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1 Introduction and summary

The BPS boundary conditions in supersymmetric field theories have been studied in dif-
ferent dimensions and with various amounts of supersymmetry, e.g. 4d N = 4 super Yang-
Mills (SYM) theories [1–5], 4d N = 2 supersymmetric gauge theories [6], 3d N = 2
supersymmetric field theories [7–13], 3d N = 4 supersymmetric gauge theories [14–18],
3d N ≥ 4 Chern-Simons matter theories [19–21] and 5d N = 1 supersymmetric gauge
theories [22]. An alternative, classically equivalent, approach is to couple to a boundary
action in such a way that supersymmetry is preserved without boundary conditions, allow-
ing off-shell supersymmetry [23]. This approach has been applied in the context of ABJM
and supersymmetric Chern-Simons theories [24–26].

In particular supersymmetric boundary conditions in 2d N = (2, 2) supersymmetric
field theories which describe D-branes [27–31] have attracted much attention in both physics
and mathematics. For example, they can provide a physical setup to address the homolog-
ical mirror symmetry conjecture [32] and gauge theoretic definition of knot homology [33,
34]. The 2d N = (2, 2) supersymmetric field theory admits two types of half-BPS bound-
ary conditions, that is the A-type and B-type boundary conditions [35] which preserve 1d
N = 2A and N = 2B supersymmetries respectively. The D-brane of type B in a Calabi-Yau
manifold X is argued to be equivalent to the bounded derived category of coherent sheaves
on X [36–41] while that of type A is closely related to the Fukaya category [42, 43].

The detailed analysis of B-type boundary conditions for Abelian gauge theories were
presented in [44] and the basic B-type boundary conditions associated to the Neumann
boundary conditions on the gauge field for non-Abelian gauge theories were studied in [45,
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46]. On the other hand, to our knowledge, A-type boundary conditions for gauge theories
have been much less studied in the literature.

In this paper we examine more general A-type and B-type boundary conditions as well
as quarter-BPS boundary conditions in N = (2, 2) supersymmetric non-Abelian gauge the-
ories for which the gauge field may not satisfy the Neumann boundary condition. Although
the problem of describing all half-BPS boundary conditions is enormously involved and our
understanding of the boundary conditions for the non-Abelian gauge theories is far from
complete, we find new types of BPS boundary conditions which admit singular solutions.
Singular boundary conditions were found in higher dimensional BPS boundary conditions;
e.g. the half-BPS boundary conditions [47, 48] in 5d SYM theory, the BPS boundary condi-
tions [1] and the quarter-BPS boundary conditions [3, 4] in 4d N = 4 SYM theory and the
N = (0, 4) boundary conditions [15] in 3d N = 4 gauge theories. Such higher dimensional
and highly supersymmetric cases are described by Nahm’s equation [49] as the Nahm pole
boundary condition. We argue that the B-type boundary conditions in N = (2, 2) gauge
theories, which are distinguished from the Nahm pole boundary condition, allow the bulk
fields to have singularities even for the Abelian gauge theory when the gauge fields are not
subject to the ordinary Neumann boundary condition. In particular, when the gauge field
is subject to the Dirichlet boundary condition and the chiral multiplet scalar field satisfies
the Neumann-type boundary condition, such singular solutions naturally arise without any
boundary degrees of freedom. We further discuss the quarter BPS boundary conditions
which have many more solutions, but much richer than the half-BPS case. They also admit
singular solutions and mixed Dirichlet-Neumann boundary conditions.

We also construct the BPS boundary conditions in N = (2, 2) supersymmetric gauge
theories by using brane configurations in Type IIA string theory by introducing additional
branes to the Hanany-Hori brane setup [50]. For each of A-type and B-type boundary
conditions, one can additionally introduce two kinds of NS5-branes and two kinds of D4-
branes. The Neumann and Dirichlet boundary conditions for the vector multiplet are
realized by the NS5-branes and D4-branes respectively and the two possible choices for
each brane corresponds to those of boundary conditions for the chiral multiplet. We find
singular solutions to some of the boundary conditions, as could be anticipated from our
brane configurations which include systems of D2 and D4 branes oriented such that they
are T-dual to the D1-D3 system realising the Nahm equation [51, 52]. Furthermore, the
presence of both kinds of branes can preserve 1d N = 1 supersymmetry, which realizes
the quarter-BPS boundary conditions. We find that the boundary conditions on fermions
crucially determine the boundary branes as well as the boundary conditions on the bosonic
fields. Both A-type and B-type boundary conditions can be lifted to M-theory as a system
of a single M5-brane wrapped on a product of a holomorphic curve in C2 with a special
Lagrangian 3-cycle in C3 as well as M2-branes.

The organization of the paper is straightforward. In section 2 we compute the half-
BPS boundary conditions for 2d N = (2, 2) supersymmetric gauge theories and argue that
they admit singularities. In section 3 we analyze the quarter-BPS boundary conditions.
In section 4 we construct brane configurations realizing these BPS boundary conditions
in Type IIA string theory which generalizes the Hanany-Hori brane setup [50]. We also
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describe the M-theory lift of these Type IIA brane configurations, showing that there is a
rich set of duality relations, unifying all the configurations we consider. In appendix A we
give our conventions and notations of superspace and supermultiplets.

2 Half-BPS boundary conditions

We consider 2d N = (2, 2) supersymmetric gauge theories on a half-space R × R+ of the
Minkowski space with coordinated (x0, x1) whose boundary is at x1 = 0. We analyze the
supersymmetric boundary conditions imposed on the bulk fields without any boundary
degrees of freedom. It would also be interesting to explore boundary conditions in the
presence of coupling to boundary fields but we leave that for future work. Similarly it
would be interesting to derive our results within the framework of supersymmetry without
boundary conditions by including boundary interactions, developed by Belyaev and van
Niewenhuizen [23].

The 2d N = (2, 2) supersymmetric gauge theories can be constructed in terms of
three supermultiplets, the chiral, twisted chiral and vector multiplets. The twisted chiral
multiplets arise in 2d, but the other multiplets come from direct dimensional reduction
of hypermultiplet and vector multiplets in 4d N = 1 theories. These 2d theories have
R-symmetry group U(1)A × U(1)V which arises from the 4d U(1) R-symmetry and the
dimensional reduction to 2d. This R-symmetry group may be broken depending on the
field content and superpotential.

The chiral multiplet consists of a complex scalar field φ and Dirac fermions ψ±, ψ±.
The scalar φ has no U(1)A charge while the fermions ψ−, ψ+ carry charge +1 and ψ−, ψ+
have charge −1. The U(1)V charges of the fields can be shifted by a constant.

The vector multiplet has a two-dimensional gauge field Aµ, a complex scalar field σ and
gauginos λ±, λ± as Dirac fermions. They transform as the adjoint representation under
the gauge group G. The gauge field is neutral under the R-symmetry group. The scalar
field σ has no charge under the U(1)V but carries the U(1)A R-charge +2. The gauginos
λ± and λ± carry the U(1)V R-charge −1 and +1. The gauginos λ+ and λ− have the U(1)A
R-charge +1 while the other gauginos have the U(1)A R-charge −1.

We use notation for 2d spinors ψα where α can take values α = 1 = − or α = 2 = +,
and ψα denotes the complex conjugate of ψα, or Hermitian conjugate for vector or matrix
valued spinors. Our conventions for spinors are summarized in appendix A.1.

In order to have normalizable supersymmetric ground states, the gauge theory must
have large enough numbers of matter multiplets. For G = U(Nc) gauge theory with Nf

chiral multiplets transforming in the fundamental representation there are
(
Nf

Nc

)
super-

symmetric ground states and supersymmetry is broken for Nc > Nf .1 For G = SU(Nc)
gauge theory with Nf fundamental chiral multiplets, there is no supersymmetric ground
state for 1 ≤ Nf ≤ Nc [53].2

1If we also have Na chiral multiplets transforming in the antifundamental representation, these state-
ments hold with Nf replaced by max(Nf , Na).

2See [54] for orthogonal and symplectic gauge groups.
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The Lagrangian densities of 2d N = (2, 2) gauge theory are given by

Lgauge = Tr
[1

2 (WαWα|θθ + h.c.)
]

4d→2d

= Tr
[
− 1

2vmnv
mn − 2iλ̄σ̄mDmλ+DD + i∂m(λ̄σ̄mλ)

]
4d→2d

= Tr
[
− 1

2FµνF
µν − 2(Dµσ

†)(Dµσ)− g2[σ, σ†]2 − 2iλ̄ΓµDµλ

+ 2
√

2g
(
λ̄1[σ†, λ1]− λ̄2[σ, λ2]

)
+DD + i∂µ(λ̄Γµλ)

]
Lchiral =

[
Φ†eV Φ|θθθ̄θ̄

]
4d→2d

(2.1)

=
[
gφ†Dφ− (Dmφ

†)(Dmφ)− iψ̄σ̄mDmψ + F †F

+i
√

2g
(
φ†λψ − ψ̄λ̄φ

)
+ i

2∂m(ψ̄σ̄mψ)
]

4d→2d

= gφ†Dφ− (Dµφ
†)(Dµφ)− g2φ†

(
σσ† + σ†σ

)
φ− iψ̄ΓµDµψ

+
√

2g
(
ψ̄1σλ1 − ψ̄2σ†ψ2

)
+ F †F + i

√
2g
(
φ†λψ − ψ̄λ̄φ

)
+ i

2∂µ(ψ̄Γµψ) (2.2)

LFI = Tr
[
−ζD + θ

2πF01

]
(2.3)

where Lgauge and Lchiral are the kinetic terms of the vector multiplet and those of the
chiral multiplet which arise from the dimensional reduction of the 4d N = 1 Lagrangians
(in the WZ gauge), and LFI are the 2d FI and theta angle terms (with θ here not to
be confused with the Grassmann coordinates). When the gauge group G has an Abelian
factor, the FI parameter ζ appears and we can include the FI term in 2d. The final (total
derivative) terms in the gauge and chiral Lagrangians are required for the Lagrangians to
be real in the presence of a boundary. More generally we can include Nf fundamental chiral
superfields Φi (and also consider other representations) and include a superpotential W(Φ)
and twisted superpotential W̃(Φ̃) which are holomorphic functions of chiral and twisted
chiral superfields. These contribute to the action as

LW = W|θθ + h.c. (2.4)
LW̃ = W̃|θ1θ̄2 + h.c. (2.5)

For the supercurrent we find the following result for the gauge multiplet

Jµ− = −i
(
F01 + ig[σ, σ†] + iζ

)
εµν(σν λ̄)− −

√
2i (Dµ + εµνDν)σλ̄−, (2.6)

Jµ+ = −i
(
F01 + ig[σ, σ†]− iζ

)
εµν(σν λ̄)+ +

√
2i (Dµ − εµνDν)σ†λ̄+, (2.7)

J̄µ− = −i
(
F01 − ig[σ, σ†] + iζ

)
εµν(σ̄νλ)− −

√
2i (Dµ − εµνDν)σλ−, (2.8)

J̄µ+ = −i
(
F01 − ig[σ, σ†]− iζ

)
εµν(σ̄νλ)+ +

√
2i (Dµ + εµνDν)σ†λ+, (2.9)
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so explicitly

J0
− = −i

(
F01 + ig[σ, σ†] + iζ

)
λ̄+ +

√
2i (D0 −D1)σλ̄−, (2.10)

J0
+ = −i

(
F01 + ig[σ, σ†]− iζ

)
λ̄− −

√
2i (D0 +D1)σ†λ̄+, (2.11)

J̄0
+ = i

(
F01 − ig[σ, σ†] + iζ

)
λ− +

√
2i (D0 +D1)σλ+, (2.12)

J̄0
− = i

(
F01 − ig[σ, σ†]− iζ

)
λ+ −

√
2i (D0 −D1)σ†λ−, (2.13)

J1
− = i

(
F01 + ig[σ, σ†] + iζ

)
λ̄+ +

√
2i (D0 −D1)σλ̄−, (2.14)

J1
+ = −i

(
F01 + ig[σ, σ†]− iζ

)
λ̄− +

√
2i (D0 +D1)σ†λ̄+, (2.15)

J̄1
+ = i

(
F01 − ig[σ, σ†] + iζ

)
λ− −

√
2i (D0 +D1)σλ+, (2.16)

J̄1
− = −i

(
F01 − ig[σ, σ†]− iζ

)
λ+ −

√
2i (D0 −D1)σ†λ−, (2.17)

while for the fundamental chiral multiplet we have

J0
− =
√

2((D0 −D1)φ†)ψ− − 2igφ†σψ+ − gφ†λ̄+φ, (2.18)
J0

+ =
√

2((D0 +D1)φ†)ψ+ − 2igφ†σ†ψ− + gφ†λ̄−φ, (2.19)
J1
− =
√

2((D0 −D1)φ†)ψ− + 2igφ†σψ+ + gφ†λ̄+φ, (2.20)
J1

+ = −
√

2((D0 +D1)φ†)ψ+ − 2igφ†σ†ψ− + gφ†λ̄−φ, (2.21)
J̄0− =

√
2ψ̄−(D0 +D1)φ− 2igψ̄+σφ+ gφ†λ−φ, (2.22)

J̄0 + =
√

2ψ̄+(D0 −D1)φ− 2igψ̄−σ†φ+ gφ†λ+φ, (2.23)
J̄1− = −

√
2ψ̄−(D0 +D1)φ− 2igψ̄+σφ− gφ†λ+φ, (2.24)

J̄1 + =
√

2ψ̄+(D0 −D1)φ+ 2igψ̄−σ†φ− gφ†λ−φ, (2.25)
J̄0

+ =
√

2ψ̄+(D0 +D1)φ+ 2igψ̄−σφ+ gφ†λ−φ, (2.26)
J̄0
− =
√

2ψ̄−(D0 −D1)φ+ 2igψ̄+σ
†φ− gφ†λ+φ, (2.27)

J̄1
+ = −

√
2ψ̄+(D0 +D1)φ+ 2igψ̄−σφ+ gφ†λ−φ, (2.28)

J̄1
− =
√

2ψ̄−(D0 −D1)φ− 2igψ̄+σ
†φ+ gφ†λ+φ . (2.29)

We can easily include twisted mass m̃ for the chiral multiplet by simply shifting σ → σ−m̃
and σ† → σ† − ¯̃m in the contributions from the chiral multiplet.

Finally, for the fundamental twisted chiral multiplet one finds

J0
− =

√
2((D0 −D1)φ̃†)ψ̃− − 2igφ̃†σ ¯̃

ψ+ − gφ̃†λ̄+φ̃ (2.30)

J̄0
+ =

√
2((D0 +D1)φ̃†)¯̃

ψ+ − 2igφ̃†σ†ψ̃− + gφ̃†λ̄−φ̃ (2.31)

J1
− =

√
2((D0 −D1)φ̃†)ψ̃− + 2igφ̃†σ ¯̃

ψ+ + gφ̃†λ̄+φ̃ (2.32)

J̄1
+ = −

√
2((D0 +D1)φ̃†)¯̃

ψ+ − 2igφ̃†σ†ψ̃− + gφ̃†λ̄−φ̃ (2.33)

J0
+ =

√
2ψ̃+(D0 +D1)φ̃+ 2ig ¯̃

ψ−σφ̃+ gφ̃†λ−φ̃ (2.34)

J̄0
− =

√
2¯̃
ψ−(D0 −D1)φ̃+ 2igψ̃+σ

†φ̃− gφ̃†λ+φ̃ (2.35)

J1
+ = −

√
2ψ̃+(D0 +D1)φ̃+ 2ig ¯̃

ψ−σφ̃+ gφ̃†λ−φ̃ (2.36)

J̄1
− =

√
2¯̃
ψ−(D0 −D1)φ̃− 2igψ̃+σ

†φ̃+ gφ̃†λ+φ̃ (2.37)
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We now have the condition to preserve supersymmetry at a boundary x1 = 0. In the
absence of boundary the conservation law ∂0Q = 0 can be obtained by integrating the
continuity equation ∂µJµ = 0 over the large volume. However, in the presence of boundary
it may be violated due to the net supercurrent through the surface. Thus we demand that
the component of the supercurrent orthogonal to the boundary vanishes

0 = εαJ1
α + ε̄αJ̄

1α

= ε+J
1
− − ε−J1

+ + ε̄−J̄
1
+ − ε̄+J̄1

− (2.38)

at the boundary where ε± and ε± are the supersymmetry parameters.
We can now build general N = (2, 2) theories by combining these multiplets, choosing

the gauge groups and matter field representations. For simplicity we focus mostly on
gauge group U(Nc) and Nf fundamental chiral multiplets. For a vector multiplet and one
fundamental chiral multiplet this gives

0 = i Tr
((

F01 + ig[σ, σ†] + iζ − igφφ†
)
ε+λ̄+ +

(
F01 + ig[σ, σ†]− iζ + igφφ†

)
ε−λ̄−

+
√

2 ((D0 −D1)σ) ε+λ̄− −
√

2
(
(D0 +D1)σ†

)
ε−λ̄+

+
(
F01 − ig[σ, σ†]− iζ + igφφ†

)
ε̄+λ+ +

(
F01 − ig[σ, σ†] + iζ − igφφ†

)
ε̄−λ−

+
√

2
(
(D0 −D1)σ†

)
ε̄+λ− −

√
2 ((D0 +D1)σ) ε̄−λ+

)
+
√

2
(
(D0 −D1)φ†

)
ε+ψ− +

√
2
(
(D0 +D1)φ†

)
ε−ψ+

+ 2igφ†σε+ψ+ + 2igφ†σ†ε−ψ−
−
√

2ε̄+ψ̄−(D0 −D1)φ−
√

2ε̄−ψ̄+(D0 +D1)φ
+ 2igε̄+ψ̄+σ

†φ+ 2igε̄−ψ̄−σφ (2.39)

= i Tr
((
−F01 − ig[σ, σ†]

)
λ̄γ0ε− i(gφφ† − ζ)λ̄γ1ε

+
√

2 ((D0 −D1)σ) λ̄P+ε+
√

2
(
(D0 +D1)σ†

)
λ̄P−ε

+
(
F01 − ig[σ, σ†]

)
ε̄γ0λ− i(gφφ† − ζ)ε̄γ1λ

+
√

2
(
(D0 −D1)σ†

)
ε̄P−λ+

√
2 ((D0 +D1)σ) ε̄P+λ

)
+
√

2
(
D0φ

†
)
ψγ01ε−

√
2
(
D1φ

†
)
ψε

− 2igφ†σψγ0P+ε− 2igφ†σ†ψγ0P−ε

+
√

2ε̄γ01ψ̄D0φ+
√

2ε̄ψ̄D1φ

+ 2igε̄γ0P+ψ̄σ
†φ+ 2igε̄γ0P−ψ̄σφ (2.40)

where we have defined the 2d chirality projectors

P± = 1
2
(
I ± γ01

)
(2.41)

and all spinor contractions are of the form λγµε = λαγµ β
α εβ .
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The generalization to Nf fundamental chiral multiplets is straightforward, we just
replace φ → φi, φ† → φ†i , ψ → ψi and ψ̄ → ψ̄i. With implicit contraction of the flavor
indices, the supercurrent is given by the same expression (2.40). It is also straightforward
to generalize to chiral multiplets in other representation of the gauge group.

For the bulk equations of motion to be consistent the boundary terms must vanish
when deriving the Euler-Lagrange equations. This leads to the following Euler-Lagrange
boundary conditions on a boundary at fixed x1 = 0

0 = −Tr
(

2
(
F01 −

θ

4π

)
δA0 + 2(D1σ)δσ† + 2(D1σ

†)δσ − iδλσ1λ̄− iδλ̄σ̄1λ

)
− (δφ†)D1φ− (D1φ

†)δφ+ i

2δψσ
1ψ̄ + i

2δψ̄σ̄
1ψ (2.42)

= −Tr
(

2
(
F01 −

θ

4π

)
δA0 + 2(D1σ)δσ† + 2(D1σ

†)δσ + iδλγ1λ̄+ iδλ̄γ1λ

)
− (δφ†)D1φ− (D1φ

†)δφ− i

2δψγ
1ψ̄ − i

2δψ̄γ
1ψ (2.43)

Note that
δψσ1ψ̄ = −δψγ1ψ̄ = δψ+ψ̄+ − δψ−ψ̄− (2.44)

There are two ways to make the fermionic terms vanish while preserving the maximum
number of half the independent components. We can impose either

• A-type: a linear relation between the spinor and its complex conjugate, i.e. a type of
reality condition

• B-type: a projection condition on the spinor.

For λ we need to satisfy
δλγ1λ̄+ δλ̄γ1λ = 0 . (2.45)

For gauge group U(1), taking A-type the most general solution is

λ̄ = eiαγ1λ =⇒ δλγ1λ̄ = −δλ̄γ1λ (2.46)

while for B-type the most general solution is λ1

λ2

 =

 0 e−iα

eiα 0

 λ1

λ2

 (2.47)

where α is an arbitrary real constant. Similar conditions must be imposed on ψ. Note that
these boundary conditions can be generalized in the case of larger gauge group (for λ) or
multiple flavors (for ψ). This is discussed below in sections 2.1.5 and 2.2.8.

We will now see that these boundary conditions are compatible with supersymme-
try, in particular allowing preservation of half of the supersymmetry, i.e. preserving two
supercharges. For this we need to take either A-type for all spinors or B-type for all spinors.

Note that we must also impose suitable Euler-Lagrange boundary conditions on the
bosonic fields in order to satisfy (2.43). The most obvious is to impose either Neumann
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or Dirichlet boundary conditions for each field, e.g. for φ we could have Neumann D1φ =
D1φ

† = 0 or Dirichlet δφ = δφ† = 0 so that φ takes a constant boundary value. For the
gauge field the conditions are F01 = θ/(4π) for Neumann or δA0 = 0 for Dirichlet, which we
may as well write as A0 = 0. However, more involved conditions are also possible such as a
Dirichlet condition on a linear combination of A0, σ and σ† without any of the individual
fields having to satisfy Dirichlet or Neumann conditions. We will see an example of this in
section 2.2.6.

2.1 A-type boundary conditions

We can impose a condition on the spinors as follows

ε̄ = eiϑγ1ε , λ̄ = eiαγ1λ , ψ̄ = e2iβγ1ψ , (2.48)

for some real α, β and ϑ. This leads to identifications of spinor bilinears such as

ε̄λ = − exp(i(ϑ− α))λ̄ε (2.49)
ε̄γ01λ = − exp(i(ϑ− α))λ̄γ01ε (2.50)
ε̄γ0λ = − exp(i(ϑ− α))λ̄γ0ε (2.51)
ε̄γ1λ = exp(i(ϑ− α))λ̄γ1ε . (2.52)

So defining
c± = 1± exp(i(ϑ− α)), (2.53)

the boundary conditions for supersymmetry are

c+F01 + igc−[σ, σ†] = 0 (2.54)
c+(gφφ† − ζ) = 0 (2.55)

(c−D0 − c+D1)σ = 0 (2.56)
(c−D0 + c+D1)σ† = 0 (2.57)

D0
(
φ† − exp(i(ϑ+ 2β))φ

)
= 0 (2.58)

D1
(
φ† + exp(i(ϑ+ 2β))φ

)
= 0 (2.59)

φ†σ + exp(i(ϑ+ 2β))σφ = 0 (2.60)
φ†σ† + exp(i(ϑ+ 2β))σ†φ = 0 (2.61)

Here we have neglected the superpotential W, but one can be included provided Im(eiϑW)
is constant on the boundary [29]. Possibly this condition can be relaxed by including
boundary degrees of freedom. The problem is known as the Warner problem [28, 29, 31,
40, 55–58] and studied for B-type boundary conditions, but the details are not known for
A-type boundary conditions and we do not consider boundary matter in this paper.

Clearly we can set ϑ = 0 without loss of generality by redefining α and β, so we now
do that. We then have two special choices of α = 0, π giving rise to Neumann (for c− = 0)
or Dirichlet (for c+ = 0) boundary conditions for the gauge multiplet complex scalar σ.
For the Neumann case we also have a Neumann boundary condition for the gauge field,
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F01 = 0 while for Dirichlet we see that the constant boundary values of σ and σ† must
commute. If we impose gauge field boundary conditions A0 = 0 for Dirichlet, these two
options satisfy the boundary conditions (2.43) required for the variational principle, except
that for the Neumann case the supersymmetry and Euler-Lagrange boundary conditions
are consistent only for vanishing theta angle. For the Neumann case with θ 6= 0 we
would also need to impose the Dirichlet boundary condition δ (TrA0) = 0 which would
completely fix the U(1) part of the gauge field on the boundary. Of course, for gauge
group U(Nc) ∼= (SU(Nc)×U(1))/ZNc we could also impose different Dirichlet or Neumann
boundary conditions for the SU(Nc) and U(1) gauge fields.

In general we need not choose α = 0 or α = π but let us first consider the basic
boundary conditions, i.e. Neumann and Dirichlet boundary conditions which neatly project
2d N = (2, 2) supermultiplets onto 1d N = 2A supermultiplets.

2.1.1 A-type Neumann b.c. for the vector multiplet

We start with the basic boundary conditions for the vector multiplet. For exp(iα) = 1 we
find the Neumann boundary conditions for the vector multiplet:

F01 = 0 (2.62)
gφφ† = ζ (2.63)
D1σ = 0 (2.64)
D1σ

† = 0 (2.65)

The condition (2.62) would be interpreted as the Neumann boundary condition for the
gauge field when θ = 0 whereas (2.64) and (2.65) impose the Neumann boundary condi-
tion on σ and σ†, consistent with the Euler-Lagrange Neumann conditions. These A-type
Neumann boundary conditions for the vector multiplet admit the 1d N = 2A gauge mul-
tiplet which will be obtained from the 3d N = 1 gauge multiplet [59] or 2d N = (1, 1)
gauge multiplet [60] and described by the (2,2,0) supermultiplet whose complex bosonic
scalar fields are compatible with the remaining σ and σ† obeying the Neumann boundary
conditions (2.64) and (2.65).

While in the absence of the chiral multiplets, under the conditions (2.62), (2.64)
and (2.65), the gauge symmetry could be completely preserved at the boundary, when
the chiral multiplets are coupled to the vector multiplet, the UV boundary conditions get
more complicated as additional conditions, including (2.63), are required. Of course, with-
out chiral multiplets, or with chiral multiplets with boundary conditions φ = 0, we must
take vanishing FI parameter in order to satisfy (2.63).

2.1.2 A-type Dirichlet b.c. for the vector multiplet

For exp(iα) = −1 we have the Dirichlet boundary conditions for the vector multiplet:

[σ, σ†] = 0 (2.66)
D0σ = 0 (2.67)
D0σ

† = 0 . (2.68)
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The equations (2.67) and (2.68) fix the values of σ and σ† at the boundary. We also must
impose the Dirichlet boundary condition for the gauge field. The A-type Dirichlet boundary
conditions for the vector multiplet admit the 1d N = 2A scalar multiplet described by the
(1,2,1) supermultiplets whose bosonic physical scalar field is identified with the surviving
A1 component of the gauge field.

Together with the condition (2.66), these boundary conditions can be solved by

A0 = 0, (2.69)
σ = 0. (2.70)

The Dirichlet boundary condition for the vector multiplet breaks the gauge symmetry G

at the boundary and the global gauge transformation at the boundary would lead to the
global symmetry G∂ .

We can also deform the condition (2.70) to

σ = s (2.71)

where s 6= 0 is some constant satisfying [s, s†] = 0. In this case, the flavor symmetry G∂ is
broken to the stabilizer of s, that is the subgroup whose action on s is trivial.

2.1.3 A-type b.c. for the chiral multiplet

Consider the boundary conditions for the chiral multiplets. Similarly to the choice of
α = 0, π for the vector multiplet, we can take the special choices 2β = 0, π. For e2iβ = 1
we have

D0 (Im(φ)) = 0 (2.72)
D1 (Re(φ)) = 0 (2.73)
φ†σ + σφ = 0 (2.74)

φ†σ† + σ†φ = 0 (2.75)

while for e2iβ = −1 we have

D0 (Re(φ)) = 0 (2.76)
D1 (Im(φ)) = 0 (2.77)
φ†σ − σφ = 0 (2.78)

φ†σ† − σ†φ = 0 . (2.79)

Note however that the second set of boundary conditions is equivalent to the first up to a re-
definition φ→ iφ. The boundary conditions (2.72) and (2.73) (or (2.76) and (2.75)) for the
chiral multiplet are the Dirichlet and Neumann boundary conditions on the imaginary and
real (or real and imaginary) part of φ, which are compatible with the Lagrangian splitting of
the chiral multiplet to the 1d N = 2A scalar multiplets described by the (1,2,1) supermul-
tiplets whose bosonic physical scalar field is identified with the real (or imaginary) part of φ.
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When the chiral multiplets are coupled to a vector multiplet, we have additional con-
ditions (2.74) and (2.75) (or (2.78) and (2.79)). As they involve both the vector multiplet
scalar field σ and the chiral multiplet scalar φ, the Coulomb branch and Higgs branch vevs
obstruct one another.

Let us consider the case where the vector multiplet obeys the Dirichlet boundary con-
ditions where σ is frozen according to the Dirichlet boundary conditions (2.67) and (2.68).
The boundary condition (2.72) is solved by requiring that Imφ obeys the Dirichlet bound-
ary conditions and that A0·Imφ vanishes. They can be solved by simply setting Imφ to zero.
On the other hand, (2.73) can be solved by requiring that Reφ is subject to the Neumann
boundary condition. Accordingly, the additional conditions (2.74) and (2.75) become

Re(σ+ Reφ) = 0, (2.80)
Im(σ−Reφ) = 0 (2.81)

where σ± ≡ (σ ± σ†)/
√

2. Noting that φ = Reφ and defining σS = (σ + σT )/2 these
equations are equivalent to

σSφ = 0 = σ∗Sφ = σ†Sφ (2.82)

There are two obvious solutions to this condition: σS = 0 or φ = 0. When the vector mul-
tiplet satisfies Dirichlet boundary conditions, we can have solutions with constant non-zero
σ at the boundary and this can allow non-zero values for both σS and φ if σS and σ†S have
common eigenstates with eigenvalue 0.

For example, for G = SU(4) we could have

σS =


s11 s12 0 0
s12 s22 0 0
0 0 0 0
0 0 0 0

 (2.83)

which allows

φ =


0
0
φ3

φ4

 (2.84)

for arbitrary real φ3 and φ4.
Instead, when the vector multiplet is subject to the Neumann boundary condition,

the conditions (2.74) and (2.75) (or (2.78) and (2.79)) would require the modification
of the basic boundary conditions. In particular when the U(1) vector multiplet satisfies
the Neumann boundary conditions (2.64) and (2.65), we cannot find a solution to the
constraints (2.74) and (2.75) (or (2.78) and (2.79)). This is because the Lagrangian splitting
of a charged chiral multiplet leads to scalar multiplets which cannot be charged under the
U(1) gauge symmetry.
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While it is not clear whether or how one can obtain the Neumann boundary condi-
tions, we note that our boundary conditions on fermions (2.48) may be generalized when
the theory has multiple matter fields or/and higher rank gauge group, as we will see in
section 2.1.5. In such a case, one may modify the additional conditions or ordinary Neu-
mann boundary conditions to those which break G down to H and find some consistent
Lagrangian splitting of chiral multiplets so that the surviving scalar multiplets are coupled
to the H gauge field. In other words, it may be possible to obtain boundary conditions in
which the gauge group G is broken to its subgroup H so that G decomposes as

g = h⊕ h⊥ (2.85)

where g and h are the Lie algebras of G and H and h⊥ is the orthocomplement that is not
Lie algebra. Correspondingly, we split the adjoint-valued fields as

σ = σ‖ + σ⊥ (2.86)

where σ‖ ∈ h and σ⊥ ∈ h⊥. Then we would get the boundary conditions which reduce the
gauge group G to its subgroup H at the boundary. In addition, one can introduce extra
boundary terms which may modify or remove the constraints encountered above. We leave
the issue of the Neumann boundary condition for the vector multiplet coupled to chiral
multiplets to future work.

2.1.4 Generic A-type boundary conditions

Above we commented on the specific cases where either c+ = 0 or c− = 0 but in general
we will have the following equations

u ≡ 1√
2

(
x0

c−
− x1

c+

)
(2.87)

σ̂ ≡ c−σ (2.88)
φ̂ ≡ eiβφ (2.89)

Fuū = −ig[σ̂, σ̂†] (2.90)
gφ̂φ̂† = ζ (2.91)
Duσ̂ = 0 (2.92)
Dūσ̂

† = 0 (2.93)

D0 Im
(
φ̂
)

= 0 (2.94)

D1 Re
(
φ̂
)

= 0 (2.95)

φ̂†σ̂ + σ̂φ̂ = 0 (2.96)
φ̂†σ̂† + σ̂†φ̂ = 0 (2.97)

Defining σ̂± = σ̂ ± σ̂†, the equations (2.96) and (2.97) can be written as

Re(σ̂+φ̂) = 0 (2.98)
Im(σ̂−φ̂) = 0 (2.99)
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If we define
Au := Au + eiγ σ̂† (2.100)

for arbitrary γ ∈ R where

Au := 1√
2

(c−A0 − c+A1) , (2.101)

Aū := −e−i(θ−α) 1√
2

(c−A0 + c+A1) , (2.102)

then equations (2.90), (2.92) and (2.93) imply that

[Du,Du] = 0 (2.103)

where

Du = 1√
2

(c−D0 − c+D1), (2.104)

Du = −e−i(θ−α) 1√
2

(c−D0 + c+D1), (2.105)

Du = ∂u − igAu. (2.106)

Note that (2.92) and (2.93) are mixed boundary conditions which may be problematic
as they both contain derivatives with respect to x0 and x1. Hence whether we impose
Dirichlet or Neumann conditions on σ to satisfy (2.43), we will also have a constraint on
the other derivative. Hence we should look for singular solutions for the generic A-type
boundary conditions, otherwise we would only expect solutions with σ completely fixed.

However, although it could be interesting to explore singular solutions for the generic
boundary conditions (2.87)–(2.97), we cannot find them for physical theories. If fact,
as we will discuss in section 4.2.3, the brane configuration for this case does not admit
such singular boundary behavior. As we show in appendix B it is possible to have singular
boundary conditions, but only with a non-compact non-Abelian gauge group. In particular,
the specific signs in (2.90), given (2.92) and (2.93) mean that we have Nahm equations
which admit singular solutions but based on the Lie algebra su(1, 1) rather than su(2). It
is not clear if such singular solutions can appear in any physically relevant cases. Also
they are only possible for non-Abelian groups. If we have an Abelian theory, in the gauge
A1 = 0 we would have a boundary condition 0 = F01 = −∂1A0 which clearly does not
admit singular behaviour of the gauge potential. Then the boundary conditions for σ̂ also
only admit regular solutions.

2.1.5 General gauge group projections and multiple matter multiplets

More generally, when we have a gauge group other than U(1) we can impose matrix projec-
tion conditions on λa, and similarly for multiple matter multiplets ψi. In other words, there
are more general A-type boundary conditions by taking such matrix projection conditions
on fermions. Specifically, we can impose the boundary conditions

(Rλ)a = Rabλ
b = γ1λa , (Sψ)i = Sijψj = γ1ψi (2.107)

R
ab = (Rab) , Sij = (Sij) . (2.108)
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Then (2.43) is satisfied if R and S are symmetric, i.e.

Rab = Rba , Sij = Sji (2.109)

while using (γ1)2 = I implies
RR = I , SS = I . (2.110)

Together these conditions mean that R and S are both unitary and symmetric.
This leads to the following identifications of spinor bilinears

ε̄λ = −eiϑRλ̄ε (2.111)
ε̄γ01λ = −eiϑRλ̄γ01ε (2.112)
ε̄γ0λ = −eiϑRλ̄γ0ε (2.113)
ε̄γ1λ = eiϑRλ̄γ1ε . (2.114)

Clearly we can absorb the factor eiϑ into R. So the boundary conditions for supersymmetry
are (

(I +R)F01 + ig(I −R)[σ, σ†]
)
λ̄γ0ε = 0 (2.115)(

gφiφ† ī − ζ
)

(I +R)λ̄γ1ε = 0 (2.116)

(((I −R)D0 − (I +R)D1)σ) λ̄P+ε = 0 (2.117)(
((I −R)D0 + (I +R)D1)σ†

)
λ̄P−ε = 0 (2.118)

Similarly for multiple chiral multiplets we have

ψε = −e−iϑε̄Sψ̄ (2.119)
ψγ01ε = −e−iϑε̄γ01Sψ̄ (2.120)
ψγ0ε = −e−iϑε̄γ0Sψ̄ (2.121)
ψγ1ε = e−iϑε̄γ1Sψ̄ . (2.122)

so again we can absorb eiϑ by redefining Si
j̄
, giving supersymmetric boundary conditions

ε̄γ01ψ̄
(
D0φ− SD0φ

†
)

= 0 (2.123)

ε̄ψ̄
(
D1φ+ SD1φ

†
)

= 0 (2.124)

ε̄γ0P−ψ̄
(
Sφ†σ + σφ

)
= 0 (2.125)

ε̄γ0P+ψ̄
(
Sφ†σ† + σ†φ

)
= 0 (2.126)

Note that R and S may depend on bosonic fields, which would lead to more general
boundary conditions. Although we do not complete the analysis above in this paper, it
would be interesting to explore such general boundary conditions.

– 14 –



J
H
E
P
0
3
(
2
0
2
1
)
0
4
3

2.2 B-type boundary conditions

The B-type conditions arise from imposing a projection condition on the spinors. The most
general such boundary condition is ε1

ε2

 =

 0 e−iϑ

eiϑ 0

 ε1
ε2

 (2.127)

 λ1

λ2

 =

 0 e−iα

eiα 0

 λ1

λ2

 (2.128)

ψ1

ψ2

 =

 0 e−iβ

eiβ 0

ψ1

ψ2

 (2.129)

The boundary conditions for supersymmetry then become
√

2D1
(
eiϑσ + e−iασ†

)
−
(
ei(ϑ−α) + 1

)
F01 + i

(
ei(ϑ−α) − 1

)
(gφφ† − ζ) = 0 (2.130)

√
2D0

(
eiϑσ − e−iασ†

)
+ ig

(
ei(ϑ−α) + 1

)
[σ, σ†] = 0 (2.131)(

eiβ + eiϑ
)
D0φ

† +
(
eiβ − eiϑ

)
D1φ

† +
√

2igφ†
(
ei(ϑ+β)σ + σ†

)
= 0 (2.132)(

eiβ + eiϑ
)
D0φ−

(
eiβ − eiϑ

)
D1φ−

√
2ig

(
ei(ϑ+β)σ + σ†

)
φ = 0 . (2.133)

Here we have neglected the superpotential W, and indeed in order to preserve super-
symmetry with B-type boundary conditions we require W to be constant on the bound-
ary [29, 31]. This condition can be relaxed by including boundary degrees of freedom [58],
but we do not consider boundary matter in this paper.

Note that if we simultaneously shift α and β by ϑ and redefine σ by a phase factor eiϑ

we can absorb all ϑ dependence in these boundary conditions. From now on we assume
this has been done, which is equivalent to setting ϑ = 0, leaving us with

√
2D1

(
σ + e−iασ†

)
−
(
e−iα + 1

)
F01 + i

(
e−iα − 1

)
(gφφ† − ζ) = 0 (2.134)

√
2D0

(
σ − e−iασ†

)
+ ig

(
e−iα + 1

)
[σ, σ†] = 0 (2.135)(

eiβ + 1
)
D0φ

† +
(
eiβ − 1

)
D1φ

† +
√

2igφ†
(
eiβσ + σ†

)
= 0 (2.136)(

eiβ + 1
)
D0φ−

(
eiβ − 1

)
D1φ−

√
2ig

(
eiβσ + σ†

)
φ = 0 . (2.137)

If we choose eiα = ±1 then we can have Dirichlet type boundary conditions for σ+ and
Neumann type for σ− or vice-versa, where we define

σ± = 1√
2

(
σ ± σ†

)
. (2.138)

We also have additional simplification as some terms vanish in this case.
Similarly, we can get either Dirichlet or Neumann type conditions for both φ and φ†

for the choices eiβ = ±1. These can all happen simultaneously for the four special cases of
eiα = ±1 and eiβ = ±1.
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As in the A-type boundary conditions, let us first consider the basic boundary con-
ditions, i.e. Neumann and Dirichlet boundary conditions (labelled here by the type of
boundary condition obeyed by the field strength F01) which project 2d N = (2, 2) super-
multiplets onto 1d N = 2B supermultiplets. Some basic boundary conditions were already
discussed in [45, 46].

2.2.1 B-type Neumann b.c. for the vector multiplet

Let us begin with the basic B-type boundary conditions for the vector multiplet. For
exp(iα) = 1, we find the Neumann boundary conditions for the vector multiplet:

F01 = 0, (2.139)
D1σ+ = 0, (2.140)
D0σ− = 0, (2.141)

[σ−, σ+] = 0. (2.142)

The boundary conditions (2.140) and (2.141) are the Neumann boundary conditions for
σ+ and the Dirichlet boundary conditions for σ− respectively, consistent with the Euler-
Lagrange boundary conditions if we also impose A0σ− = 0 at the boundary. This is
analogous to the Lagrangian splitting of the A-type boundary conditions for the chiral
multiplets in section 2.1.3. It allows for a Lagrangian submanifold L of the space gC of the
Kähler manifold labeled by σ. The B-type Neumann boundary conditions for the vector
multiplet are compatible with the 1d N = 2B gauge multiplet described by the (1,2,1)
supermultiplets [61] whose real bosonic scalar field is identified with σ+.

As σ− obeys the Dirichlet boundary condition, the additional condition (2.142) can be
simply solved by setting

σ− = 0. (2.143)

In this case, the gauge symmetry G can be preserved at the boundary as we need not
impose any constraints on the boundary value of A0. Such Neumann boundary conditions
for the vector multiplet were studied in the context of gauged linear sigma models [44–46].
We note that the Euler-Lagrange boundary conditions are satisfied provided we have θ = 0.
For θ 6= 0 if we have gauge group U(Nc) = SU(Nc) × U(1) we could have the Neumann
boundary conditions F01 = 0 for the SU(Nc) gauge fields, but if we impose (2.139) for the
U(1) gauge field we would need to impose Dirichlet boundary conditions for the Abelian
gauge field, fixing A0.

When instead we choose

σ− = t− (2.144)

where t− is some nonzero valued constant, the gauge symmetry G may be explicitly bro-
ken to H in such a way that σ+ valued in H commutes with σ− according to the condi-
tion (2.142).
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2.2.2 B-type Dirichlet b.c. for the vector multiplet

On the other hand, the Dirichlet boundary conditions for the vector multiplet can be
obtained for exp(iα) = −1:

D1σ− = 0, (2.145)
D0σ+ = 0, (2.146)
gφφ† = ζ. (2.147)

The boundary conditions (2.145) and (2.146) are the Neumann boundary condition for
σ− and Dirichlet boundary condition for σ+ respectively, satisfying the Euler-Lagrange
boundary conditions provided also A0σ+ = 0. The B-type Dirichlet boundary conditions
admit the 1d N = 2B chiral multiplet described by the (2,2,0) supermultiplet whose
complex scalar field corresponds to the A1 component of gauge field and σ−.

Similarly to the A-type, a simple solution

σ+ = 0 (2.148)

would lead to the boundary flavor symmetry G∂ as the global gauge transformation of G.
Its deformation

σ+ = t+ (2.149)

where t+ is some nonzero real valued constant would break the flavor symmetry G∂ to the
stabilizer of t+. For example, for generic t+, the flavor symmetry is broken to its maximal
torus.

In the presence of the chiral multiplets coupled to the vector multiplet, the additional
condition (2.147) is imposed. For the Dirichlet boundary conditions (2.154) and (2.155) of
the chiral multiplets with gauge group U(1) it can be simply solved by fixing the squared
norm of φ as ζ/g. However, the Neumann boundary conditions (2.150) and (2.151), to-
gether with (2.145) imply that the boundary values of σ− and φ should not be fixed, but
this is incompatible with (2.147), (2.152) and (2.153) which prevent the chiral multiplets
from freely fluctuating at the boundary. This indicates that the pairing of the Dirichlet
boundary condition for the vector multiplet and the Neumann boundary condition for the
chiral multiplet should be generalized, as we will see below.

2.2.3 B-type Neumann b.c. for the chiral multiplet

For exp(iβ) = −1 we get Neumann boundary conditions for the chiral multiplet:

D1φ = 0, (2.150)
D1φ

† = 0, (2.151)
φ†σ− = 0. (2.152)
σ−φ = 0. (2.153)

The boundary conditions (2.150) and (2.151) are Neumann boundary conditions for the
chiral multiplet φ. The B-type Neumann boundary conditions for the chiral multiplet
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admit the 1d N = 2B chiral multiplet described by the (2,2,0) supermultiplets [61] whose
complex bosonic scalar field is identified with φ.

The additional conditions (2.152) and (2.153) involving the vector multiplet scalar σ−
can be satisfied for the Neumann boundary condition of vector multiplet with σ− = 0
as in (2.143). But when σ− 6= 0 as in (2.144), the gauge symmetry G may be explicitly
broken to H and (2.152) and (2.153) would consistently project out the scalar φ so that
φ takes values in H. However, for the Dirichlet boundary condition of vector multiplet
with (2.145), they cannot be simply solved. Again it indicates that we need to generalize
the pairing of the Dirichlet boundary condition for the vector multiplet and the Neumann
boundary condition for the chiral multiplet.

2.2.4 B-type Dirichlet b.c. for the chiral multiplet

For exp(iβ) = 1 we find Dirichlet boundary conditions for the chiral multiplet:

D0φ = 0, (2.154)
D0φ

† = 0, (2.155)
φ†σ+ = 0. (2.156)
σ+φ = 0. (2.157)

The boundary conditions (2.154) and (2.155) are Dirichlet boundary conditions for the
chiral multiplet φ provided we also impose A0φ = 0. The B-type Dirichlet boundary
conditions for the chiral multiplet admit the 1d N = 2B Fermi multiplet described by the
(0,2,2) supermultiplets [61].

The additional constraints (2.156) and (2.157) can be solved by simply setting the
boundary value of φ to zero. So a simple solution to (2.154)–(2.157) is

φ = 0. (2.158)

This can lead to the maximal flavor symmetry G∂ from the global transformation of the
gauge symmetry when the vector multiplet obeys the Dirichlet boundary condition.

2.2.5 Singular B-type boundary conditions

We can find more general B-type boundary conditions.
For eiα = 1 we find

D0σ− = −ig[σ−, σ+], (2.159)
D1σ+ = F01, (2.160)

which generalize the Neumann boundary conditions for the vector multiplet.
For eiα = −1, we get

D0σ+ = 0, (2.161)
D1σ− = i(gφφ† − ζ), . (2.162)

which contain the Dirichlet boundary conditions for the vector multiplet.
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Similarly for eiβ = 1 we find

D0φ = igσ+φ, (2.163)
D0φ

† = −igφ†σ+, (2.164)

which contain the Dirichlet boundary conditions for the chiral multiplet.
For eiβ = −1

D1φ = −igσ−φ (2.165)
D1φ

† = −igφ†σ− (2.166)

which generalize the Neumann boundary conditions for the chiral multiplet.
It is convenient to define

A0 = A0 + σ+, A1 = A1 − σ−, (2.167)

so that we have the generalized covariant derivative operators

D0 = D0 − igσ+, D1 = D1 + igσ−. (2.168)

The chiral multiplet boundary conditions (2.163) and (2.165) can then be written as D0φ =
0 and D1φ = 0 respectively. This also allows us to rewrite the boundary conditions (2.159)
and (2.160) for the vector multiplet as a single equation

[D0,D1] = 0 , (2.169)

noting that we can extract two separate equations from the Hermitian and anti-Hermitian
parts of [D0,D1] since A1 is neither Hermitian nor anti-Hermitian.

To get solutions of the general B-type boundary conditions, we first consider the bound-
ary conditions (2.165) and (2.166) for the chiral multiplets, which generalize the Neumann
boundary conditions (2.150) and (2.151). They play a key role to find singular solutions.
In fact, when we consider the chiral multiplet φ = φ1 + iφ2 transforming in the adjoint
representation, the equations (2.165) and (2.166) together with (2.162), which generalizes
the Dirichlet boundary condition for the vector multiplet, are lifted to the well-known
Nahm pole boundary conditions which admit singularity after identifying φ1, φ2 and σ−
with three real scalar fields. In terms of the generalized differential operators (2.168), the
boundary conditions (2.165) and (2.166) for the chiral multiplets can be expressed as

D1φ = 0. (2.170)

This would imply that the chiral multiplets are covariantly constant and therefore a gauge
invariant polynomial in φ should take the same values at any value of x1.

The equation (2.170) generalizes the Neumann boundary conditions for the chiral mul-
tiplet. In the axial gauge we find a singular solution to the boundary conditions (2.165)
and (2.166) with the form

σ− ∼
t

x1 (2.171)
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where t is some constant element of the Lie algebra of the gauge group, which we take
hermitian.

Given the singular configuration (2.171) of σ− near the boundary, we further consider
the boundary conditions for other fields in the vector multiplet. To find the solutions, we
set A1 = 0 by gauge transformation in the following.

2.2.6 Neumann b.c. for the vector multiplet with singularity

Consider the singular solution (2.171) along with the set of boundary conditions (2.159)
and (2.160), which generalize the Neumann boundary conditions for the vector multiplet.
For the basic Neumann boundary conditions for the vector multiplet that freezes σ−, the
regular value (2.144) of σ− may break the gauge symmetry. But for the singular solu-
tion (2.171) of σ−, it turns out that the scaling behavior of the scalar φ is affected.

For the U(1) vector multiplet, we find a solution

∂1σ+ = 0, A0 = 0, A1 = 0. (2.172)

Accordingly, the Neumann boundary condition for A0 flips to the Dirichlet boundary con-
dition due to the singular configuration (2.171). Given the solutions (2.171) and (2.172)
to the boundary conditions for the U(1) vector multiplet, we can find a solution to the
boundary condition (2.170), which generalizes the Neumann boundary conditions for the
chiral multiplet. If we have

− igσ− = t

x1 , (2.173)

we find a solution
φ = (x1)tφ0 (2.174)

where φ0 is some constant value. When t is positive, φ vanishes at the boundary, which
essentially realizes the Dirichlet boundary condition. When t is negative, φ has poles at
the boundary of order |t|. Therefore the singularity (2.171) in σ− dramatically alters the
boundary conditions for φ in such a way that the scaling behavior of φ is controlled by t.

For the vector multiplet of non-Abelian gauge group G, the commutator in the equa-
tion (2.159) allows the A0 component of the gauge field to have non-zero value. Now, we
still need to satisfy (2.43), and the contribution from the vector multiplet now requires

Tr (F01δA0 + (D1σ+)δσ+ − (D1σ−)δσ−) = 0 . (2.175)

One option is to take Dirichlet boundary conditions for σ−, i.e. in (2.175) we have δσ− = 0.
Then the boundary condition (2.159) requires that A0 and σ+ take values in the same
element of the Lie algebra, up to a term which commutes with σ−, which modifies the
ordinary Neumann boundary condition (2.160). Specifically,

A0 = ∓σ+ + Σ− (2.176)

where we require [σ−,Σ−] = 0. Then (2.160) reduces to

∂0A1 = D1Σ− (2.177)
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and (2.175) becomes simply
Tr (F01δΣ−) = 0 . (2.178)

This is solved by imposing Dirichlet boundary conditions on Σ− so it is fixed like σ−.
As in the case of U(1), the boundary condition (2.170) for the chiral multiplet leads

to a non-trivial profile as a solution to a matrix differential equation

∂φ

∂x1 = t

x1φ. (2.179)

For example, for G = SU(4) when we choose

t =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 −1

 , (2.180)

we find a solution

φ =


α1
x1 + α2x

1

−α1
x1 + α2x

1

α3x
1

α4
x1

 . (2.181)

where α1, α2, α3 and α4 are some constant values. In this case, the gauge symmetry is
completely broken and the Neumann boundary condition for φ changes so that all the
components depend on x1.

Alternatively, when we pick

t =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , (2.182)

the gauge symmetry is broken to SU(2) and we find a solution

φ =


α1
x1 + α2x

1

−α1
x1 + α2x

1

φ3

φ4

 (2.183)

where φ3 and φ4 obey the Neumann boundary condition. We see that the non-zero values
in t modify the Dirichlet boundary condition of σ− (or equivalently the Neumann boundary
condition for the vector multiplet) and the Neumann boundary condition on φ changes in
such a way that the two components have nontrivial dependence on x1.
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As can easily be seen in the above example, in general the solutions are linear combi-
nations of the eigenvectors of t. In particular if t has eigenvectors vi with eigenvalues ti,
the general solution takes the form

φ =
∑
i

Ci(x1)tivi. (2.184)

Consequently, the gauge symmetry G is generically broken to some H depending on t.
In particular, when the chiral multiplet scalar field has a simple pole

φ = a

x1 (2.185)

where a is the eigenvector of t with eigenvalue −1 according to the equation (2.179). Thus
we have

det(I + t) = 0. (2.186)

2.2.7 Dirichlet b.c. for the vector multiplet with singularity

Consider the other set of boundary conditions (2.161) and (2.162), which generalizes the
Dirichlet boundary conditions for the vector multiplet, together with the singular con-
figuration (2.171). For the U(1) vector multiplet, working in the gauge A1 = 0, from
equation (2.161) we get

∂0σ+ = 0, A0 = 0, (2.187)

which breaks the gauge symmetry. Then, according to the other condition (2.162), we see
that φ must have a singularity with the form

φ = c

gx1 , φ† = c∗

gx1 (2.188)

where c ∈ C is some constant. Plugging (2.188) into the condition (2.165), we find that
σ− = ∓i/(gx1), so we see that (2.43), or more specifically (2.175), is satisfied with σ− obey-
ing Dirichlet boundary conditions. Together with the condition (2.162), this gives rise to
|c|2 = 1, i.e. c is an arbitrary phase. Recall that the ordinary Dirichlet boundary conditions
for the U(1) vector multiplet together with the ordinary Neumann boundary conditions
for the chiral multiplet have no simple solution. In the absence of boundary terms, the
only consistent condition seems to be the singular configurations (2.171) and (2.188) which
resolve this obstruction.

For the non-Abelian case, we also find solutions (2.187) and the gauge symmetry is
completely broken. However, c is a vector c rather than a constant:

φ = c

gx1 , φ† = c†

gx1 (2.189)

Then (2.165) requires it to be an eigenvector of t with eigenvalue −1, where σ− = ±it/(gx1),
and consequently (2.162) requires that

t = −cc† . (2.190)
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Clearly c is automatically an eigenvector of t, and it has eigenvalue −1 provided c is
normalized so that c†c = 1. Note that this means that Tr t 6= 0 so such solutions are
possible with gauge group U(Nc) but not SU(Nc).

In fact, the above gives the leading order behaviour at the boundary even without the
specific assumptions in (2.188) or (2.189) if we simply assume that φ can be expressed as a
Taylor series in x1, with non-zero constant term, multiplied by an arbitrary non-zero power
of x1. That is because in this case (2.165) requires the leading behaviour of σ− to be a
simple pole in x1 and consequently (2.162) requires the leading order term for φ to also be
a simple pole. We could solve (2.165) by including a more singular term in σ− provided it
annihilated φ but that would not be consistent with (2.162). The only other alternative is
that φ is a regular Taylor series, in which case (2.165) shows that σ− is also regular at the
boundary. Then the boundary values of φ and σ− are arbitrary, with (2.162) and (2.165)
determining the boundary values of their normal derivatives.

If we have multiple flavors, we can find more general solutions. In this case each flavor
φi satisfies (2.165) but (2.162) is generalized to

D1σ− = ±i(gφiφ†i − ζ), . (2.191)

Now, as for the single flavor case above, we could have a regular solution for σ− and all
φi. Otherwise, again σ− must have a simple pole as must at least one of the φi. Now
we can have the situation that some of the φi have poles while some are regular. We can
solve (2.165) with the condition that the constant values of the regular φi are annihilated
by the singular part of σ−. Then the singular part of the solution is described as above with
c → ci and now t = −cic†i where we include only values of i corresponding to singular φi.
Again each ci must be an eigenvector of t with eigenvalue −1. The most general solution is
ci = ωiuI(i) where the {uI} form a set of orthonormal vectors and ωi ∈ C. The constants
ωi are constrained to satisfy

∑
i:I(i)=J |ωi|2 = 1 for each J .

However, we can use the flavor symmetry to do a field redefinition so that for each J
we use a unitary transformation acting on the φi with I(i) = J so that only one scalar has
a singular part. Hence we will split the Nf flavors φi into Ns with a singular boundary
condition. Specifically, including the subleading regular terms we have Ns scalars

φI = cI

gx1 + φI0 + x1φI1 (2.192)

with orthonormal {cI} and the remaining Nf −Ns will have regular boundary conditions

φÎ = φÎ0 + x1φÎ1 (2.193)

where we have assumed a power series expansion of the fields near the boundary and
included only those terms relevant for the boundary conditions. Similarly, writing the
boundary condition

σ− = ±i
gx1 t± 2it0 ∓ 2ix1t1 , (2.194)
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where t, t0 and t1 are Hermitian, the boundary conditions (2.162) and (2.165) are equivalent
to the following conditions

t = −cIc†I (2.195)
tφI0 = t0c

I (2.196)

tφÎ0 = 0 (2.197)
(I − t)φi1 = −gt0φi0 (2.198)

cIφ†0I + φI0c
†
I = 0 (2.199)

t1 = cIφ†1I + φI1c
†
I + gφi0φ

†
0i − ζ . (2.200)

These can be simplified by defining the Ns-dimensional vector space Vs with orthonormal
basis {cI}, and (Nc − Ns)-dimensional vector space Vr, so that the φi belong to the Nc-
dimensional vector space Vs ⊕ Vr. Then (2.195) states that t projects onto Vs and acts as
minus the identity, i.e. −Is, on that space. Then (2.196) shows that t0 maps Vs → Vs and
hence (since it is Hermitian) also Vr → Vr. Now, if we act on (2.199) from the left and
from the right with t and use tcI = −cI along with (2.196) we see that

{t, t0} = 0 (2.201)

so that (since t acts as −Is) in fact t0 annihilates all vectors in Vs. Hence (2.196) and (2.197)
combine to give simply

tφi0 = 0 (2.202)

which means that all φi0 ∈ Vr. Then, noting that (I − t)−1 = I + 1
2 t since t2 = −t, (2.198)

becomes
φi1 = −gt0φi0 (2.203)

showing that also all φi1 ∈ Vr. This simplifies (2.200) to

t1 = gφi0φ
†
0i − ζ . (2.204)

So, to summarize the solutions take the form of a superposition of singular solu-
tions and regular solutions. For the singular solutions we choose a non-negative inte-
ger Ns ≤ min(Nc, Nf ) for gauge group U(Nc) and Nf flavors. If Ns > 0 we pick an
Ns-dimensional orthonormal basis {cI} and this determines the singular part of the solu-
tion (2.192) and (2.194). We can then choose the regular part of the solution by specifying
Nf arbitrary vectors φi0 and an arbitrary Hermitian mapping t0 : Vr → Vr which also
acts as t0c

I = 0. Then φi1 and t1 are fully determined by (2.203) and (2.204), giving the
complete solutions (2.192)–(2.194).

Note that the singular and regular parts of the solutions are completely independent
other than the determination of the splitting into orthogonal subspaces Vs and Vr. In
particular, if we choose φi0 = 0 and t0 = 0 we have only singular terms in the solution,
except for the FI parameter contribution to ∂1σ− through t1.

Now we also consider the symmetries preserved by such boundary conditions. Since we
have A0 = 0 the gauge symmetry will become a global symmetry U(Nc) on the boundary.
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For Ns > 0 this is explicitly broken to U(Ns) × U(Nc − Ns) simply by the choice of Vs.
Without any regular terms (i.e. with φi0 = 0 and t0 = 0) the form of σ− given in (2.194) is
invariant, even with an FI parameter. However, the φI given by (2.192) are not invariant
under the U(Ns) transformations. Nevertheless, we can compensate using the explicitly
broken U(Ns) subgroup of the flavor symmetry. So, together with the unbroken U(Nf−Ns)
flavor symmetry we have the global symmetry U(Nc −Ns)× U(Ns)× U(Nf −Ns). Now,
introducing non-zero regular terms into the solutions will generically completely break the
U(Nc−Ns) and U(Nf −Ns) symmetries, but since the regular terms are related to Vr only,
the form of φÎ in (2.193) and of σ− in (2.194) will not break the U(Ns) global symmetry.
So, the U(Ns) symmetry is only broken by the regular terms in φI in (2.192), since these
are invariant under the U(Ns) from the gauge symmetry but not under the compensating
transformation from the flavor symmetry. Therefore, if Ñs of the φI0 = 0 a U(Ñs) symmetry
will be preserved, as from (2.203) also the corresponding φI1 = 0.

We note that the above analysis is for chiral multiplets in the fundamental representa-
tion. It can easily be generalized to other representations. For example if we had a single
chiral multiplet in the adjoint representation we would have the Nahm equations (deformed
by the FI term) for the three fields σ− and the Hermitian and anti-Hermitian parts of the
scalar φ.

2.2.8 General gauge group projections and multiple matter multiplets

Like for the A-type constraints we can generalize the B-type boundary conditions when
we have a gauge group other than U(1), or/and multiplet matter multiplets by imposing
matrix projection conditions on fermions. In this case we get

λa2 = Rabλb1 , ψi2 = Sijψ
j
1 . (2.205)

Now (2.43) is satisfied if R and S are unitary. The supersymmetric boundary conditions
then require ((

−F01 + ig[σ, σ†]
) (
I + e−iθR

)
+ i(gφiφ†i − ζ)

(
I + e−iθR

)
+
√

2 (D0 +D1)σR−
√

2e−iθ (D0 −D1)σ†
)
ε̄−λ− = 0 (2.206)

ε̄−ψ̄−
((
e−iθ + S†

)
D0φ+

(
−e−iθ + S†

)
D1φ− 2ige−iθS†σ†φ− 2igσφ

)
= 0 (2.207)

Although we do not pursue the detail here, we can find certain combinations of the bound-
ary conditions we discussed above for the theory with higher rank gauge group or multiplet
flavors by choosing appropriate matrices R and S. It would be also interesting to explore
more general boundary conditions by allowing R and S to depend on the scalar fields σ
and/or φ.

3 Quarter-BPS boundary conditions

We can impose the quarter-BPS boundary conditions by writing each spinor and its com-
plex conjugate in terms of a single spinor. In order to satisfy

δλγ1λ̄+ δλ̄γ1λ = 0 . (3.1)
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the most general condition we can have is

λ2 = eiα1λ1 (3.2)
λ̄1 = e2iα2λ1 (3.3)
λ̄2 = ei(2α2−α1)λ1 (3.4)

and similarly for ψ we have

ψ2 = eiβ1ψ1 (3.5)
ψ̄1 = e2iβ2ψ1 (3.6)
ψ̄2 = ei(2β2−β1)ψ1 (3.7)

We can also parameterize ε in terms of a single real Grassmann parameter ε0 = ε̄0 as

ε1 = aε0 , ε2 = bε0 , ε̄1 = āε0 , ε̄2 = b̄ε0 (3.8)

Then the conditions to preserve 1d N = 1 supersymmetry reduce to two equations

− Re
(
aeiα2 + bei(α2−α1)

)
F01

+ g Im
(
aeiα2 + bei(α2−α1)

)
[σ, σ†] + Im

(
aeiα2 − bei(α2−α1)

)
(gφφ† − ζ)

+
√

2D0 Re
(
(−beiα2 + āei(α1−α2))σ

)
+
√

2D1 Re
(
(beiα2 + āei(α1−α2))σ

)
= 0 (3.9)

and

D0 Im
((
b̄eiβ2 + āei(β2−β1)

)
φ
)

+D1 Im
((
−b̄eiβ2 + āei(β2−β1)

)
φ
)

−
√

2gRe
((
āeiβ2σ† + b̄ei(β2−β1)σ

)
φ
)

= 0 (3.10)

The first equation (3.9) is the quarter-BPS boundary conditions for the vector multiplet
and the second equation (3.10) is that for the chiral multiplet. The parameters a and b fix
a choice of the supercharge. There are four basic boundary conditions for each of vector
and chiral multiplets so that totally we find sixteen types.

3.1 Simple examples

We first consider the case with a = b = 1 where the supersymmetric boundary conditions
have fewer terms. Although the following conditions would be required to preserve N = 1
supersymmetry, one needs to impose additional boundary conditions to preserve locality of
the bulk fields, which do not show up in the projection of supercurrents. In the following we
group the resulting quarter-BPS boundary conditions into four different sets of boundary
conditions for the vector multiplet, which we call N′N′′, N′D′′, D′N′′ and D′D′′.

3.1.1 N′N′′ boundary conditions

There are four distinct boundary conditions which are compatible with A-type Neumann
boundary conditions and B-type Neumann boundary conditions for the vector multiplet.
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For α1 = 0, α2 = 0, β1 = 0 and β2 = 0 we find

F01 −D1σ+ = 0, (3.11)
D0(Imφ)− g(Reφ)σ+ = 0. (3.12)

For α1 = 0, α2 = 0, β1 = 0 and β2 = π
2 we find

F01 −D1σ+ = 0, (3.13)
D0(Reφ) + g(Imφ)σ+ = 0. (3.14)

For α1 = 0, α2 = 0, β1 = π and β2 = 0 we find

F01 −D1σ+ = 0, (3.15)
D1(Imφ)− ig(Imφ)σ− = 0 (3.16)

For α1 = 0, α2 = 0, β1 = π and β2 = π
2 we find

F01 −D1σ+ = 0, (3.17)
D1(Reφ)− ig(Reφ)σ− = 0. (3.18)

The boundary condition for the vector multiplet take the same form as the B-type boundary
condition (2.160) and involves the Neumann boundary condition for gauge field and that
for σ+. While the B-type boundary conditions also need the condition (2.159), it is not
necessary for quarter of supersymmetry.

3.1.2 N′D′′ boundary conditions

There are four boundary conditions which are compatible with A-type Dirichlet boundary
condition and B-type Neumann boundary condition for the vector multiplet.

For α1 = 0, α2 = π
2 , β1 = 0 and β2 = 0 we find

g[σ, σ†]− iD0σ− = 0, (3.19)
D0(Imφ)− g(Reφ)σ+ = 0 (3.20)

For α1 = 0, α2 = π
2 , β1 = 0 and β2 = π

2 we find

g[σ, σ†]− iD0σ− = 0, (3.21)
D0(Reφ) + g(Imφ)σ+ = 0 (3.22)

For α1 = 0, α2 = π
2 , β1 = π and β2 = 0 we find

g[σ, σ†]− iD0σ− = 0, (3.23)
D1(Imφ)− ig(Imφ)σ− = 0 (3.24)

For α1 = 0, α2 = π
2 , β1 = π and β2 = π

2 we find

g[σ, σ†]− iD0σ− = 0, (3.25)
D1(Reφ)− ig(Reφ)σ− = 0 (3.26)

The boundary condition for the vector multiplet corresponds to (2.159) in the B-type
boundary conditions and contains the Dirichlet boundary condition for σ− together with
the condition [σ, σ†] = 0.
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3.1.3 D′N′′ boundary conditions

There are four boundary conditions which are compatible with A-type Neumann boundary
condition and B-type Dirichlet boundary condition for the vector multiplet. They can be
obtained from the N′D′′ boundary conditions by replacing the value of α1 with π.

For α1 = π, α2 = π
2 , β1 = 0 and β2 = 0 we find

gφφ† − ζ + iD1σ− = 0, (3.27)
D0(Imφ)− g(Reφ)σ+ = 0 (3.28)

For α1 = π, α2 = π
2 , β1 = 0 and β2 = π

2 we find

gφφ† − ζ + iD1σ− = 0, (3.29)
D0(Reφ) + g(Imφ)σ+ = 0 (3.30)

For α1 = π, α2 = π
2 , β1 = π and β2 = 0 we find

gφφ† − ζ + iD1σ− = 0, (3.31)
D1(Imφ)− ig(Imφ)σ− = 0 (3.32)

For α1 = π, α2 = π
2 , β1 = π and β2 = π

2 we find

gφφ† − ζ + iD1σ− = 0, (3.33)
D1(Reφ)− ig(Reφ)σ− = 0 (3.34)

The boundary condition for the vector multiplet corresponds to (2.162) in the B-type
boundary conditions and contains the Neumann boundary condition for σ− together with
the constraint gφφ† = 0.

3.1.4 D′D′′ boundary conditions

There are four boundary conditions which are compatible with A-type Dirichlet boundary
condition and B-type Dirichlet boundary condition for the vector multiplet. They can be
obtained from the N′N′′ boundary conditions by replacing the value of α1 with π.

For α1 = π, α2 = 0, β1 = 0 and β2 = 0 we get

D0σ+ = 0, (3.35)
D0(Imφ)− g(Reφ)σ+ = 0 (3.36)

For α1 = π, α2 = 0, β1 = 0 and β2 = π
2 we find

D0σ+ = 0, (3.37)
D0(Reφ) + g(Imφ)σ+ = 0 (3.38)

For α1 = π, α2 = 0, β1 = π and β2 = 0 we find

D0σ+ = 0, (3.39)
D1(Imφ)− ig(Imφ)σ− = 0 (3.40)
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For α1 = π, α2 = 0, β1 = π and β2 = π
2 we find

D0σ+ = 0, (3.41)
D1(Reφ)− ig(Reφ)σ− = 0 (3.42)

The boundary condition for the vector multiplet is identified with (2.161) in the B-type
boundary conditions, which is the Dirichlet boundary condition on σ+. While the B-type
boundary conditions also require the condition (2.162), we do not need the latter to preserve
one supercharge.

Therefore, the N′N′′, N′D′′, D′N′′ and D′D′′ boundary conditions for the vector mul-
tiplet is obtained by simply picking up one of the B-type boundary conditions, that
is (2.160), (2.159), (2.162) and (2.161) respectively. However, the four distinct quarter-
BPS boundary conditions for the chiral multiplet cannot be obtained by naively choosing
the half-BPS boundary conditions.

3.1.5 Singular solutions

We can also find singular solutions of the quarter-BPS boundary conditions. Note that as
in the B-type boundary conditions, the two kinds of boundary conditions

D1(Reφ)− ig(Reφ)σ− = 0 (3.43)

and
D1(Imφ)− ig(Imφ)σ− = 0 (3.44)

for the chiral multiplet can be solved by postulating the simple pole for σ− in the axial
gauge:

σ− ∼
u

x1 (3.45)

where u is some constant valued in the Lie algebra.
Given the singular profile (3.45), it is now straightforward to get solutions. For the

N′N′′, N′D′′ and D′D′′ boundary conditions one can solve them by following the previous
discussion for the generalized B-type Neumann boundary conditions whereas for the D′N′′

boundary conditions we can find solutions by following the discussion for the generalized
B-type Dirichlet boundary conditions.

3.2 Other cases

3.2.1 Mixed cases

Next consider the case with a = 0 and b = 1.
For fixed α1 and α2 one finds four different types of supersymmetric boundary condi-

tions of the vector multiplet:

F01 + (D0 −D1)σ+ = 0, (3.46)
g(φφ† − [σ, σ†]− ζ) + i(D0 −D1)σ− = 0, (3.47)
g(φφ† − [σ, σ†]− ζ)− i(D0 −D1)σ− = 0, (3.48)

F01 − (D0 −D1)σ+ = 0. (3.49)
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Similarly, there are four different types of the boundary conditions for the chiral mul-
tiplet for fixed β1 and β2:

(D0 −D1) Imφ− Re(φσ) = 0, (3.50)
(D0 −D1) Reφ+ Im(φσ) = 0, (3.51)
(D0 −D1) Reφ− Im(φσ) = 0, (3.52)
(D0 −D1) Imφ+ Re(φσ) = 0, (3.53)

These boundary conditions are mixed in that each of the conditions contain the both
Neumann and Dirichlet boundary conditions on the bosonic fields in a single equation as
encountered in the A-type generic boundary condition.

3.2.2 Corner

Another interesting situation with a quarter of supersymmetry is a corner configuration
of the 2d N = (2, 2) gauge theory placed on a quadrant R+ × R+. It should realize 0d
N = 1 supersymmetry. In order to preserve supersymmetry at a corner, say at x0 = x1 =
0 we should further impose the condition by demanding that the component J0 of the
supercurrent vanishes at x0 = 0, in addition to the vanishing component J1 at x1 = 0. To
maintain the equation of motion by employing the A-type and B-type boundary conditions
on fermions (see (2.48) and (2.127)–(2.129)), one finds that the only consistent conditions
consist of the A-type boundary conditions along the x1 and the B-type boundary conditions
along the x0 or vice versa. The resulting conditions imposed at a corner would be stronger
than the quarter-BPS boundary conditions that we discussed in the above. We defer a
study of the quarter-BPS corner conditions to future work.

4 Brane setup in Type IIA string theory

In this section, we construct the BPS-boundary conditions in terms of branes in Type IIA
string theory. We start with brane configurations producing 2d N = (2, 2) gauge theories
and then add additional branes to give either A-type of B-type boundary conditions. We
also show that the M-theory lift of these brane configurations is the same for both A-type
and B-type — the difference being simply which direction is compactified to reduce to
Type IIA string theory.

4.1 2d N = (2, 2) supersymmetric gauge theories

First, let us briefly review the Hanany-Hori construction [50] of 2d N = (2, 2) gauge theory.
We start from the brane configuration consisting of the following branes in Type IIA string

– 30 –



J
H
E
P
0
3
(
2
0
2
1
)
0
4
3

theory:
0 1 2 3 4 5 6 7 8 9

D2 ◦ ◦ − − − − ◦ − − −
NS5 ◦ ◦ ◦ ◦ ◦ ◦ − − − −
ÑS5 ◦ ◦ ◦ ◦ − − − − ◦ ◦
D4 ◦ ◦ − − − − − ◦ ◦ ◦
D̃4 ◦ ◦ − − ◦ ◦ − ◦ − −

(4.1)

These configurations break space-time symmetry down to SO(1, 1)01×SO(2)23×SO(2)45×
SO(2)89. Let εL and εR be the supersymmetry parameters of Type IIA string theory
associated with the left and right moving supercharges QL and QR. They are chiral and
antichiral

ΓεL = εL, ΓεR = −εR (4.2)

where Γ = Γ01···9. The supercharges preserved in the brane configuration (4.1) satisfy the
conditions (with some consistent convention chosen for the signs)

D2 : Γ016

εL
εR

 =

εR
εL


NS5 : Γ012345

εL
εR

 =

εL
εR


ÑS5 : Γ012389

εL
εR

 =

εL
εR


D4 : Γ01789

εL
εR

 =

 εR

−εL


D̃4 : Γ01457

εL
εR

 =

 εR

−εL



(4.3)

There are four preserved supercharges obeying the projection conditions (4.3).
We consider Nc D4-branes suspended between the NS5-brane say at x6 = x7 = x8 =

x9 = 0 and ÑS5-brane at x6 = L, x4 = x5 = 0 and Nf D4-branes which have the same
x6 position as the ÑS5-brane in the upper-half space x7 > 0 and Na D4-branes in the
lower-half space x7 < 0. Similarly one can also introduce D̃4-branes which have the same
x6 position as the NS5-brane.

Since the D2-branes have finite extent along x6, the low-energy effective theory on the
world-volume of the D2-branes is a two-dimensional field theory along (x0, x1) preserving
2d N = (2, 2) supersymmetry.

The D2-D2 strings yield a 2d N = (8, 8) U(Nc) vector multiplet. However, six of
eight scalar fields are frozen due to the boundary condition required at the end points of
NS5-brane and ÑS5-brane. The surviving two of eight scalar fields describe the motion of
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the D2-branes along the (x2, x3) directions and correspond to the complex scalar field σ in
the vector multiplet.3 The vector multiplet scalar σ has charge +2 under the U(1)23.

The open strings stretched between the D2-branes and upper-half D4-branes give rise
to the fundamental chiral multiplets Φi, i = 1, · · · , Nf . Similarly, the open strings between
the D2-branes and lower-half D4-branes lead to the antifundamental chiral multiplets Φ̃j ,
j = 1, · · · , Na. These matter multiplets carry charge +1 under the U(1)89.

The U(1)23 and U(1)45 are the U(1)A and U(1)V R-symmetries respectively. The
U(1)89 is the axial U(1) part of the U(Nf ) × U(Na) symmetry of the D4-branes, which
breaks down to the S [U(Nf )×U(Na)] flavor symmetry since the vector U(1) part of them
is gauged.

When Nf = Na, the D4-branes can combine to form Nf infinite D4-branes and the
flavor symmetry is broken to SU(Nf ). For Nf ≥ Nc there are

(
Nf

Nc

)
supersymmetric ground

states and supersymmetry is broken for Nf < Nc as a consequence of the s-rule.
The parameters in the 2d N = (2, 2) gauge theories are realized as the positions of the

D4-branes and NS5-branes. The gauge coupling is given by the distance L between the
NS5- and ÑS5-branes along the x6 direction.

1
g2 = Llst

gst
(4.4)

where gst is the Type IIA string coupling constant.
The FI parameter for the U(1) factor of the U(Nc) gauge symmetry is realized by the

x7 position of ÑS5-brane

− ζ = x7(ÑS5)
gstlst

(4.5)

The mass parameter is given by the positions in the (x4, x5) directions of joined i-th
upper-half D4-brane and j-th lower-half D4-brane

mij = x4(D4ij) + ix5(D4ij). (4.6)

The twisted mass parameter m̃(i)
f for the i-th fundamental chiral multiplet and the

twisted mass parameter m̃a for the j-th antifundamental chiral multiplet are realized by
the (x2, x3) positions of the upper-half and lower-half D4-branes respectively

m̃
(i)
f = x2(D4i) + ix3(D4i)

l2st
, m̃(j)

a = x2(D4j) + ix3(D4j)
l2st

. (4.7)

The theta parameter is most simply described in the M-theory lift, corresponding to
the separation of the M5-brane and M̃5-brane along the x10 direction where the M5-brane
and M̃5-brane are lifted from the NS5-brane and ÑS5-brane respectively. The D4 and
D̃4 brane also lift to M5-branes while the D2-branes become M2-branes. These M-theory
brane configurations describe M2-branes ending on intersecting M5-branes.

The classical Coulomb branch of the theory corresponds to the (x2, x3) positions of
the D2-branes suspended between NS5- and ÑS5-branes. The classical Higgs branch of

3In terms of the string length lst, the vector multiplet scalar is given by σ = l−2
st (x3 + ix4).
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the theory is parametrized by the (x7, x8, x9) positions of D2-branes stretched between the
D4-branes.

We note that there is another type of D4-brane, which we call D̃4-brane. When we
have both D4-branes and D̃4-branes, the theory may have superpotential terms [62].

The 2d N = (2, 2) supersymmetric gauge theories with orthogonal and symplectic
gauge group studied in [54] can be constructed by using orientifold planes [63]. For sim-
plicity we do not include orientifold planes and so focus only on unitary gauge groups.

4.2 A-type boundaries

4.2.1 A-type boundary conditions

Now we would like to find the brane construction of the A-type boundary conditions. We
further introduce the NS5′′-branes or/and D4′′-branes to the configuration (4.1):

0 1 2 3 4 5 6 7 8 9
D2 ◦ ◦ − − − − ◦ − − −
NS5 ◦ ◦ ◦ ◦ ◦ ◦ − − − −
ÑS5 ◦ ◦ ◦ ◦ − − − − ◦ ◦
D4 ◦ ◦ − − − − − ◦ ◦ ◦
D̃4 ◦ ◦ − − ◦ ◦ − ◦ − −

NS5′′ ◦ − ◦ ◦ ◦ − ◦ − − ◦
ÑS5′′ ◦ − ◦ ◦ − ◦ ◦ − ◦ −
D4′′ ◦ − − − − ◦ ◦ ◦ ◦ −
D̃4′′ ◦ − − − ◦ − ◦ ◦ − ◦

(4.8)

The supercharges preserved in the brane configuration (4.8) satisfy the conditions (4.3)
and

NS5′′ : Γ023469

εL
εR

 =

εL
εR


ÑS5

′′
: Γ023568

εL
εR

 =

εL
εR


D4′′ : Γ05678

εL
εR

 =

−εR
εL


D̃4
′′

: Γ04679

εL
εR

 =

−εR
εL



(4.9)

It follows that the configuration (4.8) preserves two supercharges. We identify this with 1d
N = 2A supersymmetry along the x0 direction as the continuous R-symmetry is classically
broken.
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We consider the configuration with the NS5-brane at x6 = x7 = x8 = x9 = 0, the ÑS5
at x6 = L, x4 = x5 = x7 = 0 and the D4-branes at x6 = L, x2 = x3 = x4 = x5 = 0 so that
FI parameters, mass parameters and twisted mass parameters are set to zero.

4.2.2 NS5′′-brane

When a D2-brane is stretched between the NS5-brane and ÑS5-brane along the x6 direction,
it admits the 2d N = (2, 2) U(1) vector multiplet. The boundary condition coming from
the NS5′′-brane at x1 = x5 = x7 = x8 = 0 projects out the A1 component of the gauge
field while the complex scalar field σ describing the motion of D2-branes along the (x2, x3)
directions can fluctuate and the A0 component of gauge field survives. Thus the NS5′′-brane
provides the A-type Neumann boundary condition for the vector multiplet

F01 = 0, (4.10)
∂1σ = 0, (4.11)

which correspond to (2.62) and (2.64) for α = 0. However, for the bulk supersymmetry to
be unbroken, the D4-brane must be introduced.

When an upper-half D4-brane emanating from the ÑS5-brane at x6 = L is further
added, the effective D2-brane theory has a chiral multiplet of charge +1 which arises
from D2-D4 strings. As the D4-brane intersects with the ÑS5-brane at x6 = L, the
complex scalar field in the chiral multiplet would correspond to the fluctuations of the
D2-brane along the (x8, x9) directions. The boundary condition arising from the NS5′′-
brane classically fixes the x8 position of the D2-brane. This would split the complex scalar
fields into real scalar fields obeying the Neumann and Dirichlet boundary conditions

Imφ = 0, (4.12)
∂1(Reφ) = 0, (4.13)

which can be obtained from (2.72) and (2.73) for β = 0 in the A-type boundary condition
for the chiral multiplet.

Thus the NS5′′-like boundary conditions may naturally correspond to the case of α = 0
and β = 0, equipped with the fermionic boundary conditions

γ1λ = λ, (4.14)
γ1ψ = ψ. (4.15)

Similarly, the ÑS5
′′
-brane at x1 = x4 = x7 = x9 = 0 may naturally lead to the A-

type Neumann boundary conditions (4.10) and (4.11) for the U(1) vector multiplet and
the A-type boundary conditions for the chiral multiplet opposite to the conditions (4.12)
and (4.13), which are realized when α = 0 and β = π.

However, we found from the field theory analysis that the additional conditions (2.74)
and (2.75) (or (2.78) and (2.79)) cannot be simply solved together with the Neumann
boundary conditions for the vector multiplet. At this stage it is not clear to see such an
obstruction associated to the NS5′′-brane (or ÑS5

′′
-brane) from the brane picture.
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4.2.3 D4′′-brane

On the other hand, the D4′′-brane at x1 = x2 = x3 = x4 = x9 on which the D2-brane ends
projects out the A0 component of the gauge field and the motion of D2-branes along the
(x2, x3) directions described by complex scalar field σ whereas A1 is not frozen. Hence the
D4′′-brane yields the A-type Dirichlet boundary conditions for the vector multiplet.

A0 = 0, (4.16)
σ = 0, (4.17)

which can be found from the conditions (2.67) and (2.68) for α = π. We note that, unlike for
the B-type configurations we will discuss later, this boundary condition, fixing σ, excludes
any singular boundary behaviour for the D2-branes. So, for A-type boundary conditions
we do not get any Nahm pole like behaviour.

When an upper-half D4-brane coinciding with the ÑS5-brane is introduced, the theory
has a charged multiplet coupled to the U(1) vector multiplet and the D4′′-brane then fixes
the x9 position of the D2-brane. This requires a splitting of the complex scalar field into
two real scalar fields obeying the boundary conditions

Reφ = 0, (4.18)
D1(Imφ) = 0, (4.19)

which are different from the boundary conditions (4.12) and (4.13) imposed by the NS5′′-
brane. Therefore the D4′′-brane leads to the A-type boundary condition with α = π and
β = π. Correspondingly the fermionic boundary conditions for the D4′′-brane are

γ1λ = −λ, (4.20)
γ1ψ = −ψ. (4.21)

Analogously, the D̃4
′′
-brane at x1 = x2 = x3 = x5 = x8 also introduces the A-

type Dirichlet boundary condition for the U(1) vector multiplet and the A-type boundary
conditions (4.12) and (4.13) for the chiral multiplets. This corresponds to the A-type
boundary conditions with α = π and β = 0.

In summary, any of these additional four branes, NS5′′, ÑS5
′′
, D4′′, D̃4

′′
, placed at x1 =

0 would naturally correspond to the basic A-type boundary conditions in 2d N = (2, 2)
gauge theories. The angle α that defines the boundary conditions (2.48) on the gaugino
λ controls a ratio of the 5-branes and the 4-branes for each system. The angle β that
determines the boundary condition (2.48) on the matter fermion ψ describes the ratio for
two types of 5-brane, NS5′′- and ÑS5

′′
-branes and that for two types of 4-branes, D4′′- and

D̃4
′′
-branes.

4.2.4 M-theory configuration

Consider the M-theory lift of the D2-NS5-ÑS5-NS5′′ configuration. It is again recognized
as the M2-M5 system, however, unlike the D2-NS5-ÑS5 system of the 2d N = (2, 2) gauge
theories, all the types of NS5-branes and D4-branes can become a single wrapped M5-brane.
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This M5-brane fills the (x0, x2, x3) directions and wraps a special Lagrangian submanifold
of a Calabi-Yau three-fold and the M2-brane has a boundary on this special Lagrangian
cycle. The M5-brane will lead to a 3d N = 2 field theory in the (x0, x2, x3) directions while
the M2-brane will be understood as a charged particle in the theory.

In fact the complete A-type system can be realized in M-theory as an M5-brane
wrapped on the product of a holomorphic curve in C2, having complex coordinates x2 + ix3

and x7 +ix10, with a special Lagrangian 3-cycle in C3, having complex coordinates x1 +ix6,
x4−ix8 and x5+ix9. In particular, reducing to Type IIA, branes wrapping x7+ix10 become
D4-branes while those wrapping x2 + ix3 become NS5-branes.

In general an M5-brane wrapping a special Lagrangian 3-cycle will preserve one eighth
on the supersymmetry, i.e. 4 supercharges. We see the four types of NS5-branes and D4-
branes arising from M5-branes wrapping the real 3-cycles in the 145, 189, 469 and 568
directions. For the lifts of the NS5-banes we have the projection conditions

Γ023Γ145ε = ε (4.22)
Γ023Γ189ε = ε (4.23)
Γ023Γ568ε = ε (4.24)
Γ023Γ469ε = ε (4.25)

but it is easy to see that only 3 conditions are independent, and indeed we can express the
conditions as

Γ012345ε = ε (4.26)
Γ4589ε = −ε (4.27)
Γ1468ε = −ε . (4.28)

A general holomorphic curve in C2 will preserve half of the supersymmetry and in this
case is described by the additional projection condition

Γ237(10)ε = −ε (4.29)

resulting in 2 preserved supercharges. It can be quickly checked that these four independent
conditions imply the projection conditions for an M2-brane in the 016 directions

Γ016ε = ε (4.30)

so that overall the system we considered indeed preserves 2 supercharges. Note that because
the M5-brane wraps a special Lagrangian 3-cycle where one of the complex coordinates is
x1 + ix6, an M2-brane will always have a boundary on (or codimension-one intersection
with) the M5-brane.

– 36 –



J
H
E
P
0
3
(
2
0
2
1
)
0
4
3

4.2.5 N = 2A line operators

Let us further introduce the following additional D2′′-branes or/and D2′′′-branes:

0 1 2 3 4 5 6 7 8 9
D2 ◦ ◦ − − − − ◦ − − −
NS5 ◦ ◦ ◦ ◦ ◦ ◦ − − − −
ÑS5 ◦ ◦ ◦ ◦ − − − − ◦ ◦
D4 ◦ ◦ − − − − − ◦ ◦ ◦
D̃4 ◦ ◦ − − ◦ ◦ − ◦ − −

NS5′′ ◦ − ◦ ◦ ◦ − ◦ − − ◦
ÑS5′′ ◦ − ◦ ◦ − ◦ ◦ − ◦ −
D4′′ ◦ − − − − ◦ ◦ ◦ ◦ −
D̃4′′ ◦ − − − ◦ − ◦ ◦ − ◦
D2′′ ◦ − − − ◦ − − − ◦ −
D̃2
′′
◦ − − − − ◦ − − − ◦

(4.31)

The supercharges preserved in the brane configuration (4.31) satisfy the condi-
tions (4.3), (4.9) and

D2′′ : Γ048

εL
εR

 =

−εR
−εL


D̃2
′′

: Γ059

εL
εR

 =

εR
εL

 (4.32)

One can check that the configuration (4.31) preserves 1d N = 2A supersymmetry along
the x0 direction without further breaking supersymmetry.

When the D2′′-branes or/and D̃2
′′
-branes at x1 = 0 are added, they would realize

domain walls or line operators compatible with the A-type boundary condition in 2d N =
(2, 2) gauge theories. Although we do not pursue here, it would be interesting to figure
out the field theory interpretation. We also note that the M-theory lift could in general
describe a single M2-brane wrapping a holomorphic cycle in C3.
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4.3 B-type boundaries

4.3.1 B-type boundary conditions

Now let us consider the brane construction of the B-type boundary conditions. We take
another set of additional NS5′-branes or/and D4′-branes as follows:

0 1 2 3 4 5 6 7 8 9
D2 ◦ ◦ − − − − ◦ − − −
NS5 ◦ ◦ ◦ ◦ ◦ ◦ − − − −
ÑS5 ◦ ◦ ◦ ◦ − − − − ◦ ◦
D4 ◦ ◦ − − − − − ◦ ◦ ◦
D̃4 ◦ ◦ − − ◦ ◦ − ◦ − −
NS5′ ◦ − ◦ − − − ◦ ◦ ◦ ◦
ÑS5′ ◦ − ◦ − ◦ ◦ ◦ ◦ − −
D4′ ◦ − − ◦ ◦ ◦ ◦ − − −
D̃4′ ◦ − − ◦ − − ◦ − ◦ ◦

(4.33)

The supercharges preserved in the brane configuration (4.33) satisfy the conditions (4.3)
and

NS5′ : Γ026789

εL
εR

 =

εL
εR


ÑS5

′
: Γ024567

εL
εR

 =

εL
εR


D4′ : Γ03456

εL
εR

 =

−εR
εL


D̃4
′
: Γ03689

εL
εR

 =

−εR
εL



(4.34)

It can be checked that the configuration (4.33) preserves two supercharges. In this case
the space-time symmetry is classically broken to SO(2)45 × SO(2)89. We identify the
corresponding supersymmetry with 1d N = 2B supersymmetry along x0.

Again we take the configuration with the NS5-brane at x6 = x7 = x8 = x9 = 0, the
ÑS5 at x6 = L, x4 = x5 = x7 = 0 and the D4-branes at x6 = L, x2 = x3 = x4 = x5 = 0 so
that FI parameters, mass parameters and twisted mass parameters are turned off.

4.3.2 NS5′-brane

For the theory of a 2d N = (2, 2) U(1) vector multiplet arising from a D2-brane suspended
between the NS5-brane and ÑS5-brane along the x6 direction, the NS5′-brane at x1 = x3 =
x4 = x5 = 0 on which the D2-brane terminates fixes the motion of the D2-brane along
the x3 direction and the A1 component of gauge field, while the motion of the D2-brane
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along x2 is not fixed. Accordingly, the NS5′-brane realizes the B-type Neumann boundary
conditions for the U(1) vector multiplet

F01 = 0, (4.35)
∂1σ+ = 0, (4.36)
σ− = 0, (4.37)

where σ+ and σ− correspond to the x2 and x3 positions of the D2-brane. These can be
found from the equations (2.139), (2.140) and (2.141) for α = 0.

In the presence of an upper-half D4-brane, which leads to a charged chiral multiplet,
when the D2-brane ends on the NS5′-brane, the motion of the D2-brane along the (x8, x9)
directions can still fluctuate. This corresponds to the B-type Neumann boundary conditions
for the chiral multiplet

∂1φ = 0, (4.38)
∂1φ

† = 0, (4.39)

which are the conditions (2.150) and (2.151) obtained for β = π. One can then identify
the NS5′-like boundary conditions with the B-type boundary conditions with α = 0 and
β = π. Whereas these basic boundary conditions will correspond to the NS5′-brane at
x1 = x3 = x4 = x5 = 0, it would be interesting to shift the transverse positions of the
NS5′-brane to find the generalized boundary conditions, as we argued for the deformation
of the Neumann boundary conditions for the vector multiplet with a singular profile of σ−
in the field theory analysis in section 2.2.6.

On the other hand, the B-type Neumann boundary conditions (4.35), (4.36) and (4.37)
for the U(1) vector multiplet can be also given by the ÑS5

′
-brane at x1 = x3 = x8 = x9 =

0. However, in this case the B-type boundary conditions for the chiral multiplets are
the Dirichlet boundary conditions, rather than the Neumann boundary conditions (4.38)
and (4.39). Thus the ÑS5

′
-brane would lead to the B-type boundary conditions with α = 0

and β = 0.

4.3.3 D4′-brane

When the D2-brane terminates on a D4′-brane at x1 = x2 = x7 = x8 = x9 = 0, the motion
of the D2-brane along the x2 direction and the A0 component of gauge field are frozen,
while the D2-brane can still free move along the x3 direction. Thus the D4′-brane realizes
the B-type Dirichlet boundary conditions for the U(1) vector multiplet

A0 = 0, (4.40)
σ+ = 0, (4.41)

D1σ− = 0, (4.42)

which we found in the equations (2.145), (2.146) for α = π.
In the presence of an upper-half D4-brane, the effective theory has a charged chiral

multiplet. When the D2-brane ends on the D4′-brane, the fluctuations of the D2-brane
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along the (x8, x9) directions are projected out. This gives rise to the B-type Dirichlet
boundary conditions for the chiral multiplet

φ = 0, (4.43)
φ† = 0, (4.44)

which can be obtained from the equations (2.154) and (2.155) for β = 0. Hence the D4′-like
boundary condition is identified with the B-type boundary condition with α = π and β = 0.

So far, we have argued that the NS5′-branes, the ÑS5
′
and the D4′-branes introduced

at x1 = 0 can produce the basic B-type boundary conditions in 2d N = (2, 2) gauge
theories in such a way that the phase α in the boundary conditions (2.128) on the gaugino
λ determines a ratio of 5-branes and the 4-branes, while the phase β in the boundary
conditions (2.129) on the matter fermion ψ encodes the ratio for two types of 5-branes and
that for two types of 4-branes.

Although one may expect that a D̃4
′
-brane at x1 = x2 = x4 = x5 = x7 = 0 also realizes

the B-type Dirichlet boundary conditions (4.40), (4.41) and (4.42) for the U(1) vector
multiplet, as well as the B-type Neumann-type boundary conditions for the chiral multiplet,
it does not seem to be the case because we found from the field theory analysis that such
a combination of the basic boundary conditions for vector and chiral multiplets cannot
be simply solved due to the obstruction from the conditions (2.147), (2.152) and (2.153).
Instead, we found in section 2.2.7 that the corresponding B-type boundary conditions are
generalized so that they allow for the consistent singular solutions where σ− and φ have a
simple pole at the boundary. Indeed this might be expected from the brane configuration
as the D2-D̃4

′
branes are T-dual to the familiar D1-D3 system described by the Nahm

equation [51, 52].
As the residue t at the pole (2.171) for σ− typically breaks the boundary global symme-

try G∂ = U(Nc) down to U(Nc−Ns), this will correspond to the brane configuration where
Ns of the Nc D2-branes end on a single D̃4

′
-brane in a similar manner as the regular Nahm

pole boundary condition of rank r realized by the D5-brane on which r D3-branes end [1].
In fact, when we rotate the ÑS5-brane to be parallel to the NS5-brane and T-dualize the
system along x2, the D2-branes ending on the D̃4

′
-brane become the D3-branes ending

on the D5-brane. However, in our case the fundamental scalar field φ arising from the
D2-D4 strings also contains a pole (2.189) whose residue c satisfies the relation t = −cc†,
which may also break the U(Nf ) flavor symmetry down to U(Nf −Ns) as we discussed in
section 2.2.7. In the brane configuration, such a symmetry breaking may occur when some
of Nf flavor D4-branes terminate on the single D̃4

′
-brane at x1 = 0. On the other hand, we

argued for the regular terms appearing in the solutions. However, it is not clear from the
brane configuration. We illustrate the case with a maximal rank of the pole with Nc = Ns

where all the D2-branes and Ns D4-branes terminate on the D̃4
′
-brane in figure 1.

4.3.4 M-theory configuration

As for the A-type brane configuration, we can lift the IIA configuration to M-theory. Inter-
estingly, we then see that in eleven dimensions the A-type and B-type brane configurations
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Ns

D4# ′

NS5#NS5

D4

x6

x1

Ns

Nf−Ns D4

Figure 1. The B-type Dirichlet boundary conditions for the U(Ns) vector multiplet coupled to Nf

chiral multiplets with singularity realized by the D̃4
′
-brane at x1 = 0 on which Ns D2-branes end

and Ns of Nf D4-branes end.

are equivalent, i.e. they can both be described as an M5-brane wrapping the product of
a holomorphic curve in C2 with a special Lagrangian 3-cycle in C3. The only difference
is our identification of the coordinates, and in particular when reducing to ten dimensions
with the M-theory circle in the C2 we get A-type while if it is in the C3 we get B-type.

Specifically, for A-type we saw that the complex coordinates in C2 were x2 + ix3 and
x7 + ix10, while for B-type we have x4 + ix5 and x8 + ix9. For the C3 we had coordinates
x1 + ix6, x4 − ix8 and x5 + ix9 for A-type while for B-type we have instead x1 + ix6,
x2 + ix10 and x3 + ix7. In both cases we preserve 2 supercharges from the wrapped M5-
brane, the M2-branes spanning 016 always have a boundary on the M5-brane since x1 + ix6

is a complex coordinate in C3 in both cases, and the M2-branes do not break any further
supersymmetry. For B-type one set of four independent projection conditions is

Γ012345ε = ε (4.45)
Γ237(10)ε = −ε (4.46)

Γ1367ε = ε (4.47)
Γ4589ε = −ε . (4.48)

In summary, the A-type and B-type boundary conditions can be realized in M-theory
setup as follows:

space-time: R × C2 × C3

∪ ∪
M5: R × Σ × M3

M2: R × C

(4.49)
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where the M5-brane is wrapped on the special Lagrangian 3-cycle M3 in C3 and the holo-
morphic 2-cycle Σ in C2 while the M2-branes wrap the holomorphic 2-cycle C in C3 whose
boundary is in M3.

It may be interesting to explore the supergravity description of such M-brane configu-
rations. We are not aware of any such solutions but solutions for the M5-brane wrapping
Σ ×M3 have been described [64]. It may be possible to understand some aspects of the
field theory using M-brane probes in these backgrounds, such as calculating central charges
similar to [65]. It would be particularly interesting to investigate supergravity solutions in-
cluding M2-branes giving rise to AdS2 geometry as duals of superconformal QM. Examples
without M2-branes were found in [64, 66].

4.3.5 N = 2B line operators

We also note that there are other objects preserving N = 2B supersymmetry along x0. Let
us further introduce the fundamental strings (F1) and D2′-branes:

0 1 2 3 4 5 6 7 8 9
D2 ◦ ◦ − − − − ◦ − − −
NS5 ◦ ◦ ◦ ◦ ◦ ◦ − − − −
ÑS5 ◦ ◦ ◦ ◦ − − − − ◦ ◦
D4 ◦ ◦ − − − − − ◦ ◦ ◦
D̃4 ◦ ◦ − − ◦ ◦ − ◦ − −
NS5′ ◦ − ◦ − − − ◦ ◦ ◦ ◦
ÑS5′ ◦ − ◦ − ◦ ◦ ◦ ◦ − −
D4′ ◦ − − ◦ ◦ ◦ ◦ − − −
D̃4′ ◦ − − ◦ − − ◦ − ◦ ◦
F1 ◦ − ◦ − − − − − − −
D2′ ◦ − − ◦ − − − ◦ − −

(4.50)

The supercharges preserved in the brane configuration (4.50) satisfy the additional condi-
tions (4.3), (4.34) and

F1 : Γ02

εL
εR

 =

 εL

−εR


D2′ : Γ037

εL
εR

 =

εR
εL

 (4.51)

The configuration (4.50) preserves 1d N = 2B supersymmetry along the x0 direction
without further breaking supersymmetry.

The fundamental strings along the (x0, x2) directions or/and D2′-branes would realize
domain walls or line operators supported along the boundary which are compatible with
the B-type boundary condition in 2d N = (2, 2) gauge theories. In the M-theory lift, the
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F1 and D2’ become M2-branes, and as for the A-type case, we can have a single M2-brane
wrapping a holomorphic cycle in C3.

4.3.6 Dualities

As we commented above, the A-type and B-type configurations are equivalent when lifted
to M-theory, the only difference being the choice of direction to compactify on to reduce
to Type IIA string theory, along with a relabelling of some of the coordinates. One choice
of mapping of coordinates is

A− type 0 1 2 3 4 5 6 7 8 9 10
B− type 0 1 4 5 2 3 6 8 10 7 9

(4.52)

which results in the following mapping of branes

A− type NS5 ÑS5 D4 D̃4 NS5′′ ÑS5′′ D4′′ D̃4′′ D2′′ D̃2′′

B− type NS5 D̃4 D4 ÑS5 ÑS5′ D4′ D̃4′ NS5′ F1 D2′
(4.53)

Now we also have several mappings of the coordinates which preserve the A-type or B-type
configurations. We consider only those which map D2-branes to D2-branes and do not re-
sult in new orientations of branes we have not considered. The mappings which satisfy this
condition and have a non-trivial effect on some branes are for A-type any combination of

• x2 ↔ x7 and x3 ↔ x10

• x4 ↔ x5 and x8 ↔ x9

• x4 ↔ x8 and x5 ↔ x9

and for B-type any combination of

• x4 ↔ x8 and x5 ↔ x9

• x2 ↔ x3 and x7 ↔ x10

• x2 ↔ x10 and x3 ↔ x7 .
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This gives the following mapping of branes

A0 A− type NS5 ÑS5 D4 D̃4 NS5′′ ÑS5′′ D4′′ D̃4′′ D2′′ D̃2′′

A1 A− type D̃4 D4 ÑS5 NS5 D̃4′′ D4′′ ÑS5′′ NS5′′ D2′′ D̃2′′

A2 A− type NS5 ÑS5 D4 D̃4 ÑS5′′ NS5′′ D̃4′′ D4′′ D̃2′′ D2′′

A3 A− type D̃4 D4 ÑS5 NS5 D4′′ D̃4′′ NS5′′ ÑS5′′ D̃2′′ D2′′

A4 A− type ÑS5 NS5 D̃4 D4 ÑS5′′ NS5′′ D̃4′′ D4′′ D2′′ D̃2′′

A5 A− type D4 D̃4 NS5 ÑS5 D4′′ D̃4′′ NS5′′ ÑS5′′ D2′′ D̃2′′

A6 A− type ÑS5 NS5 D̃4 D4 NS5′′ ÑS5′′ D4′′ D̃4′′ D̃2′′ D2′′

A7 A− type D4 D̃4 NS5 ÑS5 D̃4′′ D4′′ ÑS5′′ NS5′′ D̃2′′ D2′′

B0 B− type NS5 D̃4 D4 ÑS5 ÑS5′ D4′ D̃4′ NS5′ F1 D2′

B1 B− type ÑS5 D4 D̃4 NS5 NS5′ D̃4′ D4′ ÑS5′ F1 D2′

B2 B− type NS5 D̃4 D4 ÑS5 D4′ ÑS5′ NS5′ D̃4′ D2′ F1
B3 B− type ÑS5 D4 D̃4 NS5 D̃4′ NS5′ ÑS5′ D4′ D2′ F1
B4 B− type D̃4 NS5 ÑS5 D4 D4′ ÑS5′ NS5′ D̃4′ F1 D2′

B5 B− type D4 ÑS5 NS5 D̃4 D̃4′ NS5′ ÑS5′ D4′ F1 D2′

B6 B− type D̃4 NS5 ÑS5 D4 ÑS5′ D4′ D̃4′ NS5′ D2′ F1
B7 B− type D4 ÑS5 NS5 D̃4 NS5′ D̃4′ D4′ ÑS5′ D2′ F1

(4.54)

Another possible duality is to T-dualize to Type IIB along x2, then perform S-duality
before T-dualizing back to Type IIA, again along x2. This would result in new orientations
of branes, but if we then exchange x3 ↔ x7 we get the same type of branes back. However,
this is already included in the above mappings via M-theory, e.g. mapping A0 to A1 or B0
to B4. It is worth noting that this TST duality does not exchange A-type with B-type,
but as we see above this is possible via M-theory.

There will also be interesting Seiberg-like dualities arising from Hanany-Witten brane
rearrangements. It would be interesting to explore some of these dualities and find inter-
pretations in the field theory, but we leave that for future work. In particular we expect to
find dualities of boundary conditions related to 2d mirror symmetry and through T-duality
this should be closely related to 3d mirror symmetry [67–71].
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4.4 Quarter-BPS boundaries

4.4.1 N = 1 quarter BPS boundary conditions

When we consider the configuration in which the NS5′′- and D4′′-branes and the NS5′- and
D4′-branes exist

0 1 2 3 4 5 6 7 8 9
D2 ◦ ◦ − − − − ◦ − − −
NS5 ◦ ◦ ◦ ◦ ◦ ◦ − − − −
ÑS5 ◦ ◦ ◦ ◦ − − − − ◦ ◦
D4 ◦ ◦ − − − − − ◦ ◦ ◦
D̃4 ◦ ◦ − − ◦ ◦ − ◦ − −
NS5′ ◦ − ◦ − − − ◦ ◦ ◦ ◦
ÑS5′ ◦ − ◦ − ◦ ◦ ◦ ◦ − −
NS5′′ ◦ − ◦ ◦ ◦ − ◦ − − ◦
ÑS5′′ ◦ − ◦ ◦ − ◦ ◦ − ◦ −
D4′ ◦ − − ◦ ◦ ◦ ◦ − − −
D̃4′ ◦ − − ◦ − − ◦ − ◦ ◦
D4′′ ◦ − − − − ◦ ◦ ◦ ◦ −
D̃4′′ ◦ − − − ◦ − ◦ ◦ − ◦

(4.55)

one can check that there remains N = 1 supersymmetry. In addition, one can also in-
troduce the fundamental strings and three kinds of D2-branes in the configurations (4.31)
and (4.50), corresponding to the line operators keeping N = 1 supersymmetry.

According to the identification of the parameters in the half-BPS boundary conditions,
we can identify the phases α1, α2, β1 and β2 introduced in the field theory analysis with
parameters which characterize the different types of boundary branes. The angle parameter
α1 distinguishes two kinds of branes for the B-type so that the case with α1 = 0 (resp. π)
describes the 4-brane (resp. 5-brane). The parameter α2 − α1 distinguishes the two kinds
of branes for the A-type so that one finds the same kinds of branes in A-type for α2 − α1
= 0 mod π and the opposite kinds of branes in A-type for α2 − α1 = π/2 mod π. The
angle parameters β1 and β2 further characterize the rotation of each of the 4-branes (and
5-branes) in B-type and A-type respectively.

As shown in table 1, sixteen combinations of A-type and B-type boundary branes
correspond to the basic quarter-BPS boundary conditions discussed in section 3. We see
that the N′N′′ boundary conditions are realized for (α1, α2) = (0, 0), the N′D′′ boundary
conditions for (α1, α2) = (0, π2 ), the D′D′′ boundary conditions for (α1, α2) = (π, 0) and
the D′N′′ boundary conditions for (α1, α2) = (π, π2 ).

In particular, we can again check that σ+ which corresponds to the x2 positions of
D2-branes is fixed by a pair of A-type and B-type D4-branes while it can still freely move
for a pair of A-type and B-type NS5-branes as we found in the D′D′′ boundary conditions
and N′N′′ boundary conditions.
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a pair of branes boundary condition α1 α2 β1 β2

ÑS5
′
-NS′′ N′N′′ 0 0 0 0

ÑS5
′
-ÑS5

′′
N′N′′ 0 0 0 π

2

NS5′-NS5′′ N′N′′ 0 0 π π
2

NS5′-ÑS5
′′

N′N′′ 0 0 π 0
ÑS5

′
-D̃4

′′
N′D′′ 0 π

2 0 0
ÑS5

′
-D4′′ N′D′′ 0 π

2 0 π
2

NS5′-D4′′ N′D′′ 0 π
2 π 0

NS5′-D̃4
′′

N′D′′ 0 π
2 π π

2

D̃4
′
-D̃4

′′
D′D′′ π 0 0 0

D̃4
′
-D4′′ D′D′′ π 0 0 π

2

D4′-D̃4
′′

D′D′′ π 0 π π
2

D4′-D4′′ D′D′′ π 0 π 0
D̃4
′
-NS′′ D′N′′ π π

2 0 0
D̃4
′
-ÑS5

′′
D′N′′ π π

2 0 π
2

D4′-ÑS5
′′

D′N′′ π π
2 π 0

D4′-NS5′′ D′N′′ π π
2 π π

2

Table 1. The phases (α1, α2, β1, β2) appearing in the fermionic quarter BPS boundary conditions
for a = b = 1 and the corresponding pairs of A-type and B-type branes in Type IIA string theory.

We have not yet understood the brane construction of the mixed quarter-BPS boundary
conditions with a = 0, b = 1. It would be intriguing to explore the additional objects such
as fluxes which realize them while maintaining the 1d N = 1 supersymmetry.

Finally, we note that the quarter-BPS configurations have a simple M-theory descrip-
tion as a single M5-brane wrapping a special Lagrangian 5-cycle in C5 with complex coor-
dinates x1 + ix6, x2 + ix10, x3 + ix7, x4− ix8 and x5 + ix9. This specialises to the half-BPS
configurations, noting that in that case the holomorphic curve in C2 can equivalently be
described as a special Lagrangian 2-cycle with a different complex structure. As for the
half-BPS configurations, we are not aware of any supergravity solutions for the M-brane
system, but for the M5-brane alone wrapping a special Lagrangian 5-cycle, some solutions
are described in [72].
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A Reduction from 4d N = 1 to 2d N = (2, 2)

Here we summarize some of the conventions used, particularly for spinors and superfields.
We also include some details of the reduction from 4d N = 1 to 2dN = (2, 2) as particularly
for the supercurrent much of the calculation can be carried out more conveniently in 4d
and then the result reduced to 2d.

A.1 Spinor conventions

Our spinor conventions in 4d are those used in [73]. For convenience we list some of these
here.

• We use 4d spacetime indices m ∈ {0, 1, 2, 3} with Minkowski metric ηmn, with η00 =
−1.

• We use standard α, α̇ notation in 4d, lowering and raising indices with εαβ and εαβ

where ε12 = −ε12 = 1. Specifically, ψα = εαβψβ and ψα = εαβψ
β . We also refer to

the spinor indices (1, 2) as (−,+).

• The 4d gamma-matrices can be written in terms of σmαα̇, the three Pauli sigma matri-
ces together with σ0 = −σ0 = −I. The matrices σ̄m are defined by raising the spinor
indices on σm, σ̄mα̇α = εα̇β̇εαβσm

αβ̇
.

• We contract spinor indices as follows: λψ = λαψα, λ̄ψ̄ = λ̄α̇ψ̄
α̇, θσmθ̄ = θασmαα̇θ̄

α̇

and θ̄σ̄mθ = θ̄α̇(σ̄m)α̇αθα.

• Antisymmetric products of sigma matrices are defined as

σmn = 1
4 (σmσ̄n − σnσ̄m) (A.1)

σmn = 1
4 (σ̄mσn − σ̄nσm) (A.2)

The following summarizes our conventions in 2d, and the reduction from 4d to 2d,
matching those in [74] for 2d N = (2, 2) supersymmetric field theories.

• We denote the 2d Minkowski metric ηµν with η00 = −1 and in the reduction from 4d
we identify Lorentz indices m = 0 with µ = 0 but m = 3 with µ = 1.

• The 4d vector, chiral and anti-chiral multiplets all reduce to the corresponding 2d
multiplets. The 4d gauge potential vm becomes the 2d gauge potential Aµ with
A0 = v0, A1 = v3 and a complex scalar σ = 1√

2(v1 − iv2).

• The 2d spinor indices are the same as those in 4d except we no longer distinguish α̇
from α and all index contractions are top-left to bottom-right. This can lead to some
changes of sign compared to 4d expressions, e.g. λ̄ψ̄ = λ̄α̇ψ̄

α̇ → λ̄αψ̄
α = −λ̄αψ̄α =

−λ̄ψ̄.
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• The 2d gamma-matrices (γµ) β
α are defined by raising the second spinor index of σ0

and σ3, with the explicit expressions

(
γ0 β
α

)
=

 0 1
−1 0

 ,
(
γ1 β
α

)
=

 0 −1
−1 0

 . (A.3)

We contract indices with gamma matrices in this way, e.g. ε̄γµλ = ε̄αγµ β
α λβ .

A.2 Supermultiplet

A.2.1 Vector multiplet

We work in WZ gauge where the vector multiplet V is a real superfield with component
superfield expansion

V (x, θ) = −θσmθ̄vm + iθθθ̄λ̄− iθ̄θ̄θλ+ 1
2θθθ̄θ̄D (A.4)

= −θγµθ̄Aµ −
√

2θ−θ̄+σ −
√

2θ+θ̄−σ†

+iθθθ̄λ̄− iθ̄θ̄θλ+ 1
2θθθ̄θ̄D (A.5)

The supersymmetric transformations of these components are

δAµ = iε̄γµλ+ iεγµλ̄ (A.6)
δσ = −i

√
2ε̄+λ− − i

√
2ε−λ̄+ (A.7)

δσ† = −i
√

2ε+λ̄− − i
√

2ε̄−λ+ (A.8)
δλ+ = iε+D +

√
2(D0 +D1)σ†ε− − F01ε+ (A.9)

δλ− = iε−D +
√

2(D0 −D1)σε+ + F01ε− (A.10)
δλ̄+ = −iε̄+D +

√
2(D0 +D1)σε̄− − F01ε̄+ (A.11)

δλ̄− = −iε̄−D +
√

2(D0 −D1)σ†ε̄+ + F01ε̄− (A.12)
δD = −ε̄+(D0 −D1)λ+ − ε̄−(D0 +D1)λ−

+ε+(D0 −D1)λ̄+ + ε−(D0 +D1)λ̄− (A.13)

A.2.2 Chiral and anti-chiral multiplets

A chiral superfield Φ is defined by D̄α̇Φ = 0 while and its conjugate Φ̄ is automatically an
anti-chiral superfield, in general defined by DαΦ̄ = 0. If we define

ym = xm + iθσmθ̄ (A.14)
ȳm = xm − iθσmθ̄ (A.15)

the general solutions take the form

Φ(x, θ) = φ(y) +
√

2θψ(y) + θθF (y) (A.16)
Φ̄(x, θ) = φ̄(ȳ) +

√
2θ̄ψ̄(ȳ) + θ̄θ̄F̄ (ȳ) (A.17)
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Expanding to write all fields as functions of xm rather than ym we have

Φ(x, θ) = φ+ iθσmθ̄∂mφ+ 1
4θθθ̄θ̄�φ

+
√

2θψ − i√
2
θθ(∂mψ)σmθ̄ + θθF (A.18)

For gauge theories, replace partial derivatives with gauge covariant derivatives Dm =
∂m + igvm.

To reduce to 2d we just drop derivatives wrt. the two compactified dimensions. This
gives

Φ(x, θ) = φ+ iθγµθ̄Dµφ−
√

2gθ−θ̄+σφ−
√

2gθ+θ̄−σ†φ

+
√

2θψ − i√
2
θθ(Dµψ)γµθ̄ + θθF

+gθθ
(
σψ−θ̄+ + σ†ψ+θ̄−

)
+1

4θθθ̄θ̄(�φ+ · · · ) (A.19)

The supersymmetric transformations are

δφ =
√

2 (ε+ψ− − ε−ψ+) (A.20)
δψ+ = i

√
2(D0 +D1)φε̄− +

√
2ε+F − 2σ†φε̄+ (A.21)

δψ− = −i
√

2(D0 −D1)φε̄+ +
√

2ε−F + 2σ†φε̄− (A.22)
δF = −i

√
2ε̄+(D0 −D1)ψ+ − i

√
2ε̄−(D0 +D1)ψ−

+2(ε̄+σ†ψ− + ε̄−σ
†ψ+) + 2i(ε̄−λ̄+ − ε̄+λ̄−)φ (A.23)

A.2.3 Twisted chiral and anti-chiral multiplets

A twisted chiral superfield Φ̃ is defined in 2d by D̄−Φ̃ = 0 = D+Φ̃ while and its conjugate
¯̃Φ is automatically a twisted anti-chiral superfield, in general defined by D̄+

¯̃Φ = 0 = D−
¯̃Φ.

If we define

z0 = x0 + iθγ1θ̄ (A.24)
z1 = x0 − iθγ0θ̄ (A.25)

where in 2d notation θγµθ̄ = θαγµ β
α θ̄β the general solution for a twisted chiral superfield

takes the form

Φ̃(x, θ) = φ̃(z) +
√

2θ−ψ̃−(z) +
√

2θ̄+ψ̃+(z) + 2θ̄RθLF̃ (z) (A.26)

Compared to the chiral superfield we have the following replacements

θ+ ↔ θ̄+ , θ− ↔ θ̄− (A.27)
ε+ ↔ ε̄+ , ε− ↔ ε̄− (A.28)

ψ+ → ψ̃+ . (A.29)
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with the other components of θ and ε unchanged, and other fields trivially gaining a
tilde. Therefore we can map all the result for the chiral superfield. In particular, the
supersymmetric transformations are

δφ̃ =
√

2
(
ε+ψ̃− − ε̄− ¯̃

ψ+

)
(A.30)

δ
¯̃
ψ+ = i

√
2(D0 +D1)φ̃ε− +

√
2ε+F̃ − 2σ†φ̃ε̄+ (A.31)

δψ̃− = −i
√

2(D0 −D1)φ̃ε̄+ +
√

2ε−F̃ + 2σ†φ̃ε− (A.32)

δF̃ = −i
√

2ε̄+(D0 −D1)¯̃
ψ+ − i

√
2ε−(D0 +D1)ψ̃−

+2(ε̄+σ†ψ̃− + ε−σ
† ¯̃ψ+) + 2i(ε−λ̄+ − ε̄+λ̄−)φ̃ (A.33)

A.3 Supercurrent

In WZ gauge the action for the gauge field and chiral multiplets are given by

Lgauge = 1
2 Tr (WαWα|θθ + h.c.) (A.34)

= −1
2 Tr(vmnvmn)− 2iTr(λ̄σ̄mDmλ) + Tr(DD)

+i∂m Tr(λ̄σ̄mλ) (A.35)
Lchiral = Φ†eV Φ|θθθ̄θ̄ (A.36)

= gφ†Dφ− (Dmφ
†)(Dmφ)− iψ̄σ̄mDmψ + F †F

+i
√

2g
(
φ†λψ − ψ̄λ̄φ

)
+ i

2∂m(ψ̄σ̄mψ) (A.37)

where the final terms in each Lagrangian are required for the Lagrangians to be real in the
presence of a boundary.

The supersymmetric transformations in 4d are

δφ =
√

2εψ (A.38)
δψ = i

√
2σmε̄Dmφ+

√
2εF (A.39)

δF = i
√

2ε̄σ̄mDmψ + i2gε̄λ̄φ (A.40)
δvm = −iλ̄σ̄mε+ iε̄σ̄mλ (A.41)
δλ = σmnεvmn + iεD (A.42)
δD = −εσmDmλ̄− (Dmλ)σmε̄ (A.43)

If we vary the Lagrangians with constant ε we find a total derivative so the action is
invariant with suitable boundary conditions. If we let ε depend on the spacetime coordi-
nates we find additional terms of the form Jm∂mε+ J̄m∂mε̄ which define the supercurrents
J and J̄ . Note, in our conventions this defines J̄m to be the conjugate of Jm. Explicitly
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we have

δLgauge = ∂m Tr
(
−λ̄σ̄mεD − iλ̄σ̄nεvmn − ε̄σ̄nλṽmn

)
+i
(
(∂mε̄)σ̄nλ− λ̄σ̄n(∂mε)

)
vmn + λ̄σ̄n(∂mε)ṽmn + (∂mε̄)σ̄nλṽmn (A.44)

δLchiral = ∂m
(
gφ†(λ̄σ̄mε+ ε̄σ̄mλ)φ−

√
2iψ̄σ̄mεF −

√
2ε̄ψ̄Dmφ− 2

√
2φ†εσmnDnψ

)
+
√

2ψ̄σ̄mσn(Dnφ)(∂mε̄) +
√

2(∂mε)
(
2φ†σmnDnψ − (Dmφ†)ψ

)
−gφ†λ̄σ̄m(∂mε)φ− gφ†(∂mε̄)σ̄mλφ

= ∂m
(
gφ†(λ̄σ̄mε+ ε̄σ̄mλ)φ−

√
2iψ̄σ̄mεF −

√
2ε̄ψ̄Dmφ+ 2

√
2(Dnφ

†)εσmnψ
)

+
√

2ψ̄ (2σ̄mn − ηmn) (Dnφ)(∂mε̄)−
√

2(∂mε)(Dnφ
†) (2σmn + ηmn)ψ

−gφ†λ̄σ̄m(∂mε)φ− gφ†(∂mε̄)σ̄mλφ (A.45)

where we have defined
ṽmn = 1

2ε
mnpqvpq (A.46)

Extracting the supercurrents from each part we find for the gauge multiplet

Jm = −(ṽmn − ivmn)σnλ̄ (A.47)
J̄m = (ṽmn + ivmn)σ̄nλ . (A.48)

Similarly for the fundamental chiral multiplet we have

Jm = −2
√

2(Dnφ
†)σmnψ −

√
2(Dmφ†)ψ + gφ†σmλ̄φ (A.49)

J̄m = −2
√

2σ̄mnψ̄(Dnφ)−
√

2ψ̄(Dmφ)− gφ†σ̄mλφ (A.50)

B More on A-type boundary conditions

We note that (2.90), (2.92) and (2.93) take a form similar to Hitchin’s equations [75]

FA = [Φ,Φ], (B.1)
DAΦ = 0. (B.2)

The singular solution of the Hitchin’s equation was mathematically studied in [76] and it
was used to define the surface operator in 4d N = 4 SYM theory [77, 78]. The surface
operator was constructed by postulating the rotational invariant singular configurations

A = a(r)dθ + f(r)dr
r
, (B.3)

Φ = b(r)dr
r
− c(r)dθ (B.4)

where x0 + ix1 = reiθ are the coordinates on R2. f(r) can be set to zero by gauge trans-
formation. When we introduce a new variable s = − log r, the Hitchin’s equations (B.1)
and (B.2) takes the form of the Nahm’s equations

da

ds
= [b, c], db

ds
= [c, a], dc

ds
= [a, b]. (B.5)
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The superconformal invariant solution which has no dependence on s can be obtained by
setting a, b and c to a constant elements α, β and γ of the Lie algebra t of a maximal torus
T of the gauge group. Then one finds the singular solution to the Hitchin’s equation with
the form

A = αdθ, (B.6)

Φ = β
dr

r
− γdθ (B.7)

where the Higgs field Φ has a pole at the origin.
Now let us go back to the boundary conditions. To find the solutions of the boundary

conditions (2.90), (2.92) and (2.93) for the vector multiplet, we first fix the gauge so that
Au and Au commute. We then take the ansatz

Au = c1
s3
x1 + · · · , Au = c∗1

s3
x1 + · · · , (B.8)

σ̂ = c2
s+
x1 + · · · , σ̂† = c∗2

s−
x1 + · · · (B.9)

where we have only indicated the singular terms at the boundary, s1, s2 and s3 are constant
elements of the Lie algebra, s± = s1±is2 and c1, c2 ∈ C are some numerical constant values.
The boundary conditions (2.90), (2.92) and (2.93) require that

s3 = −
√

2ig|c2|2

c+c∗1 − c∗+c1
[s+, s−], (B.10)

s+ =
√

2igc1
c+

[s3, s+], (B.11)

s− =
√

2igc∗1
c∗+

[s3, s−]. (B.12)

By setting

c1 = − ic+√
2g
, c2 = c+

g
, (B.13)

the equations (B.10), (B.11) and (B.12) simply implies that the constant elements s3, s+
and s− belong to the su(1, 1) with the relation

s3 = −[s+, s−], (B.14)
s+ = [s3, s+], (B.15)
s− = −[s3, s−]. (B.16)

where s± = s1 ± is2 are raising and lowering operators of su(1, 1).
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