3.9)

Indeed, these translations leave the Maurer-Cartan currents j±,r = g−1
r ∂±gr invariant and

also preserve the Wess-Zumino terms IWZ
[
gr
]
. Thus, they define global symmetries of the

action (3.6). The conserved Noether currents associated to these symmetries read

K+,r = gr

( 2∑
s=1

1∑
k=0

ρ(k)
sr j

(k)
+,s −

(−1)r
2 k j+,r

)
g−1
r ,

K−,r = gr

( 2∑
s=1

1∑
k=0

ρ(k)
rs j

(k)
−,s + (−1)r

2 k j−,r

)
g−1
r .

These currents satisfy the conservation equation ∂+K−,r + ∂−K+,r = 0. Let us also note
that they are gauge-invariant under the G(0)

diag gauge symmetry gr(x, t) 7→ gr(x, t)h(x, t) of
the model.
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Reformulation of the action. As detailed in appendix B, the coefficients ρ(k)
rs and kr

(with k1 = k and k2 = −k) defined in equation (3.7) can be re-expressed as residues of
well-chosen functions (for the non-dihedral σ-models on GN defined in [2, 3], a similar result
was pointed out in [14]). This allows us to reformulate the action (3.6) in the following
remarkably simple way:

S =
2∑
r=1

SWZW,kr [gr]

− 4K
∫∫

dx dt
2∑

r,s=1
res
w=zs

res
z=zr

κ12
(
R0

12(w, z)ϕ+(z)ϕ−(w), j+,r1 j−,s2
)
, (3.11)

where R0
12 is the R-matrix (2.16) underlying the integrable structure of the model,

SWZW,k[g] is the Wess-Zumino-Witten action

SWZW,k[g] = k
2

∫∫
dx dt κ

(
g−1∂+g, g

−1∂−g
)

+ k IWZ
[
g
]

(3.12)

and ϕ±(z) are functions defined as

ϕ+(z) = z2 − ζ2
+

(z2 − z2
1)(z2 − z2

2) and ϕ−(z) = z(z2 − ζ2
−)

(z2 − z2
1)(z2 − z2

2) . (3.13)

In particular, note that the reformulation (3.11) of the action does not involve an explicit
sum over the grading index k = 0, 1 as in the original expression (3.6). As explained in the
appendix B, this graded structure, and thus the choice of automorphism σ, is accounted
for in the R-matrix R0

12.

Conjectured generalisations. Having derived equation (3.11), it is natural to formu-
late conjectures about generalisations of the models considered here. For instance, we
expect a similar expression to hold for the models on GN/G

(0)
diag with arbitrary N con-

structed in the Hamiltonian formalism in section 2. More generally, we conjecture that
it also holds for models on GN/G

(0)
diag with arbitrary N and where the subalgebra g(0) is

the grading zero subspace of a ZT -gradation with arbitrary T , generalising the case T = 2
considered here.

Let us be more precise about this conjecture. For N = 1, the model on the ZT -coset
G/G(0) for arbitrary T was constructed in [27] and was identified with a realisation of
D2T -dihedral affine Gaudin model in [1], based on the Hamiltonian analysis carried out
in [28]. Although the generalisations of this σ-model on cosets GN/G(0)

diag with arbitrary N
have not been considered before in the literature, we expect the procedure of section 2 to
readily generalise to the construction of such models, using a D2T -dihedral affine Gaudin
model [1] instead of a D4-dihedral model. In this case, the twist function of the model
would read8

ϕ(z) = KT
zT−1∏2N−2

i=1 (zT − ζTi )∏N
r=1(zT − zTr )2

, (3.14)

8The equivariance condition (2.18) is then replaced by ϕ(ωz) = ω−1ϕ(z), where ω = exp(2iπ/T ).
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in terms of its zeroes ζ1, · · · , ζ2N−2 and poles z1, · · · , zN . One can then factorise this twist
function9 as ϕ(z) = KTϕ+(z)ϕ−(z), similarly to equation (B.1) for T = 2, with

ϕ+(z) =
∏2N−2
i=N

(
zT − ζTi

)
∏N
r=1 (zT − zTr )

and ϕ−(z) =
zT−1∏N−1

i=1

(
zT − ζTi

)
∏N
r=1 (zT − zTr )

.

We then conjecture that the action of the model is given by

S =
N∑
r=1

SWZW,kr [gr]

− KT 3

2

∫∫
dx dt

N∑
r,s=1

res
w=zs

res
z=zr

κ12
(
R0

12(w, z)ϕ+(z)ϕ−(w), j+,r1 j−,s2
)
, (3.15)

where kr = −T
2 res z=zr ϕ(z)dz and R0 now denotes the ZT -graded R-matrix which un-

derlies the integrable structure of D2T -dihedral affine Gaudin models [1], namely

R0
12(w, z) =

T−1∑
k=0

wkzT−1−k

zT − wT
π

(k)
1 C12 ,

with π(k), k ∈ {0, · · · , T − 1}, the projections along the grading g = ⊕T−1
k=0 g(k).

As mentioned above, for N = 1 and arbitrary T , the corresponding integrable model
on the ZT -coset G/G(0) has been constructed in [27]: we have checked that the action of
this model can indeed be reformulated as in (3.15). Moreover, for the case of arbitrary N
and T = 1, the results of [14] show that the action of the model is also given by (3.15),
with R0

12(z, w) the standard non-twisted R-matrix C12/(w− z). Finally, we have checked
this conjecture by direct computation for all cases with N ≤ 3 and T ≤ 3.

3.3 Lax connection in the Lagrangian formulation

From the equations (2.62) and (2.70), the Lax connection can be written in terms of the
fields jr, Yr and µ. Moreover, from equation (3.3), we have:

µ ≈ j(0)
0,r −

2∑
s=1

(
b(0)
rs j

(0)
s + 2c(0)

rs Y
(0)
s

)
.

We can then express the Lax connection solely in terms of the fields jr and Yr. Inserting
equations (3.4) and (3.5), we finally get the Lagrangian expression of the Lax connection.
In terms of the light-cone currents j±,r, it reads:

L±(z) =
2∑
r=1

1∑
k=0

η
(k)
±,r(z)j(k)

±,r , (3.16)

where

η
(0)
±,1(z) =

(
z2 − x2) (1− ζ2

±
)(

z2 − ζ2
±
)

(1− x2) , η
(1)
±,1(z) = z±1 η

(0)
±,1(z) , (3.17)

η
(0)
±,2(z) =

(
z2 − 1

) (
x2 − ζ2

±
)(

z2 − ζ2
±
)

(x2 − 1) , η
(1)
±,2(z) =

(
z

x

)±1
η

(0)
±,2(z) . (3.18)

9As for the case T = 2 treated in section 2, we expect such a separation of the zeroes of ϕ(z) in two sets
{0, ζ1, · · · , ζN−1} and {ζN , · · · , ζ2N−2,∞} to come naturally from the relativistic invariance of the model,
which requires the coefficients εi, i ∈ {0, 1, · · · , 2N − 2,∞}, in the Hamiltonian of the model to be equal to
either −1 or +1.
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In particular, we note as an observation that η(k)
±,s(zr) = δrs (where we recall that z1 = 1

and z2 = x) and therefore
L±(zr) = j±,r . (3.19)

3.4 A limit of the model

Definition of the limit. Let us recall that the model with two copies introduced above
depends on the four continuous real parameters x, K, ζ+ and ζ−. In this subsection, we
will describe the simple form that this model assumes after taking a particular limit of
these parameters. In particular, this limit will be our starting point in section 4. We start
by considering the following reparametrisation of x, K, ζ+ and ζ− in terms of four new
parameters α, λ1, λ2 and λ:

x = 1
α
, K = λ2

2
α2 , ζ+ = λ1

λ
, ζ− = λ

λ2α
. (3.20)

We then define the limit we will be interested in by taking α→ 0 while keeping the other
parameters λ1, λ2 and λ fixed.

Action. Let us look at how the action of the model simplifies in this limit. From their
expression (3.7), we obtain that the coefficients ρ(k)

rs and k simply become:

ρ
(0)
11 = ρ

(0)
22 = λ2

2 , ρ
(0)
12 = ρ

(1)
12 = ρ

(1)
21 = 0 , ρ

(0)
21 = −k = −λ2 ,

ρ
(1)
11 = λ2

1
2 , ρ

(1)
22 = λ2

2
2 .

Writing the action explicitly, we thus have

S[g1, g2] =
∫∫

dx dt
2∑
r=1

(
λ2

2 κ
(
j

(0)
+,r, j

(0)
−,r

)
+ λ2

r

2 κ
(
j

(1)
+,r, j

(1)
−,r

))
− λ2 κ

(
j

(0)
+,2, j

(0)
−,1

)
(3.21)

+ λ2 IWZ
[
g1
]
− λ2 IWZ

[
g2
]
.

Lax connection. Let us now turn to the Lax connection. Taking the limit on the
coefficients η±,r(z) defined in (3.17) and reinserting in the expression (3.16) of the Lax
connection, we get:

L+(z) = 1
λ2z2 − λ2

1

((
λ2 − λ2

1
) (
j

(0)
+,1 + z j

(1)
+,1

)
+ λ2(z2 − 1

)
j

(0)
+,2

)
,

L−(z) = j
(0)
−,1 +

j
(1)
−,1
z

. (3.22)

One can check that the zero curvature equation for this Lax connection actually does not
encode all the equations of motion of the model. To circumvent this difficulty, let us also
consider the limit of L±(z/α), which we will denote as L̃±(z) (by construction, L̃±(z) also
satisfies a zero curvature equation). A direct computation shows that

L̃+(z) = j
(0)
+,2 + z j

(1)
+,2 ,

L̃−(z) = 1
λ2

2z
2 − λ2

(
λ2(z2 − 1

)
j

(0)
−,1 +

(
λ2

2 − λ2) (z2j
(0)
−,2 + z j

(1)
−,2

))
. (3.23)

The combined zero curvature equations of L±(z) and L̃±(z) are equivalent to all the equa-
tions of motion of the model.
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Additional symmetry. For this paragraph, we will suppose that the pair
(
G,G(0))

characterising the model is such that G(0) possesses a center Z. There are many examples
of such pairs, which include for instance

(
SU(p+q), S

(
U(p)×U(q)

))
,
(
SL(p+q), S

(
GL(p)×

GL(q)
))

and
(
SO(2n),U(n)

)
. As we will now show, in this case, the model (3.21) then

possesses an additional global Z-symmetry, which acts on the fields g1, g2 ∈ G as

(g1, g2) 7−→ (g1k, g2) , k ∈ Z . (3.24)

Note that we could also have considered the action (g1, g2) 7→ (g1, g2k), which is equivalent
to the one above via the G(0)

diag gauge symmetry. Under the action (3.24), the graded
components j(k)

±,r of the Maurer-Cartan currents transform as

j
(0)
±,1 7−→ j

(0)
±,1 , j

(1)
±,1 7−→ k−1j

(1)
±,1k , j

(0)
±,2 7−→ j

(0)
±,2 and j

(1)
±,2 7−→ j

(1)
±,2 ,

(3.25)
where we have used the fact that k is central in G(0) and thus that k−1j

(0)
±,1k = j

(0)
±,1.

Noting also that the Wess-Zumino term of g1 is invariant under the transformation (3.24),
i.e. IWZ

[
g1k

]
= IWZ

[
g1
]
, it is direct to check that this transformation defines a symmetry

of the action (3.21), as claimed.

Guadagnini-Martellini-Mintchev model. Let us now define U = g1 and V = g−1
2 .

We recall that the Wess-Zumino term satisfies the following relation:

IWZ
[
g−1] = −IWZ

[
g
]
.

Then, in the case in which λ1 = λ2 = λ, the action (3.21) can be rewritten as

S[U, V ] = SWZW, λ2 [U ]+SWZW, λ2 [V ]+λ2
∫∫

dx dt κ
((
∂+V V

−1)(0)
,
(
U−1∂−U

)(0))
, (3.26)

where SWZW,k denotes the Wess-Zumino-Witten action with level k as defined in (3.12).
The action (3.26) coincides with the one of the Guadagnini-Martellini-Mintchev model
introduced in [4] as a theory on (G ×G′)/H, when considered in the special case G′ = G

and H = G(0). This model was shown to preserve scale invariance at the quantum level
at one loop in [4] and at two loops in [29]. This thus shows that the integrable σ-model
considered in this subsection is a two-dimensional conformal field theory for the specific
choice λ1 = λ2 = λ of its defining parameters. The Kac-Moody current algebras of this
conformal model have been studied in [30].

Let us finally note that in the case under consideration, the Lax connections L±(z)
and L̃±(z), given in (3.22) and (3.23) respectively, assume the following simple form:

L+(z) = j
(0)
+,2 , L−(z) = j

(0)
−,1 +

j
(1)
−,1
z

,

L̃+(z) = j
(0)
+,2 + z j

(1)
+,2 , L̃−(z) = j

(0)
−,1 .

The existence of a Lax connection for this model is consistent with the results of [5], where
its integrability was first established.10

10The integrability of a class of models that includes (3.26) was also studied in [31].
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4 Integrable σ-models on T 1,1 manifolds

4.1 The models

Action. Let us consider the model with two copies described in the previous section for
the choice G = SU(2), with Lie algebra g = su(2) generated by Ia = iσa/2, where σa
is the a-th Pauli matrix. We take σ to be the Z2-automorphism of su(2) defined by the
following action on the generators: σ(I1) = −I1, σ(I2) = −I2 and σ(I3) = I3, so that
g(0) = u(1) = span{I3} and correspondingly G(0) = U(1) = exp(RI3). Let us finally pick
the following parametrisation for the fields (g1, g2) ∈ SU(2)× SU(2) of the model:

g1 = exp (φ1I3) exp (θ1I2) exp (ψI3) , (4.1a)
g2 = exp (−φ2I3) exp (−θ2I2) exp (−ψ̃I3) . (4.1b)

Inserting this parametrisation in the action (3.21), one finds:

S = 1
4

∫∫
dx dt

((
λ2 +λ2

1 +
(
λ2−λ2

1
)

cos(2θ1)
)
∂−φ1∂+φ1

+2λ2
1 ∂−θ1∂+θ1 +2λ2 ∂−ψ∂+ψ+4λ2 cos θ1 ∂−φ1∂+ψ

+
(
λ2 +λ2

2 +
(
λ2−λ2

2
)

cos(2θ2)
)
∂−φ2∂+φ2 +2λ2

2 ∂−θ2∂+θ2 +2λ2 ∂−ψ̃∂+ψ̃

+4λ2 cos θ2 ∂−ψ̃∂+φ2 +4λ2(cos θ1 ∂−φ1 +∂−ψ
)(

cos θ2 ∂+φ2 +∂+ψ̃
))
. (4.2)

Gauge fixing and background. Recall that the model we are considering is invariant
under the gauge transformation gr 7→ grh, h ∈ U(1). In the parametrisation (4.1) used
above, this gauge symmetry simply becomes the translation (ψ, ψ̃) 7→ (ψ + η, ψ̃ − η) with
local parameter η ∈ R. We now use this freedom to set ψ̃ = 0. Having fixed the gauge, we
can then rewrite the action (4.2) as a σ-model on the coset SU(2)×SU(2)/U(1), with coor-
dinate fields y = (θ1, θ2, φ1, φ2, ψ). This defines the background metric Gij and background
B-field Bij , in terms of which the action reads

S = 1
2

∫∫
dx dt

(
Gij +Bij

)
∂−y

i∂+y
j . (4.3)

Setting ψ̃ = 0 in (4.2), we read for the metric:

ds2 =Gijdyidyj

=λ2
1(dθ2

1 + sin2 θ1 dφ2
1) + λ2

2(dθ2
2 + sin2 θ2 dφ2

2) + λ2(dψ + cos θ1 dφ1 + cos θ2 dφ2)2 ,

(4.4)

while the B-field is given by

B = 1
2Bij dy

i ∧ dyj = λ2(dψ + cos θ1 dφ1) ∧ (dψ + cos θ2 dφ2) . (4.5)

We recognise (4.4) as the metric of the so-called T 1,1 manifolds [32–34]. More precisely, it
defines a family of metrics, which depend on the three parameters λ1, λ2 and λ. Let us note
that certain members of this family possess additional interesting geometrical properties.
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For instance, the choice λ2
1 = λ2

2 = 3λ2/2 yields an Einstein metric, which is of importance
in the gauge-string correspondence, see e.g. [35]. As explained for a general group G in the
paragraph 3.4, the case λ1 = λ2 = λ yields the conformal model of [4], which for the group
SU(2) considered here has been studied in [6], where it has been used to construct a pure
NS-NS supergravity solution.11

By construction, the model considered in this subsection is integrable for any metric in
this family, i.e. for all values of the parameters λ1, λ2 and λ. However, let us stress that this
integrability also requires the presence of a B-field in the model, namely the B-field (4.5)
whose global prefactor λ2 is then fixed by the choice of the metric (for other choices of this
prefactor, the model is non-integrable, see subsections 4.2 and 4.3).

Lax connection. As proven in subsection 3.4, the model under consideration possesses
two independent Lax connections L± and L̃±, which characterise its integrability. Let us
discuss their explicit expressions in terms of the coordinate fields (θ1, θ2, φ1, φ2, ψ). As it
turns out, instead of L±(z), it will be simpler to describe its gauge transformation L̂±(z) =
h−1L±(z)h + h−1∂±h with h = exp(−ψI3). Let us then write these Lax connections in
terms of their components in the decompositions L̂± = L̂a±Ia and L̃± = L̃a±Ia along the
basis Ia = iσa/2 of su(2). From (3.22), using the parametrisation (4.1), we get for L̂±:

L̂ 1
+ =

(
λ2 − λ2

1
)
z

λ2z2 − λ2
1

sin θ1 ∂+φ1 , L̂ 2
+ =

(
λ2 − λ2

1
)
z

λ2z2 − λ2
1
∂+θ1 ,

L̂ 3
+ = 1

λ2z2 − λ2
1

((
λ2 − λ2

1
)

cos θ1 ∂+φ1 − λ2(z2 − 1)(cos θ2 ∂+φ2 + ∂+ψ)
)
,

together with

L̂ 1
− = sin θ1 ∂−φ1

z
, L̂ 2

− = ∂−θ1
z

, L̂ 3
− = cos θ1 ∂−φ1 .

Similarly, for L̃± we get from (3.23):

L̃ 1
+ = z sin θ2 ∂+φ2 , L̃ 2

+ = −z ∂+θ2 , L̃ 3
+ = − cos θ2 ∂+φ2 ,

as well as

L̃ 1
− = −

(
λ2 − λ2

2
)
z

λ2
2z

2 − λ2 sin θ2 ∂−φ2 , L̃ 2
− =

(
λ2 − λ2

2
)
z

λ2
2z

2 − λ2 ∂−θ2 ,

L̃ 3
− = 1

λ2
2z

2 − λ2
((
λ2 − λ2

2
)
z2 cos θ2 ∂−φ2 + λ2(z2 − 1)(cos θ1 ∂−φ1 + ∂−ψ)

)
.

4.2 Modification of the background, isometries and equations of motion

Isometries-preserving modification of the model. Let us now consider a modifica-
tion of the model described in the previous subsection (this will allow us to pinpoint the
requirements for the integrability of the model and to make connections with other works

11A parafermionic integrable deformation of this conformal σ-model on T 1,1 has been considered in [36],
by specifying to SU(2) a class of models studied in [31]. It would be interesting to investigate whether this
model can be obtained from a construction similar to the one presented in this article.
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in the next subsection). More precisely, let us take again an action of the form (4.3), with
y = (θ1, θ2, φ1, φ2, ψ) and metric given by (4.4), but with the following B-field (k ∈ R):

B = k (dψ + cos θ1 dφ1) ∧ (dψ + cos θ2 dφ2) , (4.6)

obtained from (4.5) by substituting the overall multiplication parameter λ2 with k. For
arbitrary values of k, this modification will break the integrability of the theory, while re-
taining the same isometries as the original model. In particular, as one can see from equa-
tions (4.4), (4.5) and (4.6), the coordinates φ1, φ2 and ψ do not appear in the coefficients
of the metric and the B-field of both the original and the modified model and therefore
the shifts φ1 → φ1 + ε1, φ2 → φ2 + ε2 and ψ → ψ + ε are isometries of both backgrounds.

For the original model, this is to be expected from the general results of section 3.
Indeed, as explained in subsection 3.2, the model is invariant under the left translations
g1 7→ f1g1 and g2 7→ f2g2, for f1, f2 ∈ SU(2). In the parametrisation (4.1), the corre-
sponding actions of the Cartan subgroup exp(RI3) of SU(2) simply become shifts of the
coordinates φ1 and φ2. Similarly, the shift of ψ corresponds to the symmetry discussed
in subsection 3.4. Consistently, φ1, φ2 and ψ appear in the action (4.2) only through
their derivatives.

One can calculate the Noether currents associated with these isometries for both models
starting from the modified one. Following the conventions of appendix C, we define the
components of these currents as

Πµ
φ1

= ∂L
∂(∂µφ1) , Πµ

φ2
= ∂L
∂(∂µφ2) and Πµ

ψ = ∂L
∂(∂µψ) , (4.7)

where µ are 2-dimensional space-time indices and L is the Lagrangian density of the ac-
tion (4.3). In light-cone indices, one finds, using (4.4) and (4.6):

2Π±φ1
=
(
λ2

1 − (λ2
1 − λ2) cos2 θ1

)
∂∓φ1 + (λ2 ∓ k) cos θ1

(
cos θ2 ∂∓φ2 + ∂∓ψ

)
, (4.8a)

2Π±φ2
=
(
λ2

2 − (λ2
2 − λ2) cos2 θ2

)
∂∓φ2 + (λ2 ± k) cos θ2

(
cos θ1 ∂∓φ1 + ∂∓ψ

)
, (4.8b)

2Π±ψ = (λ2 ± k) cos θ1 ∂∓φ1 + (λ2 ∓ k) cos θ2 ∂∓φ2 + λ2∂∓ψ . (4.8c)

These Noether currents satisfy the conservation equations:

∂µΠµ
i = ∂+Π+

i + ∂−Π−i = 0 , for i = φ1, φ2, ψ . (4.9)

Equations of motion. Let us describe the equations of motion for the modified model.
From the action (4.3), one obtains the following standard form:

∂−∂+y
i + Γ̂ijk ∂−yj∂+y

k = 0 ,

where Γ̂ijk are the components of the Christoffel symbol for the metric Gij modified by the
torsion Tijk of the B-field Bij , i.e.

Γ̂ijk = Γijk − T ijk = 1
2G

im(∂jGmk + ∂kGjm − ∂mGjk
)
− 1

2G
im(∂jBmk + ∂kBjm + ∂mBkj

)
.
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From (4.4) and (4.6), we then find the following equations of motion for θ1 and θ2:

∂−∂+θ1
sin θ1

= ∂−φ1

((
1− λ2

λ2
1

)
cos θ1 ∂+φ1 −

k + λ2

2λ2
1

(
cos θ2 ∂+φ2 + ∂+ψ

))

+ k − λ2

2λ2
1

(
cos θ2 ∂−φ2 + ∂−ψ

)
∂+φ1 , (4.10a)

∂−∂+θ2
sin θ2

= ∂−φ2

((
1− λ2

λ2
2

)
cos θ2 ∂+φ2 + k − λ2

2λ2
2

(
cos θ1 ∂+φ1 + ∂+ψ

))

− k + λ2

2λ2
2

(
cos θ1 ∂−φ1 + ∂−ψ

)
∂+φ2 . (4.10b)

For simplicity and as we will not need them, we have omitted the equations for the isometric
coordinates φ1, φ2 and ψ. However, one checks that they can be expressed as particular
combinations of the conservation equations (4.9) for the currents (4.8).

4.3 Spinning string solutions

In this subsection, we describe a certain class of solutions of the equations of motion of the
model with modified B-field (4.6), obtained by a spinning string ansatz [37, 38]. Note that
spinning strings in T 1,1 manifolds (or closely related wrapped strings) have already been
studied in [9–13] in specific cases. In particular, the non-integrability of these solutions
have been discussed in [11–13]: we will compare our results with the ones of [11–13] at the
end of this subsection.

Spinning string ansatz. We follow the procedure described in appendix C, where we
discuss the spinning string ansatz for a general σ-model with B-field. Since the model we
are considering possesses three commuting isometries, in the coordinates φ1, φ2 and ψ, one
can then search for spinning string solutions of the form:

θi = θi(x) , φi = ωit+ φ̃i(x) , ψ = ψ(x) , (4.11)

with i ∈ {1, 2} and ω1 and ω2 constant parameters (more generally, one could also add a
term ωt in the expression of ψ as it is also an isometric coordinate: for simplicity, we will
not consider this more general case here). The functions φ̃1(x), φ̃2(x) and ψ(x) are the
equivalent of the functions χj(x) in appendix C.2. As explained in this appendix, these
functions are necessary to ensure the consistency of the ansatz. As we shall now see, they
(or more precisely their derivatives) can be determined explicitly, which in the end will
allow us to obtain ordinary differential equations governing the functions θ1(x) and θ2(x).

Equations of motion for the isometric coordinates. As explained in appendix C.2,
in the spinning string ansatz (4.11), the spatial and temporal components of the Noether
currents (4.8) do not depend on time, and therefore their conservation equations simply
become

∂xΠx
φ1 = ∂xΠx

φ2 = ∂xΠx
ψ = 0 ,

where Πx
i = Π+

i − Π−i . The above equations have solutions Πx
φ1

= Πx
φ2

= Πx
ψ = 0 if

we choose the integration constant to be zero for simplicity. Using this, the derivatives
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of the functions φ̃1(x), φ̃2(x) and ψ(x), which we denote with a dot as in appendix C,
can be solved for in terms of the functions θ1(x) and θ2(x). More precisely, applying the
equation (C.7) in the present case, we get

˙̃
φ1 = − k

λ2
1
ω1 cot2 θ1 ,

˙̃
φ2 = + k

λ2
2
ω2 cot2 θ2 , (4.12a)

ψ̇ = + k

λ2 ω1 cos θ1

(
1 + λ2

λ2
1

cot2 θ1

)
− k

λ2 ω2 cos θ2

(
1 + λ2

λ2
2

cot2 θ2

)
. (4.12b)

Equations of motion for the non-isometric coordinates and integrability. In-
serting the spinning string ansatz (4.11) and the expressions (4.12) in the equations of
motion (4.10a) and (4.10b) for the non-isometric coordinates, we get the following:

θ̈1 = ω1 sin θ1

(
ω1

((
λ2

λ2
1
− 1

)
+ k2

λ2λ2
1

((
1− λ2

λ2
1

)
+ λ2

λ2
1 sin4 θ1

))
cos θ1 − ω2

k2 − λ4

λ2λ2
1

cos θ2

)
,

(4.13a)

θ̈2 = ω2 sin θ2

(
ω2

((
λ2

λ2
2
− 1

)
+ k2

λ2λ2
2

((
1− λ2

λ2
2

)
+ λ2

λ2
2 sin4 θ2

))
cos θ2 − ω1

k2 − λ4

λ2λ2
2

cos θ1

)
.

(4.13b)

As justified for a general σ-model in appendix C.2, these are ordinary differential equations
which involve only the functions θ1(x) and θ2(x) corresponding to the non-isometric direc-
tions of the background. For generic values of the parameters, these equations are coupled
and we expect them to be non-integrable. This is consistent with the analysis carried out
in [11, 12], where the authors consider wrapped strings solutions in the case k = 0 (i.e. no
B-field) and rule out integrability by proving that their motion is chaotic [11] or by using
the theory of non-analytic integrability [12].12 Yet, the general results of appendix C.3
show that starting from an integrable σ-model, for which the equations of motion can be
recast as a zero curvature equation, and applying the spinning string ansatz to the lat-
ter, one will find (under certain assumptions) a Lax equation for the mechanical system
describing the dynamical variables of the spinning string ansatz. In our case, we thus ex-
pect the equations (4.13) to be integrable if the σ-model we start with is integrable. As
explained in the previous subsections, this requires the addition of a B-field with the right
coefficient, namely k = λ2. This has the effect of cancelling the coupling terms in (4.13),
hence leaving us with equations of motion of two decoupled 1d systems, which are then
trivially integrable.

12More precisely, the works [11, 12] deal with a string model on T 1,1 × AdS5, described by a Polyakov
action. In this case, the equations of motion of the fields are supplemented with the Virasoro constraints
coming from the worldsheet diffeomorphism invariance. The wrapped strings solutions considered in [11, 12]
contain non-trivial dynamical degrees of freedom only in the T 1,1 part of the target space and more precisely
in the coordinates θ1 and θ2. The equations obeyed by these coordinates are then the same as the ones
obtained here for the σ-model on T 1,1 alone, i.e. equations (4.13) with k = 0. Similar spinning strings
solutions have also been studied in [9]. Moreover, the analysis of [11, 12] was extended in [13] to the more
general class of La,b,c manifolds, which includes T 1,1.
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5 Conclusions

In this work we have applied the general framework of affine Gaudin models to construct
a new class of integrable coset σ-models. These are models on the product of N copies of
a Lie group G modulo the action of a diagonal G(0)

diag gauge symmetry. For N = 2 we have
obtained the corresponding Lagrangian and recast it in terms of the R-matrix suggesting a
generalisation for the case of arbitrary N and T . In the limiting case of a three-parameter
family we observed a connection to some conformal field theories defined on homogeneous
spaces. Finally, for G = SU(2) we have obtained new integrable sigma models on T 1,1

manifolds and discuss their spinning string solutions.
There is a number of interesting questions which deserve further study. First of all, it

would be desirable to prove that generic (N,T )-models have the Lagrangian that fit our
conjectural form (3.15) given in terms of the classical R-matrix. We checked the validity
of this conjecture up to (N = 3, T = 3), and also for N = 1 and T arbitrary [27], but
further evidence is welcome. Also, it would be nice to find an independent field-theoretic
derivation of (3.15) which bypass doing the Legendre transform.

It would be also interesting to quantise the integrable models constructed here and
study the corresponding renormalisation group flow. For instance, for the case of the
integrable sigma model on T 1,1, it would be worth checking if the renormalisation flow
preserves the form of the metric and the B-field allowing only the parameters λ1, λ2 and λ
to flow, in particular to reach the fixed point corresponding to the conformal field theory
of Guadagnini, Martellini and Mintchev.

Since our approach is applicable for both compact and non-compact groups, one can try
to construct in a similar fashion an integrable sigma model on Lorentzian spaces W4,2 =
SL(2,R) × SL(2,R)/U(1), that can be viewed as non-compact analogues of T 1,1. The
combined sigma model on the 10-d homogeneous space W4,2 × T 1,1 should then have a
special conformal point in the parameter space which would correspond to a critical NS-
NS superstring background [6]. Deviations from this point would be then regarded as
integrable deformations of the corresponding conformal field theory.

Finally, it would be very interesting to generalise the present approach to construct
integrable coset sigma models based on supergroups. For N = 2 one obvious candidate to
take for G is the supergroup PSU(1, 1|2), that has SL(2,R)×SU(2) as its bosonic subgroup.
One might speculate that the corresponding integrable sigma model could have a special
point in the parameter space corresponding to a critical string background, this time with
both NS-NS and R-R fluxes.
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A Coefficients in the form (3.1) of the Hamiltonian

In this appendix, we give explicit expressions for the coefficients a(k)
rs and b(k)

rs , where r, s =
1, 2 and k = 0, 1, appearing in equation (3.1). For the coefficients b(k)

rs , we have:

b(0)
rs = c

(0)
r̄s̄

2K
(
2z4
r̄ + ζ2

+
(
z2
r − 3z2

r̄

)
+ ζ2
−
(
2ζ2

+ − z2
1 − z2

2
))(

z2
s̄ − z2

s

)3 ,

b(1)
rs = c

(1)
rs̄

2K
(
z2

1z
2
2
(
z2

1 + z2
2
)
− ζ2

+
(
z4

1 + z4
2
)

+ ζ2
−
(
ζ2

+
(
z2

1 + z2
2
)
− 2z2

1z
2
2
))

z1z2
(
z2
s̄ − z2

s

)3 ,

where we introduced the notation r̄ = 3− r for r = 1, 2 and where the coefficients c(k)
rs are

defined in (3.2). For the coefficients a(k)
rs , we have:

a(0)
rs = b

(0)
r̄s̄

K
(
2z4
s + ζ2

+
(
z2
s̄ − 3z2

s

)
+ ζ2
−
(
2ζ2

+ − z2
1 − z2

2
))

2
(
z2
r − z2

r̄

)3 ,

a(1)
rs = (−1)r+sc(1)

r̄s̄

z2
1z

2
2
(
z2

1 − z2
2
)6K2

(
z2

1z
2
2

(
2ζ2

+ − z2
1 − z2

2

) (
2ζ2

+

(
z4

1 − z2
2z

2
1 + z4

2

)
− z2

1z
2
2

(
z2

1 + z2
2

))
− ζ2
−

(
2ζ2

+ − z2
1 − z2

2

) (
ζ2

+

(
z2

1 + z2
2

) (
z4

1 + z4
2

)
− 4z4

1z
4
2

)
+ ζ4
−

(
ζ2

+
(
z2

1 + z2
2
)
− 2z2

1z
2
2

)2)
.

B Reformulation of the action

In this appendix, we give an expression of the coefficients ρ(k)
rs and kr defined in (3.7), with

k1 = k and k2 = −k, in terms of residues of well-chosen functions. This will allow us to
reformulate the action (3.6) in a compact way.

We start with the definition (3.13) of the functions ϕ±(z), which we restate here for
the reader’s convenience:

ϕ+(z) = z2 − ζ2
+

(z2 − z2
1)(z2 − z2

2) and ϕ−(z) = z(z2 − ζ2
−)

(z2 − z2
1)(z2 − z2

2) .

We recall that in section 3, we have made the choice z1 = 1 and z2 = x for the parameters
z1 and z2. Note that in terms of the functions ϕ±(z), the twist function (2.21) of the model
takes the factorised form

ϕ(z) = 2Kϕ+(z)ϕ−(z) . (B.1)

Let us also define the functions

α0(z, w) = z

z2 − w2 and α1(z, w) = w

z2 − w2 .

Using the expression (3.7) of the coefficients ρ(k)
rs and kr, one checks that they satisfy

ρ(k)
rs −

δrs
2 kr = −4K res

w=zs
res
z=zr

αk(z, w)ϕ+(z)ϕ−(w) . (B.2)
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Note that the order in which we take the residues in the above equation is important.
Indeed, for the opposite order, we have

ρ(k)
rs + δrs

2 kr = −4K res
z=zr

res
w=zs

αk(z, w)ϕ+(z)ϕ−(w) .

Let us relate these expressions to theR-matrix (2.16). The latter can be re-expressed in
terms of the projections C(kk)

12 of the Casimirs on the gradations g(k) (see paragraph 2.1) as

R0
12(z, w) =

1∑
k=0

αk(w, z)C(kk)
12 .

This shows that for any elements X,Y in the Lie algebra g, we have

κ12
(
R0

12(w, z), X1Y2
)

=
1∑

k=0
αk(z, w)κ

(
X(k), Y (k)) .

Using this result, and reinserting the equation (B.2) in the action (3.6), we can rewrite the
latter as

S =
2∑
r=1

SWZW,kr [gr]

− 4K
∫∫

dx dt
2∑

r,s=1
res
z=zr

res
w=zs

κ12
(
R0

12(w, z)ϕ+(z)ϕ−(w), j+,r1 j−,s2
)
,

which is the equation (3.11) announced in the main text. Note also that, using the prop-
erty (3.19) of the Lax connection L±(z), this expression can be further rewritten as

S =
2∑
r=1

SWZW,kr [gr]

− 4K
∫∫

dx dt
2∑

r,s=1
res
z=zr

res
w=zs

κ12
(
R0

12(w, z)ϕ+(z)ϕ−(w),L+(z)1 L−(w)2
)
.

C Spinning string ansatz for a σ-model with B-field

C.1 Generalities

σ-models with B-field. Let us consider a σ-model with coordinate fields
y1(x, t), · · · , yN (x, t), metric Gij = Gji and B-field Bij = −Bji, whose action is then

S[y1, · · · , yN ] = 1
2

∫∫
dx dt (Gij +Bij)∂−yi ∂+y

j . (C.1)

We denote by L = 1
2(Gij + Bij)∂−yi ∂+y

j the corresponding Lagrangian density. Let us
define:

Πµ
i = ∂L

∂(∂µyi)
,
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so that
Π±i = 1

2(Gij ∓Bij)∂∓y j .

In space-time coordinates (t, x), this becomes

Πt
i = Π+

i + Π−i = Gij ∂ty
j +Bij ∂xy

j , (C.2a)
Πx
i = Π+

i −Π−i = −Gij ∂xy j −Bij ∂ty j . (C.2b)

The Euler-Lagrange equations of the action (C.1) can then be written as

∂µΠµ
i = ∂L

∂yi
, (C.3)

for all i ∈ {1, · · · , N}.

Isometries. Let us now suppose that the σ-model possesses an isometry along the coor-
dinate yi, i.e. that the metric Gij and B-field Bij do not depend explicitly on yi. In this
case, the derivative of L with respect to yi vanishes and the equation of motion (C.3) of yi
becomes the conservation equation

∂µΠµ
i = ∂tΠt

i + ∂xΠx
i = 0 . (C.4)

In particular, the quantities Πt
i and Πx

i are identified as the components of the Noether
current associated with the global symmetry yi 7→ yi + ε of the model and the Noether
charge ∫

dx Πt
i

is conserved under time evolution.

C.2 Spinning string ansatz

The ansatz. Let us consider the above σ-model with coordinates y1, · · · , yN and M

an integer number smaller than N . We will suppose that the model possesses N − M

commuting isometries along its coordinates yM+1, · · · , yN . Our goal in this subsection
will be to search for particular classical solutions of the equations of motion (C.3) of this
σ-model, by introducing the following ansatz for the fields y1, · · · , yN :

yi = yi(x), for 1 ≤ i ≤M ,

yi = ωi t+ χi(x), for M + 1 ≤ i ≤ N ,
(C.5)

where ωi, i ∈ {M + 1, · · · , N}, are constant numbers and
y1(x), · · · , yM (x), χM+1(x), · · · , χN (x) are functions of the worldsheet space coordi-
nate x only. As we shall see, the t-dependence of this ansatz will completely drop out of
the equations of motion, yielding a coherent set of equations on the functions yi(x) and
χi(x), in the coordinate x.

The usual spinning string ansatz, see e.g. [37, 38], corresponds to the case where the
functions χM+1(x), · · · , χN (x) vanish. As we will see, because of the presence of the B-
field Bij , these functions will be necessary to obtain a coherent ansatz. Moreover, we will

– 41 –



J
H
E
P
0
3
(
2
0
2
1
)
0
6
2

also show that the equations of motion of these functions χi(x) can be explicitly solved in
terms of the remaining functions y1(x), · · · , yM (x), yielding in the end a coherent set of
coupled ordinary differential equations on the latter (under a certain assumption on the
metric). Such a generalisation of the spinning string ansatz was considered in [39].

As a general remark, let us start by recalling that the equations of motion (C.3) are
expressed in terms of the quantities Πµ

i defined in the previous subsection. Inserting the
ansatz (C.5) in the expression (C.2) of Πt

i and Πx
i , we get

Πt
i = +

M∑
j=1

Bij ẏ
j(x) +

N∑
j=M+1

(
Gij ωj +Bij χ̇

j(x)
)
, (C.6a)

Πx
i = −

M∑
j=1

Gij ẏ
j(x)−

N∑
j=M+1

(
Bij ωj +Gij χ̇

j(x)
)
, (C.6b)

where the dot denotes the derivative with respect to x.
Let us recall that the only dependences of the spinning string ansatz (C.5) on the world-

sheet time coordinate t are in the coordinates yM+1, · · · , yN , corresponding to isometries
of the model. Because of these isometries, the metric Gij and B-field Bij do not depend
explicitly on the coordinates yM+1, · · · , yN , and thus on the time t under the ansatz (C.5).
In particular, this shows that the quantities Πt

i and Πx
i obtained in equation (C.6) do not

depend on t.

Equations of motion for the isometric coordinates yM+1, · · ·, yN . Let us first fo-
cus on the coordinates yM+1, · · · , yN . Since they correspond to the isometries of the model,
their equations of motion take the form of conservation equations (see equation (C.4))
∂tΠt

i+∂xΠx
i = 0, for all i ∈ {M +1, · · · , N}. Then, as Πt

i does not depend on t in the spin-
ning string ansatz (see previous paragraph), these conservation equations simply become
∂xΠx

i = 0. These are trivially solved by

Πx
i = Ci , for all i ∈ {M + 1, · · · , N} ,

where CM+1, · · · , CN are integration constants. From the expression (C.6b) of Πx
i , the

above equation can be rewritten as

N∑
j=M+1

Gij χ̇
j(x) = −

N∑
j=M+1

Bij ωj −
M∑
j=1

Gij ẏ
j(x)− Ci ,

for all i ∈ {M + 1, · · · , N}. To be able to proceed further, and in the rest of this appendix,
we shall make the following assumption:

Assumption: we suppose that the (N − M) × (N − M) matrix
(Gij)M+1≤i,j≤N is invertible.

We will then denote by (H ij)M+1≤i,j≤N its inverse. Let us briefly comment on this. In
other words, this assumption means that we suppose the restriction of the metric to the
isometric directions to be invertible. Although the full metric (Gij)1≤i,j≤N is of course
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an invertible matrix, it is possible for its submatrix (Gij)M+1≤i,j≤N to be non-invertible.
However, in the examples considered in this article, this assumption will be satisfied. Using
the inverse matrix H, we then solve the above equation for χ̇i(x):

χ̇i(x) = −
N∑

j=M+1
H ij

 N∑
k=M+1

Bjk ωk +
M∑
k=1

Gjk ẏ
k(x) + Cj

 , for all i ∈ {M + 1, · · · , N} .

(C.7)
In particular, this gives the solution of the equations of motion of yM+1, · · · , yN in terms of
explicit integrals (indeed, the right hand-side of equation (C.7) and in particular the matrix
H ij do not depend on the χj(x)’s, as the corresponding coordinates y j are isometries of
the model).

Let us briefly comment on the relation of the present results with the usual spinning
string ansatz for a model without B-field. As explained in the previous paragraph, this
usual ansatz corresponds to taking χi(x) = 0 for i ∈ {M + 1, · · · , N}. In this case, one
has to make another assumption on the metric for the ansatz to be consistent, which is to
suppose that its components Gij vanish for i ∈ {M + 1, · · · , N} and j ∈ {1, · · · ,M}, i.e.
that there are no metric terms mixing the isometric coordinates yM+1, · · · , yN with the
non-isometric coordinates y1, · · · , yM . Under this assumption and supposing that there is
no B-field (or at least no B-field mixing together the isometric coordinates yM+1, · · · , yN ),
the quantities Πx

i , for i ∈ {M + 1, · · · , N}, vanish (see equation (C.6b)). The equations
of motion ∂xΠx

i = 0 are then trivially satisfied, ensuring the consistency of the usual
spinning string ansatz. It is clear that the presence of a B-field in the isometric directions
yM+1, · · · , yN introduces non-vanishing terms in the expression (C.6b) of Πx

i : in this case,
the consistency of the equations of motion ∂xΠx

i = 0 then requires choosing non-zero
χj(x)’s, which is why we introduced these functions in the more general ansatz (C.5).

Let us finally note that in the notation of this paragraph, the usual spinning ansatz
corresponds to taking the integration constants Ci to be zero, as it gives Πx

i = 0. It is also
possible to choose these constants to be non-zero and thus introduce new parameters in
the final spinning string equations of motion. However, the consistency of the ansatz then
requires to also introduce non-zero functions χj(x), even in the absence of a B-field.

Equations of motion for the non-isometric coordinates y1, · · ·, yM . Let us now
study the equations of motion of the coordinates y1, · · · , yM . For that, we will use the
following standard form of the field equations of a σ-model:

∂−∂+y
i + Γ̂ijk ∂−y j ∂+y

k = 0 , (C.8)

where Γ̂ijk are the Christoffel symbols of the metric Gij modified by the torsion of the
B-field Bij :

Γ̂ijk = Γijk − T ijk

= 1
2G

im
(
∂jGmk + ∂kGjm − ∂mGjk

)
− 1

2G
im
(
∂jBmk + ∂kBjm + ∂mBkj

)
.
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Considering i ∈ {1, · · · ,M} and inserting the ansatz (C.5) in the equation of motion (C.8),
we get:

ÿ i(x) +
M∑
j=1

M∑
k=1

Γ̂ijk ẏ j(x) ẏ k(x) +
N∑

j=M+1

N∑
k=M+1

Γ̂ijk (χ̇ j(x)− ωj) (χ̇ k(x) + ωk)

+
M∑
j=1

N∑
k=M+1

Γ̂ijk ẏ j(x) (χ̇ k(x) + ωk) +
N∑

j=M+1

M∑
k=1

Γ̂ijk (χ̇ j(x)− ωj) ẏ k(x) = 0 .

(C.9)

The quantities Γ̂ijk are defined in terms of the metric Gij and B-field Bij . As the latter
do not depend explicitly on the isometric coordinates yM+1, · · · , yN , so does Γ̂ijk. In
particular, under the ansatz (C.5), the quantities Γ̂ijk do not depend on the time coordinate
t. The equation (C.9) is thus a differential equation only in the variable x. Moreover, let us
note that the functions χ̇ j(x) appearing in this equation are expressed explicitly in terms
of y1(x), · · · , yM (x) and their derivatives through equation (C.7). Finally, reinserting this
expression in the above equation, one gets Ordinary Differential Equations (ODEs) of
the form

ÿ i(x) + F i
(
y j(x), ẏ j(x)

)
= 0 , ∀ i ∈ {1, · · · ,M} , (C.10)

for some explicit functions F i
(
y j , ẏ j

)
. We thus get a coherent one-dimensional dynamical

system on y1(x), · · · , yM (x).
Let us make a brief comment on the method. We used equation (C.7) to eliminate

the functions χj(x) of the system. Equation (C.7) only allows to express χj(x) as integrals
over x, which are thus “non-local” quantities in terms of the functions y1(x), · · · , yM (x).
However, it is important to notice that in the above analysis, the functions χj(x) appeared
in the system only through their derivatives χ̇j(x) (because yM+1, · · · , yN are isometric
coordinates), which ensures that this replacement does not introduce any non-local terms
in y1(x), · · · , yM (x). Thus, in the end, one really obtains an ODE of the form (C.10), and
not a non-local integro-differential equation.

C.3 Integrability

If the σ-model we start from is integrable, a natural question is whether the induced 1d
dynamical system (C.10) obtained from the spinning string ansatz is itself integrable. We
investigate this question in this subsection. The integrability of the σ-model relies on the
zero curvature equation

∂xM(z)− ∂tL(z) +
[
L(z),M(z)

]
= 0 , (C.11)

of a Lax connection
(
M(z),L(z)

)
, depending on the spectral parameter z ∈ C. In this

subsection, we will make the following assumption on the Lax connection:

Assumption: the Lax connection
(
M(z),L(z)

)
depends on the isometric coordi-

nates yM+1, · · · , yN only through their derivatives ∂k−∂l+yi (k + l > 0).
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Let us comment briefly on this assumption. The zero curvature equation (C.11) on(
M(z),L(z)

)
should be equivalent to the equations of motion of the σ-model (C.1). The co-

ordinates yM+1, · · · , yN only enter these equations of motion through their derivatives ∂−yi,
∂+y

i and ∂−∂+y
i, as they correspond to isometries of the model. Thus, the zero curvature

equation (C.11) involves only these derivatives. It is thus rather natural to expect that the
Lax connection

(
M(z),L(z)

)
itself also only depends on these derivatives. A subtlety in this

reasoning is that the zero curvature equation (C.11) is invariant under gauge transforma-
tionsM(z) 7→ h(z)−1M(z)h(z)+h(z)−1∂th(z) and L(z) 7→ h(z)−1L(z)h(z)+h(z)−1∂xh(z).
In general, it is thus natural to expect that the Lax connection depends solely on the deriva-
tives ∂+y

i, ∂−yi and ∂+∂−y
i only up to gauge transformations. If this is the case, one would

then have to perform a gauge transformation to get to a Lax connection satisfying the above
assumption.

We will now suppose that this assumption is verified and study the behaviour of the
Lax connection under the spinning string ansatz (C.5). For i ∈ {M + 1, · · · , N}, the
derivatives ∂k−∂l+yi take the form

∂k−∂
l
+y

i = (δk0δl1 + δk1δl0)ωi + (−1)k dk+l

dxk+lχ
i(x) .

In particular, they do not depend on the worldsheet time coordinate t. As the non-isometric
coordinates y1, · · · , yM do not depend on t in the ansatz (C.5), we thus conclude that the
Lax connection

(
M(z),L(z)

)
does not depend on t. In particular, the zero curvature

equation (C.11) then takes the form of the Lax equation of a mechanical system:

d
dxM(z) =

[
M(z),L(z)

]
. (C.12)

This is not yet a Lax representation of the dynamical system (C.10). Indeed, the matrices
M(z) and L(z) still depend on the functions χi(x) and not only on the functions yi(x).
However, because of the main assumption made in this subsection, they depend on these
functions χi(x) only through their derivatives dk

dxkχ
i(x) (k > 0, see above). These deriva-

tives can be expressed in terms of the functions yi(x) through equation (C.7). In then
end, we then obtain an expression of the Lax pair (M(z),L(z)) in terms of the functions
y1(x), · · · , yM (x) and their derivatives.

This is a good indication of the integrability of the spinning string system. Let us
note however that in general, this does not ensure that the Lax representation (C.12)
produces a sufficient number of conserved quantities, nor that these conserved quantities
are in involution one with another (even if the field theory Lax connection one starts with
satisfies a Maillet bracket). It seems difficult to address these questions in full generality.
They would thus require a case by case analysis.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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