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1 Introduction

The non-Abelian discrete symmetries are attractive ones to understand flavors of quarks
and leptons. The S3 flavor symmetry was a pioneer for the quark flavor mixing [1, 2]. It was
also discussed to understand the large mixing angle [3] in the oscillation of atmospheric
neutrinos [4]. For the last twenty years, the non-Abelian discrete symmetries of flavors
have been developed, that is motivated by the precise observation of flavor mixing angles
of leptons [5–14]. Among them, the A4 flavor model is an attractive one because the
A4 group is the minimal one including a triplet irreducible representation, which allows
for a natural explanation of the existence of three families of quarks and leptons [15–21].
However, it is difficult to obtain clear predictions of the A4 flavor symmetry because of a
lot of free parameters associated with scalar flavon fields.

Recently, a new approach to the lepton flavor problem has been put forward based on
the invariance under the modular transformation [22], where the model of the finite modular
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group Γ3 ' A4 has been presented. In this approach, fermion matrices are written in terms
of modular forms which are holomorphic functions of the modulus τ . This work inspired
further studies of the modular invariance approach to the lepton flavor problem.

The finite groups S3, A4, S4, and A5 are realized in modular groups [23]. Modular
invariant flavor models have been also proposed on the Γ2 ' S3 [24], Γ4 ' S4 [25] and
Γ5 ' A5 [26]. Phenomenological discussions of the neutrino flavor mixing have been done
based on A4 [27–29], S4 [30–32] and A5 [33]. A clear prediction of the neutrino mixing
angles and the CP violating phase was given in the simple lepton mass matrices with the
A4 modular symmetry [28]. On the other hand, the Double Covering groups T′ [34, 35] and
S′4 [36, 37] were realized in the modular symmetry. Furthermore, modular forms for ∆(96)
and ∆(384) were constructed [38], and the extension of the traditional flavor group was
discussed with modular symmetries [39]. The level 7 finite modular group Γ7 ' PSL(2,Z7)
was also presented for the lepton mixing [40]. Based on those works, phenomenological
studies have been developed in many works [41–80] while theoretical investigations have
been also proceeded [81–86].

In order to test the modular symmetry of flavors, the prediction of the CP violating
Dirac phase is important. The CP transformation is non-trivial if the non-Abelian discrete
flavor symmetry is set in the Yukawa sector of a Lagrangian. Then, we should discuss
so called the generalized CP symmetry in the flavor space [87–91]. It can predict the CP
violating phase [92]. The modular invariance has been also studied combining with the
generalized CP symmetry in flavor theories [93, 94]. It provides a powerful framework to
predict CP violating phases of quarks and leptons.

In our work, we present the modular A4 invariant model with the generalized CP
symmetry. Both CP and modular symmetries are broken spontaneously by the vacuum
expectation value (VEV) of the modulus τ . We discuss the phenomenological implication of
this model, that is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing angles [95, 96]
and the CP violating Dirac phase of leptons, which is expected to be observed at T2K and
NOνA experiments [97, 98].

The paper is organized as follows. In section 2, we give a brief review on the generalized
CP transformation in the modular symmetry. In section 3, we present the CP invariant
lepton mass matrix in the A4 modular symmetry. In section 4, we show the phenomeno-
logical implication of our model. section 5 is devoted to the summary. In appendix A, we
present the tensor product of the A4 group. In appendix B, we show the modular forms
for weight 2 and 4. In appendix C, we show how to determine the coupling coefficients of
the charged lepton sector. In appendix D, we present how to obtain the Dirac CP phase,
the Majorana phases and the effective mass of the 0νββ decay.

2 Generalized CP transformation in modular symmetry

2.1 Generalized CP symmetry

Let us start with discussing the generalised CP symmetry [92, 99]. The CP transformation
is non-trivial if the non-Abelian discrete flavor symmetry G is set in the Yukawa sector
of a Lagrangian. Let us consider the chiral superfields. The CP is a discrete symmetry
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which involves both Hermitian conjugation of a chiral superfield ψ(x) and inversion of
spatial coordinates,

ψ(x)→ Xrψ(xP ) , (2.1)

where xP = (t,−x) and Xr is a unitary transformations of ψ(x) in the irreducible represen-
tation r of the discrete flavor symmetry G. If Xr is the unit matrix, the CP transformation
is the trivial one. This is the case for the continuous flavor symmetry [99]. However, in
the framework of the non-Abelian discrete family symmetry, non-trivial choices of Xr are
possible. The unbroken CP transformations of Xr form the group HCP. Then, Xr must
be consistent with the flavor symmetry transformation,

ψ(x)→ ρr(g)ψ(x) , g ∈ G , (2.2)

where ρr(g) is the representation matrix for g in the irreducible representation r.
The consistent condition is obtained as follows. At first, perform a CP transformation

ψ(x) → Xrψ(xP ), then apply a flavor symmetry transformation, ψ(xP ) → ρ∗r(g)ψ(xP ),
and finally perform an inverse CP transformation. The whole transformation is written
as ψ(x) → Xrρ

∗(g)X−1
r ψ(x), which must be equivalent to some flavor symmetry ψ(x) →

ρr(g′)ψ(x). Thus, one obtains [100]

Xrρ
∗
r(g)X−1

r = ρr(g′) , g, g′ ∈ G . (2.3)

This equation defines the consistency condition, which has to be respected for consistent
implementation of a generalized CP symmetry along with a flavor symmetry [101, 102].
This chain CP → g → CP−1 maps the group element g onto g′ and preserves the flavor
symmetry group structure. That is a homomorphism v(g) = g′ of G. Assuming the
presence of faithful representations r, eq. (2.3) defines a unique mapping of G to itself. In
this case, v(g) is an automorphism of G [101].

It has been also shown that the full symmetry group is isomorphic to a semi-direct
product of G and HCP, that is GoHCP, where HCP ' ZCP

2 , is the group generated by the
generalised CP transformation under the assumption of Xr being a symmetric matrix [102].

2.2 Modular symmetry

The modular group Γ̄ is the group of linear fractional transformations γ acting on the
modulus τ , belonging to the upper-half complex plane as:

τ −→ γτ = aτ + b

cτ + d
, where a, b, c, d ∈ Z and ad− bc = 1, Im[τ ] > 0 , (2.4)

which is isomorphic to PSL(2,Z) = SL(2,Z)/{I,−I} transformation. This modular trans-
formation is generated by S and T ,

S : τ −→ −1
τ
, T : τ −→ τ + 1 , (2.5)

which satisfy the following algebraic relations,

S2 = 1 , (ST )3 = 1 . (2.6)
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We introduce the series of groups Γ(N), called principal congruence subgroups, where
N is the level 1, 2, 3, . . . . These groups are defined by

Γ(N) =
{(

a b

c d

)
∈ SL(2,Z) ,

(
a b

c d

)
=
(

1 0
0 1

)
(modN)

}
. (2.7)

For N = 2, we define Γ̄(2) ≡ Γ(2)/{I,−I}. Since the element −I does not belong to Γ(N)
for N > 2, we have Γ̄(N) = Γ(N). The quotient groups defined as ΓN ≡ Γ̄/Γ̄(N) are
finite modular groups. In these finite groups ΓN , TN = 1 is imposed. The groups ΓN with
N = 2, 3, 4, 5 are isomorphic to S3, A4, S4 and A5, respectively [23].

Modular forms fi(τ) of weight k are the holomorphic functions of τ and transform as

fi(τ) −→ (cτ + d)kρ(γ)ijfj(τ) , γ ∈ G , (2.8)

under the modular symmetry, where ρ(γ)ij is a unitary matrix under ΓN .
Superstring theory on the torus T 2 or orbifold T 2/ZN has the modular symmetry [103–

109]. Its low energy effective field theory is described in terms of supergravity theory, and
string-derived supergravity theory has also the modular symmetry. Under the modular
transformation of eq. (2.4), chiral superfields ψi (i denotes flavors) transform as [110],

ψi −→ (cτ + d)−kIρ(γ)ijψj . (2.9)

We study global supersymmetric models, e.g., minimal supersymmetric extensions of
the Standard Model (MSSM). The superpotential which is built from matter fields and
modular forms is assumed to be modular invariant, i.e., to have a vanishing modular
weight. For given modular forms this can be achieved by assigning appropriate weights to
the matter superfields.

The kinetic terms are derived from a Kähler potential. The Kähler potential of chiral
matter fields ψi with the modular weight −k is given simply by

Kmatter = 1
[i(τ̄ − τ)]k

∑
i

|ψi|2, (2.10)

where the superfield and its scalar component are denoted by the same letter, and τ̄ = τ∗

after taking VEV of τ . Therefore, the canonical form of the kinetic terms is obtained
by changing the normalization of parameters [28]. The general Kähler potential consistent
with the modular symmetry possibly contains additional terms [111]. However, we consider
only the simplest form of the Kähler potential.

For Γ3 ' A4, the dimension of the linear spaceMk(Γ(3)) of modular forms of weight
k is k + 1 [112–114], i.e., there are three linearly independent modular forms of the lowest
non-trivial weight 2, which form a triplet of the A4 group, Y(2)

3 (τ) = (Y1(τ), Y2(τ), Y3(τ))T .
As shown in appendix A, these modular forms have been explicitly obtained [22] in the
symmetric base of the A4 generators S and T for the triplet representation:

S = 1
3

−1 2 2
2 −1 2
2 2 −1

 , T =

1 0 0
0 ω 0
0 0 ω2

 , (2.11)

where ω = exp(i2
3π).
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2.3 CP transformation of the modulus τ

The CP transformation in the modular symmetry was given by using the generalized CP
symmetry [93]. We summarize the discussion in ref. [93] briefly. Consider the CP and
modular transformation γ of the chiral superfield ψ(x) assigned to an irreducible unitary
representation r of ΓN . The chain CP → γ → CP−1 = γ′ ∈ Γ̄ is expressed as:

ψ(x) CP−−→ Xrψ(xP ) γ−−→ (cτ∗ + d)−kXr ρ
∗
r(γ)ψ(xP )

CP−1
−−−−→ (cτ∗CP−1 + d)−kXr ρ

∗
r(γ)X−1

r ψ(x) , (2.12)

where τCP−1 is the operation of CP−1 on τ . The result of this chain transformation should
be equivalent to a modular transformation γ′ which maps ψ(x) to (c′τ + d′)−kρr(γ′)ψ(x).
Therefore, one obtains

Xrρ
∗
r(γ)X−1

r =
(

c′τ + d′

cτ∗CP−1 + d

)−k
ρr(γ′) . (2.13)

Since Xr, ρr and ρr′ are independent of τ , the overall coefficient on the right-hand side of
eq. (2.13) has to be a constant (complex) for non-zero weight k:

c′τ + d′

cτ∗CP−1 + d
= 1
λ∗
, (2.14)

where |λ| = 1 due to the unitarity of ρr and ρr′ . The values of λ, c′ and d′ depend on γ.
Taking γ = S (c = 1, d = 0), and denoting c′(S) = C, d′(S) = D while keeping

λ(S) = λ, we find τ = (λτ∗CP−1 −D)/C from eq. (2.14), and consequently,

τ
CP−1
−−−−→ τCP−1 = λ(Cτ∗ +D) , τ

CP−−→ τCP = 1
C

(λτ∗ −D) . (2.15)

Let us act with chain CP → T → CP−1 on the mudular τ itself:

τ
CP−−→ τCP = 1

C
(λτ∗ −D) T−−→ 1

C
(λ(τ∗ + 1)−D) CP−1

−−−−→ τ + λ

C
. (2.16)

The resulting transformation has to be a modular transformation, therefore λ/C is an
integer. Since |λ| = 1, we find |C| = 1 and λ = ±1. After choosing the sign of C as
C = ∓1 so that Im[τCP] > 0, the CP transformation of eq. (2.15) turns to

τ
CP−−→ n− τ∗ , (2.17)

where n is an integer. The chain CP → S → CP−1 = γ′(S) imposes no furher restrictions
on τCP. It is always possible to redefine the CP transformation in such a way that n = 0 by
using the freedom of T transformation. Therefore, we define that the modulus τ transforms
under CP as

τ
CP−−→ −τ∗ , (2.18)

without loss of generality.
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The same transformation of τ was also derived from the higher dimensional theo-
ries [94]. The four-dimensional CP symmetry can be embedded into (4 + d) dimensions
as higher dimensional proper Lorentz symmetry with positive determinant. That is, one
can combine the four-dimensional CP transformation and d-dimensional transformation
with negative determinant so as to obtain (4 + d) dimensional proper Lorentz transfor-
mation. For example in six-dimensional theory, we denote the two extra coordinates by a
complex coordinate z. The four-dimensional CP symmetry with z → z∗ or z → −z∗ is a
six-dimensional proper Lorentz symmetry. Note that z = x + τy, where x and y are real
coordinates. The latter transformation z → −z∗ maps the upper half plane Im[τ ] > 0 to
the same half plane. Hence, we consider the transformation z → −z∗ (τ → −τ∗) as the
CP symmetry.

2.4 CP transformation of modular multiplets

Chiral superfields and modular forms transform in eqs. (2.8) and (2.9), respectively, under
a modular transformation. Chiral superfields also transform in eq. (2.1) under the CP
transformation. The CP transformation of modular forms were given in ref. [93] as follows.
Define a modular multiplet of the irreducible representation r of ΓN with weight k as
Y(k)

r (τ), which is transformed as:

Y(k)
r (τ) CP−−→ Y(k)

r (−τ∗) , (2.19)

under the CP transformation. The complex conjugated CP transformed modular forms
Y(k)∗

r (−τ∗) transform almost like the original multiplets Y(k)
r (τ) under a modular trans-

formation, namely:

Y(k)∗
r (−τ∗) γ−−→ Y(k)∗

r (−(γτ)∗) = (cτ + d)kρ∗r(u(γ))Y(k)∗
r (−τ∗) , (2.20)

where u(γ) ≡ CPγCP−1. Using the consistency condition of eq. (2.3), we obtain

XT
r Y(k)∗

r (−τ∗) γ−−→ (cτ + d)kρr(γ)XT
r Y(k)∗

r (−τ∗) . (2.21)

Therefore, if there exist a unique modular multiplet at a level N , weight k and represen-
tation r, which is satisfied for N = 2–5 with weight 2, we can express the modular form
Y(k)

r (τ) as:

Y(k)
r (τ) = κXT

r Y(k)∗
r (−τ∗) , (2.22)

where κ is a proportional coefficient. Since Y(k)
r (−(−τ∗)∗) = Y(k)

r (τ), eq. (2.22) gives
X∗rXr = |κ|21r. Therefore, the matrix Xr is symmetric one, and κ = eiφ is a phase,
which can be absorbed in the normalization of modular forms. In conclusion, the CP
transformation of modular forms is given as:

Y(k)
r (τ) CP−−→ Y(k)

r (−τ∗) = XrY(k)∗
r (τ) . (2.23)

It is also emphasized that Xr = 1r satisfies the consistency condition eq. (2.3) in a basis
that generators of S and T of ΓN are represented by symmetric matrices because of ρ∗r(S) =
ρ†r(S) = ρr(S−1) = ρr(S) and ρ∗r(T ) = ρ†r(T ) = ρr(T−1).
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L (ec, µc, τ c) Hu Hd Y(2)
r , Y(4)

r

SU(2) 2 1 2 2 1

A4 3 (1, 1′′, 1′) 1 1 3, {3,1,1′}

k −2 (0, 0, 0) 0 0 2, 4

Table 1. Representations and weights k for MSSM fields and modular forms of weight 2 and 4.

The CP transformations of chiral superfields and modular multiplets are summalized
as follows:

τ
CP−−→ −τ∗ , ψ(x) CP−−→ Xrψ(xP ) , Y(k)

r (τ) CP−−→ Y(k)
r (−τ∗) = XrY(k)∗

r (τ) , (2.24)

where Xr = 1r can be taken in the base of symmetric generators of S and T . We use this
CP transformation of modular forms to construct the CP invariant mass matrices in the
next section.

3 CP invariant mass matrix in A4 modular symmetry

Let us discuss the CP invariant lepton mass matrix in the framework of the A4 modular
symmetry. We assign the A4 representation and weight for superfields of leptons in table 1,
where the three left-handed lepton doublets compose a A4 triplet L, and the right-handed
charged leptons ec, µc and τ c are A4 singlets. The weights of the superfields of left-handed
leptons and right-handed charged leptons are −2 and 0, respectively. Then, the simple
lepton mass matrices for charged leptons and neutrinos are obtained [75].

The superpotential of the charged lepton mass term is given in terms of modular forms
of weight 2, Y(2)

3 . It is given as:

wE = αee
cHdY

(2)
3 L+ βeµ

cHdY
(2)
3 L+ γeτ

cHdY
(2)
3 L , (3.1)

where L is the left-handed A4 triplet leptons. We can take real for αe, βe and γe. Under
CP, the superfields transform as:

ec
CP−−→ X∗1 e

c , µc
CP−−→ X∗1′′ µ

c , τ c
CP−−→ X∗1′ τ

c , L
CP−−→ X3L , Hd

CP−−→ ηdHd ,

(3.2)

and we can take ηd = 1 without loss of generality. Since the representations of S and T

are symmetric as seen in eq. (2.11), we can choose X3 = 1 and X1 = X1′ = X1′′ = 1.
Taking (eL, µL, τL) in the flavor base, the charged lepton mass matrix ME is simply

written as:

ME(τ) = vd

αe 0 0
0 βe 0
0 0 γe


Y1(τ) Y3(τ) Y2(τ)
Y2(τ) Y1(τ) Y3(τ)
Y3(τ) Y2(τ) Y1(τ)


RL

, (3.3)
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where vd is VEV of the neutral component of Hd, and coefficients αe, βe and γe are taken
to be real without loss of generality. Under CP transformation, the mass matrix ME is
transformed following from eq. (2.24) as:

ME(τ) CP−−→ME(−τ∗) = M∗E(τ) = vd

αe 0 0
0 βe 0
0 0 γe


Y1(τ)∗ Y3(τ)∗ Y2(τ)∗

Y2(τ)∗ Y1(τ)∗ Y3(τ)∗

Y3(τ)∗ Y2(τ)∗ Y1(τ)∗


RL

. (3.4)

Let us discuss the neutrino mass matrix. Suppose neutrinos to be Majorana particles.
By using the Weinberg operator, the superpotential of the neutrino mass term, wν is
given as:

wν = − 1
Λ(HuHuLLY(4)

r )1 , (3.5)

where Λ is a relevant cutoff scale. Since the left-handed lepton doublet has weight −2, the
superpotential is given in terms of modular forms of weight 4, Y(4)

3 , Y(4)
1 and Y(4)

1′ .
By putting vu for VEV of the neutral component of Hu and using the tensor products

of A4 in appendix A, we have

wν = v2
u

Λ


2νeνe−νµντ−ντνµ

2ντντ−νeνµ−νµντ
2νµνµ−ντνe−νeντ

⊗Y(4)
3

+(νeνe+νµντ+ντνµ)⊗gν1 Y(4)
1 +(νeντ+νµνµ+ντνe)⊗gν2 Y(4)

1′


= v2

u

Λ
[
(2νeνe−νµντ−ντνµ)Y (4)

1 +(2ντντ−νeνµ−νµνe)Y (4)
3 +(2νµνµ−ντνe−νeντ )Y (4)

2

+ (νeνe+νµντ+ντνµ)gν1 Y(4)
1 +(νeντ+νµνµ+ντνe)gν2 Y(4)

1′
]
, (3.6)

where Y(4)
3 , Y(4)

1 and Y(4)
1′ are given in eq. (B.6) of appendix B, and gν1 , gν2 are complex

parameters in general. The neutrino mass matrix is written as follows:

Mν(τ) = v2
u

Λ




2Y (4)
1 (τ) −Y (4)

3 (τ) −Y (4)
2 (τ)

−Y (4)
3 (τ) 2Y (4)

2 (τ) −Y (4)
1 (τ)

−Y (4)
2 (τ) −Y (4)

1 (τ) 2Y (4)
3 (τ)

+gν1 Y(4)
1 (τ)

1 0 0
0 0 1
0 1 0

+gν2 Y(4)
1′ (τ)

0 0 1
0 1 0
1 0 0


 ,

(3.7)

which is the same one in ref. [75]. Under CP transformation, the mass matrix Mν is
transformed following from eq. (2.24) as:

Mν(τ) CP−−→Mν(−τ∗) =M∗ν (τ)

= v2
u

Λ




2Y (4)∗
1 (τ) −Y (4)∗

3 (τ) −Y (4)∗
2 (τ)

−Y (4)∗
3 (τ) 2Y (4)∗

2 (τ) −Y (4)∗
1 (τ)

−Y (4)∗
2 (τ) −Y (4)∗

1 (τ) 2Y (4)∗
3 (τ)

+gν∗1 Y(4)∗
1 (τ)

1 0 0
0 0 1
0 1 0

+gν∗2 Y(4)∗
1′ (τ)

0 0 1
0 1 0
1 0 0


 .

(3.8)
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In a CP conserving modular invariant theory, both CP and modular symmetries are broken
spontaneously by VEV of the modulus τ . However, there exist certain values of τ which
conserve CP while breaking the modular symmetry. Obviously, this is the case if τ is left
invariant by CP, i.e.

τ
CP−−→ −τ∗ = τ , (3.9)

which indicates τ lies on the imaginary axis, Re[τ ] = 0. In addition to Re[τ ] = 0, CP is
conserved at the boundary of the fundamental domain. Then, one has

ME(τ) = M∗E(τ) , Mν(τ) = M∗ν (τ) , (3.10)

which leads to gν1 and gν2 being real. Since parameters αe, βe, γe are also real, the source
of the CP violation is only non-trivial Re[τ ] after breaking the modular symmetry. In the
next section, we present numerical analysis of the CP violation by investigating the value
of the modulus τ .

4 Numerical results of leptonic CP violation

We have presented the CP invariant lepton mass matrices in the A4 modular symmetry.
These mass matrices are the same ones in ref. [75] except for parameters gν1 and gν2 being
real. If the CP violation will be confirmed at the experiments of neutrino oscillations, the
CP symmetry should be broken spontaneously by VEV of the modulus τ . Thus, VEV
of τ breaks the CP symmetry as well as the modular invariance. The source of the CP
violation is only the real part of τ . This situation is different from the previous work in
ref. [75], where imaginary parts of gν1 and gν2 also break the CP symmetry explicitly. Our
phenomenological concern is whether the spontaneous CP violation is realized due to the
value of τ , which is consistent with observed lepton mixing angles and neutrino masses. If
this is the case, the CP violating Dirac phase and Majorana phases are predicted clearly
under the fixed value of τ .

Parameter ratios αe/γe and βe/γe are given in terms of charged lepton masses and τ as
shown in appendix C. Therefore, the lepton mixing angles, the Dirac phase and Majorana
phases are given by our model parameters gν1 and gν2 in addition to the value of τ .

As the input charged lepton masses, we take Yukawa couplings of charged leptons at
the GUT scale 2× 1016 GeV, where tan β = 5 is taken as a bench mark [115, 116]:

ye = (1.97±0.024)×10−6, yµ = (4.16±0.050)×10−4, yτ = (7.07±0.073)×10−3, (4.1)

where lepton masses are given by m` = y`vH with vH = 174GeV.
We also input the lepton mixing angles and neutrino mass parameters which are given

by NuFit 5.0 in table 2 [117]. In our analysis, δCP is output because its observed range is too
wide at 3σ confidence level. We investigate two possible cases of neutrino masses mi, which
are the normal hierarchy (NH), m3 > m2 > m1, and the inverted hierarchy (IH), m2 >

m1 > m3. Neutrino masses and the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix
UPMNS [95, 96] are obtained by diagonalizing M †EME and M †νMν . We also investigate the
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observable best fit±1σ for NH best fit±1σ for IH

sin2 θ12 0.304+0.012
−0.012 0.304+0.013

−0.012

sin2 θ23 0.573+0.016
−0.020 0.575+0.016

−0.019

sin2 θ13 0.02219+0.00062
−0.00063 0.02238+0.00063

−0.00062

∆m2
sol 7.42+0.21

−0.20 × 10−5eV2 7.42+0.21
−0.20 × 10−5eV2

∆m2
atm 2.517+0.026

−0.028 × 10−3eV2 −2.498+0.028
−0.028 × 10−3eV2

Table 2. The best fit±1σ of neutrino parameters from NuFIT 5.0 for NH and IH [117].

effective mass for the 0νββ decay, 〈mee〉 (see appendix D) and the sum of three neutrino
masses

∑
mi since it is constrained by the recent cosmological data, which is the upper-

bound
∑
mi ≤ 120meV obtained at the 95% confidence level [118, 119].

4.1 Case of normal hierarchy of neutrino masses

Let us discuss numerical results for NH of neutrino masses. The ratios αe/γe and βe/γe
are given after fixing charged lepton masses and τ as shown in appendix C. However, in
practice, we scan αe/γe and βe/γe to obtain the observed charged lepton mass ratio and
include them in χ2 fit as well as three mixing angles and ∆m2

atm/∆m2
sol.

We have already studied the lepton mass matrices in eqs. (3.3) and (3.7) phenomeno-
logically at the nearby fixed points of the modulus because the spontaneous CP violation
in Type IIB string theory is possibly realized at nearby fixed points, where the moduli
stabilization is performed in a controlled way [120, 121]. There are two fixed points in the
fundamental domain of PSL(2,Z), τ = i and τ = ω. Indeed, the viable τ of our lepton
mass matrices is found around τ = i [75].

Based on this result of ref. [75], we scan τ around i while neutrino couplings gν1 and
gν2 are scanned in the real space of [−10, 10]. As a measure of good-fit, we adopt the
sum of one-dimensional χ2 function for four accurately known dimensionless observables
∆m2

atm/∆m2
sol, sin2 θ12, sin2 θ23 and sin2 θ13 in NuFit 5.0 [117]. In addition, we employ

Gaussian approximations for fitting me/mτ and mµ/mτ by using the data of PDG [122].
In figure 1 we show the allowed region on the Re [τ ] – Im [τ ] plane, where three mixing

angles and ∆m2
atm/∆m2

sol are consistent with observed ones. The green, yellow and red
regions correspond to 2σ, 3σ and 5σ confidence levels, respectively.

The allowed region of τ is restricted in the narrow regions. This result is contrast to the
previous one in ref. [75], where non-trivial phases of gν1 and gν2 enlarged the allowed region
of τ . The predicted range of τ is in Re [τ ] = ±[0.073, 0.083] and Im [τ ] = [1.006, 1.014] at
3σ confidence level (yellow), which are close to the fixed point τ = i.

The allowed region of gν1 and gν2 is also shown in figure 2, where gν1 is in the rather wide
region of [−0.18, 0.18] while gν2 is restricted in [−0.87,−0.79] at 3σ confidence level (yellow).

Due to restricted Re [τ ], the CP violating Dirac phase δCP, which is defined in ap-
pendix D, is predicted clearly. In figure 3, we show prediction of δCP versus the sum of
neutrino masses

∑
mi. It is remarked that δCP is almost independent of

∑
mi. The pre-
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Figure 1. Allowed regions of τ for NH. Green,
yellow and red correspond to 2σ, 3σ, 5σ confi-
dence levels, respectively. The solid curve is the
boundary of the fundamental domain, |τ | = 1.

Figure 2. The allowed region of gν1 and gν2 ,
which are real parameters, for NH. Colors de-
note same ones in figure 1.

Figure 3. The prediction of δCP versus
∑
mi

for NH. Colors denote same ones in figure 1.
Figure 4. The allowed region on sin2 θ23–

∑
mi

plane for NH.

dicted ranges of δCP are narrow such as [98◦, 110◦] and [250◦, 262◦] at 3σ confidence level
(yellow). The predicted ranges [98◦, 110◦] and [250◦, 262◦] correspond to Re [τ ] = (0.073–
0.083) and Re [τ ] = −(0.073–0.083), respectively. The predicted

∑
mi is in [82, 102]meV

for 3σ confidence level (yellow). The minimal cosmological model, ΛCDM+
∑
mi, provides

the upper-bound
∑
mi < 120meV [118, 119]. Thus, our predicted sum of neutrino masses

is consistent with the cosmological bound 120 meV.
In figure 4, we show the allowed region on the sin2 θ23 –

∑
mi plane. Since

∑
mi

depends on the value of sin2 θ23 significantly, the crucial test of our prediction will be
available in the near future.

In figure 5, we show the prediction of Majorana phases α21 and α31, which are defined
by appendix D. The predicted [α21, α31] are around [30◦, 20◦] and [330◦, 340◦] since the
source of the CP violation, Re [τ ] is in the narrow range Re [τ ] = ±[0.073, 0.083].

We can calculate the effective mass 〈mee〉 for the 0νββ decay by using the Dirac phase
and Majorana phases as seen in appendix D. We show the predicted value of 〈mee〉 versus
sin2 θ23 as seen in figure 6. The predicted 〈mee〉 is in [12.5, 20.5]meV for 3σ confidence
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Figure 5. Predicted Majorana phases α21 and
α31 for NH. Colors denote same ones in figure 1.

Figure 6. The predicted 〈mee〉 versus sin2 θ23
for NH. Colors denote same ones in figure 1.

Figure 7. Allowed regions of τ for IH. Red
corresponds to 5σ confidence level.

Figure 8. The allowed region of gν1 and gν2 ,
which are real parameters, for IH.

level (yellow). The prediction of 〈mee〉 ' 20meV will be testable in the future experiments
of the neutrinoless double beta decay.

It is important to understand the difference between the results in the present paper
and the previous ones in ref. [75], where imaginary parts of gν1 and gν2 also break the CP
symmetry explicitly. The modulus τ is severely restricted around Re [τ ] = ±0.08 and
Im [τ ] = 1.01 in this work while it is allowed in rather wide region in the previous work.
Indeed, the samller Re [τ ] and the larger Im [τ ] are allowed such as Re [τ ] ' ±0.03 and
Im [τ ] ' 1.1 in the previous results. Due to this restricted τ in this work, δCP and the sum
of neutrino masses

∑
mi are predicted clearly. On the other hand, the CP conservation is

still allowed and
∑
mi could be larger than 120meV in the previous work. Moreover, the

Dirac phase δCP depends on
∑
mi.

4.2 Case of inverted hierarchy of neutrino masses

We discuss the case of IH of neutrino masses. In figure 7, we show the allowed region on
the Re [τ ] – Im [τ ] plane, where the red region corresponds to 5σ confidence level like in
figure 1. However, there are no green and yellow regions of 2σ and 3σ confidence levels.
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Figure 9. The prediction of δCP versus
∑
mi

for IH.
Figure 10. The allowed region on sin2 θ23–∑
mi plane for IH.

The range of τ is in Re [τ ] = ±[0.009, 0.012] and Im [τ ] = [1.076, 1.087] at 5σ confi-
dence level, which are close to τ = i.

The allowed region of gν1 and gν2 is also shown in figure 8, where gν1 is restricted in the
narrow range of [−1.20, −1.15] while gν2 is rather large as in [4.8, 9.6] for 5σ.

In figure 9, we show prediction of δCP versus
∑
mi. It is remarked that δCP is almost

independent of
∑
mi. The predicted range of δCP is in [95◦, 100◦] and [260◦, 265◦] at 5σ

confidence level while the sum of neutrino masses are in the range of [134, 180]meV. In our
numerical result, there is no region of the sum of neutrino masses less than 120meV. The
upper-bound of the minimal cosmological model, ΛCDM +

∑
mi, is

∑
mi < 120meV [118,

119], however, it becomes weaker when the data are analysed in the context of extended cos-
mological models [122]. The predicted sum of neutrino masses of IH may be still consistent
with the cosmological bound.

We show the allowed region on the
∑
mi – sin2 θ23 plane in figure 10. The precise

measurement of sin2 θ23 will provide a severe test for our prediction since sin2 θ23 > 0.55 is
obtained for IH.

In figure 11, we show the prediction of Majorana phases α21 and α31. The predicted
[α21, α31] are restricted around [3◦, 182◦] and [356◦, 178◦]. We also show the predicted
value of 〈mee〉 versus sin2 θ23 as seen in figure 12. The predicted 〈mee〉 is in [54, 67]meV
for 5σ confidence level.

As well as the case of NH, we comment on the difference between the results in the
present paper and the previous ones in ref. [75], where gν1 and gν2 are complex. Our results
are obtained at more than 3σ confidence level, on the other hand, the previous ones are
at less than 3σ confidence level. The modulus τ is also severely restricted in this work
while it is allowed in rather wide region in the previous work. The sum of neutrino masses∑
mi is lager than 120meV in this work, on the other hand, it is allowed to be smaller

than 120meV in the previous work. For example, it could be 90meV, and the Dirac phase
δCP depends on

∑
mi.
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Figure 11. Predicted Majorana phases α21 and
α31 for IH.

Figure 12. The predicted 〈mee〉 versus
sin2 θ23 for IH.

NH IH
τ −0.0796 + 1.0065 i 0.0103 + 1.0812 i
gν1 0.124 -1.17
gν2 −0.802 6.79

αe/γe 6.82× 10−2 6.76× 10−2

βe/γe 1.02× 10−3 1.02× 10−3

sin2 θ12 0.290 0.291
sin2 θ23 0.564 0.579
sin2 θ13 0.0225 0.0219
δ`CP 258◦ 262◦

[α21, α31] [330◦, 338◦] [3.24◦, 182◦]∑
mi 97.9meV 153meV

〈mee〉 19.2meV 59.1meV
χ2 1.98 4.12

Table 3. Numerical values of parameters and observables at the sample points of NH and IH.

4.3 Parameter samples of NH and IH

We show the numerical result of two samples for NH and IH, respectively. In table 3,
parameters and outputs of our calculations are presented for both NH and IH.

We also present the mixing matrices of charged leptons UE and neutrinos Uν for the
samples of table 3. For NH, those are:

UE ≈

 0.983 −0.020 + 0.158 i −0.011 + 0.092 i
0.016 + 0.130 i 0.958 −0.255 + 0.001 i
0.016 + 0.129 i 0.239 + 0.001 i 0.962

 ,

Uν ≈

 0.838 −0.541 + 0.068 i −0.008 + 0.031 i
0.450 + 0.076 i 0.688 0.564− 0.0008 i
−0.299− 0.021 i −0.478− 0.020 i 0.825

 ,

(4.2)
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which are given in the diagonal base of the generator S in order to see the hierarchical
structure of flavor mixing [75]. The PMNS mixing matrix is given as UPMNS = U†E Uν .
The diagonal base of S is obtained by using the following unitary matrix:

VS ≡


− 1√

6
2√
6 −

1√
6

1√
3

1√
3

1√
3

− 1√
2 0 1√

2

 , (4.3)

which leads to VS S V †S = diag (1, −1, −1) [75]. Then, the charged lepton and neutrino
mass matrices are transformed as VSM †fMfV

†
S (f = E, ν).

For IH, the mixing matrices are:

UE ≈

 0.983 0.155 + 0.019 i 0.091 + 0.011 i
0.127 + 0.015 i 0.956 −0.264− 0.001 i
−0.128 + 0.016 0.248− 0.001 i 0.960

 ,

Uν ≈

 0.840 0.0007 + 0.542 i 0.032− 0.001 i
−0.022 + 0.445 i 0.691 0.570− 0.002 i
−0.016− 0.310 i −0.478− 0.023 i 0.821

 ,

(4.4)

which are also given in the diagonal base of the generator S.
For both NH and IH, the mixing matrix of charged leptons UE is hierarchical one,

on the other hand, two large mixing angles of 1–2 and 2–3 flavors appear in the neutrino
mixing matrix Uν .

In our numerical calculations, we have not included the RGE effects in the lepton
mixing angles and neutrino mass ratio ∆m2

sol/∆m2
atm. We suppose that those corrections

are very small between the electroweak and GUT scales. This assumption is justified well
in the case of tan β ≤ 5 unless neutrino masses are almost degenerate [27].

5 Summary and discussions

The modular invariant A4 model of lepton flavors has been studied combining with the
generalized CP symmetry. In our model, both CP and modular symmetries are broken
spontaneously by VEV of the modulus τ . The source of the CP violation is a non-trivial
value of Re[τ ] while parameters of neutrinos gν1 and gν2 are real.

We have found allowed region of τ close to the fixed point τ = i, which is consistent
with the observed lepton mixing angles and lepton masses for NH at 2σ confidence level.
The CP violating Dirac phase δCP is predicted clearly in [98◦, 110◦] and [250◦, 262◦] at 3σ
confidence level. The predicted

∑
mi is in [82, 102]meV with 3σ confidence level.

There is also allowed region of τ close to the fixed point τ = i for IH at 5σ confidence
level. The predicted δCP is in [95◦, 100◦] and [260◦, 265◦] at 5σ confidence level. The sum
of neutrino masses is predicted in

∑
mi = [134, 180]meV.
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By using the predicted Dirac phase and the Majorana phases, we have obtained the
effective mass 〈mee〉 for the 0νββ decay, which are in [12.5, 20.5]meV for NH at 3σ con-
fidence level and in [54, 67]meV for IH at 5σ confidence level. Since KamLAND-Zen
experiment [123] presented the upper bound on the effective Majorana mass as 〈mee〉 <
61–165meV by using a variety of nuclear matrix element calculations, the prediction of
[54, 67]meV for IH will be tested in the near future. Furthermore, the prediction of
〈mee〉 ' 20meV for NH will be also testable in the future experiments of the neutrino-
less double beta decay.

Since the CP symmetry is conserved at the boundary of the fundamental domain,
one may expect the size of CP violation to be small at the nearby fixed point of τ = i.
In order to estimate of the size of CP violation, we can calculate the rephasing invariant
CP violating measure of leptons, JCP [124, 125] from mass matrices directly [126]. By
using aproximate forms of lepton mass matrices at nearby fixed points in ref. [75], we have
obtained the relation between the magnitude of JCP and the deviation from τ = i semi-
quantitatively. In order to reproduce the almost maximal size |JCP| = 0.03, it is enough
to take ε = ±O(0.05) where ε is supposed to be real in the definition of τ = i+ ε. Since it
is important to study CP violation at nearby fixed points complehensively, we will present
appropriate forms in another paper.

In our model, the modulus τ dominates the CP violation. Therefore, the determina-
tion of τ is the most important work. Although we have constrained τ by observables of
leptons phenomenologically, one also should pay attention to the recent theoretical work of
the moduli stabilization from the viewpoint of modular flavor symmetries [127]. The study
of modulus τ is interesting to reveal the flavor theory in both theoretical and phenomeno-
logical aspects.
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A Tensor product of A4 group

We take the generators of A4 group for the triplet as follows:

S = 1
3

−1 2 2
2 −1 2
2 2 −1

 , T =

1 0 0
0 ω 0
0 0 ω2

 , (A.1)
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where ω = ei
2
3π for a triplet. In this base, the multiplication rule isa1

a2
a3


3

⊗

b1
b2
b3


3

= (a1b1 + a2b3 + a3b2)1 ⊕ (a3b3 + a1b2 + a2b1)1′

⊕ (a2b2 + a1b3 + a3b1)1′′

⊕ 1
3

2a1b1 − a2b3 − a3b2
2a3b3 − a1b2 − a2b1
2a2b2 − a1b3 − a3b1


3

⊕ 1
2

a2b3 − a3b2
a1b2 − a2b1
a3b1 − a1b3


3

,

1⊗ 1 = 1 , 1′ ⊗ 1′ = 1′′ , 1′′ ⊗ 1′′ = 1′ , 1′ ⊗ 1′′ = 1 , (A.2)

where

T (1′) = ω , T (1′′) = ω2. (A.3)

More details are shown in the review [6, 7].

B Modular forms in A4 symmetry

For Γ3 ' A4, the dimension of the linear spaceMk(Γ(3)) of modular forms of weight k is
k+ 1 [112–114], i.e., there are three linearly independent modular forms of the lowest non-
trivial weight 2. These forms have been explicitly obtained [22] in terms of the Dedekind
eta-function η(τ):

η(τ) = q1/24
∞∏
n=1

(1− qn) , q = exp (i2πτ) , (B.1)

where η(τ) is a so called modular form of weight 1/2. In what follows we will use the
following base of the A4 generators S and T in the triplet representation:

S = 1
3

−1 2 2
2 −1 2
2 2 −1

 , T =

1 0 0
0 ω 0
0 0 ω2

 , (B.2)

where ω = exp(i2
3π). The modular forms of weight 2 (k = 2) transforming as a triplet of

A4, Y(2)
3 (τ) = (Y1(τ)Y2(τ), Y3(τ))T , can be written in terms of η(τ) and its derivative [22]:

Y1(τ) = i

2π

(
η′(τ/3)
η(τ/3) + η′((τ + 1)/3)

η((τ + 1)/3) + η′((τ + 2)/3)
η((τ + 2)/3) −

27η′(3τ)
η(3τ)

)
,

Y2(τ) = −i
π

(
η′(τ/3)
η(τ/3) + ω2 η

′((τ + 1)/3)
η((τ + 1)/3) + ω

η′((τ + 2)/3)
η((τ + 2)/3)

)
, (B.3)

Y3(τ) = −i
π

(
η′(τ/3)
η(τ/3) + ω

η′((τ + 1)/3)
η((τ + 1)/3) + ω2 η

′((τ + 2)/3)
η((τ + 2)/3)

)
.
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The overall coefficient in eq. (B.3) is one possible choice. It cannot be uniquely determined.
The triplet modular forms of weight 2 have the following q-expansions:

Y(2)
3 (τ) =

Y1(τ)
Y2(τ)
Y3(τ)

 =

1 + 12q + 36q2 + 12q3 + . . .

−6q1/3(1 + 7q + 8q2 + . . . )
−18q2/3(1 + 2q + 5q2 + . . . )

 . (B.4)

They satisfy also the constraint [22]:

Y2(τ)2 + 2Y1(τ)Y3(τ) = 0 . (B.5)

The modular forms of the higher weight, k, can be obtained by the A4 tensor products
of the modular forms with weight 2, Y(2)

3 (τ), as given in appendix A. For weight 4, that
is k = 4, there are five modular forms by the tensor product of 3⊗ 3 as:

Y(4)
1 (τ) = Y1(τ)2 + 2Y2(τ)Y3(τ) , Y(4)

1′ (τ) = Y3(τ)2 + 2Y1(τ)Y2(τ) ,

Y(4)
1′′ (τ) = Y2(τ)2 + 2Y1(τ)Y3(τ) = 0 , Y(4)

3 (τ) =


Y

(4)
1 (τ)
Y

(4)
2 (τ)
Y

(4)
3 (τ)

 =

Y1(τ)2 − Y2(τ)Y3(τ)
Y3(τ)2 − Y1(τ)Y2(τ)
Y2(τ)2 − Y1(τ)Y3(τ)

 ,

(B.6)

where Y(4)
1′′ (τ) vanishes due to the constraint of eq. (B.5).

C Determination of αe/γe and βe/γe

The coefficients αe, βe, and γe in eq. (3.3) are taken to be real positive without loss of
generality. We show these parameters are described in terms of the modular parameter τ
and the charged lepton masses. We rewrite the mass matrix of eq. (3.3) as

ME = vdγe

α̂e 0 0
0 β̂e 0
0 0 1


Y1(τ) Y3(τ) Y2(τ)
Y2(τ) Y1(τ) Y3(τ)
Y3(τ) Y2(τ) Y1(τ)

 , (C.1)

where α̂e ≡ αe/γe and β̂e ≡ βe/γe. Denoting charged lepton masses m1 = me, m2 = mµ

and m3 = mτ , we have three equations as:

3∑
i=1

m2
i = Tr[M †EME ] = v2

dγ
2
e (1 + α̂2

e + β̂2
e ) Ce1 , (C.2)

3∏
i=1

m2
i = Det[M †EME ] = v6

dγ
6
e α̂

2
eβ̂

2
e C

e
2 , (C.3)

χ = Tr[M †EME ]2 − Tr[(M †EME)2]
2 = v4

dγ
4
e (α̂2

e + α̂2
eβ̂

2
e + β̂2

e ) Ce3 , (C.4)

where χ ≡ m2
1m

2
2 +m2

2m
2
3 +m2

3m
2
1. The coefficients Ce1 , Ce2 and Ce3 depend only on Yi(τ)’s,

where Yi(τ)’s are determined if the value of modulus τ is fixed. Those are given explicitly
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as follows:
Ce1 = |Y1(τ)|2 + |Y2(τ)|2 + |Y3(τ)|2 ,
Ce2 = |Y1(τ)3 + Y2(τ)3 + Y3(τ)3 − 3Y1(τ)Y2(τ)Y3(τ)|2 ,
Ce3 = |Y1(τ)|4 + |Y2(τ)|4 + |Y3(τ)|4 + |Y1(τ)Y2(τ)|2 + |Y2(τ)Y3(τ)|2 + |Y1(τ)Y3(τ)|2

− 2Re
[
Y ∗1 (τ)Y ∗2 (τ)Y 2

3 (τ) + Y 2
1 (τ)Y ∗2 (τ)Y ∗3 (τ) + Y ∗1 (τ)Y 2

2 (τ)Y ∗3 (τ)
]
.

Then, we obtain two equations which describe α̂e and β̂e in terms of masses and τ :

(1 + s)(s+ t)
t

= (
∑
m2
i /C

e
1)(χ/Ce3)∏

m2
i /C

e
2

,
(1 + s)2

s+ t
= (

∑
m2
i /C

e
1)2

χ/Ce3
, (C.5)

where we redefine the parameters α̂2
e + β̂2

e = s and α̂2
eβ̂

2
e = t. After fixing charged lepton

masses and τ , we obtain s and t numerically. They are related as follows:

α̂2
e = s±

√
s2 − 4t
2 , β̂2

e = s∓
√
s2 − 4t
2 . (C.6)

D Majorana and Dirac phases and 〈mee〉 in 0νββ decay

Supposing neutrinos to be Majorana particles, the PMNS matrix UPMNS [95, 96]
is parametrized in terms of the three mixing angles θij (i, j = 1, 2, 3; i < j), one CP
violating Dirac phase δCP and two Majorana phases α21, α31 as follows:

UPMNS =

 c12c13 s12c13 s13e
−iδCP

−s12c23−c12s23s13e
iδCP c12c23−s12s23s13e

iδCP s23c13
s12s23−c12c23s13e

iδCP −c12s23−s12c23s13e
iδCP c23c13


1 0 0

0 ei
α21

2 0
0 0 ei

α31
2

 ,
(D.1)

where cij and sij denote cos θij and sin θij , respectively.
The rephasing invariant CP violating measure of leptons [124, 125] is defined by the

PMNS matrix elements Uαi. It is written in terms of the mixing angles and the CP violating
phase as:

JCP = Im
[
Ue1Uµ2U∗e2U∗µ1

]
= s23c23s12c12s13c

2
13 sin δCP , (D.2)

where Uαi denotes the each component of the PMNS matrix.
There are also other invariants I1 and I2 associated with Majorana phases

I1 = Im [U∗e1Ue2] = c12s12c
2
13 sin

(
α21
2

)
, I2 = Im [U∗e1Ue3] = c12s13c13 sin

(
α31
2 −δCP

)
.

(D.3)
We can calculate δCP, α21 and α31 with these relations by taking account of

cos δCP = |Uτ1|2 − s2
12s

2
23 − c2

12c
2
23s

2
13

2c12s12c23s23s13
,

Re [U∗e1Ue2] = c12s12c
2
13 cos

(
α21
2

)
, Re [U∗e1Ue3] = c12s13c13 cos

(
α31
2 − δCP

)
. (D.4)

In terms of this parametrization, the effective mass for the 0νββ decay is given as follows:

〈mee〉 =
∣∣∣m1c

2
12c

2
13 +m2s

2
12c

2
13e

iα21 +m3s
2
13e

i(α31−2δCP)
∣∣∣ . (D.5)
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