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1 Introduction

There has been much recent interest in the idea that the bulk/boundary dictionary of

AdS/CFT represents a quantum error correcting (QEC) code [1–8]. According to this

paradigm, full recovery of standard bulk physics can occur only on a ‘code subspace’

Hcode in the CFT Hilbert space HCFT. Consistent with either the firewall [9–12] or state-

dependent observables [13–18] hypotheses, the orthogonal complement of Hcode is presumed

to contain states describing generic black holes inside which at least any given code will

fail to reconstruct standard bulk physics.

The arguments [4, 5] for this paradigm are strong when one considers the more re-

stricted subspaces Hφ ⊂ HCFT whose bulk duals describe small quantum fluctuations at

lowest non-trivial order in the bulk Newton constant G around a given classical solution

φ. In that context, a QEC structure with code subspace Hφ follows from the one-loop

Faulkner-Lewkowycz-Maldacena relation [19]. In particular, given any partition of a CFT

Cauchy surface into regions R and R, one obtains a code with a property known as com-

plementary recovery. We will review this structure in section 2 below.

It is natural to expect that such codes can be sewn together into a single code on

Hcode := ⊕φHφ. While the details of this operation remain to be understood, the recent

works [20, 21] discovered strong similarities between these codes at leading order in G. The
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point here is that codes with complementary recovery are characterized by their pattern of

entanglement between appropriate factors of HCFT, and at leading order in G refs. [20, 21]

showed this pattern to be the same in each Hφ up to unitary transformations. Specifically,

at this order states of definite area for the relevant Ryu-Takayanagi (RT) surface [22, 23] —

or more generally the Hubeny-Rangamani-Takayanagi (HRT) surface [24] — always induce

density matrices on each tensor factor that are proportional to projection operators. In

other words, referring to this leading order as O(1/G) one may say that at O(1/G) such den-

sity matrices take a universal form with a “flat” spectrum of eigenvalues λk, meaning that

the λk are independent of k for λk 6= 0. Note that one may equivalently say that at O(1/G)

every such code involves maximal entanglement between subspaces of the tensor factors, or

alternatively that the associated density matrices are proportional to projection operators.

Our present work refines this result by establishing a sense in which it extends to O(1).

Since we treat bulk gravity as an effective field theory with a cut-off, there are two differ-

ent O(1) effects to consider. The first comes from higher derivative corrections to the bulk

effective action at some cut-off scale. Such corrections contain effects of ultraviolet (UV)

quantum fluctuations at energies above the cut-off that have been integrated out. As is well

known, such higher derivative terms in the action cause the geometric entropy associated

with the bulk entangling (RT or HRT) surface to differ from A/4G by related higher deriva-

tive terms [25–28]. The second O(1) effect comes from infrared (IR) bulk quantum fluctua-

tions at energies below the cut-off which remain to be integrated over in the path integral.

Though the two effects are physically related, they enter the code formalism in quali-

tatively different ways. Indeed, as we discuss in section 2, it is natural to conjecture that

dynamical IR quantum fluctuations merely determine which state in the code subspace

arises from a given path integral, and thus that such fluctuations may be completely ig-

nored when computing certain entanglement properties of the code itself. In effect, for such

purposes one would then treat the effective action defined at the cutoff scale as a classical

variational principle. Our arguments below will verify that this conjecture is correct.

However, it will first be necessary to deal with the higher derivative corrections to the

effective action at the cutoff scale. This is done in section 3 (with help from appendices A

and B) by first reformulating the Lewkowycz-Maldacena procedure [29] for computing Ryu-

Takayanagi gravitational entanglement for two-derivative Einstein-Hilbert gravity. Indeed,

we show that their computation can be interpreted as a Hamilton-Jacobi variation of an

action with respect to boundary conditions, where in this case the role of the boundary

condition is played by a choice of conical defect angle δ on the RT surface, and that the

gravitational entanglement remains A/4G even on Euclidean saddles with δ 6= 0. In par-

ticular, this confirms that the Lewkowycz-Maldacena procedure is a direct generalization

of the Carlip-Teitelboim approach to black hole entropy [30] to cases that break the U(1)

symmetry of [30]. Further extending this result to arbitrary higher derivative actions al-

lows one to repeat the arguments of [21] and show that treating the effective action as a

classical variational principle would again yield density matrices proportional to projectors

for states of fixed geometric entropy σ = A/4G+ (higher derivative corrections).

It then remains to properly address the dynamical IR quantum fluctuations. We do so

in section 4 by considering states |ψ〉σ of fixed geometric entropy and tracing them over R
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to define density matrices ρR. Taking the tensor product with the identity operator 1R on

R yields an operator ρR⊗1R on HCFT. Using the results from section 3, for |ψ〉σ ∈ Hφ we

show ρR ⊗ 1R to preserve an appropriately defined Hφ. It then follows immediately that

density matrices on R defined by the code itself must again be proportional to projection

operators. The universal flat entanglement spectrum of the code itself is thus maintained

at one-loop order, even though generic encoded states no longer have flat entanglement. A

corollary is confirmation of the above-mentioned conjecture that dynamical IR quantum

fluctuations merely determine which state in the code subspace arises from a given path

integral and that properties of the code itself are determined by treating the cutoff-scale

effective action as a classical variational principle.

We conclude in section 5 with discussion focusing on implications for the renormal-

ization group (RG) flow of holographic quantum codes and for the relation between bulk

and boundary modular Hamiltonians derived by Jafferis, Lewkowycz, Maldacena, and Suh

(JLMS) [31]. In the former context, our result implies precise cancelations between a

number of different effects. In the latter context, it shows that their relation holds as

an operator statement on each Hφ and not just in code-subspace expectation values (see

discussion in [4] and [21]). Although the structure of QEC with complementary recovery

is expected to break down beyond one-loop order, many of our arguments nevertheless

remain valid more generally and must thus constrain any structure that remains.

2 Review of holographic quantum codes

It is useful to briefly review the role of quantum error correcting codes in holography.

Our discussion largely follows that of [21], which is in turn based on [1, 4, 5]. However,

since higher derivative corrections play a key role in the remainder of this work, we take

care to emphasize the relation to bulk effective field theory concepts and, in particular,

the evolution of the code under bulk renormalization-group flow. Such issues were also

mentioned in [19–21], but we wish to place them front and center.

As in the introduction, we focus on subspaces Hφ ⊂ HCFT whose bulk duals describe

small quantum fluctuations at lowest non-trivial order in the bulk Newton constant G

around a given classical solution φ. Given any partition of a CFT Cauchy surface into

regions R and R and the associated RT/HRT-surface γR in the bulk spacetime, one may

define the corresponding bulk entanglement wedges W (W ) [32–34] as the bulk domain of

dependence of any achronal bulk surface whose boundary is R∪ γR (R∪ γR). States in Hφ
then must obey a Faulkner-Lewkowycz-Maldacena (FLM) relation

S(ρR) = Tr (ρWLR) + SW (ρW ), (2.1)

where ρR is the CFT density matrix obtained by tracing over R and ρW is the density matrix

describing bulk quantum fields in W . The operator LR is localized on the RT/HRT-surface

γR and takes the form A[γR]/(4G)+ . . . where . . . represents appropriate higher derivative

corrections. The entropy S(ρR) is computed as usual in the CFT, but SW (ρW ) is the

entropy of the bulk state ρW defined as a linear functional on a von Neumann algebra MW

of operators in W . The operator LR is an element of MW , and by interchanging R and R
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it turns out also an element of the algebra MW on W . As a result, LR commutes with all

operators in MW and thus lies in the center of MW . Note that MW is the commutant of

MW in the algebra of bulk fields, and that MW is also the commutant of MW .

A key point for our work below is that ref. [19] derived (2.1) using the bulk path

integral, and in particular treated the bulk as an effective field theory. One should thus

understand [19] to rely on having a bulk effective action valid at locally-measured energies

below some bulk cutoff scale Λ. In particular, the operator LR is determined by applying

the Lewkowycz-Maldacena procedure [29] to this effective action and so also depends on Λ;

see [25–28] for treatments of higher derivative corrections. We will discuss this procedure in

more detail in section 3, but for now we note that, although dynamical fluctuations below

the cutoff Λ contribute to the expectation value of LR in (2.1), the procedure determining

the form of LR is entirely classical and makes no reference to these fluctuations. As a

result, the expression for LR is precisely given by the classical geometric entropy defined

by the effective action at the scale Λ.

Due to our high energy cutoff, we assume that we can treat our bulk theory in parallel

with quantum mechanics on a finite-dimensional Hilbert space — perhaps by imposing

further cutoffs as well. In that context it follows that any action of a von Neumann algebra

MW on a Hilbert space Hφ allows one to decompose Hφ as

Hφ = ⊕α∈S
(
HWα ⊗HWα

)
, (2.2)

where the decomposition defines HWα and HWα
, S is an appropriate index set, and oper-

ators in either MW or its commutant MW are block diagonal in α; see e.g. the appendix

of [5]. See also related comments in [35]. We may also choose the tensor factorization

within each block such that MW (MW ) contains precisely those operators that act trivially

on HWα
(HWα). The intersection Z = MW ∩MW gives the center of both MW and MW

and contains block diagonal matrices that are proportional to the identity on HWα ⊗HWα

within each block.1 We may thus write

MW = ⊕α
(
L(HWα)⊗ 1Wα

)
,

MW = ⊕α
(
1Wα ⊗ L(HWα

)
)
, (2.3)

Z = ⊕αL(C)1WαWα
,

where L(H) denotes the set of linear operators on the Hilbert space H. We refer to α as

the superselection parameter below.

Since the above structure follows from (2.1), it is again valid only below some cutoff

Λ. While Λ is to some extent arbitrary, we should expect the Hilbert spaces, the de-

composition (2.2), and the algebras of operators to depend the value of Λ that is chosen.

This is especially true for the operator LR, whose form depends on the effective action as

1In fact, as we discuss in section 4 below, equation (2.2) has some tension with the context just discussed.

In particular, the right-hand side contains exact eigenstates of α, but such eigenstates cannot be described

as small quantum fluctuations around a classical background φ. We will resolve this tension in section 4 by

slightly generalizing the definition of Hφ so that it contains such α-eigenstates, noting that the derivation

of (2.1) holds equally well on these states.
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noted above and which — as with all operators in MW ,MW — should be thought of as

being smeared over length scales 1/Λ. In particular, all of these structures can experience

non-trivial renormalization-group flows under changes in Λ.

As a further comment on (2.3), we note that if the bulk were described by a scalar field

theory, we could choose the algebra MW so that the center Z is trivial, containing only

operators proportional to the identity on Hφ. The index set S would then contain only

one element so that (2.2) becomes a simple tensor product. But the bulk is described by

a theory of gravity, and the resulting diffeomorphism gauge symmetry implies constraints

that forbid quantum states (or even classical initial data) in W and W from being chosen

independently. In this context the set S is generally non-trivial and — as in the case of

Yang-Mills theories — taking MW to be the algebra of gauge-invariant operators in W

yields a non-trivial center [5, 36–39].

In contrast, we will ignore issues associated with constraints in the CFT dual and write

HCFT = HR ⊗HR. (2.4)

While the dual CFT is often a gauge theory and thus does have similar issues involving

constraints and a lack of factorization, any such CFT gauge symmetry is expected to

be unrelated to bulk diffeomorphism invariance. As a result, the corresponding central

operators in the CFT will not directly relate to the bulk center Z discussed here. Following

standard practice, we thus ignore this complication in the present discussion.

Returning to the bulk, we can now explain the entropy SW (ρW ) in more detail. Since

α denotes the eigenvalues of center operators, the density matrix ρW must take the block-

diagonal form

ρW = ⊕αpαρWα , (2.5)

where Tr ρWα = 1 and
∑

α pα = 1. The desired entropy is then simply

SW (ρW ) = −
∑
α

pα log pα +
∑
α

pαS(ρWα). (2.6)

As shown in [5], the FLM formula (2.1) tightly constrains the relations between the

bulk factors HWα ,HWα
and the CFT factors HR,HR. In particular, if all states in a code

subspace Hφ ⊂ HR⊗HR satisfy (2.1) and its analogue for R, then HR and HR must admit

decompositions of the form

HR = ⊕α
(
HR1

α
⊗HR2

α

)
⊕HR3 ,

HR = ⊕α
(
H
R

1
α
⊗H

R
2
α

)
⊕HR3

, (2.7)

where HR1
α
∼= HWα and H

R
1
α

∼= HWα
with ∼= denoting Hilbert space isomorphisms. Fur-

thermore, one can choose a basis |α, ij〉 of Hφ associated with the decomposition (2.2). In

particular we may take

|α, ij〉 = URUR

(
|α, i〉R1

α
⊗ |α, j〉

R
1
α
⊗ |χα〉R2

αR
2
α

)
(2.8)
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for some unitaries UR, UR on HR and HR, bases {|α, i〉}, {|α, j〉} of HR1
α
,H

R
1
α
, and some

set of states |χα〉 ∈ HR2
α
⊗H

R
2
α
. Ref. [5] called such codes “operator algebra quantum error-

correcting codes with complementary recovery”, as (2.8) is equivalent to the requirement

that the action of any operator in MW on a state in Hφ can be reproduced by acting on

that state with an operator in R, and correspondingly for MW , R.

Since arbitrary unitaries on HR1
α
, H

R
1
α
, HR2

α
, H

R
2
α

can be absorbed into UR, UR, the

only independent structure in (2.8) comes from the coefficients in the Schmidt decom-

position of |χα〉R2
αR

2
α
, or equivalently the spectrum of eigenvalues of the density matrix

χR2
α
≡ Tr

R
2
α
|χα〉〈χα| (which is also the spectrum of χ

R
2
α
≡ TrR2

α
|χα〉〈χα|). This spectrum

is thus the essence of any code, and it is this spectrum that was shown in [21] to be flat at

O(1/G) in states of fixed RT-area; see also [20].

Tracing (2.8) over R yields

ρR =
∑
α

pαUR
(
ρR1

α
⊗ χR2

α

)
U †R, (2.9)

where ρR1
α

is the image of ρWα under the isomorphism between HWα and HR1
α
. Using (2.6),

the von Neumann entropy of (2.9) immediately takes the form (2.1) with the identification

LR =
∑
α

S(χR2
α
)1WαWα

. (2.10)

As described in [20, 21] the entropies of the normalized density matrices ρnR/(Tr ρnR) take

a similar form, though they will satisfy (2.1) with the same identification (2.10) if and

only if each χR2
α

satisfies χ2
R2
α
∝ χR2

α
; i.e., if each such density matrix is proportional to a

projection operator.

Note that eigenstates of the superselection parameter α are also eigenstates of LR. In

holography, it is an interesting question whether α is defined completely by the eigenvalue of

LR or whether it contains additional information, but in either case let us simply consider

an eigenstate of α. In such a state, if we for the moment ignore information within a

distance 1/Λ (set by the cutoff scale Λ) away from the bulk entangling surface γR, the

remaining information about bulk quantum fluctuations below the cutoff Λ in a state |ψ〉
appears to be captured by the amplitudes 〈ψ|α, ij〉 and the details of the state factors

|α, i〉R1
α
⊗ |α, j〉

R
1
α
; indeed, these ingredients suffice to determine the correlation functions

of operators in W ∪W . The state |χα〉R2
αR

2
α

must thus be associated with bulk degrees of

freedom with energies above the cutoff Λ. Together with the sources at the AdS boundary,

such high energy degrees of freedom determine a natural classical background on which

dynamical quantum fluctuations propagate through the condition that the background be

a stationary point of the effective action that arises from integrating them out.2 It is thus

natural to conjecture that many properties of |χα〉R2
αR

2
α

can be computed by using the

cutoff-scale effective action as a corresponding classical variational principle. Indeed, the

identification (2.10) shows that its von Neumann entanglement entropy can be calculated

2Note that the existence of a preferred classical background determined by a variational principle does

not necessarily imply that quantum fluctuations around this background are small.
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using the classical Lewkowycz-Maldacena procedure. It is thus reasonable to expect this

to extend to Renyi entropies Sn(χR2
α
). Below, we refer to this idea as the classical effective

action conjecture for the quantum code.3

We give a definitive, though somewhat indirect, argument for this result in section 4

below. The rough sketch of the idea is to consider a state |ψ〉σ in an appropriate code

subspace Hφ such that |ψ〉σ is an eigenstate of LR with eigenvalue σ. We use this state to

build a new state

|ψ3〉σ :=
(
ρR ⊗ 1R

)
|ψ〉σ, (2.11)

where ρR is the density matrix defined on R by tracing |ψ〉σ over R. The new state is

labelled with a subscript 3 because TrR |ψ3〉σσ〈ψ3| = (ρR)3 and thus

σ〈ψ3|ψ3〉σ = Tr
(
ρ3
R

)
. (2.12)

We use a bulk calculation to argue that |ψ3〉σ also lies in the same code subspace Hφ.

Thus both states define the same density matrix χR2
α
≡ Tr

R
2
α
|χα〉〈χα| on HR2

α
for each

superselection sector α consistent with the fixed geometric entropy σ (and on which |ψ〉σ
has non-zero projection). The relation (2.11) then requires(

χR2
α

)3 ∝ χR2
α
. (2.13)

Since eigenvalues of density matrices are real and non-negative, the relation (2.13) allows

χR2
α

to have only the eigenvalues 0 and 1 up to an overall normalization. Thus the density

matrix χR2
α

is proportional to a projector onto a subspace of dimension dictated by its

entropy, which is in turn dictated by the associated eigenvalue of LR. Using the decompo-

sition (2.8), one can then more generally show that multiplication by
(
ρR ⊗ 1R

)
preserves

the given code subspace Hφ.

We note that this result provides evidence supporting the above-mentioned classical

effective action conjecture. In particular, the bulk calculation deriving (2.13) relies on

properties of variational principles for higher-derivative actions that we will establish in

section 3 below. These properties imply that with fixed geometric entropy, a purely classical

(saddle-point) calculation of Renyi entropies would again give a flat entanglement spectrum

for the |χα〉R2
αR

2
α

state, and thus that the associated density matrix on R2
α would be a

projector onto a subspace of dimension set by the associated saddle-point von Neumann

entropy (i.e., by the geometric entropy). This is thus the prediction of the classical effective

action conjecture, and we see that it agrees precisely with the results for the spectrum of

|χα〉R2
αR

2
α

described above.

3 Higher derivative saddle-point Renyi entropies and states of fixed ge-

ometric entropy

Before proceeding to the main argument in section 4, we must first develop certain tech-

niques for studying higher derivative actions and fixing the associated geometric entropy.

3We emphasize that our main results (derived in section 4) do not rely on this conjecture. Rather, the

conjecture is supported by — and provides an intuitive way of understanding — our main results.
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In particular, as mentioned above we will first need to show that a purely classical saddle-

point treatment (ignoring dynamical quantum fluctuations) would give flat entanglement

spectra. As motivation for this result, recall from [20, 21] that tracing states of fixed

RT-area over R defines density matrices ρR whose Renyi entropies

Sn(ρR) ≡ − 1

n− 1
log Tr(ρnR) (3.1)

are independent of n at O(1/G). Were these Renyi entropies exactly constant, one could

readily show all nonzero eigenvalues λk of ρR to be degenerate (λk independent of k for

λk 6= 0). Because the results of [20, 21] involved only the leading order behavior in G, it

sufficed to consider saddle points of the Euclidean action. Fluctuations about such saddles

can contribute only at higher orders. In addition, the analysis of [20, 21] was limited to

leading order in the inverse string tension α′ as the bulk was assumed to be described by

Einstein-Hilbert gravity with minimally-coupled matter fields.

Our purpose here is to extend such arguments to incorporate general higher derivative

terms, including those representing higher order corrections in either α′ or G. In particular,

in this section we again consider only contributions from the classical saddle-points them-

selves. Discussion of possible contributions associated with fluctuations about such saddles

will be deferred to section 4. We thus refer to the quantities computed below as saddle-

point Renyi entropies Ssaddle
n . As noted in section 2, if we also fix the higher-derivative

corrected geometric entropy σ = A/4G + . . . to some value σ̂, it is natural to conjecture

that Ssaddle
n computes entropies of the code state |χα〉 ∈ HR2

α
⊗ H

R
2
α

associated with the

corresponding superselection sector α. We will argue that this is indeed the case in sec-

tion 4 below. Recall that σ is specified by the choice of superselection sector α, though we

have left open the issue of whether α is fully specified by σ.

We will consider general higher derivative corrections which may involve an arbitrarily

large number of derivatives in the effective action, for the following reasons. In addition to

large numbers of derivatives that can appear at high orders in α′, it is important to note

that moderately large numbers of derivative can appear at leading order in α′ already in the

one-loop corrections. Indeed, in bulk spacetime dimension d such corrections can involve up

to d derivatives. In particular, if the effective action happens to contain only an Einstein-

Hilbert term at some cut-off energy Λ, then one-loop renormalization-group flow to a nearby

scale Λ−∆Λ will generally induce all terms with n ≤ d derivatives with coefficients of order

GΛd−n (or G log Λ for d = n) relative to the Einstein-Hilbert term. The contributions of

such terms to computations at the scale Λ are thus uniformly suppressed (up to logs) by the

dimensionless parameter GΛd−2. We thus consider general higher derivative terms below.

Below, we begin with a brief reminder (section 3.1) of certain features of fixed RT-area

states and their flat saddle-point Renyi entropies derived in [21]. Section 3.2 then uses

results from appendix A to rewrite this argument in an elegant form that (with help from

appendix B) allows ready generalization to the higher derivative case.

3.1 Review of fixed RT-area states

Suppose that we begin with a CFT state |ψ〉 defined by a Euclidean path integral, and that

a Cauchy surface ∂Σ for the CFT has been partitioned into regions R and R. As in [21],

– 8 –
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for simplicity we take the state to be time-symmetric and the path integral to be real. The

AdS/CFT dictionary then defines a corresponding bulk path integral that computes the

bulk wavefunction 〈h|ψ〉 where |h〉 is an eigenstate of the bulk induced metric on some bulk

Cauchy surface Σ. After gauge-fixing Σ to run through the HRT-surface γR and choosing

coordinates on Σ that fix the location of γR on Σ, the bulk wavefunction 〈h|ψA0〉 of the

corresponding state |ψA0〉 of fixed RT-area A0 is defined by simply restricting 〈h|ψ〉 to

metrics h on Σ that give γR the desired area A0.

Note that the norm of |ψA0〉 may be computed via

〈ψA0 |ψA0〉 =

∫
h
Dh |〈h|ψA0〉|2

=

∫
h with area A0 on γR

Dh |〈h|ψ〉|2. (3.2)

This is identical to the bulk path integral for 〈ψ|ψ〉 except that one treats the area of the

HRT surface as fixed and not as a variable over which one integrates. In the semiclassical

limit, this means that allowed saddles gA0 for (3.2) satisfy the same boundary conditions

at AdS-infinity as saddles for 〈ψ|ψ〉, but that one of the bulk equations of motion fails

to be enforced at γR. The effect on the allowed solutions can be seen by introducing a

term µ(A[γR]−A0) into the action and treating µ as a Lagrange multiplier. In Euclidean

Einstein-Hilbert gravity, this allows the introduction of a conical defect on γR whose mag-

nitude is determined by the condition A[γR] = A0. As a result, if g1 is an allowed bulk

saddle satisfying boundary conditions B1 as in figure 1 (left), then for boundary conditions

Bn given by simply sewing together n copies of B1, we may construct an allowed bulk

saddle gn by applying an analogous cut-and-paste procedure to g1 as in figure 1 (right).

A direct calculation of saddle-point Renyi entropies or refined Renyi entropies [29, 40]

then shows that they do not depend on n. In particular, defining the refined Renyi entropy

S̃n(ρR) as the von Neumann entropy of the normalized density matrix ρnR/(Tr ρnR), this

quantity is given by A/4G for the RT surface associated with the saddle gn. Thus S̃n(ρR) =

A0/4G is constant. But a short calculations also shows

S̃n(ρR) = n2∂n

(
n− 1

n
Sn(ρR)

)
. (3.3)

Integrating this relation for constant S̃n then gives Sn = S̃n = A0/4G, showing that the

usual Renyi entropies are constant as well.

3.2 Reformulation and higher derivative corrections

We now wish to rewrite the above argument for constant Renyi entropies in a more ele-

gant form that will generalize directly to actions with higher derivative corrections. As

stated above, our goal is to discuss classical variational principles for spacetimes with fixed

geometric entropy determined by a region R of their boundary. And as noted above, at

least for the two-derivative Einstein-Hilbert action the associated saddles involve conical

singularities. A complication, however, is that higher-derivative geometric entropy has

not previously been studied carefully in spacetimes with non-zero conical defect angles.
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Figure 1. After cutting open the n = 1 bulk saddle g1 (left), three copies may be glued together

to construct the n = 3 bulk saddle g3 (right). The black dot in the center is the HRT surface γR.

We must thus not only construct an appropriate variational principle and find associated

saddles, we must also determine what it means to fix geometric entropy in this context.

We propose that all of these questions be answered simultaneously by an appropriate

analytic extension of the fixed-geometric-entropy action from cases where the results are

clear. We will show that such an analytic extension can be constructed by first considering

variational principles for Euclidean spacetimes with codimension-2 conical defects with de-

fect angles that are fixed as a boundary condition. In the spirit of [30], we may then perform

a Hamilton-Jacobi-like variation with respect to the defect angle boundary condition. At

vanishing defect angle, this latter variation is equivalent to the Lewkowycz-Maldacena com-

putation of the entropy. However, we may also perform this variation about backgrounds

with non-zero conical defect angle and to thus define geometric entropy in those back-

grounds. A Legendre transform then gives a variational principle appropriate to fixing this

geometric entropy and simultaneously provides the analytic extension mentioned above.

Our starting point will be to observe that the Lewkowycz-Maldacena procedure for

deriving the (two-derivative) Ryu-Takayanagi relation can be interpreted as just such a

Hamilton-Jacobi-like variation of a fixed-conical-deficit action with respect to the conical

deficit. This is established in detail in appendix A. In particular, we show there that the

Einstein-Hilbert action provides a well-defined variational principle for an appropriate class

of spacetimes with codimension-2 conical defects with fixed conical deficit angle δ so long

as one ignores (a la Lewkowycz-Maldacena) the contribution to this action from the defect

itself. This variational principle imposes Einstein’s equations away from the defect and

also imposes a natural analogue of the condition that the defect lie on an extremal surface.

It is useful to parametrize the conical angle using a ‘replica number m’ such that the

opening angle at the defect is 2πm = 2π − δ; i.e., the defect-free case is m = 1. Even

though we call it a replica number, m can take any positive real value. Note that this is

a bulk replica number. In contrast, in the Lewkowycz-Maldacena construction an integer

boundary replica number n leads to a quotient geometry in the bulk with opening angle

2π/n at the defect. So their n is related to our m by m = 1/n. With this understanding,

and assuming only minimal couplings of matter to gravity, the two-derivative geometric

entropy AHRT/4G is precisely the variation of the fixed-m two-derivative action Ĩ
(2)
m with
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respect to m up to an overall sign:

dĨ
(2)
m

dm
= −AHRT

4G
. (3.4)

Here the tilde in Ĩ
(2)
m is meant to emphasize that it is the action for a fixed conical angle,

to be distinguished with the fixed-geometric-entropy action that we will introduce later.

In particular, Ĩ
(2)
m does not include any contribution from the conical defect itself.

Evaluating the result (3.4) at m = 1 (i.e., at δ = 0) gives a rewriting of the Lewkowycz-

Maldacena derivation [29] of the Ryu-Takayanagi entropy. But in the above form the

Lewkowycz-Maldacena argument now extends to saddles of the given action with general

m 6= 1. Passing to the Legendre transform simply adds a Lagrange multiplier that fixes

AHRT/4G to the desired value. As discussed in [21], this fixed-area action gives the lead-

ing semi-classical contribution to the partition function for states with the given value of

AHRT/4G.

We now wish to repeat the steps in the above argument for actions with higher deriva-

tive corrections. The key technical point is established in appendix B, which shows that a

recipe analogous to the no-singularity-contribution Einstein-Hilbert protocol above contin-

ues to define a good variational principle with action Ĩm at fixed conical deficit δ = 2π(1−m)

for general m > 0 in the presence of perturbative higher derivative terms.

In this context, ignoring contributions from the conical defect typically involves can-

celling divergences with counter-terms (including some divergences that now arise from the

Einstein-Hilbert term). In other words, the singularity can be associated with contribu-

tions that are not just δ-functions localized at the defect. While it is thus not a priori clear

how to divide such contributions into parts “associated with the bulk” and parts “associ-

ated with the defect,” we choose counter-terms that make the result analytic in the conical

angle. One may thus also think of this procedure as analytic continuation from cases where

counter-terms are not required, and in particular from the cases of integer n = 1/m where

the spacetime admits a smooth n-fold cover so that the action may be defined as

Ĩm= 1
n

:=
1

n
Ĩ1(n-fold cover), (3.5)

with Ĩ1 being the usual higher derivative action on smooth spacetimes. At all m, repeating

the Lewkowycz-Maldacena argument with this action then implies the geometric entropy

to be

σ = −dĨm
dm

, (3.6)

in analogy with (3.4). Again, the variational principle imposes a condition that one may

think of as placing the conical defect on a surface that extremizes the geometric entropy.4

4The recipe of appendix B reproduces the standard definitions of both σ and the action at m = 1 (δ = 0).

As a result, at first order in m − 1 our action Ĩm may be written Ĩm = Ĩ1 − (m − 1)σ. And again, the

result gives a natural analytic extension of results that follow from (3.5) when n = 1/m is an integer and

allows metric variations that may be interpreted as moving the surface on which σ is evaluated relative to a

smooth background geometry. In this context, it is clear that varying Ĩm about m = 1 leads to a source of
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The variational principle appropriate to fixing the geometric entropy σ may then be

constructed as the Legendre transform

Iσ = Ĩm + (m− 1)σ. (3.7)

Recall that Legendre transform gives the unique such action up to the addition of a function

of σ. In (3.7) we have fixed this freedom by requiring consistency with the standard problem

where σ is unconstrained. In that case the outcome m = 1 may be thought of as an equation

of motion. Requiring the extremum of Iσ with respect to σ to match this by setting m = 1

gives (3.7) up to the remaining freedom to add an overall constant. As discussed in [21],

this is equivalent to noting that the condition m = 1 selects the dominant value of σ in

the unconstrained problem. This observation in turn means that Iσ should agree with the

standard higher derivative action Ĩ1 when m = 1 and removes the possibility of adding an

overall constant to (3.7).

We may now repeat the argument of [21] to show that the associated saddle-point

Renyi entropies are flat, with Ssaddle
n independent of n. In particular, consider a CFT state

|ψ〉 defined by a CFT path integral with sources. Holographic duality allows the norm

〈ψ|ψ〉 to be computed using a bulk gravitational path integral with boundary conditions

specified by the sources in the CFT path integral. We further wish to consider the state

|ψ〉σ defined by projecting |ψ〉 onto a (perhaps approximate) eigenstate of the geometric

entropy with eigenvalue σ. In the saddle-point approximation the norm of |ψ〉σ is given by

e−Iσ [g1] where the above action Iσ has been evaluated on a saddle point g1 satisfying the

above-mentioned boundary conditions at AdS infinity.

We wish to compute saddle-point Renyi entropies of |ψ〉σ. This means that we consider

the CFT path integral defined by appropriately gluing together n copies of the path integral

for |ψ〉, and then study the corresponding bulk gravitational path integral with a constraint

inserted to fix the geometric entropy to σ. We define the associated saddle-point Renyi

entropies Ssaddle
n by approximating such path integrals by e−Iσ [gn] evaluated on Euclidean

solutions gn satisfying this constraint.

Such saddles gn are now easy to construct. In the variational principle for fixed σ, the

conical deficit 2π(1 −m) is a dynamical variable chosen to obtain the specified geometric

entropy. It will thus vanish only for certain values of σ for a given choice of |ψ〉. For

our choice of σ and the associated g1, we let φ1 = 2πm1 denote the opening angle of the

associated cone (so that the space is smooth only for φ1 = 2π or m1 = 1). The saddles gn
are then found by cutting open n copies of g1 and sewing them together as described in

figure 1 to give mn = nm1.

This gn clearly satisfies the desired boundary conditions at AdS infinity. Furthermore,

as shown in appendix B, σ[g1] is fully determined by the properties of g1 in the region

near the defect. In particular, it may be computed by taking a limit as one approaches

the conical defect from any fixed direction. As a result, σ[gn] = σ[g1] and the geometric

order (m− 1) on a surface extremizing σ in the m = 1 geometry. Now, for more general m, the stationary

points of Ĩm have deficit angles δ = 2π(1 − m) on the corresponding surface. Taking Zn quotients then

shows that σ is extremized on shell whenever 1/m ∈ Z. Finally, appendix B derives a sense in which our

construction analytically extends this condition to general real m > 0. See this appendix for details.
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entropy takes the desired value as well. It follows that gn is a saddle for Iσ satisfying

all boundary conditions. We shall assume such saddles to dominate in the path integral,

though of course this issue deserves more study in the future.

Let us now discuss the value of Iσ on gn following [21]. We begin with the fundamental

saddle g1 and compute Iσ[g1] = Ĩm1 [g1]+(m1−1)σ. As stated above, the first contribution

Ĩm1 comes from ignoring contributions from the conical defect. In particular, it can be

obtained by cutting out a region of radius ε around the defect, including appropriate

counter-terms at the new inner boundary, and taking the limit ε→ 0. Since gn consists of

n copies of g1 away from the defect, this implies Ĩmn [gn] = nĨm1 [g1]. Since mn = nm1, the

full action satisfies

Iσ[gn] = nĨm1 [g1] + (nm1 − 1)σ. (3.8)

Taking into account proper normalization of ρR then yields

(log TrρnR)saddle = log
e−Iσ [gn]

e−nIσ [g1]
= −(Iσ[gn]− nIσ[g1]) = −(n− 1)σ, (3.9)

so that the saddle-point Renyi entropies defined by (3.1) yield Ssaddle
n = σ and are indeed

independent of n. Alternatively, we could again have noted that the saddle-point refined

Renyi entropies S̃saddle
n are again fixed by the condition on σ and then integrated (3.3) to

find Ssaddle
n = σ as well.

4 Density matrix multiplication in states of fixed geometric entropy

We now have all the tools in hand to flesh out the argument sketched at the end of section 2

that multiplication by a code-subspace density matrix preserves code-subspaces with fixed

geometric entropy. We begin with a careful description of the appropriate code subspaces

Hφ. As discussed in footnote 1, the usual description of Hφ as the space of states describing

small quantum fluctuations about a given classical background is not consistent with the

statement that it contains states of fixed geometric entropy σ, as any observable O that

fails to commute with σ will necessarily have significant fluctuations. This is much like the

statement in familiar non-relativistic quantum mechanics that position eigenstates allow

large fluctuations in momenta.

Since we wish to work with such fixed-σ states, it is useful to instead define Hφ as the

linear span of states constructed from fixed-σ Euclidean path integrals using some given

set of classical sources and arbitrary additional sources of order 1 in counting powers of G;

i.e., we consider small deviations from some given fixed-σ state. States defined in this way

allow what we may call large fluctuations in the conical angle at the defect, but fluctuations

elsewhere are small. Furthermore, the large fluctuations in conical angle need not obstruct

semiclassical computations of σ〈ψ|ψ〉σ, and indeed it is precisely such large fluctuations that

allow the conical angle of a saddle to be tuned to satisfy the constraint on σ. This is in direct

parallel to the situation in non-relativistic quantum mechanics when using the semiclassical

approximation to study the propagator 〈x′, t′|x, t〉 between exact position eigenstates.

In making the above definition of Hφ, one should note that sources generally have

non-trivial conformal dimensions so that the magnitude of any source depends on a choice
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of conformal frame. Now, in considering Renyi entropies associated with the division of a

CFT Cauchy surface into regions R,R, the natural conformal frames to use are those in

which the mutual boundary ∂R = ∂R of R, R has been pushed to infinity. We have in

mind such frames below.

In this context the arguments of [19] again imply an FLM formula on this Hφ, from

whence refs. [1, 4, 5] show states in Hφ to be a code subspace5 with the QEC structure

described in section 2. It will remain useful to think of φ as a classical background (perhaps

with a conical defect) and to take σ to be the corresponding geometric entropy.

We now choose a state |ψ〉σ ∈ Hφ and consider the new state |ψ3〉σ defined by multi-

plying |ψ〉σ by the density matrix that it defines on R. Specifically, we define

|ψ3〉σ :=
(
ρR ⊗ 1R

)
|ψ〉σ =

(
e−KR ⊗ 1R

)
|ψ〉σ, (4.1)

where ρR is the density matrix defined on R by tracing |ψ〉σ over R and KR is the associated

modular Hamiltonian. The state is labelled with a subscript 3 because TrR |ψ3〉σσ〈ψ3| = ρ3
R

and thus

σ〈ψ3|ψ3〉σ = Tr
(
ρ3
R

)
. (4.2)

It will be useful to also consider the bulk operator
(
ρW ⊗ 1W

)
defined by the density

matrix for bulk quantum fields in the entanglement wedge W of the CFT region R induced

by the global state |ψ〉σ. One may think of ρW as defined by a bulk path integral for

quantum fluctuations on the dominant classical saddle g1 in the path integral computation

of the norm σ〈ψ|ψ〉σ, after cutting this path integral open along the slice defined by the Z2

symmetry that exchanges (and complex conjugates) corresponding sources associated with

the bra- and ket-vectors. As a result, acting with
(
ρW ⊗ 1W

)
extends a bulk path integral

for quantum fluctuations by splicing in a copy of g1 in much the same manner that inserting

two copies of
(
ρR ⊗ 1R

)
into the path integral for σ〈ψ|ψ〉σ extends it to the 3-replica path

integral for (4.2). Indeed, at this order in the bulk semiclassical approximation, the only

difference between insertions of these two operators is that the latter also changes the

classical contribution e−Iσ while the former does not.

We can now use this observation to show that |ψ3〉σ lies in the same code subspace

Hφ. We will proceed by proving that the results of acting on |ψ〉σ with either
(
ρW ⊗ 1W

)
or
(
ρR ⊗ 1R

)
yield identical states up to an overall normalization and corrections that can

be neglected at our one-loop level. In particular, let us define

|ψ3
′〉σ :=

(
ρW ⊗ 1W

)
|ψ〉σ =

(
e−KW ⊗ 1W

)
|ψ〉σ, (4.3)

where ρW and KW are the bulk density matrix and bulk modular Hamiltonian defined on

the entanglement wedge of R by |ψ〉σ. We also recall the construction of n-replica saddles

gn defined as in figure 1 by cutting and sewing copies of g1. Assuming as in section 3 that

5These arguments are typically made for finite-dimensional Hilbert spaces. As stated above, we use a

conformal frame where the CFT has non-compact Cauchy surfaces. So even with a UV cutoff, the Hilbert

space has infinite dimension. We assume that the conclusion nevertheless continues to hold. We presume

this can be argued by first imposing and then removing a suitable IR regulator.
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gn is the dominant saddle in the computation of TrρnR, the above observations imply

σ〈ψ3|ψ3〉σ = e−Iσ [g3]Zbulk flucts[g3], (4.4)

σ〈ψ3
′|ψ3

′〉σ = e−Iσ [g1]Zbulk flucts[g3], (4.5)

and

σ〈ψ3|ψ3
′〉σ = e−Iσ [g2]Zbulk flucts[g3], (4.6)

at all orders in G.

The important observation above is then that since all three inner products involve two

insertions of ρR, two insertions of ρW , or one of each, in each case Zbulk flucts is evaluated

on the same 3-replica saddle g3. As a result, these contributions cancel when computing

σ〈ψ3|ψ3
′〉2σ

σ〈ψ3|ψ3〉σσ〈ψ3
′|ψ3

′〉σ
= e−2Iσ [g2]+Iσ [g1]+Iσ [g3] = 1, (4.7)

where the last equality follows from the linearity in n of Iσ[gn] = nĨm1 [g1] − (nm1 − 1)σ

in (3.8). Equation (4.7) should be understood to hold to all orders in G, though there are

non-perturbative corrections due to sub-leading saddles in (4.4)–(4.6).

As ρW is a bulk operator that acts within the code subspace Hφ, the state |ψ′3〉 must

lie in Hφ. We thus see that
(
ρR ⊗ 1R

)
|ψ〉σ lies in Hφ up to small corrections as claimed.

Furthermore, as described at the end of section 2, this in turn requires
(
χR2

α

)3 ∝ χR2
α

(equation (2.13)) for each superselection sector α that appears in Hφ. And since density

matrices have real non-negative eigenvalues, the eigenvalues of χR2
α

can be only 0 and 1 up

to an overall normalization. We thus conclude that χR2
α

is a projector onto a subspace of di-

mension dictated by its entropy, and that multiplication by
(
ρR ⊗ 1R

)
leavesHφ invariant.6

5 Discussion

As reviewed in section 2, at O(1) in the bulk Newton constant G, holographic quantum

codes allow complementary recovery and thus are characterized up to unitaries by the

spectrum of a class of density matrices called χR2
α
, where α labels superselection sectors with

respect to the bulk algebra recovered by the code. Our arguments above used properties

of bulk gravitational path integrals to show, again up to higher order O(G) corrections,

that each χR2
α

is proportional to a projection operator of rank determined by the geometric

entropy σ = A/4G+ . . . (with . . . denoting higher derivative terms) associated to the given

superselection sector α. Here we measure the magnitude of any corrections by their impact

on the Renyi entropies Sn(ρR) ≡ − 1
n−1 log Tr(ρnR), taking n fixed in the limit of small G.

Because the non-zero eigenvalues λk of χR2
α

are independent of k up to the stated

corrections, we refer to this result as one-loop flatness of the entanglement spectrum for

holographic quantum codes. Our arguments apply to gravitational systems where the

effective action is Einstein-Hilbert plus matter with arbitrary perturbative higher derivative

corrections, such as those controlled by small α′ or G. In parallel with past assumptions [21,

6This follows from the decomposition (2.8) and the identity (2.13), though one can also generalize the

above argument directly to the case where ρR is the density matrix of a distinct state |ψ′〉σ 6= |ψ〉σ ∈ Hφ.
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29] that any breaking of replica symmetry is subdominant, our arguments assume that

saddles of the form shown in figure 1 dominate the relevant path integrals. It would clearly

be of use to explore this assumption more completely in future work.

An important technical step (see appendices A and B) was to construct good variational

principles that even in the presence of arbitrary higher derivative corrections allow space-

times with conical defects, and to show (see section 3) that the geometric entropy is given by

a Hamilton-Jacobi-like variation of the on-shell action Ĩm with respect to the defect angle.

This in particular identifies the Lewkowycz-Maldacena procedure [29] as the natural ana-

logue of the Carlip-Teitelboim approach to black hole entropy [30] generalized to cases that

lack the U(1) symmetry of [30]. It also further develops the machinery of higher-derivative

corrections for use in other applications, and in particular provides an appropriate analogue

at finite conical angle of the extremality condition for the geometric entropy σ.

As in [21], the fact that our defects are spacelike means that the corresponding path

integrals prepare states of the original defect-free theory, and in particular that the defect

makes no contribution to the Hamiltonian or momentum constraints on any Cauchy surface

Σ passing through the defect. This follows from the fact that the defect in no way con-

straints the lapse and shift on Σ, and from the fact that (since it is a geometric invariant) the

counter-term defined in appendix B can be constructed from canonical data on Σ without

involving either lapse or shift. Integrating over lapse and shift thus imposes the defect-free

constraints as in [41], though here including appropriate higher derivative corrections.

Our one-loop flatness for χR2
α

provides a useful extension of the results of [20, 21],

which showed any semi-classical bulk state to have flat entanglement spectrum at O(1/G).

It is not possible that such a strong result holds at O(1) since one can use the dynamical

IR quantum fluctuations to engineer by hand a state (on the whole system) with non-flat

entanglement spectrum at O(1), but we identify the essence of the result as relating to the

structure of the quantum code rather than to individual encoded states.

The above universal form of holographic codes matches well with that found in simple

tensor network models [2, 3], with the caveat that such models should be interpreted as

describing states of fixed geometric entropy. As described in [42], such models can be

extended to so-called edge-mode tensor networks which describe more general states.

As noted in [21], and as we now briefly review, one-loop flatness of χR2
α

also immediately

implies a stronger version of the JLMS relation [31] between boundary and bulk modular

Hamiltonians than has previously been derived. A CFT density matrix ρR in a subregion

R defines a so-called boundary modular Hamiltonian KR = − log ρR, and on the Hilbert

space Hφ associated with bulk quantum fluctuations around a given classical background

the bulk density matrix ρW in the corresponding bulk entanglement wedge defines an

analogous bulk modular Hamiltonian KW = − log ρW . JLMS showed KR to be related to

KW and the area operator A on the RT/HRT surface in a manner that is often written

KR =
A

4G
+KW +O(G). (5.1)

However, it is important to recall that the argument [31] for (5.1) involves taking ex-

pectation values in code subspace states Hφ associated with small fluctuations about a
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given classical solution.7 As a result, as stressed in [4] (but using the notation of [21]) the

conclusion is best written

PCKRPC =

(
A

4
+KW

)
PC +O(G), (5.2)

where PC denotes the projection onto the appropriate Hφ.

Although KR is naturally defined as an operator on HR, following [4, 21] we use KR

here and below to denote the operator KR⊗1R involving the identity 1R on R and thus to

define an operator on the full CFT Hilbert space. We similarly use KW to denote KW⊗1W .

On the right-hand side of (5.2), since both A and KW are semi-classical bulk operators in

the bulk effective field theory with a cutoff, they preserve any Hφ and so commute with PC .

Thus it is sufficient to have a single PC on the right. We refer to (5.1) as the unprojected

JLMS relation in contrast to the projected relation (5.2).

A corollary of our one-loop flatness argument is that the stronger version of the JLMS

relation (5.1) does in fact hold when both sides are viewed as operators on the given Hφ. As

noted in [21], since (5.2) is already known to hold this is equivalent to the statement that

PC commutes with KR = − log ρR , and thus also to the statement that multiplication by

ρR⊗1R preserves Hφ. But that is precisely what was shown in section 4. Our result is also

equivalent to the requirement that the boundary modular flow induced by KR preserves

Hφ (i.e., e−iKRs acts within Hφ), or equivalently

e−iKRsPCe
iKRs = PC . (5.3)

As a result, establishing (5.1) may allow greater use of modular flow in AdS/CFT.8

The fact that our code subspace Hφ is invariant under multiplication by
(
ρR ⊗ 1R

)
and

thus by
(
ρisR ⊗ 1R

)
also immediately implies that the set of density matrices on R defined

by Hφ is invariant under the modular flow induced by any such state. Again, this extends

an O(1/G) result from [21]. A related invariance of Hcode = ⊕φHφ was conjectured on

physical grounds in [43]. A relevant comment here is that we defined Hφ so as to allow

rather large bulk IR effects at O(1) at a level analogous to allowing finite temperature states

in flat-space quantum field theory. Effects of this size are usually thought of as taking one

outside of the Hilbert space that contains the Minkowski vacuum. In our context, in a

conformal frame where these bulk IR effects correspond to the UV in the dual CFT, they

may similarly take one outside the natural Hilbert space of states with good CFT duals.

However, this issue can be cured by imposing appropriate UV/IR cutoffs. It would also be

interesting to return to this issue using the technology of [46].

7It is interesting to consider varying the FLM relation under ρR → ρR+εδρR where ρR, δρR are associated

with distinct Hφ, Hφ′ . The FLM relation generally describes changes in the associated entropy S(ρR) to

order G0. But in such cases this accuracy may not suffice to study very small values of ε, where the changes

in S(ρR) can be exponentially small. So the full argument of [4, 31] holds only within some fixed Hφ.
8Nonetheless, see [43–45] for important applications thus far. In particular, as noted in [21], while (5.2)

does not generally imply a useful relation between bulk and boundary modular flows of arbitrary operators,

it does suffice for modular flows of operators in R that reconstruct bulk operators. In particular, it suffices

for the algorithm described in [43].
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To discuss further interpretations and implications of our results, recall from section 2

that holographic quantum codes should in fact be viewed as families of codes labelled by an

energy scale Λ. At each Λ, properties of the code are determined by the bulk effective action

at this scale, and the RG flow of the action must induce an associated RG flow of the quan-

tum code. Furthermore, because properties of the quantum fluctuations at scales below Λ

define the state to be encoded, it is natural to expect that the manner in which such states

are encoded is determined by other aspects of the bulk theory, and in particular by saddle-

point computations involving the bulk effective action at the scale Λ. This would mean that

such calculations would determine the properties of χR2
α
. Our work supports this conjec-

ture, as we found in section 3 that Renyi entropies computed using only saddle-point con-

tributions to the gravitational path integrals would indeed match the above results for χR2
α
.

Since the form of the effective action and thus the quantum code generally vary with Λ,

the universal form of our result requires interesting cancellations to occur between various

aspects of the associated RG flow. In particular, shifting Λ generates changes in the effective

action by integrating out additional degrees of freedom under the assumption that they

remain in their local vacuum state. But vacuum states are known to have thermal spectra

and, especially in a context with a large-N matter sector where there are many bulk matter

fields but only a single graviton, constraining the geometric entropy will have little effect

on this thermal result. Thermal spectra are not flat, but have a Boltzmann distribution

of eigenvalues. So a coarse graining that simply reorganizes vacuum dynamical quantum

fluctuations from HR1
α
,H

R
1
α

by absorbing them into the states |χα〉 ∈ HR2
α
⊗ H

R
2
α

would

violate flatness at one-loop order. Such effects must thus cancel against others, perhaps

associated with the fact that superselection operators like the geometric entropy σ evolve

with Λ, so that changes in the decomposition (2.2) itself must also be taken into account.

Indeed, the geometric entropy evolves in at least two ways as its explicit form depends on

couplings in the effective action at the scale Λ and also because σ should be understood as

being smeared over length scales of order 1/Λ in directions transverse to the RT surface.

It would be interesting to study such effects using either bulk gravitational path integrals

or tensor network models.

As a final comment, we mention that we described our main results as being valid at

one loop because we relied on the framework of QEC with complementary recovery. Beyond

one-loop order, the complementary recovery aspect is expected to break down, though some

notion of QEC may remain; see e.g. the discussion in the final paragraph of [5]. However,

our intermediate results concerning variational principles and the bulk computation (4.7) in

fact remain valid at arbitrary orders in perturbation theory. As a result, they will continue

to constrain whatever structures remain at higher orders. Improving the understanding of

QEC and higher order corrections is thus an important goal for future work.
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A The Lewkowycz-Maldacena argument as a Hamilton-Jacobi variation

In this appendix, we work with Euclidean Einstein gravity and show that for metrics with

a fixed conical defect angle, the Einstein-Hilbert action without including any contribution

from the conical defect leads to a well-defined variational principle. We find that the

Hamilton-Jacobi variation of such an action with respect to the conical defect angle is

determined by the area of the conical defect. The Lewkowycz-Maldacena argument for

computing the gravitational entropy can be interpreted as the special case of performing

this Hamilton-Jacobi variation about backgrounds with vanishing conical deficit. We also

explicitly construct solutions to Einstein’s equations with a general conical defect angle in

a systematic expansion valid near the defect and show that the trace of the analogue of the

extrinsic curvature tensor vanishes on the defect. Under appropriate asymptotic boundary

conditions, the solution is generically unique up to residual gauge transformations.

Let us start by defining a suitable space of (generally off-shell) metric configurations

that contain a conical defect on a codimension-2 surface with opening angle 2πm, so that

smooth spacetimes have m = 1. Here m is any positive real number and not necessarily

an integer. We will work in a convenient set of quasi-cylindrical coordinates [47] defined

by constructing normal geodesics from the conical defect, where the metric can be taken

to be of the form

ds2 = dr2 +
[
m2 + ô(r)

]
r2dφ2 +O(r0)dyidyj +O(r2)dφdyi (A.1)

near r = 0, the location of the conical defect. Here φ is an angular coordinate taking

values in [0, 2π), the yi denote an arbitrary set of coordinates on the conical defect, and

we have introduced the notation ô(r) to denote terms that vanish as r → 0 at least as fast

as some power law rη with η > 1. The ô(r), O(r0), and O(r2) terms generally depend on

all coordinates (r, φ, yi) — although due to the required periodicity under φ ∼ φ+ 2π they

can be expanded as a Fourier series using integer powers of eiφ.

Below, we first show in section A.1 that the above action gives a good variational

principle for the class of metrics (A.1) with fixed m. We then argue in section A.2 that

Einstein’s equations indeed admit solutions compatible with (A.1), and in fact do so with a

particular form for the expansion around r = 0 (so that, if desired, our variational principle

could then be further restricted to metrics of this asymptotic form). Furthermore, assuming

this expansion, the equations of motion impose a condition that generalizes the extremal

surface condition satisfied by RT surfaces at m = 1. Finally, we give a counting argument

in section A.3 to show that the freedom in such solutions is precisely what one expects

to need to match general boundary conditions at large r. In other words, we show that

there are enough solutions of the form (A.1) to describe the expected physics, and we also

show that matching solutions of the more specific asymptotic form described in section A.2

to given large-r boundary conditions will generally leave no continuous free parameters.
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Instead, such solutions form a discrete set as one expects of a good non-linear elliptic

boundary value problem.

A.1 Variational principle

We define an action Ĩ[g] for these metric configurations as simply the Einstein-Hilbert

action (with a cosmological constant9 Λ) but without including any contribution from the

conical defect:

Ĩ[g] = − 1

16πG
lim
ε→0+

∫
r≥ε

dd+1x
√
g(R− 2Λ). (A.2)

Here the total dimension is d+1 and x = (r, φ, yi) denotes the collection of all coordinates. If

the spacetime has boundaries (other than r = 0), such as an asymptotically AdS boundary

at r =∞, the action (A.2) should be supplemented by the standard boundary terms there

although we do not write them explicitly.

We use a tilde on the left-hand-side of (A.2) to emphasize that we simply integrate

the Lagrangian down to r = 0 and do not include any delta-function contribution or

Gibbons-Hawking-York boundary term at the defect. In particular, (A.2) coincides with

the prescription for computing actions in conical defect spacetimes used by Lewkowycz and

Maldacena in [29]. In their case, for 1
m ∈ Z the prescription followed from the fact that they

actually wished to study the action of the smooth 1
m -fold cover, and for 1

m /∈ Z it then fol-

lowed by analytic continuation. In contrast, we wish to directly study metrics with conical

singularities for which the opening angle 2πm is fixed as a boundary condition. However,

the connections with geometric entropy described in [29] inspire us to conjecture that (A.2)

provides a good variational principle for our problem. This conjecture will be verified below.

The first step is to note that the ε → 0+ limit in (A.2) does in fact converge for the

metric configurations (A.1). To see this, note that in the (z, z̄, yi) coordinates defined by

z = reimφ, the metric (A.1) can be written

ds2 = dzdz̄ + T
(z̄dz − zdz̄)2

zz̄
+ hijdy

idyj + 2iUjdy
j(z̄dz − zdz̄), (A.3)

T = ô(r), hij = O(r0), Uj = O(r0) (A.4)

where T , hij , and Uj are functions of all coordinates (z, z̄, yi). In these coordinates, we

have

gµν = gµν

∣∣∣
r=0

+ ô(r), Γρµν =
ô(r)

r
, Rµνρσ =

ô(r)

r2
. (A.5)

In particular, the Ricci scalar R = ô(r)/r2 is locally integrable near r = 0. Thus the action

Ĩ[g] is finite, assuming that any potential divergences near asymptotic boundaries have

been dealt with by the standard counterterms.

We now show that the action Ĩ[g] leads to a well-defined variational principle under

the boundary condition that fixes m (or equivalently the conical angle). Under a general,

9This should not be confused with our UV cutoff called Λ in the main text.
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infinitesimal variation δgµν of the metric, the action changes by

δĨ[g] =
1

16πG
lim
ε→0+

[∫
r≥ε

dd+1x
√
g(Gµν + Λgµν)δgµν

+

∫
∂
ddX
√
γnµ(∇νδgµν −∇µδgνν)

∣∣∣∣
r=ε

]
, (A.6)

where the first integral is a bulk term that vanishes if the equation of motion is satisfied

(setting the Einstein tensor Gµν to −Λgµν in this case), and the second integral is a

boundary term at r = ε. Here X = (φ, yi) and γ denote the coordinates and determinant

of the induced metric on this codimension-1 boundary, while nµ is the unit normal vector

in the r direction.

In order to have a well-defined variational principle, the boundary term in (A.6) must

vanish for metric variations that preserve m. To see that this is the case, note that in the

(z, z̄, yi) coordinates we have

δgµν = δgµν

∣∣∣
r=0

+ ô(r), ∇ρδgµν =
ô(r)

r
, (A.7)

as long as δgµν preserves m. This, together with
√
γ ∼ r and nµ ∼ r0, shows that the

boundary term in (A.6) vanishes as o(ε) as ε→ 0.

In addition, we note that varying the on-shell action with respect to m gives the area

of the conical defect, for any value of m. To see this, note that in (A.6) the bulk term

vanishes if the equation of motion is satisfied, but the boundary term may be nonzero for a

metric variation that changes m. Working for example in the (r, φ, yi) coordinates, we find

lim
ε→0+

√
γnµ(∇νδgµν −∇µδgνν)

∣∣∣∣
r=ε

= lim
r→0+

√
γΓrφφδg

φφ = −2δm
√
h̄ (A.8)

where h̄ is the determinant of the induced metric h̄ij ≡ hij
∣∣
r=0

on the conical defect.

Therefore,
dĨm
dm

= − 1

4G

∫
dd−1y

√
h̄ = − A

4G
, (A.9)

where Ĩm denotes the on-shell action with the boundary condition set by m.

A.2 General solutions

We wish to show that the metric ansatz (A.3) allows general solutions to Einstein’s equa-

tions. In particular, we now show that one can solve the equations of motion with functions

T , Ui, and hij having expansions near r = 0 of the form

T =

∞∑
p,q,s=0

pq>0 or s>0

Tpqsz
p
m z̄

q
m (zz̄)s, (A.10)

Ui =

∞∑
p,q,s=0

Ui,pqsz
p
m z̄

q
m (zz̄)s, (A.11)

hij =
∞∑

p,q,s=0

hij,pqsz
p
m z̄

q
m (zz̄)s. (A.12)
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Here the coefficients Tpqs, Ui,pqs, hij,pqs can be arbitrary functions of the yi. Such a solution

is manifestly periodic under φ ∼ φ + 2π (or equivalently z ∼ ze2πim) as required. In

the present subsection we show only that the above expansions are consistent with the

equations of motion, and that those equations impose a generalization of the extremal

surface condition satisfied by RT surfaces at m = 1. We will return to the issue of whether

they admit sufficiently general such solutions in section A.3.

Note that if m happens to be a rational number, the expansions (A.10)–(A.12) involve

redundant terms. We will first study the generic case where m is irrational, and then

obtain results for rational m by taking limits of the generic case. We will find such limits

to be well-behaved in Einstein gravity.

Let us start with the generic case where m is an irrational number. To see that (A.10)–

(A.12) can consistently solve Einstein’s equations, we first introduce some terminology. We

say that a function f is of type [α] if it satisfies all three conditions below:

1) At r = 0 it has the expansion

f =
(z
z̄

)`/2 ∞∑
p,q,s=0

fpqsz
p
m z̄

q
m (zz̄)s−α, (A.13)

with some integer ` (which we will call the angular momentum) and some α such

that α + `/2 is an integer. Note that both ` and α can have either sign, and that α

is either integer or half-integer.

2) Nonzero terms in the expansion (A.13) do not have negative integer powers of z or z̄.

In particular, fpqs vanishes if p = 0 and s−α+`/2 < 0 or if q = 0 and s−α−`/2 < 0.

This condition has the nice property that it is preserved by derivatives, additions,

and multiplications.

3) Each coefficient fpqs is determined by the coefficients Tp′q′s′ , Ui,p′q′s′ , and hij,p′q′s′ at

lower orders, by which we mean

p′ ≤ p, q′ ≤ q, s′ ≤ s, (p′, q′, s′) 6= (p, q, s). (A.14)

We will use

(p′, q′, s′) < (p, q, s) (A.15)

to denote the full set of conditions (A.14).

Using an overline to indicates a form of closure, not complex conjugation, we will also say

that a function is of type [α] if it fulfills conditions 1) and 2) above but, instead of 3), it

satisfies the following variant:

3) Each coefficient fpqs only depends on Tp′q′s′ , Ui,p′q′s′ , and hij,p′q′s′ of lower or equal

orders, by which we mean

(p′, q′, s′) ≤ (p, q, s) ⇐⇒ p′ ≤ p, q′ ≤ q, s′ ≤ s. (A.16)
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Let us now find a few useful properties of these two types of expansions. We will think

of [α] as a set and write

f ∈ [α] (A.17)

if f is of type [α], and similarly for [α]. A function of type [α] is also a function of type [α]

which is in turn of type [α+ 1]:

[α] ⊂ [α] ⊂ [α+ 1]. (A.18)

Any two such functions with the same angular momentum ` can be added to yield a

function with a similar expansion. Using [α, `], [α, `] to denote functions of type [α], [α]

with angular momentum `, we may thus write

[α, `] + [β, `] ⊂ [max(α, β), `], [α, `] + [β, `] ⊂ [max(α, β), `]. (A.19)

We also have

z, z̄ ∈ [−1/2], (A.20)

∂a[α] ⊂ [α+ 1/2], ∂a[α] ⊂ [α+ 1/2], (A.21)

∂i[α] ⊂ [α], ∂i[α] ⊂ [α], (A.22)

where indices such as a denote either z or z̄. For products we have the general rules

[α][β] ⊂ [α+ β], [α][β] ⊂ [α][β] ⊂ [α+ β], (A.23)

as well as three special rules associated with the subset [α]+ ⊂ [α] defined to contain

precisely those functions f ∈ [α] with f000 = 0 (where f000 is defined using the expan-

sion (A.13) with the given α value10) and similarly for [α]+:

[α]+[β] ⊂ [α+ β]+, (A.24)

[α]+[β] ⊂ [α+ β]+, (A.25)

[α]+[β]+ ⊂ [α+ β]+. (A.26)

It is worth noting that f ∈ [α] automatically satisfies f ∈ [α]+ if either α > 0 or f ∈
∂a[α − 1/2]. In other words, we have [α] = [α]+ for α > 0 (in which case we usually omit

the plus sign for simplicity), and ∂a[α− 1/2] ⊂ [α] for any α.

We will now use this terminology to show that the expansions (A.10)–(A.12) consis-

tently solve Einstein’s equations. First, from (A.10)–(A.12) we find

T ∈ [0]+, Ui, U
i, hij , h

ij ∈ [0], (A.27)

10Since [α] ⊂ [α + 1], relevant functions f will lie in many such classes. One should thus be aware that

the definition of the coefficients fpqs depends on the choice of α.
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where condition 3) is satisfies trivially and indices such as i in U i are raised using hij , the

inverse of the metric hij . From the metric ansatz (A.3), we find the components to satisfy

gzz = T
z̄

z
∈ [0]+, (A.28)

gzz̄ =
1

2
− T ∈ [0], (A.29)

gzi = iUiz̄ ∈ [−1/2], (A.30)

gij = hij ∈ [0]. (A.31)

In establishing (A.28), and in particular that gzz satisfies condition 2) for type [0], it is

important that the expansion (A.10) for T requires pq > 0 or s > 0 and thus includes no

purely holomorphic or anti-holomorphic terms.

We similarly find the inverse metric to have components

gzz = − 4T ′

1− 4T ′
z

z̄
∈ [0]+, (A.32)

gzz̄ = 2 +
4T ′

1− 4T ′
∈ 2 + [0]+ ⊂ [0], (A.33)

gzi =
2iU iz

1− 4T ′
∈ [−1/2], (A.34)

gij = hij +
4U iU jzz̄

1− 4T ′
∈ hij + [−1] ⊂ [0], (A.35)

where T ′ ≡ T+U iUizz̄ ∈ [0]+, and find the Christoffel symbols Γρµν = 1
2(gρµ,ν+gρν,µ−gµν,ρ)

to satisfy

Γabc, Γabc ∈ [1/2], (A.36)

Γabi, Γiab, Γabi, Γiab ∈ [0]+, (A.37)

Γaij , Γija, Γaij , Γija ∈ [1/2], (A.38)

Γijk, Γijk ∈ [0]. (A.39)

The Riemann tensor

Rµνρσ =
1

2
(gµσ,νρ + gνρ,µσ − gµρ,νσ − gνσ,µρ) + ΓλµσΓλνρ − ΓλµρΓ

λ
νσ (A.40)

has components

Rzz̄z̄z ∈ T,zz̄ +
1

2

(
T
z

z̄

)
,zz

+
1

2

(
T
z̄

z

)
,z̄z̄

+ [1], (A.41)

Rzz̄zi ∈
1

2

{
i(Uiz̄),zz̄ + i(Uiz),zz − T,zi −

(
T
z̄

z

)
,z̄i

}
+ [1/2], (A.42)

Rzz̄ij ∈ [1], (A.43)

Raibj ∈ −
1

2
hij,ab + [1], (A.44)

Raijk ∈
1

2
(hij,a;k − hik,a;j) + [1/2], (A.45)

Rijkl ∈ [1]. (A.46)
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Here indices following commas (,), such as the a index in hij,a;k, denote coordinate deriva-

tives and those following semicolons (;), such as the k index in hij,a;k, denote covariant

derivatives in the yk direction defined using the (d− 1)-dimensional metric hij . Here it is

important that since a ∈ {z, z̄}, the ∂a operation preserves the tensorial nature of hij in

the yk directions. On the other hand, we will use ∇µ to denote the covariant derivative in

the xµ direction defined using the full spacetime metric gµν .

The Ricci tensor has components

Rzz̄ ∈ 2T,zz̄ +
(
T
z

z̄

)
,zz

+
(
T
z̄

z

)
,z̄z̄
− 1

2
hijhij,zz̄ + [1] ⊂ [1], (A.47)

Rzz ∈ −
1

2
hijhij,zz + [1] ⊂ [1], (A.48)

Rzi ∈ −i(Uiz̄),zz̄ − i(Uiz),zz + T,zi +
(
T
z̄

z

)
,z̄i

+ iU jzhij,zz − iU j z̄hij,zz̄

+
1

2
hjk(hij,z;k − hjk,z;i) + [1/2] ⊂ [1/2], (A.49)

Rij ∈ −2hij,zz̄ + [1] ⊂ [1]. (A.50)

We now solve the vacuum Einstein equations with a cosmological constant11 which can

be written in the following (trace-reversed) form:

Eµν ≡ Rµν −
2Λ

d− 1
gµν = 0, (A.51)

where Λ is the cosmological constant. Inserting (A.28)–(A.31) and (A.47)–(A.50)

into (A.51), we find that Eµν satisfies the same equations (A.47)–(A.50) as Rµν .12 In

other words, we may replace R with E in (A.47)–(A.50).

First setting Eij to zero at order z
p
m z̄

q
m (zz̄)s−1, we find

Eij,pqs = −2
( p
m

+ s
)( q

m
+ s
)
hij,pqs + [1]pqs = 0,

for all p, q, s ≥ 0 with either pq > 0 or s > 0. (A.52)

Here Eij,pqs is defined by expanding Eij as a function of type [1] according to (A.13) with ` =

0, and for each i, j the object [1]pqs denotes some fpqs defined by the expansion (A.13) for

a function f of type [1]. The values of fpqs for the various i, j need have no relation to each

other, and we similarly allow [1]pqs to denote a new coefficient each time it appears below.

Now, condition 2) for being type [1] requires that (A.52) be trivially satisfied in cases

of pq = s = 0, as can be seen directly from the vanishing of the coefficient
( p
m + s

) ( q
m + s

)
and of the second term [1]pqs. In the remaining cases, we use (A.52) to solve for hij,pqs
with pq > 0 or s > 0 in terms of Tp′q′s′ , Ui,p′q′s′ , and hij,p′q′s′ at lower orders.

Setting Ezz̄ to zero at order z
p
m z̄

q
m (zz̄)s−1, we find

Ezz̄,pqs =

(
p+ q

m
+ 2s

)(
p+ q

m
+ 2s+ 1

)
Tpqs −

1

2

( p
m

+ s
)( q

m
+ s
)
hij,000hij,pqs

+ [1]pqs = 0, for all p, q, s ≥ 0 with either pq > 0 or s > 0. (A.53)

11It is straightforward to generalize the discussion to include matter fields with standard two-derivative

actions.
12For example, Eij differs from Rij only by 2Λ

d−1
gij ∈ [0] ⊂ [1] which can be absorbed into (A.50).

– 25 –



J
H
E
P
0
3
(
2
0
2
0
)
1
9
1

Here hij,000 (as well as the more general hij,pqs that will appear later is defined by expanding

hij as a function of type [0] according to (A.13) with ` = 0. Again, (A.53) is trivially satis-

fied in cases of pq = s = 0. For pq > 0 or s > 0, we may insert the previously obtained ex-

pressions for hij,pqs and solve for Tpqs in terms of Tp′q′s′ , Ui,p′q′s′ , and hij,p′q′s′ at lower orders.

Similarly setting Ezi to zero at order z
p
m
−1z̄

q
m (zz̄)s, we find

Ezi,pqs =−i
( p
m

+s
)(p+q

m
+2s+2

)
Ui,pqs+

(
p+q

m
+2s+1

)
Tpqs,i

+ i
( p
m

+s
)(p−q

m
−1

)
Uj,000h

jk
,000hik,pqs+

1

2

( p
m

+s
)
hjk,000(hij,pqs;k−hjk,pqs;i)

+[1/2]pqs = 0, for all p,q,s≥ 0 with either p> 0 or s> 0. (A.54)

Here, in a slight change of notation, indices after a semicolon (;) denote covariant derivatives

defined using the metric hij,000. We will use this definition to take covariant derivatives of

individual coefficients with subscript pqs in an expansion of the form (A.13) as opposed to

taking covariant derivatives of the full sum. Note that Ezi is of type [1/2] with ` = −1,

so (A.54) is trivially satisfied in cases of p = s = 0. For p > 0 or s > 0, we may insert

the previously obtained expressions for Tpqs, hij,pqs and solve for Ui,pqs in terms of Tp′q′s′ ,

Ui,p′q′s′ , and hij,p′q′s′ at lower orders.

Setting Ez̄i to zero at order z
p
m z̄

q
m
−1(zz̄)s, we find the complex conjugate of (A.54)

with p and q exchanged in the coefficients:

Ez̄i,pqs = i
( q
m

+s
)(p+q

m
+2s+2

)
Ui,pqs+

(
p+q

m
+2s+1

)
Tpqs,i

− i
( q
m

+s
)(q−p

m
−1

)
Uj,000h

jk
,000hik,pqs+

1

2

( q
m

+s
)
hjk,000(hij,pqs;k−hjk,pqs;i)

+[1/2]pqs = 0, for all p,q,s≥ 0 with either q > 0 or s> 0. (A.55)

This equation is trivially satisfied in cases of q = s = 0. For q > 0 or s > 0, we may insert

the previously obtained expressions for Tpqs, hij,pqs and solve for Ui,pqs in terms of Tp′q′s′ ,

Ui,p′q′s′ , and hij,p′q′s′ at lower orders. However, some of these Ui,pqs (those with pq > 0 or

s > 0) have already been determined from (A.54), and we will need to show that the two

solutions agree. This is true and guaranteed by the contracted Bianchi identities, as we

will show in a moment.

Setting Ezz to zero at order z
p
m
−2z̄

q
m (zz̄)s, we find

Ezz,pqs = −1

2

( p
m

+ s
)( p

m
+ s− 1

)
hij,000hij,pqs + [1]pqs = 0,

for all p, q, s ≥ 0 with either p > 0 or s > 1. (A.56)

Here Ezz is of type [1] with ` = −2, so (A.56) is trivially satisfied in cases with p = 0,

s ≤ 1. In cases with p > 0 and q = s = 0, we use (A.56) to express the trace hij,000hij,p00

in terms of Tp′q′s′ , Ui,p′q′s′ , and hij,p′q′s′ at lower orders. In the remaining cases, (A.56) is

guaranteed by equations that we have already satisfied, as we will show in a moment using

the contracted Bianchi identities.
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Finally setting Ez̄z̄ to zero at order z
p
m z̄

q
m
−2(zz̄)s, we find the complex conjugate

of (A.56) with p and q exchanged in the coefficients:

Ez̄z̄,pqs = −1

2

( q
m

+ s
)( q

m
+ s− 1

)
hij,000hij,pqs + [1]pqs = 0,

for all p, q, s ≥ 0 with either q > 0 or s > 1. (A.57)

This equation is trivially satisfied in cases of q = 0, s ≤ 1. Again, in cases with q > 0

and p = s = 0 we use (A.57) to write the trace hij,000hij,0q0 in terms of Tp′q′s′ , Ui,p′q′s′ ,

and hij,p′q′s′ at lower orders. In the remaining cases, (A.57) will be guaranteed by the

contracted Bianchi identities.

We now turn to the contracted Bianchi identities

Bµ ≡ ∇νRνµ −
1

2
∇µR = ∇νEνµ −

1

2
∇µE = 0 (A.58)

and, given our earlier solutions, show that for µ = i they guarantee Ez̄i,pqs = 0 with pq > 0

or s > 0, for µ = z they guarantee Ezz,pqs = 0 with q > 0 or s > 0, and for µ = z̄ they guar-

antee Ez̄z̄,pqs = 0 with p > 0 or s > 0 as claimed above. To see this, note that (A.58) leads to

Bi,pqs = 2
( p
m

+ s
)
Ez̄i,pqs + · · · = 0, (A.59)

Bz,pqs = 2
( q
m

+ s
)
Ezz,pqs + · · · = 0, (A.60)

Bz̄,pqs = 2
( p
m

+ s
)
Ez̄z̄,pqs + · · · = 0, (A.61)

where · · · denotes terms that are linear combinations of Ez̄i,p′q′s′ , Ezz,p′q′s′ , and Ez̄z̄,p′q′s′

at lower orders, as well as Eij,p′q′s′ , Ezi,p′q′s′ , and Ezz̄,p′q′s′ of any orders. The desired

conclusion then follows immediately.

In summary, we have now shown that the expansions (A.10)–(A.12) consistently solve

Einstein’s equations, at least in the generic case where m is irrational. Before discussing

rational m, note that it is possible to find an exact expression for Ezz,p00 that may then

be used to solve for the traces hij,000hij,p00:

Ezz,p00 =Rzz,p00 =−
p∑

p1=1

p1

2m

(p1

m
−1
)
hij,p100h

ij
,(p−p1)00 (A.62)

+
∑

p1,p2>0,p3≥0
p1+p2+p3≤p

p1p2

4m2
hij,p100hkl,p200h

ik
,p300h

jl
,(p−p1−p2−p3)00 = 0, ∀p> 0.

Similarly for Ez̄z̄,0q0 we have

Ez̄z̄,0q0 =Rz̄z̄,0q0 =−
q∑

q1=1

q1

2m

(q1

m
−1
)
hij,0q10h

ij
,0(q−q1)0 (A.63)

+
∑

q1,q2>0, q3≥0
q1+q2+q3≤q

q1q2

4m2
hij,0q10hkl,0q20h

ik
,0q30h

jl
,0(q−q1−q2−33)0 = 0, ∀q > 0.
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These two equations simplify for p = 1 and q = 1 respectively to yield

Ezz,100 = − 1

2m

(
1

m
− 1

)
hij,000hij,100 = 0 ⇒ hij,000hij,100 = 0, (A.64)

Ez̄z̄,010 = − 1

2m

(
1

m
− 1

)
hij,000hij,010 = 0 ⇒ hij,000hij,010 = 0. (A.65)

Defining Kzij ≡ 1
2hij,100 and Kz ≡ hij,000Kzij , and making the corresponding definitions

for complex conjugates, we find

Kz = Kz̄ = 0. (A.66)

This condition is valid for general values of m, and taking the limit m→ 1 it becomes the

familiar requirement that the trace of the extrinsic curvature tensor vanish.

Now, even with a conical singularity, in Euclidean signature it is a well-defined ques-

tion to ask whether the area of a given surface is locally minimal with respect to small

deformations. Here it is important to realize that, even in smooth Euclidean spacetimes,

extremal surfaces are not necessarily locally minimal in this sense,13 but can instead give

more general saddles. But all extremal surfaces in smooth Euclidean geometries are locally

minimal with respect to variations that are also sufficiently local in space — i.e., where

most of the surface is held fixed and only an arbitrarily small piece of the surface is allowed

to vary. We will refer to variations of this sort as doubly-local.

It is thus of interest to ask how the condition (A.66) relates to the possibility that the

conical singularity may lie on a surface of doubly-locally minimal area. Let us consider

such a doubly-local variation of a surface from the conical defect to a nearby location

parameterized by z = εz̃(yi). From the metric (A.3) and the expansions (A.10)–(A.12),

we find that without imposing Einstein’s equations the area generally changes by O(ε2)

and O(ε1/m) effects. The coefficient of the O(ε2) term is positive when the variation is

sufficiently localized in the directions along the surface. For m ≤ 1
2 , the leading area change

is O(ε2) and doubly-local minimality follows directly as in smooth Euclidean geometries.14

For 1
2 < m ≤ 1, doubly-locally minimality would have failed without the equations of

motion, but once we impose them, (A.66) forces the O(ε1/m) terms in the area change to

vanish, ensuring that the leading area change is still O(ε2) and doubly-local minimality

holds. For m > 1, the leading area change is generally dominated by O(ε2/m) effects

involving quadratic terms in hij,100 and hij,010 which do not have a definite sign, so the

conical defect is not doubly-locally minimal in this case. Nonetheless, (A.66) holds in

this case (as in the previous two cases), and it imposes a nontrivial constraint on on-shell

geometries that postpones a potential O(ε1/m) change in the area to O(ε2/m).

13Such examples are directly analogous to a geodesic in 2-dimensional space over the top of a hill.
14Although we have not yet discussed rational m, for the case of integer n = 1/m, this is clear from the

fact that the n-fold cover is a smooth geometry with a replica Zn symmetry about the would-be singularity.

This symmetry then requires the would-be singularity to be extremal, and thus to be doubly-locally minimal.

Indeed, the full extrinsic curvature tensor must vanish by symmetry. It follows that the conical singularity

lies on a doubly-locally minimal surface in the Zn quotient. It is worth noting that (A.66) in this case

imposes an additional trace condition for not the extrinsic curvature but a higher-order version of it (i.e.,

∂nz hij and its complex conjugate).
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Let us now consider the special case where m is a rational number. We could work out

this case directly by following a procedure similar to that above, but it is easier to take a

limit where m approaches a rational number from a sequence of irrational numbers. To see

that the limit is well-behaved, note that when we solve the equations of motion (A.52)–

(A.57), the coefficients of the terms for which we solve are continuous functions of m

that do not generally vanish at rational m. Indeed, the only exception is the coefficient

−1
2

( p
m + s

) ( p
m + s− 1

)
in (A.56), which vanishes for q = s = 0 when m approaches the

positive integer p. In this case, (A.56) is given by the more precise version (A.62), and

instead of solving for the trace hij,000hij,p00 we will simply leave the trace undetermined

and interpret (A.62) with p = m as a constraint on the coefficients hij,p′00 with p′ < m for

which we did not solve above. For p = m > 1, this constraint is manifestly nontrivial15

as can be seen from (A.62), and a solution to the constraint would typically exist. As a

result, the total number of free parameters will be the same as in more generic cases of

non-integer m. This is the key point that we require for the discussion of uniqueness of

solutions in section A.3 below.

A.3 Uniqueness of solutions

We now give a counting argument to show that the freedom in the solutions constructed in

the previous subsection is precisely what one expects to need to match general boundary

conditions at large r. In other words, we will show that there are enough solutions of the

form (A.10)–(A.12) to describe the expected physics, and also that solutions of this form

that are compatible with given large-r boundary conditions generally have no continuous

free parameters. Instead, such solutions form a discrete set as one expects of a good

non-linear elliptic boundary value problem.

In the Asymptotically locally AdS (AlAdS) context, one generally requires the induced

geometry on a constant r slice to be conformal to a given d-dimensional boundary metric

in the limit r → ∞. The boundary metric has d(d + 1)/2 independent components, in-

volving d(d + 1)/2 general functions of (φ, yi). However, when matching to the boundary

metric we can use any conformal factor16 and any d-dimensional diffeomorphism to iden-

tify the constant r slice with the given conformal geometry, and these are parameterized

by d + 1 general functions of (φ, yi). Therefore, the asymptotic boundary conditions are

parameterized by (d+ 1)(d− 2)/2 functions of (φ, yi).

15This does not apply to p = m = 1 for which (A.62) is trivially satisfied and leads to no constraint. In this

case, our problem reduces to finding standard smooth solutions, and the “missing” constraint from (A.62)

— as well as its complex conjugate — is explained by the additional diffeomorphism gauge invariance

associated with moving the location of the codimension-2 surface marked by r = 0 (which is possible only

when there is no conical defect).
16Alternatively, one can fix the conformal factor but allow the freedom to use surfaces Σε defined by

r = r̄(φ, yi)/ε which nevertheless approach r = ∞ as ε → 0, with the same counting due to the arbitrary

function r̄(φ, yi). This latter formulation is preferred in odd bulk dimensions due to the boundary conformal

anomaly [48]. Similarly, one might instead impose a finite-distance Dirichlet boundary condition, requiring

that there be a surface at finite distance with a fixed induced geometry, though in that case the coordinate

location of the surface should not be fixed.
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We now show that, after removing residual gauge transformations, the free parameters

in the small r expansions (A.10)–(A.12) are also precisely (d + 1)(d − 2)/2 functions of

(φ, yi). To begin, note that at non-integer m our procedure for solving the equations

of motion (A.52)–(A.57) expressed the solution in terms of the following unconstrained

coefficients:

1. Ui,000: we refer to these coefficients as d − 1 “zero modes,” by which we mean that

they are functions of the yi alone and have vanishing angular momentum on the φ

circle.

2. hij,000: these give an additional d(d− 1)/2 zero modes.

3. The traceless parts of hij,p00, hij,0q0 for any p, q > 0: since a general periodic func-

tion of φ can be expanded in a Fourier series, these coefficients can be equivalently

expressed as d(d − 1)/2 − 1 functions of (φ, yi) whose components at zero angu-

lar momentum on the φ circle are constrained to vanish; i.e., they are missing the

corresponding zero modes.

Putting these together, the remaining free data consists of d(d−1)/2−1 = (d+1)(d−2)/2

functions of (φ, yi) (now with freely specifiable zero modes), together with d additional

zero modes.

To proceed, we must also count residual gauge transformations. These are diffeo-

morphisms that preserve the form of the metric ansatz (A.3). They consist of (d − 1)-

dimensional diffeomorphisms in the yi directions, as well as arbitrary yi-dependent shifts

of the φ coordinate: φ → φ + ξ(yi). In total, these residual gauge transformations are

parameterized by d zero modes, which we should subtract from the number of free param-

eters in the small r expansions (because the residual gauge transformations preserve the

asymptotic boundary conditions up to conformal factors and boundary diffeomorphisms).

Up to residual gauge transformations, the free parameters in the small r expansions

can thus be expressed as (d + 1)(d − 2)/2 functions of (φ, yi). This precisely matches the

freedom in the large-r boundary conditions. For non-integer m, the solution constructed

in the previous subsection thus contains precisely the right amount of freedom to solve the

desired boundary value problem. Indeed, modulo residual gauge transformations, for given

such boundary conditions the solutions will generally admit no continuous parameters, and

will thus form a discrete set as expected of a good elliptic boundary-value problem.

The special case of integer m is much the same. As noted at the end of section A.2, in

that case our procedure leaves the trace hij,000hij,p00 undetermined, and instead enforces a

different constraint on the coefficients hij,p′00 with p′ < m. Although this case does not or-

ganize itself as nicely into the Fourier transform of d(d−1)/2−1 = (d+1)(d−2)/2 functions,

it contains the same number of free parameters. Furthermore, since we are attempting to

match to boundary conditions at large r, and since the equations of motion are non-linear,

the free parameters we find should generally be expected to match all Fourier components

of the boundary data as desired. A counting argument of this form is thus the best one can

expect to achieve at this level of analysis. Even in the smooth case m = 1, to our knowledge

there is no theorem guaranteeing the existence of solutions with arbitrary boundary data.
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B Higher derivative variational principles by minimal subtraction

In this appendix, we generalize the discussion in appendix A for Einstein gravity to include

arbitrary higher-derivative corrections. The action is defined in a similar way as in (A.2):

Ĩ[g] = lim
ε→0+

{∫
r≥ε

dd+1x
√
gL+ IεCT

}
, (B.1)

where the higher-derivative Lagrangian has the general form

L = − 1

8πG

(
R− 2Λ

2
+ λ1R

2 + λ2RµνR
µν + λ3RµνρσR

µνρσ + λ4R∇2R+ · · ·
)

(B.2)

and IεCT is an appropriate counterterm to be specified later.

We will work in the perturbative limit where higher-derivative corrections are small

and physical quantities can be solved as Taylor expansions in the higher-derivative coupling

constants λk. In particular, the metric has the form

gµν =
∞∑

n1,n2,···=0

g(n1n2··· )
µν λn1

1 λn2
2 · · · . (B.3)

We we will sometimes abbreviate g
(n1n2··· )
µν as g

(~n)
µν .

As before, we may choose quasi-cylindrical coordinates so that the metric is of the

form (A.3) to any order in the perturbative expansion. However, the corresponding func-

tions T (~n), U
(~n)
i , and h

(~n)
ij generally have more singular behaviors at r = 0 than indicated in

the expansions (A.10)–(A.12). To see this precisely, let us start again with the generic case

where m is an irrational number. Instead of the expansions (A.10)–(A.12), we will show

T (~n) =

∞∑
p,q,s=0

pq>0 or s>n

T (~n)
pqsz

p
m z̄

q
m (zz̄)s−n, (B.4)

U
(~n)
i =

∞∑
p,q,s=0

pq>0 or s≥n

U
(~n)
i,pqsz

p
m z̄

q
m (zz̄)s−n, (B.5)

h
(~n)
ij =

∞∑
p,q,s=0

pq>0 or s≥n

h
(~n)
ij,pqsz

p
m z̄

q
m (zz̄)s−n. (B.6)

Here n is a nonnegative number determined by ~n:

n =

∞∑
k=1

nk

(
Dk

2
− 1

)
, (B.7)

where Dk is the total number of derivatives in the term whose coefficient in the La-

grangian (B.2) is λk. For example, we have D1 = D2 = D3 = 4 for the 4-derivative terms

and D4 = 6 for the 6-derivative term in (B.2).

We say that a function f is of type [α](~n) if it satisfies conditions 1) and 2) used

previously in appendix A to define type [α], but instead of 3) it satisfies the following

generalization:
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3~n) Each coefficient fpqs only depends on T
(~n′)
p′q′s′ , U

(~n′)
i,p′q′s′ , and h

(~n′)
ij,p′q′s′ at lower orders,

meaning either ~n′ = ~n and (p′, q′, s′) < (p, q, s) as defined in (A.14), or ~n′ < ~n. Here

~n′ < ~n is defined by the conditions

n′k ≤ nk for all k ≥ 1 and ~n′ 6= ~n. (B.8)

We define type [α](~n) in the same way as [α](~n), except that in condition 3~n) we allow lower

or equal orders, meaning either ~n′ = ~n and (p′, q′, s′) ≤ (p, q, s) as defined in (A.16), or

~n′ < ~n.

Using this terminology and working at any perturbative order, we find the metric

components

g(~n)
zz = T (~n) z̄

z
∈ [n](~n), (B.9)

g
(~n)
zz̄ =

1

2
δ~n,0 − T (~n) ∈ [n](~n), (B.10)

g
(~n)
zi = iU

(~n)
i z̄ ∈ [n− 1/2](~n), (B.11)

g
(~n)
ij = h

(~n)
ij ∈ [n](~n), (B.12)

the Riemann tensor components

R
(~n)
zz̄z̄z ∈ T

(~n)
,zz̄ +

1

2

(
T (~n) z

z̄

)
,zz

+
1

2

(
T (~n) z̄

z

)
,z̄z̄

+ [n+ 1](~n), (B.13)

R
(~n)
zz̄zi ∈

1

2

{
i
(
U

(~n)
i z̄

)
,zz̄

+ i
(
U

(~n)
i z

)
,zz
− T (~n)

,zi −
(
T (~n) z̄

z

)
,z̄i

}
+ [n+ 1/2](~n), (B.14)

R
(~n)
zz̄ij ∈ [n+ 1](~n), (B.15)

R
(~n)
aibj ∈ −

1

2
h

(~n)
ij,ab + [n+ 1](~n), (B.16)

R
(~n)
aijk ∈

1

2

(
h

(~n)
ij,a;k − h

(~n)
ik,a;j

)
+ [n+ 1/2](~n), (B.17)

R
(~n)
ijkl ∈ [n+ 1](~n), (B.18)

and the Ricci tensor components

R
(~n)
zz̄ ∈ 2T

(~n)
,zz̄ +

(
T (~n) z

z̄

)
,zz

+
(
T (~n) z̄

z

)
,z̄z̄
− 1

2
h(0)ijh

(~n)
ij,zz̄ + [n+ 1](~n) ⊂ [n+ 1](~n), (B.19)

R(~n)
zz ∈ −

1

2
h(0)ijh

(~n)
ij,zz + [n+ 1](~n) ⊂ [n+ 1](~n), (B.20)

R
(~n)
zi ∈ −i

(
U

(~n)
i z̄

)
,zz̄
− i
(
U

(~n)
i z

)
,zz

+ T
(~n)
,zi +

(
T (~n) z̄

z

)
,z̄i

+ iU (0)jzh
(~n)
ij,zz

− iU (0)j z̄h
(~n)
ij,zz̄ +

1

2
h(0)jk

(
h

(~n)
ij,z;k − h

(~n)
jk,z;i

)
+ [n+ 1/2](~n) ⊂ [n+ 1/2](~n), (B.21)

R
(~n)
ij ∈ −2h

(~n)
ij,zz̄ + [n+ 1](~n) ⊂ [n+ 1](~n). (B.22)

Here covariant derivatives in the yk directions in terms such as h
(~n)
ij,a;k are defined using the

(d− 1)-dimensional metric h
(0)
ij at the zeroth order in higher-derivative coupling constants.
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One immediate consequence is that for any covariant scalar f built from a product of

an arbitrary number of the metric gµν , the inverse metric gµν , and the Riemann tensor

Rµνρσ with possible covariant derivatives, we have

f (~n) ∈ [n+D/2](~n) (B.23)

where D is the total number of derivatives in the expression f .

The equation of motion including higher-derivative interactions can be written in the

following (trace-reversed) form:

Eµν ≡ Rµν −
2Λ

d− 1
gµν +

∞∑
k=1

λkE(k)µν = 0, (B.24)

where E(k)µν is the contribution from the term with coefficient λk in the Lagrangian (B.2),

and is a sum of terms each with no more than Dk. Using the same strategy as in appendix A,

we find that the expansions (B.4)–(B.6) can consistently solve the equation of motion

at any perturbative order. We will not repeat all the details here, but as an example

we find from (B.24) that E
(~n)
ij is of type [n+ 1](~n), and upon setting it to zero at order

z
p
m z̄

q
m (zz̄)s−n−1 we get

E
(~n)
ij,pqs = −2

( p
m

+ s− n
)( q

m
+ s− n

)
h

(~n)
ij,pqs + [n+ 1](~n)

pqs = 0,

∀ p, q, s ≥ 0, either pq > 0 or s > n. (B.25)

Condition 2) of E
(~n)
ij being type [n+ 1](~n) requires that (B.25) be trivially satisfied in

cases of pq = 0 and s ≤ n, as can be seen directly from the vanishing of both terms

in (B.25). The vanishing of the first term is due to the vanishing of either its coefficient( p
m + s− n

) ( q
m + s− n

)
for s = n or h

(~n)
ij,pqs for s < n as is clear from its definition (B.6).

In the remaining cases, we use (B.25) to solve for h
(~n)
ij,pqs with pq > 0 or s > n in terms of

T
(~n′)
p′q′s′ , U

(~n′)
i,p′q′s′ , and h

(~n′)
ij,p′q′s′ at lower orders.

The other components of the equation of motion can be solved similarly. Using the

same counting argument as in appendix A, we find that at any order in the higher-derivative

coupling constants, the solution constructed here is generically unique up to residual gauge

transformations once we impose suitable asymptotic boundary conditions.

We now show (still for irrational m) that the higher-derivative action (B.1) again leads

to a well-defined variational principle for metric configurations of the form (A.3) with a

fixed opening angle 2πm on the conical defect, once we choose the counterterm IεCT ap-

propriately. This works at any order in the higher-derivative coupling constants, and the

metric configurations follow the expansions (B.4)–(B.6) at r = 0. For such metric configu-

rations, we find from (B.23) that the Lagrangian (B.2) generally has singular behaviors at

r = 0 characterized by

L(~n) ∈ [n+ 1](~n) (B.26)

whose integral is generally divergent at r = 0 for n > 0. However, condition 2) of being

type [n+ 1](~n) ensures that L(~n) does not have negative integer powers of z or z̄, at least in
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the generic case where m is irrational. Therefore, the integral in (B.1) has only power-law

(but not logarithmic) divergences. In particular, the divergences at the ~nth perturbative

order are of the form ε2(
p
m
−s) where s ≤ n, p are positive integers. We may thus choose

the counterterm IεCT so that it minimally subtracts these power-law divergences, yielding

a finite action (B.1).

With this choice of the counterterm, we find a well-defined variational principle under

the boundary condition that fixes m to any irrational value. To see this, note that under a

general, infinitesimal variation δgµν of the metric, the action (B.1) changes by a boundary

term at r = ε:

δĨ[g] = lim
ε→0+

[∫
∂
ddX
√
γnµVµ

∣∣∣∣
r=ε

+ δIεCT

]
, (B.27)

up to a bulk term that vanishes if the equation of motion is satisfied. The notation here is

similar to what was used in (A.6), and Vµ is a vector built from gµν , gµν , δgµν , Rµνρσ, and

their covariant derivatives. At least in the generic case of irrational m, terms with negative

integer powers of z or z̄ cannot appear in metric variations δgµν that fix m; hence they also

cannot appear in Vµ. At any perturbative order, any ε→ 0 divergences in the first term on

the right hand side of (B.27) are thus power laws which must be precisely cancelled by δIεCT;

after all, δĨ[g] cannot be infinite if Ĩ[g] is finite. The important point is that the integral

in (B.27) cannot have a finite, nonzero term as ε→ 0. To see this, note that
√
γ is r times

an expression that is built from T , Ui, and hij and therefore has no negative integer powers

of z or z̄ according to condition 2), Vµ similarly has no negative integer powers of z or z̄, and

the unit normal vector is specified by (nz, nz̄, ni) = (z, z̄, 0)/r. Therefore, the boundary

term (B.27) vanishes, leading to a well-defined variational principle for fixed irrational m.

As before, we note that varying the on-shell action with respect to m must give some

geometric invariant integrated on the conical defect. For any (irrational) value of m this

invariant is a higher-derivative generalization of the area. This arises from the boundary

term (B.27), but is different from the fixed-m variations discussed above because changing

m in (A.1) introduces a nonzero T000, leading to a z̄/z term in the zz component of the

metric (as well as its complex conjugate). It also introduces log z, log z̄ terms, but since

Ĩ[g] is finite at each m these must either cancel in (B.27) or vanish as ε → 0. For our

purposes we do not need to work out the explicit form of this boundary term. Instead, we

simply define it to be −σδm, leading to

dĨm
dm

= −σ, (B.28)

where Ĩm again denotes the on-shell action with the boundary condition set by m. Note

also that the form of (B.27) requires (B.28) to be given by a boundary term at the defect

independent of both z and z̄, so that (if desired) σ may be computed by taking the limit

ε→ 0 from any fixed direction in the bulk spacetime.

We expect the zz and z̄z̄ components of the equation of motion to lead to higher-

derivative generalizations of the vanishing trace of the extrinsic curvature tensor in (A.66).

In particular, taking the limit m → 1 we expect to find that the HRT surface extremizes

σ. Instead of working out these details by brute force, we note that we can use the above
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variational principle to solidify the argument outlined in [28] and in footnote 4. To do so,

we first consider a metric variation δgµν that for m = 1 corresponds to an infinitesimal

but arbitrary change of the location of the HRT surface. Note that, consistent with (A.1),

we will not change coordinates but will instead change the induced metric hij as well as

Ui and T in the manner defined by a diffeomorphism that acts non-trivially on the HRT

surface. Note that this change in (hij , Ui, T ) also defines a valid variation δgµν for m = 1,

though the latter need not always be equivalent to acting with a diffeomorphism. We can

then apply a second infinitesimal variation that changes m from 1 to 1 + dm. But the

two variations d and δ commute. And according to (B.28), when acting on Ĩm the former

variation gives −σ. We thus find

dδĨm
dm

= δ
dĨm
dm

= −δσ. (B.29)

Furthermore, the left-most expression must vanish as for any m the quantity δĨm vanishes

under all variations δgµν that fix m. From this we find δσ = 0 under an arbitrary shift

of the HRT surface, so σ is extremized on-shell at m = 1. A similar argument shows that

in limits m → 1/n for integer n, in which case the limit has a smooth n-fold cover, the

geometric entropy σ is extremized in the covering space.

In parallel with the discussion in the two paragraphs below (A.66), one might also ask

whether the conical singularity in our solutions also sits on a surface that double-locally

minimizes σ (i.e., it minimizes σ with respect to variations that are localized in directions

along the surface as well as transverse to the surface). At a very formal level the results

would seem to be the same as for our previous discussion of the area in conical spacetimes

(and for the case of n = 1/m, doubly-local minimality again follows directly by symmetry

as in footnote 14). But to give a precise argument for general m, one would need to think

carefully about how to define σ for smooth surfaces that intersect the conical singularity.

We leave this issue for future investigation.

Finally, let us comment on the special case where m is a rational number. As be-

fore, we take a limit where m approaches a rational number from a sequence of irrational

numbers. However, the limit here is not necessarily well-behaved, because when solving

various components of the equation of motion such as (B.25), the coefficients of the terms

for which we solve involve expressions like
( p
m + s− n

) ( q
m + s− n

)
which may vanish as m

approaches a rational number. In Einstein gravity we solved a similar problem by requiring

the rest of the equation to vanish, but here we do not generally have that freedom because

the rest of the equation is sometimes determined completely by solutions at lower orders

in the higher-derivative coupling constants. This means that at rational values of m, the

perturbative expansion in the higher-derivative coupling constants may develop a pole in

m at some order ~n. However, this breakdown of perturbation theory never happens when

m is the inverse of a positive integer — since the solution in that case can be constructed

as the Z1/m quotient of a smooth geometry. Moreover, at any given perturbative order —

for example the ~nth order — this breakdown occurs on at most a nowhere dense set of

rational values of m, with a minimal distance set by 1/n.
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