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1 Introduction

The analysis of the necessary conditions for a generic effective theory to be compatible with

the existence of an underlying quantum theory of gravity has led in recent years to the

formulation of a number of conjectures giving constraints that allow to distinguish good

models from those that are in the so-called swampland [1].

One of the first such conjectures is the Weak Gravity Conjecture (WGC) [2], which

for a U(1) boson coupled to gravity states that there must always exist a charged particle

with mass m and charge q such that m ≤ g qMp. There is by now strong evidence that

such conjecture is correct (see [3] for a review and for an extensive list of references) and

it has been generalized in various directions. One of the general lessons one learns from

these analyses is that if gravity is required to always be the weakest force then one can

constrain effective theories in various ways.

An interesting generalization of the WGC is its application to forces mediated by

light scalar fields and one can find various proposals in the literature [4]–[14]. The first

formulation of a version of the WGC to scalar fields is due to Palti [4], who considered

particles whose masses m depend on some light scalar φ by means of trilinear couplings

∂φm. In this case the conjecture states that (∂φm)2 ≥ m2/M2
p , so that the force mediated

by φ is stronger than the gravitational force. While this applies only to the WGC scalars

whose mass is a function of φ, it still can give constraints on effective theories, which may

even be too strong with respect to expectations [4]. Still, this idea has been pushed even

further by Gonzalo and Ibáñez in [9], where a strong version of the scalar WGC has been
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proposed. The idea is that scalar self-interactions should always be stronger than gravity,

for any scalar in the theory. This was summarized by the inequality

2(V ′′′)2 − V ′′V ′′′′ ≥ (V ′′)2

M2
p

, (1.1)

where primes are derivatives of the scalar potential V with respect to the scalar in exam.

This conjecture is much stronger, because it applies to any scalar, including massive

mediators, and results in very strong constraints on effective theory models containing

scalars. While equation (1.1) has nice implications and seems compatible also with the

swampland distance conjecture [15, 17], it mixes ingredients that are clearly long-range

with others that are related to short-range interactions (like the quartic couplings). Its

derivation from first principles, even in simple situations, is therefore challenging.

A different bound involving cubic and quartic interactions has been suggested in a

footnote of [4], where it was noted that, in the context of N=2 supergravity theories, the

masses of supersymmetric black holes have to fulfill an interesting relation, which follows

from special geometry, the geometry underlying the scalar σ-model.

In N = 2 supergravity the central charge satisfies the algebraic identity [4, 16]

gīDiD̄|Z|2 = nV |Z|2 + gīDiZD̄Z, (1.2)

where nV is the number of vector multiplets. This identity follows rather easily from the

application of special geometry identities [18]

D̄Z = 0, DiD̄Z = gī Z. (1.3)

Based on this relation, in a footnote of [4] there is a proposal for a scalar WGC constraint

of the form

nm2 + gij∂im∂jm ≤
1

2
gijDi∂j(m

2), (1.4)

where n is the number of scalar fields coupling to the WGC state. This is also a relation

between mass, three-point and four-point couplings of the WGC states to scalar fields, but

very different from (1.1).

In this note we want to give a stronger basis to a scalar WGC relation like (1.4) by

analyzing what happens for N > 2 theories, where the central charge matrix has N(N−1)/2

entries and the supersymmetric black hole mass is equal to the largest of its eigenvalues

MADM = |Z1| > |Z2| > . . . > |ZN/2|, (1.5)

where Z1, . . ., ZN/2 are the eigenvalues of the central charge antisymmetric matrix ZAB,

written in normal form [19].

Before generalizing (1.2), one should note that if we want to interpret it as a bound

on the black hole mass we should rewrite it fully in terms of MADM = |Z|. In this case the

relation above can be expressed as

DiD
i
(|Z|2) = 4 ∂i|Z|∂

i|Z|+ nV |Z|2. (1.6)

It is interesting to note the factor in front of the first derivative terms, which is going to

be crucial in the correct identification of the generalization of such identity.
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In this note we will prove two distinct relations. The first is a purely algebraic identity,

valid for any number of supersymmetries and reduces to (1.2) for N = 2:

DaD
a (
ZABZ

AB
)

= DaZABD
a
ZAB + nZABZ

AB, (1.7)

where

n = nV +
(N − 2)(N − 3)

2
(1.8)

and we used flat complex indices for the scalar derivatives. This clearly reduces to (1.2)

for N = 2 and depends only on gravity multiplet scalars for N > 4, as expected. The

interesting aspect is that the number n corresponds precisely to half of the rank of the

Hessian matrix of the black hole potential at “fixed scalars”, therefore giving credit to the

fact that in the relation between the mass and the three and four-point couplings only

active scalars should appear, where by active we mean scalars that support the black hole

solutions and are not moduli.

As mentioned above, this relation is not suitable to be interpreted as a form of scalar

WGC because the various derived quantities in (1.7) cannot be identified with the (square

of) the ADM mass (1.5). We therefore analyzed more in detail the black hole solutions for

N > 2 and found that there is also a general differential relation on the ADM mass of such

black holes, which uses some insights from the black hole solution. This is going to be the

generalization of (1.6) to an arbitrary number of supersymmetries and coincides with (1.7)

for N = 2. This second relation is

P abDaD
b
W 2 = 4DaWD

a
W + nW 2, (1.9)

where

W =

√
1

2
ZABPACPBDZCD (1.10)

is the superpotential that can be identified with the ADM mass for BPS black holes in

extended theories, P ab is a projector on the space of active complex scalars and PAB is a

projector on the R-symmetry vector space to the bidimensional eigenspace related to the

largest central charge value, according to (1.5).

While deriving this last identity, we also work out a fully covariant formulation of

the BPS equations and of the BPS squaring of the reduced action on the black hole so-

lution. Since this has a general value for analyzing BPS black hole solutions in extended

supergravities we provide explicitly this construction for N = 3 and N = 4 theories.

We then conclude with some comments on the physics of (1.9) and its compatibility

and relation to the swampland distance conjecture.

2 Preliminaries

When considering N > 2 supergravity theories one should note and use the fact that the

scalar σ-model is described by a homogeneous manifold G/H of restricted type, because H

must contain the R-symmetry group U(N) (SU(8) for N = 8). Also, duality invariance in

4 dimensions imposes that G ⊂ Sp(2nV ,R), where nV is the total number of vector fields
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in the theory. These facts allow us to perform a rather general analysis by considering the

general structure of homogeneous manifolds and declining the various formulas to specific

N when necessary. For the sake of self-consistency of this work, we recall here some

preliminary relations already presented in [20–22], whose conventions we mostly follow.

In order to parameterize the scalar manifold, we choose a coset representative L in a

basis that makes manifest duality relations. We therefore take L ∈ USp(nV , nV ), i.e. satis-

fying L†ηL = η = diag{1nV ,−1nV } and LTΩL = Ω, where Ω =

(
0 1nV

−1nV 0

)
. A generic

parameterization, useful in the following, is

L =
1√
2

(
f + i h f∗ + i h∗

f − i h f∗ − i h∗

)
, (2.1)

where

fTh = hT f, (2.2)

i(fTh∗ − hT f∗) = −1. (2.3)

Maurer-Cartan equations define the generic structure of the coset by producing its

vielbeins and connection as

W = L−1dL =

(
ω P ∗

P ω∗

)
, (2.4)

which leads to the definitions

ω = i(f †dh− h†df), (2.5)

P = i(hTdf − fTdh), (2.6)

and to the relations

dω + ω ∧ ω = P ∧ P ∗, (2.7)

DP = dP + ω∗ ∧ P + P ∧ ω = 0. (2.8)

We can make everything explicit by introducing flat indices on the coset manifold G/H.

Since H = (S)U(N) ×H ′, we can write flat indices using a multi-index structure, combining

U(N) indices A,B = 1, . . . , N and H ′ indices I, J = 1, . . . , nh, where nh is the dimension

of the fundamental representation of H ′. More in detail, we split the real symplectic vector

representation1 as VM = (V Λ, VΛ), Λ = 1, . . . , nV , and use the transformation properties

of L under the right action of H to split the same vector in terms of a twofold complex

tensor representation of (S)U(N) and H ′. This means that the generic coset representative

can be split accordingly, so that

f =
(
fΛ

AB, f
Λ
I

)
,

h = (hΛAB, hΛI) ,
(2.9)

1The real embedding G ⊂ Sp(2nV ,R) is appropriate for the explicit action of the duality group on the

vector field strengths, while the complex embedding in USp(nV , nV ) is useful to write down the fermion

transformation laws.
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and

f∗ =
(
fΛAB, fΛI

)
,

h∗ =
(
hΛ

AB, hΛ
I
)
.

(2.10)

By using this decomposition we find

PABI = PIAB = i
(
hΛABdf

Λ
I − fΛ

ABdhΛI

)
, (2.11)

PIJ = i
(
hΛIdf

Λ
J − fΛ

IdhΛJ

)
, (2.12)

PABCD = i
(
hΛABdf

Λ
CD − fΛ

ABdhΛCD

)
(2.13)

and P IAB = (PIAB)∗, P IJ = (PIJ)∗ and PABCD = (PABCD)∗. Clearly such 1-forms corre-

spond to vielbeins of G/H in different ways according to the number of supersymmetries N .

For N = 3, the scalar manifold is G/H = SU(3, nV )/ [SU(3)× SU(nV )×U(1)], which

has dimension 3nV . This means that the flat vielbein indices lie in the (3, nV ) representa-

tion of H and hence PABCD = PIJ = 0.

For N = 4 the scalar manifold is G/H = SU(1,1)/U(1) × SO(6,nV )/[SO(6)× SO(nV )]

and therefore the vielbein splits in two, Pp being the complex vielbein of the first factor

and PIAB in the (6, nV ) representation of SU(4) × SO(nV ) the complex vielbein of the

second factor. This implies PABCD = εABCDPp, PIJ = δIJP p̄. Moreover one should note

that there is a complex self-duality condition on the vielbeins so that

PIAB =
1

2
δIJ εABCDP

JCD = (P IAB)∗. (2.14)

For N = 5, 6 and 8 there are no vector multiplets and the scalar manifolds are

SU(1,5)/U(5), SO∗(12)/U(6) and E7(7)/SU(8), respectively of dimension 10, 30 and 70.

The vielbeins lie in the 5, 15 and 35 representations of U(5), U(6) and SU(8) and are

therefore always described by the complex PABCD. However, the vector fields are in the

10, 15+1 and 28 dimensional representations of their respective R-symmetry groups. This

means that in the N = 6 case there is a vector field that behaves as a matter vector field,

being a singlet of the R-symmetry group. We therefore have PIJ = 0 and PIAB = 0 for

N = 5, 8, while for N = 6 we also have P·AB = 1
4!εABCDEFP

CDEF , where the · stands for

the U(6) singlet. Finally, in the N = 8 case we also have a complex self-duality condition

of the form

PABCD =
1

4!
εABCDEFGHP

EFGH . (2.15)

From the relation dL = LW we can now obtain general relations for the covariant

derivatives of the coset representatives:

DfΛ
AB = fΛIPIAB +

1

2
fΛCDPCDAB ,

DfΛ
I =

1

2
fΛCDPICD + fΛJPJI ,

(2.16)

where we also used that f∗ = (fΛAB, fΛI).

In the following we are interested in relations that involve derivatives of the central

charges of N -extended supergravities, for N > 2. Central charges are introduced as a
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symplectic product of a charge vector Q = (pΛ, qΛ) and the section vector V = (fΛ, hΛ).

We therefore see that we have two types of charges

ZAB = pΛhΛAB − qΛf
Λ
AB, (2.17)

ZI = pΛhΛI − qΛf
Λ
I . (2.18)

The first set ZAB defines the actual central charges associated to the N(N−1)/2 gravipho-

tons in the theory, while ZI are the matter charges, related to the possible additional

vector multiplets (with the exception of the N = 6 theory, as mentioned above). It is

then straightforward to obtain relations between these charges by taking their covariant

derivatives, using (2.16), (2.17) and (2.18):

DZAB = ZIPIAB +
1

2
ZCDPCDAB , (2.19)

DZI = ZJPJI +
1

2
ZCDPICD. (2.20)

In order to compute (second) derivatives of the central charges and of the ADM mass,

we need the explicit expression of the derivatives we can obtain from (2.19) when projecting

on the scalar σ-model vielbeins. The exercise is straightforward and we report here the

outcome for the different values of N :

N = 3 : D =
1

2
PIABD

IAB +
1

2
P IABDIAB ,

DICDZAB = 2 δCDABZ
I , DICDZAB = 0,

DICDZJ = δIJ Z
CD, DICDZJ = 0.

(2.21)

N = 4 : D =
1

4
PIABD

IAB +
1

4
P IABDIAB + PpDp + P p̄Dp̄,

DICDZAB = εABCD δIJ Z
J , DICDZAB = 2 δCDABZ

I ,

DJABZI =
1

2
δIJ εABCD Z

CD, DJABZI = δJI Z
AB,

DpZAB =
1

2
εABCDZ

CD, Dp̄ZAB = 0,

DpZI = 0, Dp̄ZI = δIJZ
J .

(2.22)

N = 5 : D =
1

4!
PABCDD

ABCD +
1

4!
PABCDDABCD,

DABCDZEF = 12 δ
[AB
EF Z

CD], DABCDZEF = 0.

(2.23)

N = 6 : D =
1

4!
PABCDD

ABCD +
1

4!
PABCDDABCD,

DABCDZEF = εABCDEF Z̄, DABCDZEF =
4!

2
δ

[AB
EF Z

CD],

DABCDZ =
1

2
εABCDEFZ

EF , DABCDZ = 0.

(2.24)

N = 8 : D =
1

2

1

4!
PABCDD

ABCD +
1

2

1

4!
PABCDDABCD,

DABCDZEF =
1

2
εABCDEFGHZ

GH . DABCDZEF = 12 δ
[AB
EF Z

CD].

(2.25)
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3 The identity

In this section we provide the details of the derivation of the general algebraic identity (1.7).

The formula encompasses the specific forms we obtained for similar calculations done for

different numbers of supersymmetries. We therefore perform our calculations by using

the derivative relations on the central charges obtained in the previous section, declined

for specific N in (2.21)–(2.25), and applying them to the square of the central charges

ZABZ
AB, which is an H-invariant tensor.

N = 3 identity. The computation of the second derivative of the sum of the squares

of the central charges can be easily obtained by applying the rules described in (2.21) and

leads directly to the desired result:

1

2
DICDDICD(ZABZ

AB) =
1

2
DICDZABDICDZ

AB + nV ZABZ
AB. (3.1)

N = 4 identity. In the N = 4 case, one has to be more careful because there are two

factors in the σ-model and there is a duality constraint between PIAB and P IAB . This is

also reflected in the numerical factors needed to obtain the correct result:

1

4
DICDDICD

(
ZABZ

AB
)

+DpDp̄

(
ZABZ

AB
)

=

=
1

4
DICDZABDICDZ

AB +
1

4
DICDZABD

ICDZAB +DpZABDp̄Z
AB

+ (1 + nV )ZABZ
AB,

(3.2)

where we identify 1 = (N − 2)(N − 3)/2.

N = 5 identity. In this case the identity follows again straightforwardly from the ap-

plication of (2.23)

1

4!
DCDEFD

CDEF
(
ZABZ

AB
)

=
1

4!
DCDEFZ

ABDCDEFZAB + 3ZABZAB, (3.3)

where we identify 3 = (N − 2)(N − 3)/2.

N = 6 identity. While the final relation in the N = 6 case has the same structure as

the previous ones, the derivation is a bit more delicate, because there is a vector in the

gravity multiplet that is a singlet of the R-symmetry group and therefore its central charge

behaves as a matter charge. Anyway, by repeatedly using (2.24) one obtains

1

4!
DCDEFD

CDEF
(
ZABZ

AB
)

=
1

4!
DCDEFZ

ABDCDEFZAB + 7ZABZAB, (3.4)

where we identify 7 = 1 + (N − 2)(N − 3)/2 and the extra unity corresponds to the vector

that acts as a matter multiplet.
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N = 8 identity. The only delicate point is once more the duality relation between the

vielbeins. This is the reason for the different coefficient in the formula with respect to the

N = 6 case. Using (2.25) we obtain

1

2

1

4!
DCDEFD

CDEF
(
ZABZ

AB
)

=

1

2

1

4!
DCDEFZ

ABDCDEFZAB +
1

2

1

4!
DCDEFZABD

CDEFZAB + 15ZABZAB,

(3.5)

where we identify 15 = (N − 2)(N − 3)/2.

General form. Altogether we can summarize all these identities in a single formula,

where we use a single-index complex notation for the scalar fields:

DaD
a (
ZABZ

AB
)

= DaZABD
a
ZAB + nZABZ

AB, (3.6)

where

n = nV +
(N − 2)(N − 3)

2
. (3.7)

As noted in the introduction, the number n corresponds to half of the rank of the

Hessian matrix of the black hole potentials at fixed scalars, but our derivation was fully

general and did not make use of the black hole solution at any stage. It is indeed an identity

that follows by purely algebraic relations imposed by the geometry of the scalar σ-model.

4 BPS black holes in N = 3 supergravity

The identity derived in the previous section has general validity and reduces to the N = 2

identity noted in [4] to argue that there may be a scalar WGC constraining cubic and quartic

interactions. However, for N > 2 the combination ZABZ
AB cannot be identified directly

with the ADM mass and the first-derivative terms do not act on duality-invariant quantities,

but directly on the central charges, hence giving expressions that depend on the basis.

For this reason we now analyze in detail the BPS rewriting of the reduced action of

N -extended supergravity and propose a new relation that generalizes (1.6) for arbitrary N .

The general metric ansatz for an extremal, asymptotically flat black hole solution [23]

depends on a unique unknown function:

ds2 = −e2U(r)dt2 + e−2U(r)dr2 + r2dΩ2, (4.1)

where dΩ2 = dθ2 + sin2 θ dφ2 is the line-element of a two-sphere and U is the warp factor,

which depends only on the radial variable to respect spherical symmetry. The vector

and scalar fields also satisfy the same spherical symmetry requirement, with electric and

magnetic charges located at r = 0. We can therefore reduce the 4-dimensional supergravity

action to a 1-dimensional action depending only on the r variable, denoting derivatives with

respect to r by a prime.

In the case of N = 3 supergravity [24], the reduced lagrangian is

L =
1

2
P ′IABP

′IAB + (U ′)2 + e2UVBH , (4.2)

– 8 –
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where [20]

VBH =
1

2
ZABZ

AB + ZIZ
I . (4.3)

The BPS equations [20] follow from requiring the vanishing of the supersymmetry trans-

formation of the fermions on this background:

ε′A −
i

2
eUγ0ZABε

B = 0, (4.4)

U ′εA − ieUγ0ZABε
B = 0, (4.5)

ZABεC ε
ABC = 0, (4.6)

P ′IABεC ε
ABC = 0, (4.7)

P ′IABε
B = ieU ZIγ

0εA. (4.8)

The interpretation of these equations is that the first fixes the radial dependence of the

supersymmetry spinor, the second gives the flow of the warp factor, the third projects

away one component of the spinor, the fourth constrains the number of scalars flowing and

finally the last one gives the flow equations of the scalar fields. Essentially, we have first

a reduction from N = 3 to N = 2 because of (4.6) and then we recover the same type of

equations as for the N = 2 case, with the addition of a constraint on the active scalars. To

see this in detail, we define the normalized vector

VA ≡
(
2ZEFZ

EF
)−1/2

εABCZ
BC , (4.9)

which is going to give the direction orthogonal to the preserved supersymmetry, according

to (4.6), and we use it to define the projector to its orthogonal subspace:

PAB = δAB − V AVB. (4.10)

The correct set of BPS equations follows now as gradient flows activated by the superpo-

tential

W =

√
1

2
ZCDPCAPDBZAB, (4.11)

which coincides with the ADM mass of the solution. We emphasize this definition of the su-

perpotential, because it is going to be the expression that will be generalized to arbitrary N .

The first thing to note is that in this special instance (N = 3) the superpotential

reduces to

W =

√
1

2
ZABZAB, (4.12)

because the central charge is automatically orthogonal to the V vector:

ZACVC ∼ εCDEZACZDE = εCDEZ
A[CZDE] = εCDEZ

[ACZDE] = 0. (4.13)

In order to derive bosonic flow equations, we then have to impose two projectors on the

Killing spinors to reduce supersymmetry to N = 1 along the solution. One projection

follows straightforwardly from (4.6), the other can be read from the (4.5) equation and is

– 9 –
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needed to relate the action of the γ0 matrix on the spinor with the action of the central

charge matrix:

i γ0εA =
1

W
ZABεB, (4.14)

V AεA = 0 ⇔ PBA εB = εA. (4.15)

Consistency of these projection operations is easy to check. For instance

(γ0)2εA = i
ZAB
W

γ0εB =
1

W 2
ZBCZABεC =

1

W 2

(
WεBCDVDW εABEV

E
)
εC = −PCAεC ,

(4.16)

which correctly produces (γ0)2εA = −εA once (4.15) is employed. We see that, in addition

to the equation fixing the Killing spinor, the 1/3 BPS black hole solution is determined by

the following two BPS equations:

U ′ = − eUW, (4.17)

P ′IAB = −2 eUDIABW, (4.18)

where the derivative of the superpotential can be obtained by applying (2.21):

DIABW =
1

2W
ZIZAB. (4.19)

The flow equations (4.17) and (4.18) have been derived previously in [25, 26], where also

the correct superpotential (4.12) has been identified, though using a different approach.

Note that the explicit expression of DIABW implies right away that only 2nV scalars

flow rather than 3nV , because

V AP ′IAB ∼ V ADIABW ∼ ZIV AZAB = 0. (4.20)

Once the flow equations have been fixed we can provide the identification of the su-

perpotential with the ADM mass by the BPS rewriting of the lagrangian (4.2). The first

thing to note is that, using (2.21), the black hole potential can be rewritten as a squared

expression in terms of the superpotential

VBH = 4

(
1

2
DIABWDIABW

)
+W 2, (4.21)

which mimics what happens in N = 2 in terms of the absolute value of the central charge.

The action then vanishes on the BPS solutions, up to a boundary term, which is identified

with the ADM mass

L=
[
U ′+eUW

]2
+

1

2

(
P ′IAB+2eUDIABW

)(
P ′IAB+2eUDIABW

)
−
[
2eUW

]′
. (4.22)

4.1 ADM mass constraint

Once identified W with the ADM mass, we can prove that it satisfies the relation

1

2
PCAP

D
B DICDD

IAB
(
W 2
)

= 4

(
1

2
DIABWDIABW

)
+ nVW

2. (4.23)
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As explained in the introduction, it is crucial to project the second derivatives of the

superpotential on the set of scalars active on the black hole solution, otherwise additional

terms appear on the right hand side of the equation. The reason for this has to do with

the fact that even if the only derivatives of the superpotential different from zero are

along the directions of the running scalars, the second derivative may contain non-zero

contributions from orthogonal directions because of the connection terms. While this

projection may seem ad hoc, we stress that this is precisely what we should expect if we

want to interpret such relation as a scalar WGC constraint. Only the scalar mediating the

interaction between the black holes should be taken into account.

The derivation is rather easy once one applies the derivatives correctly and uses their

properties:

1

2
PCAP

D
B DICDD

IAB
(
W 2
)

=
1

4
PCAP

D
B DICDD

IAB
(
ZEFZ

EF
)

=
1

4
PCAP

D
B DICD

(
ZEFDIABZEF

)
=

1

2
PCAP

D
B DICD

(
ZABZI

)
(4.24)

=
1

2
PCAP

D
B

(
nV ZCDZ

AB + ZIZ
I 2 δABCD

)
= nVW

2 + 2ZIZ
I .

Here we first used the definition of W and the derivative relations (2.21). Then, in the last

equality we used once more the definition of W and the fact that PAA = 2. Finally we

recover (4.23) by using (4.19).

5 BPS black holes in N = 4 supergravity

In the case of N = 4 supergravity [27, 28], the scalar manifold is factorized and we need to

introduce two different types of complex vielbeins, Pp and PIAB . They are in one to one

correspondence to the first and second factor in

Mscalar =
SU(1, 1)

U(1)
× SO(6, nV )

SO(6)× SO(nV )
. (5.1)

Using the same ansatz for the metric, scalars and vector fields as in the N = 2 and N = 3

cases, we can write the reduced 1-dimensional lagrangian as

L =
1

4
P ′IABP

′IAB + PpPp̄ + (U ′)2 + e2UVBH , (5.2)

where once more [20]

VBH =
1

2
ZABZ

AB + ZIZ
I . (5.3)

Note that in this case the kinetic term of the vector multiplet scalars has an additional 1/2

factor to take into account the redundancy in the representation with the PIAB vielbeins,

which indeed satisfy a complex self-duality constraint.
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The BPS equations for such theory are

ε′A −
i

2
eU γ0ZABε

B = 0, (5.4)

U ′εA − i eU γ0ZABε
B = 0, (5.5)

P ′pε
A = − i

2
eU εABCDZBCγ

0εD, (5.6)

P ′IABε
B = i eU ZIγ

0εA, (5.7)

and the resulting configurations should preserve 1/4 of the original supersymmetry. As

in the previous case we would like to obtain such configurations by means of two projec-

tors, one that reduces supersymmetries by half and projects on the subspace determined

by the highest eigenvalue of the central charge and another one that further reduces su-

persymmetry by half, relating the projections on the SU(4) indices and on the spinor

indices. The N = 4 central charge can be skew-diagonalized, so that the squared matrix

MA
B = ZACZBC has two distinct eigenvalues e1 and e2 with multiplicity 2. If we assume

that e1 > e2 ≥ 0, the ADM mass of the black hole should be identified with
√
e1 [20].

We therefore want to construct the BPS flow equations as gradient flow equations deriving

from a superpotential that coincides with this eigenvalue. In order to do so, we employ

the same technique we employed in the N = 3 case and construct a projector PA−B that

projects along the e1 eigenspace and define the superpotential as in (4.11):

W =

√
1

2
PC− AP

D
− BZCDZAB. (5.8)

The projectors can be easily constructed following Schwinger’s procedure as

PA1 B =
ZACZBC − e2 δ

A
B

e1 − e2
, PA2 B =

ZACZBC − e1 δ
A
B

e2 − e1
. (5.9)

In order to have a covariant expression in terms of the central charges, we note that we

can write the following combinations:

e1 + e2 =
1

2
ZABZAB, (5.10)

(e1 − e2)4 = detA, (5.11)

where

AAB = 2ZACZCB +
1

2
δAB ZEFZ

EF . (5.12)

Hence, after some simple algebra, we see that the projections to the two distinct eigenspaces

can be rewritten in terms of

PA±B =
1

2

(
δAB ±ΠA

B

)
, (5.13)

where

ΠA
B =

AAB
(detA)1/4

(5.14)

and

P− = P1, P+ = P2. (5.15)
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Note that Π2 = 14, as expected for a projector and therefore we also have the identities

A2 =
√

det A 14 =

[
ZABZBCZ

CDZDA −
1

4

(
ZEFZ

EF
)2]

14. (5.16)

It is also interesting to note that in this case the projector on the central charge satisfies

PA−CP
B
− DZ

CD = PA−CZ
CB = −PB− CZCA, (5.17)

as follows from the algebraic identities

ΠA
CΠB

DZ
CD = ZAB, (5.18)

ΠA
CZ

CB = −ΠB
CZ

CA. (5.19)

Using this notation, the superpotential can also be expressed as

W =
1

2

√
ZABZAB + 2 (det A)1/4, (5.20)

which can be better handled to compute its derivatives.

Before dealing with the BPS equations we give here the outcome of the application

of the covariant derivatives on the superpotential, which can be computed directly by

using (2.22) on (5.20):

DpW =
1

4W
Pf Z̄, (5.21)

DIABW =
1

2W
ZIZACP

C
− B +

1

4W
δIJ Z

J εABCDZ
CFPD− F , (5.22)

where we introduced the shorthand notation

Pf Z =
1

4
εABCDZABZCD (5.23)

for the Pfaffian of the matrix Z.

The BPS flow equations can be obtained from (5.4)–(5.7) by employing the projectors

PA+Bε
B = 0, (5.24)

iγ0εA =
1

W
ZABεB. (5.25)

The first projector halves the supersymmetries leaving only the spinors in the eigenspace of

the maximum eigenvalue of Z, while the second further reduces by half the supersymmetries

relating different spinor components between them. We can check consistency of the two

projections noting that the first implies

AABε
B = −(detA)1/4εA =

(
−2W 2 +

1

2
ZCDZ

CD

)
εA (5.26)

and therefore

ZABZBCε
C = −W 2 εA, (5.27)
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while

(γ0)2εA = − i

W
ZABγ0εB =

1

W 2
ZABZBCε

C = −εA, (5.28)

by using the first projection.

Once we use the projectors in the BPS equations we get

U ′ = −eU W, (5.29)

P ′p = −2 eU Dp̄W, (5.30)

P ′IAB = −2 eU DIABW. (5.31)

These flow equations (5.29)–(5.31) have also been discussed in [25, 26], together with the

superpotential (5.20), though for the case where only the gravity multiplet is present.

Note that out of the 6nV scalars in PIAB , only 2nV flow, because

PC− AP
D
+ B DICDW = 0, (5.32)

which gives 4nV conditions. This follows from (5.22), noting that the first term is fully

projected on the P− subspace and the second is fully projected on the P+ subspace and

PA−BP
B
+ C = 0.

The BPS squaring of the action follows by recognizing that

4

(
DpWDp̄W +

1

4
DIABWDIABW

)
=

1

4W 2
|PfZ|2 + ZIZ

I (5.33)

and

W 2 +
1

4W 2
|PfZ|2 =

1

2
ZABZ

AB, (5.34)

so that

VBH = 4

(
DpWDp̄W +

1

4
DIABWDIABW

)
+W 2. (5.35)

Plugging this into the Lagrangian we eventually obtain

L =
(
U ′ + eU W

)2
+ |P ′p + 2eU Dp̄W |2

+
1

4

(
P ′IAB + 2 eU DIABW

) (
P ′IAB + 2 eU DIABW

)
− (2eUW )′,

(5.36)

so that again we identify W with the ADM mass.

5.1 ADM mass constraint

The superpotential satisfies an interesting relation, which is the N = 4 instance of the

general expression (1.6):

DpDp̄(W
2) +

1

4

(
PA−CP

B
− D + PA+CP

B
+ D

)
DIABD

ICD(W 2) =

4

(
1

4
DIABWDIABW

)
+ (nV + 1)W 2.

(5.37)

Also in this case it is crucial to project on the subspace of complex scalars flowing, given

by the ++ and −− combinations of the projectors.

– 14 –



J
H
E
P
0
3
(
2
0
2
0
)
1
9
2

Before beginning with the actual derivation, we note two identities:

εABCDΠ
[E
A Π

F ]
B = εABEFΠ

[C
A Π

D]
B , (5.38)

εABCDP
[E
+ AP

F ]
+ BP

G
−D = εEFBDPC− BP

G
−D. (5.39)

We then compute

1

4

(
PA−CP

B
− D + PA+CP

B
+ D

)
DIABD

ICD(W 2) =

=
1

4

(
PA−CP

B
− D + PA+CP

B
+ D

)
DIAB

(
ZIZCEPD− E +

1

2
δIJ ZJ ε

CDEFZEGP
G
− F

)
=

1

4

(
PA−CP

B
− D + PA+CP

B
+ D

)(
nV ZABZ

CEPD− E + 2δCEAB ZIZ
IPD− E −

1

2
ZIZCEDIABΠD

E

+
1

4
nV εABPQZ

PQεCDEFZEGP
G
− F +

1

2
ZIZ

IεABEGε
CDEFPG− F

−1

4
δIJ ZJ ε

CDEFZEGDIABΠG
F

)
. (5.40)

Using projector identities like P 2
− = P−, P+P− = 0, εABCDP

[E
− AP

F ]
− BP

G
−D = 0 and

ΠA
BDIEFΠB

C = 0, we see that

1

4

(
PA−CP

B
− D + PA+CP

B
+ D

)
DIABD

ICD(W 2) =

= nVW
2 + ZIZ

I − 1

4
ZIZ

I
(
DIABΠB

C −ΠE
AΠB

CDIEFΠF
B

)
ZAC

− 1

8
δIJZJ ε

ABCDZCG
(
DIABΠG

D + ΠE
AΠF

B DIEFΠG
D

)
.

(5.41)

Now, recalling that ZAC = ZEFΠA
EΠC

F , the third term vanishes, and we can see that

also the last one vanishes upon using the identities above:

− 1

8
δIJ ZJ ε

ABCDZCG
(
DIABΠG

D + ΠE
AΠF

B DIEFΠG
D

)
= −1

4
ZJZCGD

JCDΠG
D −

1

8
δIJZJ ε

ABCDZCGΠE
AΠF

BDIEFΠG
D

= −1

4
ZJ
(
ZAG − ZEFΠE

AΠF
G

)
DJABΠG

B = 0.

(5.42)

Finally, we use (5.35) in (5.41) to recover (5.37).

6 Comments

In the previous sections we have built evidence that for asymptotically flat BPS black holes

in 4 dimensions we have a differential constraint on their ADM mass of the form

P abDaD
b
(M2) = 4DaMD

a
M + nM2, (6.1)

where derivatives are taken only with respect to the running complex scalars. Starting

from this result, we can now use the WGC to obtain a general constraint on the scalar-

dependent masses of the various fields. For a generic charged black hole in the presence of

scalar fields we have that

M2 + Σ2 −Q2
∞ ≥ 0, (6.2)
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where M is the ADM mass of the black hole, Σ represents the scalar charges and Q∞ are

the U(1) charges at infinity. Our relation can also be written as

D2M2 = nM2 + Σ2 = (n− 1)M2 + (M2 + Σ2), (6.3)

where Σ = 2DW = 2DM . Using the black hole relation (6.2) we therefore find

M2 + Σ2 −Q2
∞ = nM2 + Σ2 −D2M2 ≥ 0, (6.4)

which implies that the particle needed to discharge the black hole should satisfy the opposite

inequality

D2m2(φ) ≥ nm(φ)2 + 4(Dm(φ))2. (6.5)

This is a rather strong constraint on the possible moduli dependence of the masses of

particles in effective theories. While we would like to take such relation and use it as a novel

scalar WGC, we should first inspect it more closely to better understand its requirements

and limits.

First of all we would like to point out that it is difficult to extract a simple universal

behaviour of the masses as a function of the scalar fields. Take for instance conjugate BPS

configurations in the N = 2 STU model

K = − log [i(s− s̄)(t− t̄)(u− ū)] , (6.6)

Z1 = eK/2
(
p0stu− q1s− q2t− q3u

)
, (6.7)

Z2 = eK/2
(
−q0stu+ p1tu+ p2su+ p3st

)
. (6.8)

Using a real parameterization

s =
σ

M
+ i e−

√
2φs/M , t =

τ

M
+ i e−

√
2φt/M , u =

ν

M
+ i e−

√
2φu/M , (6.9)

we see that only the φs,t,u scalars flow along the black hole solution and the ADM mass

MADM = |Z| has a very simple and yet different dependence on them, namely

MADM ∼ −p0e−(φs+φt+φu)/(
√

2M) + q1e
(−φs+φt+φu)/(

√
2M)

+ q2e
(φs−φt+φu)/(

√
2M) + q3e

(φs+φt−φu)/(
√

2M),
(6.10)

for the Z1 charge and

MADM ∼ −q0e
(φs+φt+φu)/(

√
2M) + p1e(φs−φt−φu)/(

√
2M)

+ p2e(−φs+φt−φu)/(
√

2M) + p3e(−φs−φt+φu)/(
√

2M)
(6.11)

for the Z2 charge. We can interpret the resulting behaviour as the outcome of the sum

over different states, whose masses either exponentially vanish or blow-up in the φs,t,u →
±∞ limit towards the boundary of the moduli space. This is the expected behaviour

to be compatible with the swampland distance conjecture and also with the microscopic

interpretation of the black hole charges with D-branes wrapping cycles of the internal

manifold (in this case D0, D2, D4 and D6-branes on 0, 2, 4 and 6-cycles of T6/(Z2 × Z2)).
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Another aspect that emerges from this analysis is that it is crucial in the relation to

have a second covariant derivative spanning over all active complex scalars. In the N = 2

example that we just presented, σ = 0 = τ = ν along the whole solution [29], but the

identity is fulfilled only if the terms gσσ∂2
σ|Z| and gσσγφsσσ∂φs |Z| are taken into account

(and their analogous terms for the t and u fields). Without considering these terms one

would not obtain a differential equation on MADM resulting in the expected behaviour in

φs,t,u. This clearly hampers the possibility of a straightforward generalization to theories

where the moduli fields do not come in complex form.

The last point that is quite peculiar of this relation is that its validity rests on the sum

over all complex scalars contributing to the BPS configuration. This means that we are

not able at this stage to extract a strong form of the inequality, to be valid for each scalar,

like the one proposed in [9].

While the formula we proposed for the differential relation on the ADM mass of a BPS

black hole has been written in a form that is independent of the number of supersymmetries,

we should stress that we completed the proof only for N = 2, N = 3 and N = 4. We do

not foresee obstacles to a further extension to N = 5, N = 6 or N = 8, and in fact, in [25]

one can find the identification of the superpotential with the appropriate eigenvalue of the

central charge matrix, but it is clear that technically computations become much more

involved because the projectors needed have a rather complicated expression in terms of

traces and determinants of combinations of the central charges. This is an obvious possible

extension of the work reported here.

Another possible extension of this work is the analysis of the extremal non-BPS con-

figurations in extended supegravity, along the lines of what done in [30] for the N = 2 case.

The N = 2 case has been already been discussed in [4], but for N > 2 one can imagine that

different possible superpotentials appear, according to the branch of non-BPS extremal

solutions (see [31] for an overview of the possibilities). Some instances of such superpoten-

tials have been discussed in [26] and it would be interesting to see if they all satisfy the

same differential constraint.
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