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ABSTRACT: It is widely believed that exact global symmetries do not exist in theories
that admit quantum black holes. Here we propose a way to quantify the degree of global
symmetry violation in the Hawking radiation of a black hole by using certain relative
entropies. While the violations of global symmetry that we consider are non-perturbative
effects, they nevertheless give O(1) contributions to the relative entropy after the Page
time. Furthermore, using “island” formulas, these relative entropies can be computed
within semi-classical gravity, which we demonstrate with explicit examples. These formulas
give a rather precise operational sense to the statement that a global charge thrown into
an old black hole will be lost after a scrambling time.

The relative entropies considered here may also be computed using a replica trick. At
integer replica index, the global symmetry violating effects manifest themselves as charge

flowing through the replica wormbhole.
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1 Introduction

An old conjecture states that in any theory of quantum gravity with black holes, there are
no exact global symmetries [1-6]. A semiclassical treatment of black hole evaporation [7]
suggests that the Hawking radiation has a thermal spectrum, independent of whatever the
global charge of the matter that formed the black hole. After the black hole evaporates
completely, any initial global charge is lost (up to fluctuations in the thermal ensemble).
One might hope that the charge can be stored in some remnant of the black hole, but such
remnants would violate entropy bounds [4] among other problems [8]. These arguments
are most clear at the final stage of the evaporation, where the black hole is not big enough
to store the information about the infalling charge, while they are less clear when the black
hole is still large, say at the Page time of the black hole evaporation. Said differently, an
experimentalist who wishes to check whether symmetry violation has occurred must gather
almost all of the Hawking radiation from the black hole. If she is unable to capture the



high energy modes at the endpoint of evaporation, or if she is unable to access certain fields
(e.g. dark matter fields), she may not be able to conclusively convince herself that charge
conservation is violated in nature.

Since we expect that the global symmetry violation happens throughout the evapo-
rating process, it is therefore natural to ask that whether there are some quantities that
can be computed with only some portion of the Hawking radiation, that are able to show
explicitly the global symmetry has been violated. (There is a strong analogy here with the
Page curve [9]: unitarity implies that the entropy of all the Hawking radiation from a fully
evaporated black hole is zero; Page famously showed that unitarity also has implications
for a large subset of the radiation.) One obvious candidate is to compute correlators which
would be zero if the global symmetry is exact. However, if there are no explicit symmetry
violating processes in the semiclassical physics, these correlators are expected to have non-
perturbatively small values O(e~°BH), where Spy is the Bekenstein-Hawking entropy of the
black hole. Computing these quantities will require non-perturbative knowledge beyond
Hawking’s description. To be clear, we are not claiming that the approximate global sym-
metry, such as the B — L symmetry in nature, cannot be violated within the semiclassical
physics. What we are imagining is the worst case scenario, namely even if the symmetry
is preserved semiclassically, non-perturbative gravitational effect will eventually violate it.

Although understanding how to compute such exponentially small violations is a wor-
thy goal for the future, the point of this paper is to point out there exist other quantities
which quantify the symmetry violation in the Hawking radiation, that can be computed
just with the semiclassical knowledge, and give O(1) results. Our discussion is motivated
by the recent progress in deriving the unitary Page curve [9] for an evaporating black hole
within the semiclassical description [10, 11]. In those developments, the key tool is the
gravitational fine grained entropy formula, or the quantum extremal surface (QES) pre-
scription [12-15]. When applying the formula to compute the von Neumann entropy of
the Hawking radiation after the Page time, one finds an island in the black hole interior
that belongs to the entanglement wedge of the Hawking radiation [16]. In this paper, we
consider the relative entropies between different density matrices of the Hawking radia-
tion R. More precisely, we consider the exact density matrix of the Hawking radiation
P1 = Pexact(R), and the density matrix py = U, R(g)pexact(R)U;(g) after applying a global
symmetry transformation Ug(g),g € G to the radiation. If we form the black hole from
neutral (singlet) matter, then if the global symmetry were exact, we would expect pa = p;
since a reduced density matrix of the system should be invariant under the symmetry
transformation. Thus a non-zero relative entropy S(p2|p1) > 0 is a way to quantify the
degree to which the global symmetry is violated. Similar to the von Neumann entropy, the
relative entropy can be computed with only the knowledge of the semiclassical physics [17],
and we find it to be an O(1) result whenever an island arises. We demonstrate the calcu-
lation explicitly using simple examples. The relative entropy that we compute quantifies
the amount of global symmetry violation in the Hawking radiation, and we discuss how
it depends on various parameters of the problem. As we will see in section 2, the relative
entropy is zero before the Page time, but becomes non-zero at the Page time and grows as
more radiation comes out.



The island in the QES prescription is closely related to the replica wormhole geometry
in the replica trick for deriving the entropy using the gravitational path integral [18-20].
It is thus natural to ask what roles they play in showing that the global symmetry is
violated. In section 3 we discuss the replica versions of the relative entropy, and point
out that they are non-zero exactly due to charge flowing through the replica wormhole.
This resonates with a long history of works anticipating that Euclidean wormholes violate
global symmetries [2, 21]. In previous arguments, it was never completely clear whether
wormbholes should be included or not in a particular calculation; here, unitarity demands
them to be included. We contrast the global symmetry case with a gauge symmetry, which
is allowed because charge cannot flow through the wormhole due to the gauge constraint
(Gauss’s law). An exact global symmetry of a holographic theory must therefore be realized
as a gauge symmetry in gravity.

We also consider in section 2.3 a setup where the bulk relative entropy may be enhanced
by creating pairs of particles with opposite charges in the bath, and waiting a scrambling
time for the particles to fall into the island. This is related to the Hayden-Preskill [22]
experiment, as we elaborate on in section 4 along with other discussions and conclusions.

It is worth noting that a recent paper by Harlow and Shaghoulian [23] also connected
recent developments in the black hole information problem with the violation of global sym-
metries, using arguments along the lines of [5, 6]. Our result is based on similar assumptions
as theirs, but in some sense we take one step further by quantifying and computing the
amount that an approximate global symmetry is violated by non-perturbative effects.

Note added. as we were finishing the manuscript, we learned that [24] are considering
similar issues in an upcoming work.

2 Quantifying global symmetry violation with relative entropy

2.1 General argument

We start by reviewing the QES prescription and the relative entropy formula. In the
context of an evaporating black hole, the QES prescription as applied to the exact density
matrix pexact (R) of the Hawking radiation states

A(DI)
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S (pexact(R)) = Min {Em { + S (peemi(RU I))] } , 2.1)

where on the right hand side, one extremizes over the generalized entropy function over
possible islands in the region where gravity is dynamical, and choose the minimal one if
there are multiple extremums. Note that the right hand side of (2.1) is calculable within
the semiclassical approximation. The region R U I on the right hand side is called the
entanglement wedge [25-27] of the region R. As first recognized in the context of the
AdS/CFT correspondence [17], the validity of (2.1) among a family of “nearby” states
implies an equality between the relative entropies in the exact description and the semi-
classical description:

S (pexact (R)|0exact (R)) = S (psemi(RU I)|osemi(RUI)) (2.2)



where the relative entropy S(p|o) is defined as

S(plo) = tr[p(log p — log o)}, (2.3)

which is a non-negative quantity quantifying how different p and o are. The relative entropy
formula has further subleading corrections, but in this paper we will only be focusing on
the leading order result as in (2.2).

Our argument will give non-trivial results in cases where there is an island in the en-
tanglement wedge of the radiation. The phenomena of islands has been proposed for a
variety of scenarios involving different dimensions and also different signs of the cosmologi-
cal constant (see [28-43] for some works in this direction and more in a recent review [44]).
Our argument is general, but we will use the toy examples in [28] as a concrete set-up for
our discussion. More specifically, we will consider the case with a zero temperature black
hole in the two-dimensional Jackiw-Teitelboim (JT) gravity [45-47] coupled to a flat space
bath. There is a two-dimensional CFT with central charge ¢ > 1 propagating both in the
JT gravity region and in the flat space region. This gravity description is semiclassical,

—50  where

namely we will be neglecting nonperturbative effects that are suppressed by e
Sp is the extremal entropy of the black hole. We will also assume that the model has a dual
nonperturbative description as a quantum mechanical dot coupled to a half infinite line
where the CFT lives. The two descriptions of the system are illustrated in figure 1(a). For
the ground state of the system, the metric and the dilaton profile in the AdSs region are
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where ¢, defines a length scale of the problem. The metric in the flat space region is given by
ds* = —dt* + dz*, x>0, (2.5)

and the conformal fields are in the Minkowski vacuum with respect to the global time
coordinate t. For a region R in the flat space region that is large enough, applying the
QES prescription to compute the entropy (and the location of the entanglement wedge),
one finds that the entanglement wedge of R includes an island I in the JT gravity region
(see figure 1(b)).

We consider situations in which there is a global symmetry in the semiclassical gravity
description, with a symmetry group G that can generally be discrete or continuous, and
possibly non-Abelian. We will assume that the symmetry is not gauged in the gravity
description, leaving a discussion of gauge symmetries to section 3.3. In terms of the exact
“boundary” description, the flat space CFT has an exact global symmetry without coupling
to the boundary quantum mechanical system, and the coupling breaks this symmetry
explicitly. However, the couplings that break the symmetry should be nonperturbatively
small so that the global symmetry is still realized in the gravity region in the semiclassical
description.

To simplify the discussion, we will first consider the case where the entire system is in
a state which is invariant under the global symmetry transformation in the semiclassical
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Figure 1. (a) A zero temperature black hole in JT gravity coupled to bath. It has a nonperturbative
description in terms of a boundary quantum mechanical system coupled to a CFT in half infinite
space. (b) When we compute the entropy of a region R in the bath that is large enough, there will
be an island I in the gravity region.

description. For example, we could consider the ground state of the model in figure 1(a),
for which the semiclassical state has the global symmetry.! If the state of the entire
system is invariant under a symmetry transformation U(g), then when we restrict to a
spatial subregion R, the reduced density matrix p(R) should also be invariant under the
symmetry transformation restricted in R, which we denote by Ur(g). (We will mostly leave
the dependence on the group element g € G implicit from now on.) The reason is that
the symmetry transformation U of a global symmetry has the split property [5]; morally,
this means it can be written as a product of the symmetry transformation in R and its
compliment R, U = U rUp.2 It follows that

UnprUf, = tr g (UpU}) = tr g (UpUrpULUL) = tr 5 (UpUT) = pr. (26)
Applied to our case, since the semiclassical state has the symmetry, we have
URpsemi(R) U;rg = psemi(R)y (2'7)

or equivalently
S (UR,Osemi (R) U]Tg

pemi(R)) = 0. (2.8)

"We will be assuming that the semiclassical global symmetry is not spontaneously broken throughout
the paper.

%In a continuum quantum field theory, there is an edge term Uecdge that depends on how we regulate the
boundary between R and R. Since it is not essential to our discussion, we will keep it implicit.



This motivates us to compare the two density matrices pexact(R) and U};pexact (R)Ug, by
computing the relative entropy between them, i.e. S (Ulgpexact(R)U R‘ Pexact ( R)) Tnter-
estingly, to compute this quantity, we do not need to have a complete knowledge about
Pexact(R). We can compute it just from the semiclassical description, by applying the
relative entropy formula (2.2):3

S (URpexact(R)U}; Pexact(R)) =S (URPsemi(R U I)U;r{ Psemi( R U I)) . (2.9)

We should stress that the transformation Ugr on the left hand side is a completely

well defined operator in the nonperturbative description. For a continuous symmetry with

ico [p*le  Ap important assumption in the

Noether current J¥, it is simply given by e
formula however is that when we pass from the exact description to the semiclassical
description in (2.9), the transformation only acts in the region R but not the island, and
still acts as the same symmetry transformation in the semiclassical theory.* One should
be cautious about this, because the entanglement wedge of R includes both the region
itself and the island, and in principle a general operation in R in the exact description
can act both in the region R and the island I. Indeed, as advocated in [48], a modular
flow using the exact modular Hamiltonian of R corresponds to a modular flow on RU I
with the semiclassical modular Hamiltonian. However, in contrast with the exact modular
Hamiltonian, which is expected to be non-local and encodes the fine grained information
of the state, the operator Ug factorizes into local pieces and does not contain information
about the state. In other words, it is a “simple” operation. A more careful argument is
the following. We can divide the region R into smaller pieces {R;}, and the operator Ugr
factorizes as

Ur = [[ Uk, (2.10)

If we divide R such that R; are small enough, the entanglement wedge of each R; will only
contain the region itself. Thus each Ug, should only act within R; without any ambiguity,
so the product should only act in the union of R;, which is R. This is part of the idea that
has been used in [5, 6, 23] to argue that there cannot be an exact global symmetry. In
section 3, we will also justify the formula (2.9) from the replica computation point of view.

After justifying the formula (2.9), we now turn to its implications. The density matrix
Psemi(R U I) is invariant under the semiclassical global symmetry transformation on the
union of R and I, but it is not invariant under Ug alone. This is because the fields in R
are entangled with the fields in I and so psemi(R U I) # psemi(R) ® psemi(); otherwise it
would be invariant under Ugr because of (2.7). For this reason, for a fixed Ug, one expects
the result to be larger if the region R and the island have larger mutual information. To
summarize, we expect that the bulk formula (2.9) gives a nonzero relative entropy when
there is an island:

S (URpexact (R) U]];L

Pexact (R)> =S5 (URpsemi(R U I) U]T%

peemi(RUT)) = 0(1),  (2.11)

3The relative entropy is valid either by considering a transformation Ug that is close to identity in the
case of continuous symmetry, or by considering a global symmetry that only acts on a small subset of fields
(note that we have ¢ > 1).

4We thank Ahmed Almheiri and Edgar Shaghoulian for asking about this assumption.



where O(1) denotes that this quantity is not suppressed by e~% . As a side note, assuming
that the global semiclassical state is invariant under the symmetry, psemi(RUI) is invariant
under UrU;, so we can also compute the relative entropy via

S (URpexact (R) U]T%

pexact(R)) =95 (U}psemi(R U I)UI

premi(RUT)) . (2.12)

The quantity S (URpsemi(R u UL
classical description. Since the von Neumann entropies of Ugpsemi( RUI )U}; and pgemi( RUT)

Psemi(RU T )) is computable solely using the semi-

are the same as they only differ by an unitary, the relative entropy can be expressed
as the difference of the expectation value of the modular Hamiltonian Kgemi(R U I) =
—1og psemi(R U I):

S (Unpsemi(RU DU},

premi(RUT)) = AlKemi(RUT)), (2.13)

where we take the expectation value of the modular Hamiltonian in the state after acting
with Ug, and subtract that in the original state. In simple cases, this computation can be
carried out explicitly, as we will demonstrate in section 2.2.

Before we move on to concrete examples, let us offer some qualitative comments. For
the relative entropy to be nonzero, we need the region R to be large enough so that R
claims the island. If we divide R into small pieces, then when we only look at the relative
entropies for the small spatial pieces, we will not see such an effect.

Similar statement holds if we divide the fields in R into small subsets. For example,
imagine the CFT is IV copies of free fermions (N >> 1), which has an U(NN) global symmetry.
We could consider a symmetry transformation Ug that only acts among a small subset of
the fermions, say M fermions with M ~ O(1). If we only look at the reduced density
matrix of the M fermions while tracing out the rest, since it does not claim the island,
we would conclude that it is invariant under the symmetry transformation. However, the
density matrix of all the N fermions will not be invariant by (2.11). This suggests that
the main contribution to the order one result in (2.11) comes from correlations between
the M fermions and the rest of the fermions. For this to be true, there must be sufficient
correlation between the M fermions and the rest of the fields at the non-perturbative level,
despite the fact that they are decoupled and uncorrelated in the semiclassical description.®
This correlation can also be quantified using the gravitational fine grained entropy formula,
and we comment more on this in appendix A.

2.2 Example: U(1) global symmetry of Dirac fermions

As a concrete, calculable example, we consider a setup where the CFT is a tensor product
of a massless Dirac fermion and some other CFT with central charge ¢ — 1 which we
will not specify. For simplicity, we will assume that in the semiclassical description, this
fermion field does not couple to the rest of the CFT directly, and we also neglect the
Schwarzian fluctuations. In the semiclassical description, the model has a U(1) global

SHere we are neglecting the universal coupling through the boundary graviton in the semiclassical de-
scription. In the current model, this can be justified in the limit of ¢ > 1 and So/c not too large.



symmetry which rotates the fermion as ¢» — e*4). The time component of the conserved
current corresponding to this symmetry is the fermion number density:

Jo=¢lvs +vly, (2.14)
and the transformation we apply in R is
Ugr = exp (iaQRr) = exp (ia/ dx J()) ) (2.15)
R

As we explained in (2.13), the relative entropy is given by the change of the expectation
value of the semiclassical modular Hamiltonian Kgepmi(R U I):

S (URPexact (R) U}t‘,{

where the |0) state is the vacuum state of the fermion in the semiclassical description.

pesxact(R) ) = (0| UpKeemi( RUDUR [0) = (0] Keeni(RUT)[0),  (2.16)

Since the fermion is massless, we can neglect the warp factor inside the AdS region. In
other words, up to local terms at the boundary of the island that depends on the warp
factor, the modular Hamiltonian Kgepmi(R U I) is just the modular Hamiltonian for two
disjoint intervals in flat space, whose form was given explicitly in [49] which we review
in appendix. B. We will not need the detailed form of the modular Hamiltonian here to
understand the calculation, but only need its basic structure. For the vacuum state, the
modular Hamiltonian is quadratic in the fermion operators. It can be separated into two
pieces, the local piece Kj,. which couples operators within R or I, and the non-local piece
Kioloc that couples a fermion operator in R to another in I. It is not hard to see that

UL KiocUr = Kioc, (2.17)

as Kjoc can be expressed as an integral of the local energy density operator T'(z), which
is invariant under Ug (the piece in the island is invariant trivially because it is spacelike
separated from Ug). On the other hand, Ko transforms non-trivially under Ug. Kioloc
has the form

Kyoloe,+ = Z~/Idx /R dy K(z,y) (¢it,[(x)wi,R(y) - d’l,R(?J)l/&,I(?C)% (2.18)
where the kernel K (z,vy) is given explicitly in appendix B. The symmetries act as

Ukl (@) e r)Ur =Yl (@)1 r(y), UkvL q)w1(@)Ur =79l p(y)ri(@).
(2.19)

By noting that (0]9 ;(2)¢+ r(y) [0) = — (0|91 z(y)¢x,1(x) |0), we obtain

S (Unpesact(R)U}| pexact (R) ) = (cos & — 1) (0] Knooc [0) - (2.20)

The expression is periodic in 27 since the transformation with /27 = n € Z acts triv-

ially. The expectation value of Kjoc is computed explicitly in appendix B. In Poincaré
coordinates z, if we parametrize the regions as I = (a1,b1), R = (ag, b2), then

o (2n—1)arctan | /T _a _a
e = I = =
(2.21)
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Figure 2. The relative entropy in the free fermion model, as a function of the size of the region R at
fixed non-zero a. The horizontal axis is £(R) the length of R in units of ¢,./c¢ (((R) = c(ba—a2)/¢pr =
cba/@y). In the semi-classical approximation, there is a discontinuity in the relative entropy at the
“Page length” ¢p(R) ~ e'290/¢ when an island appears in the gravity region, see (2.24). It might
seem that the relative entropy is large because it has Sy in the exponential, but recall that in this
model the ratio Sy/c is kept finite and not very large [28], so the relative entropy is O(1).

We see that (2.21) diverges as 1/4/1 —n when nn — 1, where the island and the bath region
get closer. This is consistent with the intuition that the result should be larger if there is
more mutual information between R and 1.

As discussed in [28], if we choose the bath region

N b 125
as < % <K by, log (?) > 0 +01), (2.22)
then the island will be at 6
a; ~ —by, by~ — f (2.23)

Plugging (2.22) and (2.23) into (2.21), we find

T o« |cb
pexact(R)) ~ 1 sin? 2\/3 : (2.24)

We observe that the relative entropy grows with the total central charge ¢, even though we

S (URPexact (R) U}Tz

are considering the symmetry that only involves one fermion. This confirms our previous
expectation that the symmetry violation is contained in the correlation between the fermion
field and other fields. We stress that pexact(R) is the density matrix for all the fields, not
just the one fermion field. Note that ¢, /c in (2.24) is roughly the time it takes for a particle
to reach the island if it is released from the boundary. We will give a physical explanation
of why this “island time” is relevant in section 2.3. We sketch the result (2.24) in figure 2.

SHowever, it is interesting to note that it grows faster than the mutual information as  — 1, since the
mutual information only grows logarithmically.



There is an analogue of the “Page time” (perhaps more aptly called the Page length) ¢p
in this problem that is the minimal size of R to claim the island. Below the minimal size,
the relative entropy is zero, while above that size, the relative entropy becomes finite and
grows with the size. At finite Sy, we expect to have a smooth curve instead of a sharp
transition, see [50-52].

2.3 Increasing the relative entropy with charged particles

So far, we’ve only considered the ground state of the model in figure 1. It is natural to ask
whether we can choose different bulk semi-classical states which will have a larger relative
entropy when there is an island. To motivate the discussion, let us first look at a rough
description of the semi-classical vacuum state. There are three regions, the island I, the
radiation R, and the region in between — call it S for sea. The global state is charge
neutral but locally there can be vacuum fluctuations of the charge density. We will focus
on two possible forms of the fluctuation, and look at the density matrices they lead to.
There are of course contributions from other types of terms and cross terms, but our goal
here is just to draw some basic intuition. The first case corresponds to virtual loops that
run between the sea and the radiation, as represented by /{3 in figure 3(a):

[VaC) i Z’O =959k (2.25)

where Q; |q); = ¢ |q);, i = I, S, R. The density matrix that it leads to is

Psemi(RUI) NZ(|O>I<O|1®|Q>R<Q|R)- (2.26)

It is invariant under Ug, and thus will not contribute to the relative entropy. The second
case involves loops that run between the island and the radiation (loop ¢; in figure 3(a)):

[Vac) Z‘ )1 10) )s \q (2.27)

and it leads to

Psemi(RUT) ~ > (|=q); (—dl; @ la) g (Gl R) - (2.28)

q,9

We see that the semiclassical density matrix is not invariant under Ugr, and will lead to
a non-trivial dependence on « in the relative entropy via (2.2). These loops are also the
virtual processes that build up the entanglement between the island and the radiation, so
we see that the relative entropy is closely related to entanglement, or mutual information.
See appendix A for some further discussion.

The above toy model is supposed to depict the quantum fluctuations in the vacuum.
However, it also suggests a way to increase the bulk relative entropy by making on shell
particles with correlated charges. To neglect the fluctuations that already exist in the vac-
uum state, we could consider a matter theory which consists of a large ¢ CF'T + a massive
“probe” theory with an U(1) symmetry (for example, a single massive free fermion field).

~10 -
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Figure 3. (a) We consider two virtual processes £; and ¢ where charged particles run in loops.
Only the larger loop ¢ contributes to the bulk relative entropy (as well as the entanglement between
I and R). (b) We imagine the decay of a neutral particle into 2 fermions at x; and x3. Only the
decay at x; contributes significantly to the bulk relative entropy. Note also that in an evaporating
black hole, a morally similar picture would also predict that the relative entropy increases after the
Page time because each Hawking mode will be entangled with a mode of opposite charge behind
the horizon.

By “probe” field, we mean that when we can neglect the massive theory in determining
the location of the island. When we compute the relative entropy with U(1) symmetry
generators acting on the massive theory using (2.13), we expect it to be suppressed by
e~ where / is the proper distance between the island and the bath region R, and is thus
small for large mass. So if we create many pairs of particles, the leading contribution to
the relative entropy will come from the real particles instead of vacuum fluctuations. In
other words, we can interpret the charge fluctuations in (2.25) and (2.27) as coming from
real particles.

Imagine that we start with a massive neutral particle at rest in the bath region. It then
decays into two massive free fermions, with charge +¢q and —¢q. These fermions propagate
in opposite directions: one towards the black hole, and the other towards null infinity.
However, we do not know which charge went where. It is interesting to consider the
dependence of the relative entropy on the location x of the fermion. If the particle which
falls into the black hole is not in the island, then we have a state similar to (2.25), and it will
not increase the relative entropy significantly. However, if we drop in the particle and then
wait some time tigand, the particle will appear in the island, see figure 3. In cases where
the island is near the horizon, for example in the evaporating black hole, or in the 2-sided
setup at late times, we will need to wait about a scrambling time for a perturbation applied

- 11 -



near the boundary of the gravity region.” This will lead to a nonzero relative entropy, by
considerations nearly identical to those in (2.27) and (2.28).

We would like to interpret the nonzero relative entropy in this case as saying that the
charge is lost from the outside observer point of view. If the symmetry was exact, we should
find a zero relative entropy at all time. The fact that we have a nonzero relative entropy
after creating the particle pair simply means that the charge that is outside the region R
is not conserved. From our discussion, we see that this non-conservation happens at the
time scale which is the scrambling time. We will return to this point in the discussion.

2.4 Evaporating black hole

In the discussion of section 2.1 and 2.2, we mainly considered time independent cases where
a black hole is in thermal equilibrium with the environment. However, our discussion also
applies to general time dependent cases, such as evaporating black holes. Consider a
theory that has a global symmetry in the semiclassical description, and we start from a
pure state that has zero global charge and form a black hole. If the symmetry is not violated
nonperturbatively, then if we look at the Hawking radiation emitted from the black hole,
its density matrix should always be block diagonal in the charge basis, and thus is invariant
under the symmetry transformation acting on the Hawking radiation. However, after the
Page time, since the entanglement wedge of the Hawking radiation contains an island in
the black hole interior, we can similarly compute relative entropies and see that the global
symmetry is violated from a nonzero result. We also expect the relative entropy to grow
as one collects more radiation from the black hole.

Of course, it is well known how to see that global symmetry is violated by looking at
the final stage of evaporation as we reviewed in the introduction [4]. Here we are relating
the violations of global symmetry to the appearance of an “island.” An advantage of the
argument presented here is that it provides a quantitative way to see global symmetry
violation just after the Page time, and does not rely on the physics close to the final stage
of the black hole evaporation.

Notice that if we gather the entire radiation of a completely evaporated black hole, it
will be in a pure state. The pure state will be a superposition of states with different charge.
Hence we expect that the relative entropy after the black hole has completely evaporated
to formally diverge. On the other hand, the Rényi versions of the relative entropy that we
study in section 3 will still be well defined and give sensible answers. A related point is
discussed in appendix C, where we explore global symmetry violations in a different model
of JT gravity.

Instead of starting with a state that is annihlated by the charge, one could also imagine
forming the black hole from a general initial state pg that is not invariant under the global
symmetry U that acts on the entire system.® In this case, one could still see that global
symmetry is violated as follows. If the symmetry were exact, then when we look at any

"In the 1-sided zero-temperature case, the scrambling time is infinite but the tisjana ~ ¢r/c.
8Here we are assuming that before the black hole forms, all the matter are far apart and the gravity
effect is weak enough such that the operator U is well defined.
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subsystem R at later time ¢, we should always find

S (URpR(t)UHpR(t)) <S (Ue“”poe_thUJr
= S(UpoU|po),

iHt —1Ht
e ) (2.29)

where on the first line we are using the monotonicity of relative entropy under restricting
to a subsystem R, and we used the assumption that U is an exact symmetry to get to the
second line. However, if we use the gravitational formula to compute S (URp R(t)UHp R(t)),

9 80 it cannot be bounded

we expect to get an increasing function with ¢ after the Page time,
by a constant S(UpoUt|po) as in (2.29), which necessarily means that the global symmetry

is violated.

3 Global symmetry violation and replica wormholes

3.1 Charge flowing through the replica wormhole

As we’ve seen in section 2, when there is an island in the entanglement wedge of R,
the global symmetry violation is reflected in the relative entropy. In the computation
of the von Neumann entropy using the replica trick, the island arises from the replica
wormholes [19, 20]. So it is natural to consider the replica version of the relative entropy,
and ask what the role of replica wormholes are in these quantities. Similar to the von
Neumann entropy, the relative entropy can be computed via a replica trick [53] by

S(plo) = lim ——tr [o(o"" — "] (3.1)

-n

To be concrete, we will take the two-sided black hole setup in [28] as an example,
whose replica wormhole solution has been constructed explicitly in certain limits in [19].
The goal of this section is not to study the replica wormhole geometries in detail, but to
understand what features of the replica wormholes are related to charge violation. We will
be considering the thermofield double state |TFD) of the system, and study the density
matrix of a region R which contains part of both the left bath and the right bath (see
figure 4). Depending on the parameters, we can have an island I that is slightly outside
the horizon already at ¢ = 0; our arguments in section 2 would then apply.

Here we would like to consider the n = 2 replica:

Zs ()
VA

=1tr [URpexact (R)U]J[zpexact (R)} , Urp= eiaQR’ (32)

where we take the symmetry to be an U(1) global symmetry just for simplicity. We
also divided by Z? where Z; is given by the path integral on a single replica, to get the
expression for a normalized density matrix. If the symmetry were exact, then we should

9We expect the curve to be qualitatively similar to figure 2, if we replace the size of the interval by time
t. The reason is that there will be more and more correlated charge fluctuations between I and the Hawking
radiation R (this is similar in spirit to figure 3). It would be interesting to understand the calculation for
evaporating black holes in more detail.
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Figure 4. A two-sided black hole in JT gravity coupled to two bath regions [19]. When we compute
the entropy of a large region R in the bath, depending on the parameters, we can have an island I
in the gravity region. At sufficiently late times ¢ > 0 there will always be an island.

/wﬂw/ —
-
(a) (b)

Figure 5. (a) The replica wormhole geometry My for computing Z5(0). (b) For Z(«a), we have
the symmetry transformation operators inserted around the cuts in one of the replicas.

have Zs(a)) = Z2(0), for the reasons discussed in section 2.1. As explained in [19], Z2(0)
can be computed via a gravitational path integral with two replicas, and in the case with
an island, the path integral is dominated by a replica wormhole geometry (see figure 5(a)),
which we denote by Mj. The only difference in the computation of Z3(«) is that we have
the extra insertions of Ur and UIT%, which are represented by the red lines in figure 5(b).
Importantly, since we are computing (3.2) in the semiclassical description that has the
global symmetry, the red lines in figure 5(b) represent topological operators.'® This means
we can deform the curves arbitrarily as long as they do not cross any charged operators (in
which case they would pick up a phase). Since we are considering the thermofield double

10The topological operator is well-defined for other symmetries as well, including non-Abelian cases and
discrete symmetries.
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Figure 6. (a) Without the replica wormhole, the topological operator can be shrunk to a point.
(b) With the replica wormhole, we can deform the topological operator to surround the throat of
the wormhole. Therefore the dependence on the parameter o diagnoses the charge flowing through
the wormbhole.

state, which does not contain any insertions, we can deform the topological operator freely.
If there were no replica wormholes (see figure 6(a)), we could then deform and shrink the
topological operator to a point, which tells us

=1, (no replica wormhole). (3.3)

On the contrary, with the replica wormhole, the topological operator cannot be shrunk to
a point, but it can be deformed to the throat ¥ of the wormbhole, see figure 6(b). So we

have
Z2 (Oé)

Z>(0)

= (g@Qwormbole)  (with replica wormhole), (3.4)

where Qwormhole = [5; *J and J* is the Noether current. This is the finite replica analogue
of equation (2.12). In general, we expect that (e@@wormhote) \\ < 1 simply because the
value of Qwormhole can fluctuate in the path integral. Thus we would have

Zsy(a) < Z»(0), (3.5)

which means that the density matrix pexact(R) is not invariant under the symmetry trans-
formation, as we concluded by studying the relative entropy.

We can use the intuition from a weakly-coupled theory to understand this effect slightly
better. If we consider a small (meaning contractible) loop of virtual particles near the
throat of the geometry, the net charge flow will be zero, since on a spatial slice ¥, we will
have one particle and one anti-particle, see figure 7(a). However, the virtual loop could be
non-contractible due to the cuts in the bath region, see figure 7(b).

3.2 Off-diagonal contributions to the density matrix

The fact that U Rpexact(R)U; and pexact (R) are different indicates that pexact (R) must have
some off-diagonal elements in the charge basis. We can try to “open up” the quantity
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Figure 7. Two virtual processes that contribute to Zs(«). (a) The smaller, contractible loop does
not give a contribution that depends on «, since on the red circle there is both a particle and an
anti-particle. (b) The larger loop is non-contractible, contributes to the off-diagonal part tr [pe,ope,0]
(see section 3.2), and therefore to the o dependence. This should be compared with figure 3.

in (3.2) and look at the contribution to the off-diagonal elements more explicitly:

tr [emQRpexact(R)e_mQRpexact(R)} = Ztl" [Pg,q] + em(q_ql) Z tr [pq,q’pq’,q] ) (3'6)
q a#q

where
Pq.q = Pqpexact(R)Pq’ (3.7)

and P, = Y, 1q,1) (g,1] is the projector into the subspace with Qr = ¢, with ¢ running over
the states in the same-charge subspace. Note that the projection only acts on the fields
that transform under the symmetry, which we take to be a small subset of the fields. Since
we are tracing out all the other fields, we expect a similar replica wormhole solution for
each term in (3.6) independently. We see from (3.6) that all the dependence on « comes
from the off-diagonal terms in the density matrix. In this section, we give a more direct
explanation of the appearance of off-diagonal terms, and how they arise from Euclidean
wormholes in gravity.

One way to understand the off-diagonal term tr [pg o pq 4] is as follows. We can rewrite
the quantity as

tr [pgqpy.ql = D_ | (TFDIg,i) (¢, 5| TFD) > (3.8)
i,

and in the path integral, it corresponds to putting boundary conditions for the fields along
the branch cuts such that they have definite charges. (This should not be taken too literally,
as such a state might be a very high energy.) In the semiclassical approximation, we can
think of the boundary conditions as places where the worldline of a charged particle can be
created or destroyed. Let’s take tr [pe 0p0,c] as a simple example, where e is the unit charge
of a charged particle. Due to the boundary condition, we will have a worldline starting
from the bra part of the cut in the first replica, and the only place where it can land on is
the ket part of the cut in the second replica. The only possibility for the contribution to be
nonzero is that the charge can go through the replica wormhole, as shown in figure 7(b).
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Despite that we have tr [py ¢ pq 4] # 0, if we compute tr [p, ] with ¢ # ¢’ using
gravity, we will find a zero answer, up to nonperturbative corrections. This is because we
only have one replica, and there is nowhere the charged particle can go to. This effect can
be viewed as a special case of a more general phenomena involving Euclidean wormbholes.
Consider a state of the effective quantum field theory in the bath obtained by inserting
some charged operators in the thermofield double state |1);) = Oy Oy, - - - Oy, |TFD). Here
Oy = Oq4(T,z) is some local operator with charge g evaluated at a general Euclidean or
Lorentzian time. Ignoring the effects of higher topologies, this state will be orthogonal to
the state [¢g) = O4, 04, - - - Og,, |TFD) unless the total charges are equal ¢ = > ;¢; = ¢ =
> @i, namely (14|1g) = 0 up to exponentially small errors. However, wormhole geometries
will lead to a small squared-overlaps when g # ¢ [54]:

| (1hg|¥g) |? = 8,4 (disconnected) 4 e~ (connected) (3.9)

The connected contribution comes from an Euclidean wormhole, where the charged parti-
cles go through the wormhole. For example, the square of a 1-pt function (O,) with charge
q is given by

| (TFD|O,|TFD) |> = | | . (3.10)

Note however that (3.10) might require an ensemble average interpretation, since the left
hand side is the square of (TFD|O, |TFD), while the right hand side does not factorize
manifestly. In a single unitary system, the proper interpretation of (3.10) might be that
the wormhole computes the average of | (TFD|O,|TFD)|? among a suitable family of
operators with charge q. We refer the readers to [54-64] for more discussions on these
issues about Euclidean wormholes. We should stress that the quantity tr [p, py 4] does
not factorize in the first place, since each charge subspace still contains a huge number of
states that we sum over. So the quantity we compute does not suffer from factorization
problem immediately. Due to the summation over a large number of intermediate states,
we have a replica wormhole geometry which is a saddle point solution that dominates the
path integral, while in general the wormhole in (3.10) will be an off-shell configuration (see
however an on-shell construction in [54]).

If we imagine that the wormhole region is far away from the operator insertions, we can
summarize the effects of the wormhole using an effective picture. If we think of the gravity
region as a complicated boundary condition for the bath fields, this boundary condition will
break explicitly the global symmetry. If the gravity theory has a holographic description as
we’ve assumed in section 2, then this boundary condition would be realized by the coupling
between the quantum mechanical system and the bath CF'T. More generally, we expect the
same picture to hold even when the gravity theory does not have a holographic description.
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Figure 8. We can reproduce the effects of the wormhole by an effective picture where we sum over
correlated operators. This is also what happens from the boundary point of view, where the gravity
region is replaced by a boundary condition which completely breaks the global symmetry. Here we
are imagining that the operator insertions in the bath are far away from the gravity region. In some
theories with a disorder average, the dashed blue line may represent a contraction of couplings.

Far away from this boundary condition, the circle is hard to distinguish from a point, so
we can replace the boundary condition by a sum of operator insertions, see figure 8. We
can imagine that there is a small coefficient for some operator c,0, where ¢, has mean
zero in some appropriate averaged sense. Then ignoring these operators is equivalent to
only considering disconnected geometries. When we include connected geometries, we are
taking into account the non-zero variance of these coefficients |c,|2 ~ e=%. Of course, this
is just the old story about “a-parameters” and Euclidean wormholes [1, 61, 65, 66], what
we did in this section is making the relation to replica wormholes more explicit.

From this perspective, it is clear that a Euclidean wormhole with charge +¢q propagat-
ing through the throat is giving rise to a state with charge +¢q different than the “naive”
charge of the state (e.g. the charge of the state we would have assigned in the effective
description of the quantum fields on the trivial topology).

Now let us return to the density matrix of the fields in a subregion R. We will slightly
generalize the previous discussion by considering a state |1,) which is obtained by inserting
some charged operators in the Euclidean evolution. Let us denote elements of a charge
eigenbasis by a composite index r such that |r) = |g,,7), where i runs over states with the
same charge ¢,. Then,

Pexact (R) = trz ‘¢Q> <¢q’ )
Zy(0) /27 =Y (1] €7 pexact (R)™*? [5) (5] pescact (R) |r)

8

= >0 (o | OF, ubg) (g O, [thy) (3.11)

7,8

= Y] yylg)

8

g) = O [bg) . G=q+ar — gs

where Off, = |r) (s| is an operator with charge ¢, — ¢s. Neglecting gravity, we would have
expected to only receive a contribution when ¢, = ¢;. However, from (3.9) we see that
each off-diagonal contribution to the wormhole corresponds to diagrams where particles

carrying total charge ¢, — g5 propagate through the wormhole, see figure 9.
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Figure 9. We consider a global state which is not the vacuum but contains some operator insertions
in the bath region. (a) The diagonal contribution to the density matrix comes from particles
propagating through the cuts. (b) Off-diagonal contributions come from world-lines with non-zero
net charge propagating through the wormhole.

As a side remark, let us comment on the relation between scattering in the black hole
background. We have seen that the same effect which gives the non-zero relative entropy
is also responsible for non-zero values of correlation functions which would naively vanish
from symmetry considerations. These correlation functions in the bath are closely related
to scattering in the black hole background. For example, a 4-pt function in the bath region
in the appropriate out-of-time-order configuration could be interpreted as the traversable
wormhole signal [67] that violates global symmetry.

3.3 Comments on gauge symmetries

While exact global symmetries are not allowed in quantum gravity, gauge symmetries of
course can exist. Here we explain the difference between the two from the replica wormhole
point of view. To be concrete, we will consider the same set up as in (3.1), where the CFT
in the flat space region has an U(1) global symmetry, while the difference is that the
symmetry is gauged in the gravity region. By the same consideration as in (3.1), we would

still have
Zs(a)

Z>(0)

= (ef@@wormnole) \ \  (with replica wormhole). (3.12)

However, in the path integral, there will be an integral over the spatial zero mode of the
gauge field [ dAgexp (iAo [5; 7°) = §(Qwormnole) Which sets the charge propagating through
the wormhole to zero. Thus we have

Zy(a) = Z2(0) (3.13)

for arbitrary a as enforced by the gauge constraint. Similarly we have Z,(«) = Z,(0) for
higher replicas as well. It then follows that as n — 1 the relative entropy must vanish.
This shows that the symmetry is exact in the boundary description as expected.!!

171t would be interesting to understand how to see the vanishing of the relative entropy directly from the
relative entropy formula (2.9), without going through the replica argument.
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We can rephrase this argument slightly differently as follows. Consider (d + 1)-
dimensional electromagnetism on a compact space with no boundary ¥x time. In such a
theory, it is clear that the overall charge on ¥ must vanish. A net charge would source
electric field lines, which have nowhere to go. Integrating Gauss’s law V- FE = p on a
spatial manifold > with no boundary, we get the constraint that ¢ = 0. If we think of the
direction along the Fuclidean wormhole as time, this makes it clear that no net charge can
propagate through the wormhole. This is true even when the gauge coupling goes to zero.
Note that if we view gravity as a gauge theory, the analogous equation says that the ADM
Hamiltonian of a closed universe vanishes. If we perform a Kaluza-Klein reduction of some
of the compact dimensions along the wormhole, the momenta in the compact dimensions
will become gauge charges. So we will get a constraint that the total momentum in each
compact dimension vanishes.

4 Discussion and conclusion

It has been suggested for a long time that Euclidean wormholes lead to symmetry viola-
tion since charged particles may propagate through the wormhole. Normally, this is an
exponentially small effect. The main point of this paper is showing that when we compute
certain relative entropies, the tiny effects add up and give an O(1) result. This is morally
similar to what happens in the Page curve after the Page time, where the tiny correlations
in the Hawking radiation bring down the entropy. The novelty here is that instead of
computing the entropy, we are computing a relative entropy which involves symmetry gen-
erators acting in the bath region, so these quantities tell us about the symmetry violation.
Importantly, this effect can be computed with just knowledge of the semi-classical descrip-
tion. Our results are based on the recent paradigm of islands and replica wormholes. The
same logic which demands that replica wormholes be included in the computation of the
Page curve also demands that they should be included in computations of the relative en-
tropy. Of course, there are unresolved puzzles about the inclusion of Euclidean wormholes
in gravitational path integrals [54—61, 63, 64]. In some cases, it is known that Euclidean
wormbholes are computing a disorder average over theories. In these cases, it is possible
that the ensemble may have a symmetry group G that each individual theory does not.
(This means that the probability distribution over theories is invariant under the action of
G on theory-space). It is tempting to say that when there is an ensemble interpretation, if
we have a matter theory with global symmetry group G coupled to gravity, the group G
should be re-interpreted as the symmetry of the ensemble or the third-quantized theory.
See appendix C.3 for some extra comments.

The relative entropy S(Ugpexact (R) UIT3L| Pexact (R)) that we considered involves only the
density matrix in the bath region. Although it is not a direct observable, it might be able to
provide contraints or bounds on physical observables, which requires further investigation.
If one can create (or simulate holographically) black holes in the lab, then the relative
entropy and its Rényi versions are in principle measurable for observers who have multiple
copies of the system. In principle, measuring the say n = 2 version of the relative entropy
would not be hard (in the sense of computational complexity) if one had access to n = 2
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copies of the system. We do not need to measure each component of the density matrix
independently.

We stress that it is surprising that a quantity that characterizes the nonperturbative
violation of global symmetry can be computed in the semiclassical description. This sug-
gests that in some sense, the way gravity violates global symmetry is far from generic.
By this we mean the following: if we take some quantum field theory and put a random
boundary condition that contains tiny terms that breaks any global symmetries, we would
not expect the exact relative entropy to satisfy any formula given by the effective theory
where we have erased the tiny terms. Of course, the surprise we are referring to is similar
to the surprise that semiclassical gravity knows about the Page curve.

We’ve focused on idealized situations where there is no global symmetry violation
within the semiclassical description. However, the argument we had can be easily gener-
alized to situations where the symmetry has already been violated semiclassically. (For
example, there could be Planck-suppressed operators in the Lagrangian which break ex-
plicitly any global symmetries.) In such theories, the relative entropy of the semiclassical
psemi(R)> > 0. However,
if we consider the relative entropy of the exact density matrix, as long as the island still

density matrix will already be non-zero, i.e. S (U R,osemi(R)U};2

exists, we will have

S (URpexact (R) U]J[‘,g

pesact (B)) = 8 (Unpseni(RU DU |premi(RUT))
> S (URPsemi(R)U}; psemi(R)) )

(4.1)

where we used the monotonicity of relative entropy from the first line to the second line.
The difference between the exact answer and the semiclassical answer will still be order
one due to the inclusion of the island. Thus for an evaporating black hole, we will still find
a sudden increase of the relative entropy at the Page time, which is a clear signature of the
global symmetry violation from nonperturbative effects.

We have emphasized that the symmetry violating effects we are considering are related
to Euclidean wormholes. On the other hand, it has long been known that the Hawking
process violates symmetries; these previous arguments only involved the naive disconnected
geometries. In order to emphasize what our new arguments buy, let us return to the setup
discussed in section 2.3. The matter theory in the bulk is a large ¢ CF'T + a probe massive
field with a U(1) symmetry and particles of mass m. Let us consider a large black hole
which has a Hawking temperature 7' < m that is older than the Page time. Imagine that
it formed from neutral matter. Now consider the same experiment in section 2.3. If a few
charged particles fall into the black hole, we might wonder whether the experimentalist
which remains outside the hole can see charge violation. Naively to check the argument
of [4], she would have to wait an extremely long time for the black hole to evaporate. In
particular, she would have to wait for the black hole to become small enough that 7" > m,
at which point it could start to radiate the U(1) charge.

However, our proposal is that even after a scrambling time, the clever experimentalist
can in fact report a violation of charge conservation by measuring off-diagonal components

- 21 —



of the density matrix, or if she can control multiple copies of the system, a suitable Rényi
relative entropy.

Note that our result is similar in spirit to the result of Hayden and Preskill [22]. Naively,
one would have guessed that to recover the information from a diary thrown into the hole,
one would have to wait until almost the end of the evaporation process. But [22] showed
that one only needs to wait for a scrambling time if the black hole is older than the Page
time. Here we are in some sense refining their result and showing that the information in
the Hawking radiation recovered after the scrambling time is sufficient to demonstrate that
charge conservation is violated.'?

The connection between the appearance of islands and violation of global symmetries
implies that we can see clear signatures of symmetry violation even in situations where
charge conservation considerations like those in [4] do not immediately apply. Besides the
Hayden-Preskill-like experiment discussed above, an example is the extremal (zero temper-
ature) black hole. Another case is the finite temperature black hole in equilibrium with a
bath that never evaporates. We expect our results to generalize to the cosmological setups
of [35, 36, 40] where the old arguments would not establish a clear signature of symmetry
violation. Of course, the old arguments only involve measuring simple observables like the
total charge of the Hawking radiation. In our work, we are discussing the relative entropy
which is a much more complicated quantity.

It would be interesting to see if our arguments can be generalized to address questions
about gauge charges like the weak gravity conjecture, completeness conjecture, etc. [3, 69].
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A Nonperturbative correlation between subsets of fields in the Hawking
radiation

As we mentioned in section 2, the island formula implies that there exists substantial corre-
lation between different fields in the Hawking radiation. In this appendix, we illustrate this
point in more details. Instead of dividing the Hawking radiation into spatial subsystems,
we can also divide the Hawking radiation in a fixed region into subsets of fields. In other
words, we are dividing the Hilbert space of some subregion into the tensor product of some
smaller Hilbert spaces. This division is at least well defined when the Hawking radiation
is in an asymptotic region, where we can neglect the dynamical gravity effects.

2Despite the analogy, we should not confuse the ability to recover the charge of the particle using entan-
glement reconstruction with the effect that we are talking about here. The violation of charge conservation
is more directly related to the fact that naively orthogonal black hole states are not orthogonal in the exact
description, this is particularly clear in the model of appendix C. See also [68] for another recent discussion
on the interplay between global symmetry and the Hayden-Preskill protocol.
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Let’s consider a region R that is big enough such that we have islands. Now we separate
the fields in R into a large portion (labeled by L) and a small portion (labeled by ). We
take the number of degrees of freedom in S to be much smaller than L. In the example of
section 2.2, S will be the massless fermion field under the U(1) global symmetry, while L
will be the rest of the fields.

We could compute the entropies of the three density matrices pexact(Rr U Rg),
Pexact (Rr) and pexact (Rg) using the QES prescription. For pexact (Rr U Rg) and pexact (RL),
we will find an island in the entanglement wedge:

A(0I

S(pexact(RL U RS)) = 4(C;N) + S(psemi(RL U RS Ulpu IS))a (Al)
A(0I

S(Pexact(RL)) = 4(C¥N) + S(psemi(RL Ulpu IS))) (AZ)

where we neglected the change in the position of the island due to the addition of the
field S, since it will only give subleading corrections. Importantly, in (A.2), one gets
contributions from both I; and Ig in the island. This is because the island should be for
all the fields, as it follows from the replica wormhole geometry which all the fields live on.
(In other words, the emergent twist operators act on all fields.) For pexact(Rs), since its
semi-classical entropy is small, there will not be an island:

S(pexact(RS)) = S(psemi(RS)>- (A?’)
Combining (A.1) to (A.3), one finds
Iexact(RS : RL) = Isemi(RS cRpulp U Is). (A4)

In particular, by the monotonicity of mutual information, one has
Iexact(RS : RL) > Isemi<RS : RL)7 (A5)

and the difference will be an order one amount. The difference comes from nonperturbative
effects that are not present in the semiclassical description. Notice that in the vacuum state,
the semiclassical mutual information Igemi(Rg : Rr) will vanish in the limit that S and L
are decoupled in the semiclassical theory. On the other hand, the right hand side of (A.4)
reduces to Isemi(Rgs : Ig), which is nonzero and finite even when the coupling between S
and L is negligible in the semiclassical description.

B Details on the relative entropy for massless free fermion in 2D

As derived in [49, 70], for a two dimensional free massless fermion in the vacuum state, the
modular Hamiltonian of the union of I = (a1,b1) and R = (ag, b2) takes the following form:

K = Kloc + Knolom
Kioe =27 dz o' (2) 71T (x),

IUR
— ior oot ()01 —a1) (a2 — by) (b2 — a1) (b2 — a2) (B.1)
Knoloc =12 IURd "‘ﬂ ( )w/(x)Q (aj — al) (LU - (12) (1,‘ — bl) (x — b2)
; v(a),

x (a1 + ag — by — b2) + (biba — ajag)
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where T'(z) = 1 [i(‘?ﬂ/ﬁ(a:)w(x) - W(:v)i(‘)xw(x)} is the energy density operator, and w(z), z

are given by
1 1 1 1

T — a :U—ag_x—bl _$—b2
arag (x — by — be) — biby (x — a1 — ag)’
x (a1 + az — by — b2) + (biba — arag)

The formulas are the same for ¥ and ¥_, so we’ve omitted the chirality of the fermion.

WJ(x) =
(B.2)

.f:

As discussed in (2.20), we are interested in computing the expectation value (0| Kyoloc |0)-

Using o
O @) 0) = 5, (B.3)

when x # y, we can compute the integral in (B.1), and find

1 (2n — 1) arctan %
<0‘ Knoloc |0> =—11+ s (B4)
4 n(1—n)
where the cross ratio n is defined as
b1 —ai)(bs —a
n= (b1 1)(b2 2) (B.5)

(az —a1)(ba — b1)

When computing the integral, it is convenient to set {ai, b1, a2,b2} = {0,7n,1,00}. (B.4) is
the contribution from one of the chiral modes, so to get the total contribution, we multiply
it by two.

C Global symmetry in JT gravity + EoW branes

In this section, we explore issues related to global symmetry violations in the “West coast”
model [20], namely JT gravity with end-of-the-world (EoW) branes. We refer the reader
o [20] for definitions and conventions. Some similar comments could be made in the
simplified model of [61].

C.1 Coarse-grained entropy

A natural question is whether one can define a coarse-grained density matrix pr of the
radiation, whose entropy does not follow the Page curve but instead is given by the naive,
non-minimal quantum extremal surface. In the setup of [20], we want the coarse-grained en-
tropy to be & log k, even when k is bigger than ¢%°. Here we point out that if we have a large
symmetry group, we can use group-averaging to define a coarse-grained density matrix:

pn = [ dgUlg)pnUis™). (©1)

Note that the group-averaging is a completely positive trace preserving (CPTP) map. It
takes any density matrix into a density matrix which is invariant under the symmetry
group. The CPTP property ensures that

S(Pr) = S(pr)- (C.2)
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For a simple model where we can explicitly compute S(pr), consider the west coast
model [20]. From the bulk (semi-classical) perspective, the model is defined by JT gravity
+ end-of-the-world (EoW) branes. The EoW branes carry an index ¢ such that

(il7)pu = 0ij- (C.3)

This equation should not be confused with a statement about the actual boundary states
that correspond to these branes, which are not exactly orthonormal. The content of this
equation is simply to prescribe rules for evaluating the bulk path integral. The point we
would like to make here is that the bulk theory at the semi-classical level has a U(k) global
symmetry, where the EoW branes transform in the fundamental.

Now let us consider the replica wormhole computation of S(pr). We will start by
computing the Rényi entropies. Let us consider the 2-replica computation of tr (,5%%). Since
the overall state of the black hole and the radiation is an entangled state

k
= \}%ZWQB |i)R (C.4)
i=1

acting with the symmetry generator on the radiation i) — U |i)g = Uj; |j)g is equivalent
to acting on the black hole states [¢);)p — > Uji |4j). Clearly if we consider the dis-
connected saddle, the symmetry generators act trivially. But for the connected saddle, we
actually get the constraint ¢ = j. So whereas

) kZ? +k*Zy 1 Z

Tr (pf =—+ =,
(pR (kz,)* k73 (C.5)
B kZ? +kZy 1 Z '
2 17 — — —
Tr (pR> (kZ1)? k (1 * 212) '

Notice that the connected saddle never dominates, no matter how big k is.
In fact, from the boundary point of view we can compute the exact density matrix
after group averaging:

PR =7 Z 1) Cilg (Wil 5)5 -

1,j=1

ﬁR:—Z/dUUm il Ut (i)
=1 (C.6)

=7 Z | ’ R ¢z|wz>
s Z |2) (il g
K3
Note that this is almost a completely mixed density matrix. (It is not perfectly mixed
because the norms of the states (¢;|1);) have small fluctuations. However, to leading order

in e, this effect is negligible.) Notice that at large k, this gives a concrete meaning to
a sub-dominant QES.
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C.2 Relative entropy

Let us start with computing the relative purity tr UpUTp in the West coast model. Up to
a normalization,

trUpUTp = Uijpij]Ilpli =
= Ui U, (14n) (thulabi) (C.7)

= Z &L'kZlQ + UiiUIIkZZ
ik

Notice that the unitary does not affect the disconnected contribution. Furthermore, when
we set the group element to the identity U = I, we recover the result in [20].

Now we can also use the QES prescription to compute the relative entropy. At small
k, there is no island and the QES prescription gives 0. Since the semi-classical density
matrix is a pure state:

psemi = > _(1¥3) (v @ [i) (4]) (C.8)

7:7]‘

the relative entropy would be infinite if U # 1:
S(Urpsemi(RU DU psemi(RUT)) = 00, U # 1. (C.9)

In the exact description, the density matrix of the radiation is not pure. We therefore
expect a finite answer, so the relative entropy formula is not immediately applicable. It
would be interesting to apply the planar resummation techniques of [20] to compute the
finite answer.

C.3 Global symmetry in the ensemble

Here we would like to make some distinctions about the various kinds of symmetries in JT
gravity + EoW branes.

1. The simplest symmetry is the semi-classical symmetry of the theory. This means
that if we only include the trivial, disconnected topologies in the path integral, we
will have a matter theory which has an exact global U(k) symmetry. In particular,
the overlaps between different brane states (1;[1);) = 0;; are exactly invariant under

[vi) = 22, Uij [1;)-

2. If we include higher topologies in the path integral, it has been shown that the path
integral is dual to an ensemble of theories. The ensemble is a probability distribution
over the Hamiltonian (a random matrix) and a set of pure states (k random vectors).
If we consider one instance of the disorder average, the resulting theory will generically
not have a U(k) global symmetry. For example, the inner products between different
pure states will be slightly different.
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3. Nevertheless, the ensemble has a U(k) symmetry. Note that unlike in point 1, the
U(k) symmetry acts in theory space. It is not the symmetry group of an individual
theory. Specifying each theory means specifying the values of the Hamiltonian and
the pure state. The statement about the symmetry of the ensemble is that if we take
such one instance of the ensemble ¢1, and then act with g € U(k) on the random
vectors to obtain a new theory t2 = g(t1), the probability P(t2) = P(t1). If we think
of the ensemble as a third-quantization [61], we might say that U(k) is a symmetry
in the third-quantized theory.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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