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Abstract: High-energy massless gravitational scattering in N = 8 supergravity was re-

cently analyzed at leading level in the deflection angle, uncovering an interesting connection

between exponentiation of infrared divergences in momentum space and the eikonal expo-

nentiation in impact parameter space. Here we extend that analysis to the first non trivial

sub-leading level in the deflection angle which, for massless external particles, implies going

to two loops, i.e. to third post-Minkowskian (3PM) order. As in the case of the leading

eikonal, we see that the factorisation of the momentum space amplitude into the exponen-

tial of the one-loop result times a finite remainder hides some basic simplicity of the impact

parameter formulation. For the conservative part of the process, the explicit outcome is

infrared (IR) finite, shows no logarithmic enhancement, and agrees with an old claim in

pure Einstein gravity, while the dissipative part is IR divergent and should be regularized,

as usual, by including soft gravitational bremsstrahlung. Finally, using recent three-loop

results, we test the expectation that eikonal formulation accounts for the exponentiation of

the lower-loop results in the momentum space amplitude. This passes a number of highly

non-trivial tests, but appears to fail for the dissipative part of the process at all loop orders

and sufficiently subleading order in ε, hinting at some lack of commutativity of the relevant

infrared limits for each exponentiation.
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1 Introduction

The subject of gravitational collisions and radiation has been receiving increased atten-

tion in recent years particularly thanks to the amazing experimental breakthroughs in

gravitational-wave (GW) detection [1–3]. From a theoretical standpoint one can tackle

this problem both at the classical General Relativity (CGR) level, through numerical [4, 5]

and analytical [6–9] methods, and at the quantum level using flat spacetime1 calculations

of scattering amplitudes. In this latter approach the non-trivial classical spacetime geom-

etry emerges from the resummation of an infinite number of loop diagrams. While the

classical approach goes back to the seventies [11–13], the quantum approach began in the

late eighties with the above mentioned work by ’t Hooft [10] and independent parallel work

by two other groups [14–16] dealing with the transplanckian energy collisions of strings in

a generic number D of macroscopic spacetime dimensions. That approach was further de-

veloped in a number of papers [17–25] and extended to the scattering of strings off a stack

of D-branes [26, 27]. Many features of CGR, such as deflection angles, time delays and

tidal excitations, were neatly recovered and new effects related to the finite string size were

uncovered [28, 29](see [30] for a recent review). In even more recent studies the method

1An exception is ’t Hooft’s 1987 calculation [10] which is carried out assuming a non-trivial background

metric.
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was extended to the calculation of the gravitational bremsstrahlung [31–36] produced in

these “gedanken collisions”. Other groups have used gauge theory and amplitude methods

to examine similar issues [37–43].

Although a priori the problem of transplanckian-energy collisions of light particles or

strings appears to be unrelated to the one of two coalescing black holes, it has been stressed

by Damour [44] that understanding such idealized processes can bring valuable information

about the parameters that enter the Effective-One-Body (EOB) potential [6–9] needed for

the computation of the waveforms produced in actual black-hole mergers.2

Irrespectively of their potential usefulness in GW research the problem of high-energy

gravitational scattering and radiation also presents considerable theoretical interest. Indeed

the original motivations for such a study were quite disconnected from GW physics but

rather related to the problem of constructing a unitary gravitational S-matrix and thus

an explicit solution to the information puzzle in quantum black-hole physics. So far that

program has been only partly successful. It was possible to show how, in the region of

large impact parameters (small deflection angles), the violation of tree-level unitarity is

cured by loop corrections even in the presence of string-size effects; at the opposite end

only a few interesting insights (see e.g. [48]) have been achieved in the regime of small

impact parameter (where gravitational collapse is expected to occur) and the precise way

unitarity is preserved (if it is) is still somewhat mysterious [49].

The idea of this work is to start investigating such questions in the context of a more

manageable theory, N = 8 supergravity, which, despite being different from CGR, should

share with it the most important large-distance (infrared) features. Hopefully, in this highly

supersymmetric context, one will be able to enter even the gravitational collapse regime:

after all the famous microscopic understanding of black-hole entropy in string theory [50]

does make crucial use of supersymmetry!

In a recent paper [51] we have shown that the exponentiation in impact-parameter

space of the leading high-energy (s→∞) terms into a leading eikonal phase has non trivial

implications for the correction terms (the so-called remainders) to another exponentiation,

this time in momentum space, of infrared divergences. And indeed the two- and three-

loop remainders of [52] are found to be fully consistent with those implications. Here we

extend that analysis to the first subleading correction in the high-energy expansion of the

eikonal phase (equivalently a small-deflection-angle expansion). More precisely, we focus

on the scattering of transplanckian-energy massless particles and check the validity of an

extension of the leading eikonal to include additional subleading contributions which can

be determined from the already known higher-loop amplitudes in N = 8 supergravity.

For external massless states the even-order loops provide new classical contributions to

the eikonal phase. Because of unitarity, they must exponentiate and therefore have to be

added to the leading eikonal phase obtained from tree diagrams. By contrast, the odd-

order loops provide only quantum contributions and do not need to exponentiate; they

2Recently, impressive amplitude calculations have also been carried out for the collision of massive (and

typically non-relativistic) particles up the two-loop (3PM) order [45, 46] and their outcome was incorporated

into the EOB potential [47].
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must nonetheless be included in the analysis because they mix at higher orders with the

classical contributions to reproduce the full scattering amplitude.

Such a procedure allows for a non-trivial consistency check by using again the three-

loop results of [52] where we do not expect any new classical contribution. Therefore, all

the scattering data up to the first subleading level in the high energy expansion should be

reproduced from the eikonal expansion. We find that the check works for all terms except

for a mismatch in the non logarithmically enhanced imaginary part of the amplitude at

order O(ε0). More checks of b-space exponentiation can be performed at all loops for the

two leading-ε terms. Although new mismatches are found to occur we notice that they

can all be absorbed in a relatively simple, but IR singular, redefinition of the three-loop

remainder. Possible origins of these mismatches are discussed.

On the way we will also compute the first classical correction to the eikonal phase

(deflection angle) which, for massless-particle collision only occurs [16] at the two-loop (or

3PM) order and compare it successfully with the one obtained long ago in pure Einstein

gravity [17]. The presence of a non-trivial classical correction to the massless 3PM eikonal

in N = 8 supergravity represents a new result. This property is likely to persist also

when masses for external particles are introduced even in a supersymmetry preserving

way, as done in [53]. In the latter work, it was shown that the 2PM eikonal vanishes in

a maximally supersymmetric setup also in the massive case. Moreover, it is possible to

perform a probe analysis if one of the masses is much bigger than any other scale in the

problem, for instance by using D6-branes as done in [26]: the result for the deflection angle

Θ6 in eq. (4.5) of [26] is consistent with the assumption that all classical corrections to the

leading eikonal vanish in the probe limit for N = 8 supergravity. In view of this result, one

might have conjectured that the leading eikonal phase (deflection angle) is exact for this

theory even when both particles are dynamical; the presence of a non-trivial correction at

two-loop order shows that this is not the case.

We also compute the non-conservative part of the subleading eikonal (the leading

being exactly conservative) which should be relevant for understanding the accompanying

gravitational radiation directly at the quantum level. Actually, in the soft-graviton limit

this should match a calculation already carried out in [36] for N = 8 supergravity.

The outline of the paper is as follows. In section 2 we discuss the two types of exponen-

tiations and the distinction between classical and quantum contributions at arbitrary loop

order. In section 3 we summarize, for completeness, the check presented in [51] that the

scattering data up to three loops are consistent with the leading eikonal exponentiation. In

section 4 we extend the procedure to subleading terms at high energy and then concentrate

on the first subleading correction. Here we find interesting results on the classical correc-

tions at two-loop order and compare them with those obtained in pure Einstein gravity.

In section 5 we compare the two exponentiations at different orders in ε and in the loop

expansion. In particular, in section 5.1 we present successful checks for the first two terms

in the ε expansion (for which one can neglect the remainder functions), while in section 5.2

we consider the third and fourth terms in the ε expansion, which are sensitive to the two

and three-loop remainders, and show that a simple (but IR singular) modification of the

three-loop remainder cures all the mismatches. Unlike in the previous sections, in section 6
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we perform the calculation of the subleading eikonal phase directly in four dimensions. We

find agreement for the real phase at order O(ε0) (calculated from arbitrary D = 4−2ε) and

discuss the origin of a disagreement on the imaginary part. In section 7 we summarize our

results and discuss some possible interpretation of the mismatches we found between the

two exponentiations. In appendix A we give some useful formulas for the Fourier trans-

forms used in the text and, in appendix B, we write down for convenience the scattering

data at two and three loops extracted from ref. [52].

2 Two different kinds of exponentiation

Amplitudes inN = 8 supergravity in four spacetime dimensions continue to be at the centre

of intense investigation as they provide the ideal laboratory to test ideas and techniques

that then can be used also in other, more physical, theories. Over the last few years the

UV properties of the N = 8 four-point amplitudes have been studied to high-loop order,

see for instance [54] and references therein. In this paper we will focus on a complementary

aspect of the same scattering process: the high energy, small angle (Regge) regime. In

terms of the Mandelstam variables3

s = −(k1 + k2)2 , t = −(k1 + k4)2 , u = −(k1 + k3)2 ; s+ t+ u = 0 , (2.1)

we work in the s-channel physical region (s > 0, t, u < 0) and focus on the near-forward

regime |t| � s, hence we also have |u| � |t|. In N = 8 supergravity the amplitude A(`) for

four-particle scattering at ` loops is proportional to the tree-level result. By following the

conventions of [52, 55] we write the full amplitude as a formal series

A(ki, . . .) =

∞∑
`=0

A(`)(ki, . . .) = A(0)(ki, . . .)

(
1 +

∞∑
`=1

α`GA(`)(t, s)

)
, (2.2)

where the dots stand for the dependence on the polarizations and flavours of the external

states, A(0) is the tree-level amplitude, A(`) is the `-loop amplitude, A(`) is its “stripped”

counterpart, and

αG ≡
G

π~
(4π~2)εB(ε) ; B(ε) ≡ Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)
, (2.3)

where G is Newton’s constant in D = 4 − 2ε dimensions.4 A simplification in N = 8

supergravity is that the loop expansion can be encoded in a set of “scalar” terms (i.e. the

last factor in (2.2)) that depend on s and t, but not on the other quantum numbers of the

external particles.

We are interested in studying this dynamical factor and in understanding whether there

is an infinite subset of contributions that can be expressed in a simple exponential form. A

3Eq. (2.1) assumes that all external particles are incoming and the mostly plus metric, but the remaining

equations of this paper do not require explicitly this convention.
4Since the physical dimensions of αG depend upon ε, specifically [αG] ∼ [energy]−2+2ε, A(`) will have to

exhibit the appropriate ε-dependent dimensions as well.

– 4 –



J
H
E
P
0
3
(
2
0
2
0
)
1
7
3

standard approach to find an exponentiation is to use the infrared divergences as guidance:

the IR terms in the `-loop amplitude are entirely obtained from the exponentiation in

momentum space of the one-loop amplitude. Then it is natural to rewrite (2.2) in the form

A(ki, . . .) = A(0)(ki, . . .) exp
(
αGA(1)(t, s, ε)

)
exp

( ∞∑
`=2

α`GF
(`)(t, s, ε)

)
, (2.4)

where we explicitly displayed the dependence on the dimensional regularisation5 parameter

ε of the stripped one-loop amplitude A(1) and the remainder function F (`) whose study has

been initiated in [56, 57]. As anticipated, this formulation collects all infrared divergent

contributions in the exponential of A(1), while all F (`) are expected to be free from infrared

divergences, i.e. they are expected to be finite as ε→ 0.

A different approach is to look at the forward high-energy kinematics (i.e. the Regge

limit |t| � s). The leading contribution to the `-loop amplitude A(`) scales as s`+2 with

sub-leading contributions having, modulo logarithms, lower powers of s and higher powers

of t. As mentioned in the introduction, at sufficiently large s such a perturbative behavior

violates partial wave unitarity (ImaJ ≥ |aJ |2, where J is the angular momentum and aJ
is the J th partial wave amplitude [58, 59]). Indeed, the behaviour A(`) ∼ s`+2 translates

into a
(`)
J ∼ s`+1 which cannot satisfy the above inequality at arbitrarily large s. It turns

out [10, 14–16] that unitarity is explicitly recovered at sufficiently large J by means of

another kind of exponentiation, this time in impact parameter (b ∼ 2J/
√
s) — rather than

in transverse-momentum — space as in eq. (2.4).

Let us start to see how this works in the case of the so-called leading eikonal ap-

proximation. It is convenient to extract from the tree-level amplitude the leading-energy

behaviour

A(0)(ki, . . .) = A
(0)
L Â(0)(ki, . . . ) , with A

(0)
L =

8π~Gs2

−t
. (2.5)

By construction, in the case of an elastic scattering, Â(0) starts with 1 plus terms that are

subleading in the |t| � s limit. The leading behaviour A
(0)
L in (2.5) is the only information

we need about the tree-level amplitude.

In order to rewrite the leading energy results in impact parameter space, we first

introduce an auxiliary (D− 2)-dimensional momentum q such that q2 = |t|. Then we take

the Fourier transform where b is the conjugate variable to q and define the leading eikonal

phase by [14–16]:

2iδ0(s, b) =

∫
dD−2q

(2π~)D−2
eibq/~

iA
(0)
L

2s
= − iGs

ε~
Γ(1− ε)(πb2)ε , (2.6)

where we used eq. (A.1). At one loop, we have

A(1) = A(0)αGA(1) −→ A
(0)
L αG

(
−iπs
ε(q2)ε

)
≡ A(1)

L , (2.7)

5Because of infrared divergences we have performed all the calculations using dimensional regularization.

This procedure has been shown in ref. [51] to be essential to reproduce the high energy behavior of the

scattering amplitude.
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where in the step indicated by the arrow we focused on the leading term of (4.2) in the

Regge (high energy) limit. By going to impact parameter space one gets:∫
dD−2q

(2π~)D−2
eibq/~

iA
(1)
L

2s
=

∫
dD−2q

(2π~)D−2
eibq/~

iA
(0)
L

2s
αG
−iπs
ε(q2)ε

= −1

2
(2δ0)2 . (2.8)

Thus we see that the sum of leading energy contributions of the tree and one-loop ampli-

tudes starts to exponentiate in impact parameter space∫
dD−2q

(2π~)D−2
eibq/~

(
iA

(0)
L

2s
+
iA

(1)
L

2s
+ . . .

)
= 2iδ0 −

1

2
(2δ0)2 + . . . = e2iδ0(s,b) − 1 . (2.9)

Such an exponentiation works at all orders and resums all the terms of order (Gs)`. As

a result we have recovered (elastic) unitarity since we managed to lump all the divergent

contributions at high energy into a large phase:

iAL
2s

=

∫
dD−2b e−ibq/~

(
e2iδ0(s,b) − 1

)
. (2.10)

Note that this leading eikonal resummation should hold at any D and is thus concep-

tually unrelated to the exponentiation of infrared divergences. In section 3 we will recall

how such an exponentiation agrees with explicit amplitude calculations up to three loops.

In view of extending such an analysis to the first subleading term in section 4 we anticipate

here some general considerations about exponentiation in impact-parameter space.

For this purpose it is convenient to associate with the centre of mass energy
√
s a

length scale:

R ≡ (G
√
s)

1
1−2ε , i.e. G

√
s ≡ RD−3 , (2.11)

in analogy with the Schwarzschild radius of CGR.6 In the spirit of [60] we can now express

the scaling of different terms at a given loop order in terms of the CGR quantities b and

R and of Planck’s constant. The Fourier transform of the leading energy contribution to

the `-loop amplitude scales as:∫
dD−2q

(2π~)D−2
eibq/~

iA
(`)
L

2s
∼

[(
R

b

)−2ε R
√
s

~

]`+1

(2.12)

i.e. as the (`+ 1)th power of the leading eikonal phase δ0 in (2.6):

δ0 ∼
R
√
s

~

(
R

b

)−2ε

∼ b
√
s

~

(
R

b

)1−2ε

. (2.13)

This confirms that the leading eikonal resums arbitrarily high powers of ~−1 into an

O(~−1) phase provided we consider, in order to make contact with CGR, R and b as classical

quantities. Of particular relevance is the derivative of the eikonal phase with respect to b

since it provides, via a saddle point estimate of the inverse Fourier transform, the classical

6The actual Schwarzschild radius RS of a black hole of mass
√
s differs from R by a well-known ε-

dependent factor. Note that R has the dimension of a length for any ε.
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deflection angle to leading order in R/b: θs ∼
(
R
b

)1−2ε
. Such a classical interpretation

would fail if the resummation of all the leading powers of ~−1 were not to exponentiate.

The last term in (2.13) is particularly suggestive since the quantity b
√
s can be identified,

at the leading eikonal level, with the total angular momentum of the process, assumed to

be much larger than ~.

Let us now consider also the subleading energy contributions. The amplitude consists

of a sum of terms having powers of s all the way up to the leading power ` + 1. Each

one of these terms behaves in impact parameter space as follows (again neglecting possible

logarithmic enhancements):∫
dD−2q

(2π~)D−2
eibq/~

iA(`)

2s
∼
∑
m=0

~2m−`−1G`+1s`+1−mb2ε(`+1)−2m

=
∑
m=0

(
R

b

)2m−2ε(`+1)(R√s
~

)`+1−2m

. (2.14)

In the massless case under consideration, and in D = 4, the amplitude A(`) cannot depend

on fractional powers of s. In particular, it does not contain terms proportional to7 √s and

so the expansion above is in terms of even powers 1/b2m, while in the massive case all powers

of 1/b can (and do) appear. In both the massive and the massless cases, terms proportional

to 1/~ must be themselves exponentiated through higher-loop contributions and contribute

to a classical correction to the eikonal δ, while contributions with higher powers of 1/~ must

be accounted for by the exponentiation of terms appearing at lower-loop order.

In particular, if ` is even, the term with m = `
2 is a new classical contribution to the

eikonal, while the terms with m < `
2 reconstruct the exponentiation of terms appearing at

a lower-loop order. All other terms with non-negative powers of ~ are quantum terms and

do not need to exponentiate. If instead ` is odd, all terms with m ≤ `−1
2 contribute to

the exponentiation of terms appearing at lower loops, while the terms with m ≥ `+1
2 are

quantum and do not necessarily exponentiate.

In conclusion, terms with m < `
2 do not contain new information as far as the classical

scattering is concerned and a first ingredient relevant for the classical eikonal (and thus to

the deflection angle) appears in the massless case at each even-loop order A(2`) for m = `
2 .

The odd-loop orders A(2`+1) do not contribute directly to the classical phase or angle.

However they still take part in the exponentiation and so are important to extract the

correct classical eikonal phase.

On the basis of these considerations we propose the following extension of the leading

eikonal to include also subleading contributions:

iA(ki, . . .)

2s
' Â(0)(ki, . . .)

∫
dD−2b e−ibq/~

[(
1 + 2i∆(s, b)

)
e2iδ(s,b) − 1

]
, (2.15)

7We take this as an empirical fact whose deeper reason should rest on the fact that each power of G

must be accompanied by an (energy)2 factor. In the absence of masses, a non-integer power of s would

have to be accompanied by a non-integer power of t and/or u, producing a multiple discontinuity excluded

by Steinmann-relation-type arguments.
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where all the terms appearing in e2iδ(s,b) are proportional8 to ~−1 while those appearing

in the prefactor ∆ contain the contributions with non-negative powers of ~. The use of '
here and below indicates that the identity (2.15) is restricted to the non-analytic terms as

q → 0 that capture long-range effects in impact parameter space. Checking the validity

of (2.15) will be one of the main themes of the following sections.

3 Check of (and constraints from) the leading-eikonal

As argued in the previous section, it is natural to assume that the leading high energy

contribution at any loop order is simply captured by taking the Fourier transform of the

leading eikonal back to momentum space, see (2.10). In ref. [51], we showed that this

equation reproduces the leading terms at two- and three-loop order by using the full results

for these amplitudes obtained in refs. [52, 55]. This should hold at any order in ε and not

just for the contribution that survives in D = 4, and we provided evidence of this by

checking (2.10) at various orders in the ε expansion.

Let us now recall how the two exponentiations (2.4) and (2.10) are related. We focus

on elastic processes where Â(0) is just the identity operator ensuring that the in and the

out states have the same polarization and flavour; then, by starting from (2.10), we have

iAL
2s

=

∫
dD−2b e−ibq/~

( ∞∑
`=1

1

`!
(2iδ0(s, b))`

)
. (3.1)

The Fourier transform can be performed term by term thanks to (A.9) and by taking the

tree-level result as an overall factor, we obtain

iAL
2s

=
iA

(0)
L

2s

∞∑
`=0

1

`!

[
− iGs
ε~

Γ(1− ε)
(

4π~2

q2

)ε]`
Γ(`ε+ 1)Γ(1− ε)
Γ(1− (`+ 1)ε)

(3.2)

=
iA

(0)
L

2s

∞∑
`=0

α`G
`!

(
−iπs
ε(q2)ε

)`
G(`)(ε) ,

where

G(`)(ε) =
Γ`(1− 2ε)Γ(1 + `ε)

Γ`−1(1− ε)Γ`(1 + ε)Γ(1− (`+ 1)ε)

= 1− 1

3
`
(
2`2 + 3`− 5

)
ζ3ε

3 +O(ε4). (3.3)

We can now compare this result with the exponentiation (2.4) and in particular we focus

on the two- and three-loop amplitudes that were studied in detail in [52, 55]

1

2
(A(1)

L )2 + F
(2)
L =

1

2!

(
−iπs
ε(q2)ε

)2

G(2), (3.4)

1

3!
(A(1)

L )3 + F
(3)
L +A(1)

L F
(2)
L =

1

3!

(
−iπs
ε(q2)ε

)3

G(3), (3.5)

8This resembles very much a WKB approximation in which the O(~−1) exponent contains a classical

action satisfying the Hamilton-Jacobi equation. For a review of the relationship between the WKB and

eikonal approximations, see e.g. ref. [61].
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where on the left-hand side we have the high energy expansion of (2.4) at two and three

loops while on the right-hand side we have the corresponding order as it appears in (2.10).

Solving for F
(2)
L using A(1)

L = −iπs
ε(q2)ε

from eq. (2.7), we have

F
(2)
L = lim

s→∞
F (2) =

1

2

(
−iπs
ε(q2)ε

)2 [
G(2)(ε)− 1

]
. (3.6)

Using eq. (3.3) we obtain

F
(2)
L = 3π2s2εζ3 +O(ε2, s) (3.7)

in agreement with the first line of eq. (6.5) of ref. [52]. Notice that, in the high energy

expansion, the contribution in (3.7) is leading, i.e. at the same level as (A(1)
L )2, showing

explicitly that the formulation of (2.4) does not collect all the leading energy terms in the

exponential factor.

At the next order in perturbation theory (three loops) the remainder function contains

a leading energy contribution also in the IR finite term. From eq. (3.5) we have

F
(3)
L = lim

s→∞
F (3) =

1

3!

(
−iπs
ε(q2)ε

)3 [
(G(3) − 1)− 3

(
G(2) − 1

)]
. (3.8)

Again using (3.3) one obtains

F
(3)
L = −2i

3
π3s3ζ3 +O(ε, s2) , (3.9)

which agrees with the second line9 of eq. (6.5) of ref. [52].

4 Exponentiation at the first subleading eikonal

In this section we focus on the first subleading-energy correction to the eikonal expo-

nentiation.

As a first step, we need a better approximation to A(1), including the subleading O(t/s)

corrections. It is possible to perform the massless one-loop box integral for general values of

ε and of the kinematic variables, and then perform the Regge limit of the exact expression

up to the desired order in t/s. A convenient starting point for such an expansion is [62, 63]:

ε2A(1) = (−s)−ε
[
u F

(
ε, 1 +

s

t

)
+ t F

(
ε, 1 +

s

u

)]
+ (−t)−ε

[
u F

(
ε, 1 +

t

s

)
+ s F

(
ε, 1 +

t

u

)]
+ (−u)−ε

[
t F

(
ε, 1 +

u

s

)
+ s F

(
ε, 1 +

u

t

)]
, (4.1)

where F (ε, z) ≡ 2F1(1,−ε; 1− ε; z). By following this approach and keeping track carefully

of the phases due to the branch cuts of the amplitudes, one finds a closed and rather simple

9In [52] s is taken to be negative. In order to match the different conventions one can use the following

dictionary for the Mandelstam variables sHM = u, uHM = s, tHM = t, where the subscript HM indicates

the variables used in [52].
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expression for A(1):

A(1) = − iπs

ε(q2)ε
+A(1)

SL + . . . ,

A(1)
SL =

q2(1 + 2ε)

ε(q2)ε

(
log

q2

s
+H(ε)

)
− 2q2(2ε+ 1)

ε2(ε+ 1)sε
cos2 πε

2

+ i
πq2

ε

[
1 + ε

(q2)ε
− 1 + 2ε

sε(1 + ε)

sinπε

πε

]
, (4.2)

where A(1)
SL is the subleading level contribution in the eikonal limit of the stripped amplitude

A(1), the dots stand for terms of order q4s−1, and we have defined

H(ε) ≡ ψ(−ε)− ψ(1)− 1 + π cotπε , (4.3)

where ψ(z) = d ln(Γ(z))
dz is the Digamma function (for our purposes it is useful to recall

that it satisfies ψ(1) = −γE , where γE is the Euler-Mascheroni constant). Notice that

the quantity defined in (4.3) diverges as 2
ε for small ε. This expression is valid for general

values of ε up to the subleading level in the Regge limit and we checked that in this regime

it reproduces the data of [52] where the one-loop result is written explicitly up to O(ε4).

Let us now discuss how different quantities scale at subleading level following the

general discussion of section 2. The first term of eq. (4.2) is the leading term at high energy

discussed in the previous section. The extra q2/s factor in A(1)
SL cancels the Coulomb pole

in A
(0)
L and, as a result, we find, after Fourier transforming:(

iA(1)

2s

)
SL

⇒ G2sb−2+4ε ∼
(
R

b

)2(1−2ε)

. (4.4)

Note that, in agreement with our general discussion in section 2, we obtain a contribution

which, unlike the one of (2.13), does not contain an ~−1 factor. For the purpose of this

paper it is enough to carry out the general discussion up to and including the three-loop

order. We have already mentioned the tree and one-loop order. In the latter case (4.4)

represents the first term in the expansion of ∆ that appears in (2.15).

At two loops, we have the following hierarchy of contributions(
iA(2)

2s

)
⇒ (δ0)3 ∼

(
b
√
s

~

(
R

b

)1−2ε
)3

;

(δ0∆1) ∼ δ2 ∼
b
√
s

~

(
R

b

)3−6ε

(4.5)

and similarly at three loops:(
iA(3)

2s

)
⇒ (δ0)4 ∼

(
b
√
s

~

(
R

b

)1−2ε
)4

;

(δ0)2∆1 ∼ (δ0δ2) ∼
(
b
√
s

~

)2(
R

b

)4(1−2ε)

;

∆3 ∼
(
R

b

)4(1−2ε)

, (4.6)

where ∆3 is the next term in the expansion of ∆.
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Note that at two loops we expect (besides exponentiation of δ0) a new classical contri-

bution to the eikonal phase δ2, while at three loops (as it was already the case for one loop)

no new classical contribution is expected. On the other hand, at three loops the O(~−4)

and O(~−2) contributions should properly reconstruct the relevant terms in (2.15).

As already mentioned, for a scattering involving massless particles, the next-to-leading

correction to A(1) is two powers of centre of mass energy down with respect to the leading

contribution. Thus we do not have corrections that scale as (R/b)1−4εR
√
s/~ and would

provide a classical contribution δ1 entering in the full eikonal (this is known to be present

for the scattering of massive particles, see e.g. [38, 45, 64]). Instead from the subleading

part of A(1)
SL we obtain the first contribution to ∆

2i∆1 =

∫
dD−2q

(2π~)D−2
eibq/~

iA
(0)
L

2s
αGA(1)

SL . (4.7)

By using (4.2) we obtain both the real and the imaginary parts of ∆1. Using the formulas

for the Fourier transforms in appendix A we get:

Re(2∆1) =
4G2s

πb2
(
πb2
)2ε

(1+2ε)Γ2(1−ε)
[
− log

(
sb2

4~2

)
+H(ε)+ψ(1−2ε)+ψ(ε)

]
, (4.8a)

Im(2∆1) =
4G2s

b2
(
πb2
)2ε

(1+ε)Γ2(1−ε) . (4.8b)

Note that, while Im(2∆1) is infrared-finite, Re(2∆1) is not since H(ε) ∼ 2ε−1. This

may look surprising at first. In fact, from (2.15), Re(2∆1) appears to multiply the S-matrix

by a phase while Im(2∆1) changes its modulus. However, if we look at things in terms of

the T -matrix (T ≡ −i(S − 1) = (A(0) + A(1) + . . . )), Im(2∆1) comes from (the Fourier

transform of) a correction to the phase of A(0), while Re(2∆1) comes from a negative and

infrared singular correction to its modulus.

More quantitatively, using the small-ε limit of A(1)
SL from (4.2), the (singular part of

the) one-loop suppression of the elastic cross section reads:

σ
(1)
el ∼ σ

(0)
el

(
1 + 2

Gq2

πε~
(log(s/q2) + 1)

)
; σ

(0)
el ∼ |A0|2 , (4.9)

and is exactly compensated by the cross section for single-soft-graviton emission. Indeed,

the latter is given in terms of σ
(0)
el by

1

σ
(0)
el

dσinelastic

dω
→ 4G

πω~
(s log s+ t log(−t) + u log(−u))ω−2ε , (4.10)

which is nothing but the well known (see e.g. [36]) D = 4 expression corrected (up to non-

singular terms for ε → 0) in order to account for D = (4 − 2ε)-dimensional phase space.

Taking the small q2/s limit of (4.10) and integrating it over ω leads to the (positive)

infrared singular inelastic contribution

σinelastic =

∫
0
dω

dσ

dω
∼ − 1

2ε

4Gq2

π~
(log(s/q2) + 1)σ

(0)
el , (4.11)

which exactly cancels the singularity in (4.9).

– 11 –



J
H
E
P
0
3
(
2
0
2
0
)
1
7
3

After this digression, we now use the results (4.8a), (4.8b) in (2.15), expand the right-

hand side up to order G3, and compare it with the eikonal expansion of the two-loop

amplitude A(2) up to subleading level in the eikonal limit. As we discussed in the previous

section, the highest power of s is entirely reproduced by the exponentiation of δ0, so we

focus on the next subleading term, which is of order G3s2t and yields the first correction

δ2 to the leading eikonal δ0, so the full classical eikonal δ is

δ =
∞∑
n=0

δ2n , where δ2n ∼
R
√
s

~

(
R

b

)2n(1−2ε)−2ε

. (4.12)

By using this in the perturbative expansion of (2.15) we can derive δ2

A
(0)
L

2s
α2
GReA

(2)
SL =

∫
dD−2b e−ibq/~ [−Im(2∆1)(2δ0) +Re(2δ2)] , (4.13)

A
(0)
L

2s
α2
GImA

(2)
SL =

∫
dD−2b e−ibq/~ [Re(2∆1)(2δ0) + Im(2δ2)] . (4.14)

Since we do not have an expression for the two-loop amplitude that is exact in ε at this

order, we are not able to determine the all-ε form of δ2. By using the results expanded

around ε = 0 of [52, 55] we checked that (4.13) is consistent with the following expression

for Re(2δ2)

Re(2δ2) =
4G3s2

~b2
(
πb2
)3ε

Γ3(1− ε)
(
1 + 6ζ3ε

2 + . . .
)
. (4.15)

In the language of (2.4), this result contains both the contribution from the exponentiation

of IR divergences and that from the remainder function F2. The first contribution can be

calculated exactly in ε by using (4.2) and one obtains

Re(2δ2)expon =
4G3s2(πb2)3ε

ε~b2

[
B2(ε)

(
2(1 + ε)Γ(1− 3ε)

Γ(1 + 2ε)
(4.16)

− (1 + 2ε)Γ(1− 2ε)

Γ(2 + ε)

sinπε

πε

(
sb2

4~2

)−ε)
− (1 + ε)Γ3(1− ε)

]
.

By comparing the ε expansion of this result with (4.15), which does not contain any log s

terms, it is natural to guess that the contribution of the remainder function should combine

with the part proportional to B2(ε) in (4.16), slightly modifying the normalisation of the

first term and cancelling the contribution of the next term proportional to s−ε. So we can

guess a closed form for the last two factors10 in (4.15)

Γ3(1− ε)
(
1 + 6ζ3ε

2 + . . .
)

=
1

ε

(
B2(ε)

(1 + 2ε)Γ(1− 3ε)

Γ(1 + 2ε)
− (1 + ε)Γ3(1− ε)

)
=

Γ3(1− ε)
ε

(
1 + 2ε

G(2)(ε)
− (1 + ε)

)
, (4.17)

10The discussion in section 5 uses only on the O(ε) part of δ2 and so it does not rely on this guess nor

on (4.20).

– 12 –



J
H
E
P
0
3
(
2
0
2
0
)
1
7
3

where G(2)(ε) is defined in (3.3) and the (1 + ε) term in the second line comes from sub-

tracting the −2δ02Im∆1 piece in (4.13), which again can be derived exactly in ε. The

contribution from the remainder function is then qualitatively similar, but quantitatively

different from the one coming from exponentiation of the one-loop result and can be derived

by comparing (4.16) and (4.15) after including the guess (4.17)

Re(2δ2)remainder =
4G3s2(πb2)3ε

ε~b2

[
B2(ε)

(
− Γ(1− 3ε)

Γ(1 + 2ε)

+
(1 + 2ε)Γ(1− 2ε)

Γ(2 + ε)

sinπε

πε

(
sb2

4~2

)−ε)]
. (4.18)

The need for such a complicated remainder can be understood to follow from a very physical

requirement. Since the derivative of Re δ2 w.r.t. b gives a correction to the physical deflec-

tion angle, we can reasonably require that it should have a finite classical limit. However,

for dimensional reasons, any dependence on b2s ∼ J2 needs to be interpreted as a depen-

dence from J2

~2 which would lead to a divergent deflection angle in the classical (~ → 0)

limit for generic values of D. As a consequence, the remainder’s contribution must have

the correct b2s-dependent piece as given in (4.18). This, however, is not enough since that

piece is infrared divergent while the remainder, by its definition, is not. The additional

term −Γ(1− 3ε)/Γ(1 + 2ε) fixes (although not in a unique way) this last problem.

We thus learn that the separation of the full amplitude into an exponential piece and

a remainder is hiding a simple physical property. The remainder has to be a complicated

function of b2s so that the full amplitude does not depend on it! Or, turning things around,

we can say that a simple physical requirement determines a very non trivial structure for

the remainder (in analogy with the consequences of exponentiation discussed in [51]).

Turning now to Im(δ2) we find, using (4.14) and again the results of [52, 55]:

Im(2δ2) = −4G3s2

π~b2
(
πb2
)3ε (1− 2ε)Γ3(1− ε)

ε

[(
1− 12ε3ζ3 + . . .

)
log

(
e2γE

s b2

4~2

)

+
(
1− 3ζ2ε+ (−23ζ3 − 32ζ2)ε2 + (−167ζ4 − 160ζ3 − 64ζ2)ε3 + . . .

) ]
. (4.19)

A possible guess for the factor in the first line of (4.19) that uses the same function G(2)

encountered before is as follows(
1− 12ε3ζ3 + . . .

)
=

(
3− 2Γ(1− 3ε)Γ(1− ε)Γ2(ε+ 1)

Γ2(1− 2ε)Γ(2ε+ 1)

)
= 3− 2

G(2)(ε)
, (4.20)

while we do not currently have a guess for the factor in the second line of (4.19).

Again this should match the result from the exponentiation and remainder contribu-

tions. A long but straightforward calculation gives

Im(2δ2)expon =
8G3s2

π~b2
(πb2)3ε (1 + 2ε)Γ3(1− ε)

ε2

{
Y

2
+

Γ(1− ε)Γ2(1 + ε)

Γ(1− 2ε)
(4.21)

×

[(
sb2

4~2

)−ε cos2 πε
2

Γ(ε+ 2)
− Γ(1− 3ε)

Γ(1− 2ε)Γ(1 + 2ε)
X

]}
,
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where we have defined:

X = ε

(
π cotπε− log

(
sb2

4~2

)
− 1 + γE + ψ(−ε) + ψ(2ε) + ψ(1− 3ε)

)
(4.22)

Y = ε

(
π cotπε− log

(
sb2

4~2

)
− 1 + γE + ψ(−ε) + ψ(ε) + ψ(1− 2ε)

)
. (4.23)

On the other hand the leading term in the ε-expansion of the remainder can be extracted

from the imaginary part of (B.3) and gives:

Im(2δ2)remainder = −4s2G3

π~b2

[
log2

(
sb2

4~2
e2γE

)
− 2 log

(
sb2

4~2
e2γE

)
− 2

(
1 +

π2

3

)]
+O(ε) .

(4.24)

One can check that such a remainder gives agreement with (4.19) at ε = 0. On the other

hand, also this time the remainder’s contribution has to be highly non trivial in order to rec-

oncile (4.21) with (4.19) at finite ε. In particular, the power of the b2s dependence of (4.21)

has to be cancelled by the remainder leaving just a single (and singular11) log
(
sb2/4~2

)
like those appearing in X and Y of (4.22) and (4.23). Once more this shows that the

separation of the full amplitude into an exponential of the one-loop result and a remainder

hides some simple feature of the impact-parameter result.

Let us now discuss some physical consequences of the above results. Notice first that

the term of order ε0 in (4.15)

lim
ε→0

Re(2δ2) =
4G3s2

~b2
(4.25)

is identical to eq. (5.26) of [17] where this quantity has been computed for pure gravity.12

Since we have obtained it for N = 8 supergravity, this appears to indicate that classical

quantities, such as Reδ2, are related only to large-distance physics and are therefore in-

dependent of the ultraviolet behavior of the microscopic theory and thus universal.13 We

checked (4.15) up to order ε2 by verifying that (4.13) reproduces the results of the two-loop

amplitude in dimensional regularisation [52, 55].

Turning to Imδ2, a few interesting properties of eqs. (4.15) and (4.19) should be

stressed:

• Im(δ2) and Re(δ2) both scale like G3s2~−1(b2)−1+3ε.

• Unlike Re(δ2), which is regular for ε→ 0, Im(δ2) is singular.

• Nonetheless, Im(δ2) does not have O(ε−2) singularities and its O(ε−1) term multiplies

just the combination log
(
s b2

4~2 e2γE
)

+ 1.

• At O(ε0), Im(δ2) develops a term proportional to log
(
s b2

4~2

)
log(πb2).

11Note that, for Im(δ2), there is nothing wrong with IR divergences since they are related to

bremsstrahlung processes.
12Before comparing this result to those obtained by other methods, one should be careful about the

relation between b and the actual total angular momentum J in the process. The calculation of the

deflection angle to this subleading level is sensitive to this precise relation.
13This universality has been known for sometime [55] for the leading eikonal. We have been informed by

Parra-Martinez that it has also been checked at this subleading level for 4 ≤ N ≤ 8. A first hint for such

universality goes back to [20].
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This is also in line with the findings of ref. [17] (see eq. (5.26) there) for the pure gravity

case. While Re(δ2) is directly related to a physical observable, the deflection angle, Im(δ2)

is related to gravitational bremsstrahlung with its well-known infrared divergences.

It is also amusing to compare Im(δ2) with the Fourier transform of the imaginary part

of the full two-loop amplitude. The latter can be found either by adding to (4.19) the

known contribution of 2δ0Re(2∆1) according to eq. (4.14), or by simply starting from the

expression given in appendix B (eq. (B.1)). The result, up to terms that vanish for ε→ 0,

can be expressed in a particularly simple form:

∫
dD−2q

(2π~)D−2
eibq/~

ImA
(2)
SL

2s
=−4G3s2

π~b2

[
1

ε2
(
πb2 exp(γE+2/3)

)3ε−4log

(
sb2

4~2

)
+C

]
, (4.26)

where C = −8(γE+3/4)− 11
12π

2 = −19.6649 . . . Note that, unlike Im(δ2), this quantity does

have an O(ε−2) singularity. However this, as well as an O(ε−1) singularity, only concerns

terms involving log(b2) and log2(b2) and not log(sb2). The latter only occurs at O(ε0).

The presence of a double pole in the amplitude itself arises from the known exponentiation

of IR singularities in gravity [65–68]. Denoting the O(εm) part of the `-loop amplitude by

A(`,m), one has

A(2,−2) =
1

2

[
A(1,−1)

]2
. (4.27)

From eq. (4.2), one finds

A(1,−1) = −iπs+ q2

[
log

(
s

q2

)
+ 1

]
, (4.28)

and thus

ImA(2,−2) = πq2s log(q2) + . . . , (4.29)

in agreement with eq. (B.1), where the ellipsis denotes terms analytic in q2. Note that this

is not inconsistent with the lack of a double ε pole in Im(δ2): the latter is in the logarithm

of the amplitude, and thus does not contain that part of the two-loop amplitude which

results from the exponentiation of lower-order results.

5 Comparing the two exponentiations

In ref. [51] (and reviewed in section 3) we told the tale of how the exponentiations in

impact-parameter space and in momentum space are related for the leading high-energy

terms of the amplitude. These exponentiations differ in significant respects: in impact

parameter space, the exponentiation starts at tree level with the eikonal phase, and the

eikonal phase is IR-divergent. In momentum space, the tree-level amplitude is IR-finite,

and the exponentiation starts with the IR-divergent one-loop amplitude. Nevertheless, the

first type of exponentiation implies the second, up to an IR-finite correction factor (given

by the expression G(`)(ε) in eq. (3.2)) which determines the leading-order contribution to

the remainder function.
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In this section, we relate a similar connection between impact-parameter space and

momentum space amplitudes at the first subleading level. That is, we show that the

proposed extension (2.15) of the eikonal amplitude

iA(ki, . . .)

2s
' Â(0)(ki, . . .)

∫
dD−2b e−ibq/~

[(
1 + 2i∆(s, b)

)
e2iδ(s,b) − 1

]
(5.1)

agrees with the expected exponentiation in momentum space at first subleading level in

q2/s, to at least the first two orders in the Laurent expansion in ε.

The leading and first subleading contributions are given by

iAL
2s

= Â(0)(ki, . . .)

∫
dD−2b e−ibq/~

(
e2iδ0 − 1

)
, (5.2)

iASL
2s
' Â(0)(ki, . . .)

∫
dD−2b e−ibq/~

(
2i∆1

∞∑
`=1

(2iδ0)`−1

(`− 1)!
+ 2iδ2

∞∑
`=2

(2iδ0)`−2

(`− 2)!

)
. (5.3)

We have already considered the leading contribution (5.2) in section 3. To compute the

subleading contribution (5.3), we use

2iδ0 = − iGs
ε~

Γ(1− ε)
(
πb2
)ε

(5.4)

together with the expressions for ∆1 and δ2 obtained in section 4

2i∆1 =
4iG2sΓ2(1−ε)

(πb2)1−2ε

(
(1+2ε)

[
− log

(
sb2

4~2

)
+H(ε)+ψ(1−2ε)+ψ(ε)

]
+iπ(1+ε)

)
,

2iδ2 =
4G3s2Γ3(1−ε)
ε~(πb2)1−3ε

(
D1(ε) log

(
e2γE

sb2

4~2

)
+D2(ε)

)
, (5.5)

where

D1(ε) = (1− 2ε)

(
3− 2

G(2)(ε)

)
= 1− 2ε− 12ζ3ε

3 +O(ε4) ,

D2(ε) = (1− 2ε)L(ε) + iπ

(
1 + 2ε

G(2)(ε)
− 1− ε

)
= (1− 2ε)L(ε) + iπε

(
1 + 6ζ3ε

2
)

+O(ε4) (5.6)

and

L(ε) = 1− 3ζ2ε+ (−23ζ3 − 32ζ2)ε2 + (−167ζ4 − 160ζ3 − 64ζ2)ε3 +O(ε4) , (5.7)

where the terms with G(2)(ε) are possible guesses to any order in ε of quantities that are

known only up to order ε3. Using

iA(0)

2s
=
iA

(0)
L

2s
Â(0)(ki, . . .) =

4πiG~s
q2

Â(0)(ki, . . .) (5.8)
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together with eqs. (A.9) and (A.10), the computation of (5.3) is straightforward. The

`-loop subleading contribution is

iA
(`)
SL

2s
' iA

(0)

2s

α`G
`!

[
−iπs
ε(q2)ε

]` iq2

πs
G(`)(ε) (5.9)

×

{
(1+2ε)

[
− log

(
s

q2

)
+H(ε)+ψ(1−2ε)+ψ(ε)−ψ(1−(`+1)ε)−ψ(`ε)

]

+iπ(1+ε)+(`−1)D1(ε)

[
log

(
e2γE

s

q2

)
+ψ(1−(`+1)ε)+ψ(`ε)

]
+(`−1)D2(ε)

}
.

The divergent terms in this expression should match those arising from the IR exponenti-

ation in (2.4). We start by considering the first two terms in the ε expansion where one

can neglect the remainder functions appearing in (2.4). Then in a separate subsection we

consider the third and the fourth terms in the ε expansion: the third order depends on the

finite part of F (2), while the fourth one receives contributions also from the O(ε) term in

F (2) and the finite part of F (3).

5.1 The first two leading orders in ε at `-loop order

As mentioned previously, the eikonal expression (5.1) is only meant to capture the non-

analytic contributions to the momentum space amplitude as q2 → 0. Additional polynomial

terms in q2 will Fourier transform to give δ(d−2)(b) function terms (or derivatives thereof)

in impact parameter space. To identify all non-analytic terms in (5.9), we must expand

(q2)−`ε = exp[−`ε log(q2)] in ε. In addition we use G(`)(ε) = 1 +O(ε3) and Laurent expand

the functions

H(ε) + ψ(1− 2ε) + ψ(ε)− ψ(1− (`+ 1)ε)− ψ(`ε) =

(
`+ 1

`

)
1

ε
− 1 +O(ε) ,

ψ(1− (`+ 1)ε) + ψ(`ε) = − 1

`ε
− 2γE +O(ε) . (5.10)

Dropping all the terms in (5.9) that have no logn(q2)-dependence, we obtain

iA
(`)
SL

2s
' iA(0)

2s

α`G
`!

(
−iπs
ε

)` iq2

πs

{
− ` log

(
q2
)

+ ε

[
1

2
`(`− 1)

[
D1(0) + 1

]
log2

(
q2
)

+ `
[
(1− `)D1(0) + 1

]
log (s) log

(
q2
)

+ `
[
(1− `)D2(0)− 1

]
log
(
q2
)
− iπ` log

(
q2
) ]

+O(ε2)

}
. (5.11)

By noting that (5.6) implies D1(0) = D2(0) = 1 (where the imaginary part of D2(ε) only

begins at O(ε)), we obtain all the nonanalytic subleading terms through O(1/ε`−1):

iA
(`)
SL

2s
' iA(0)

2s

α`G
`!

(
−iπs
ε

)` iq2

πs

{
− ` log

(
q2
)

+ ε

[
`(`− 1) log2

(
q2
)
− `(`− 2) log (s) log

(
q2
)

− `2 log
(
q2
)
− iπ` log

(
q2
) ]}

+O(1/ε`−2) . (5.12)
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Now let us check this against the expected exponentiation in momentum space

iA

2s
=
iA(0)

2s
exp

(
αGA(1)

)
exp

( ∞∑
`=2

α`GF
(`)

)
, (5.13)

where

A(1) =
1

ε(q2)ε

[
−iπs+ q2

(
log

(
s

q2

)
+ 1

)]
+

q2

(q2)ε

[
− log2

(
s

q2

)
+ iπ log

(
s

q2

)]
+O(ε) .

(5.14)

Since the remainder function F (`) is IR-finite and only begins at two-loop order, the first

two terms in the Laurent expansion of the `-loop amplitude are completely dictated by the

one-loop amplitude
iA(`)

2s
=
iA(0)

2s

α`G
`!

(
A(1)

)`
+O(1/ε`−2) . (5.15)

Substituting eq. (5.14) into (5.15), we obtain for the leading level `-loop amplitude

iA
(`)
L

2s
=
iA(0)

2s

α`G
`!

(
−iπs
ε(q2)ε

)`
+O(1/ε`−2) (5.16)

agreeing with the leading level eikonal expression (3.2) to this order in ε. For the subleading

level `-loop amplitude, we get

iA
(`)
SL

2s
=
iA(0)

2s

α`G
`!

(
−iπs
ε(q2)ε

)` iq2`

sπ

{
log

(
s

q2

)
+ 1

+ ε

[
− log2

(
s

q2

)
+ iπ log

(
s

q2

)]}
+O(1/ε`−2) (5.17)

=
iA(0)

2s

α`G
`!

(
−iπs
ε

)` iq2

sπ

{
` log (s) + `− ` log

(
q2
)

+ ε

[
− ` log2 (s) + iπ` log (s) + `(`− 1) log2

(
q2
)

− `(`− 2) log (s) log
(
q2
)
− `2 log

(
q2
)
− iπ` log

(
q2
) ]}

+O
(

1

ε`−2

)
.

Comparing the logn(q2)-dependent terms of this expression with (5.12) we find perfect

agreement.

5.2 The first four leading orders in ε at `-loop order

So far we exploited only the knowledge of the one-loop amplitude in evaluating (2.4), but

thanks to the explicit results of [52] we can extend the comparison between the two exponen-

tiations at the subleading level in the eikonal limit to the first four terms in the ε expansion.

Let us start by analysing in some detail the three-loop case. The leading term of

A(3)/(2s) scales as s4 and, as discussed in section 3, it is entirely reproduced by the ex-

ponentiation of δ0. The subleading contribution A
(3)
SL/(2s) scales, after Fourier transform
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to impact parameter space, as (Gs/~)2(R/b)2 logn−1(b2) and, as discussed before, we focus

on the long-range contributions, i.e. the terms with n ≥ 1. From the scaling above it is

clear that such terms grows too quickly with the energy (and is too singular in the classical

limit) to be absorbed in a contribution δ3 to the total eikonal or in a contribution ∆3 to

the prefactor ∆. Thus they must be reproduced by the leading and the subleading eikonal

data, as dictated by (5.3). Then, by separating the real and the imaginary parts, we have14

A
(0)
L

2s
α3
GReA

(3)
SL =

∫
dD−2b e−ibq/~

[
−1

2
(2δ0)2Re(2∆1)− (2δ0)Im(2δ2)

]
(5.18)

and similarly for the imaginary part

A
(0)
L

2s
α3
GImA

(3)
SL =

∫
dD−2b e−ibq/~

[
−1

2
(2δ0)2Im(2∆1) + (2δ0)Re(2δ2)

]
. (5.19)

The left-hand side of these equations can be extracted from the full three-loop N = 8

4-point amplitude recently derived in [52]. The relevant terms in the Regge regime up

to the first subleading level in the Regge limit are summarised in appendix B. The right-

hand side is obtained by using (2.6) for δ0, (4.8) for ∆1, (4.15) for Re(δ2), and (4.19) for

Im(δ2). The relation (5.19) is easier to check since Re(δ2) is simpler than Im(δ2). The

left-hand side is given by the five imaginary terms of the subleading (i.e. proportional to

s2) contribution in (B.2). We checked that the eikonal exponentiation on the right-hand

side of (5.19) reproduces exactly these terms.

We performed a similar check for (5.18). Now the left-hand side involves eighteen terms

which are the real contributions to the s2 part of (B.2). The structure of the answer is more

complicated and includes contributions enhanced by a factor of log(s). By comparing this

result with the prediction on the right-hand side coming from the eikonal exponentiation

we find agreement for all terms but one. In particular all divergent terms as ε → 0 and

all terms proportional to logn(q2) with n ≥ 2 match. However by going all the way down

to the lowest order contribution (i.e of O(G4s3/b2) with no log s enhancement) we find a

mismatch, which, in momentum space, reads:

(lhs− rhs)Eq. (5.18) =
16

3

G4s3

~2

(
3ζ3 − π2

)
log(q2) . (5.20)

From (5.20) we see that the mismatch is sensitive to the two-loop contribution proportional

to ε log q2 and to the three-loop contribution proportional to log q2. Suppose one were to

modify these terms in the amplitude

Ã(2) = A(2) + iπεc2sq
2 log q2 + . . . , Ã(3) = A(3) + π2c3s

2q2 log q2 + . . . , (5.21)

14We can write the three-loop consistency condition dictated by assuming the eikonal exponentia-

tion (2.15) in the momentum space language as follows:

A
(0)
L

2s
α3
GA(3) =

1

2

∫
dD−2be−ibq/~

[
(2δ0)2(2∆1)

]
+ i

∫
dD−2k

(2π~)D−2

(4πG~s)2

(q − k)2k2
α2
GA(2)(s, k2) .
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where the A’s on the right-hand side are those given in (B.1) and (B.2) and the dots

stand for further analytic contributions or higher order terms in ε. This would change the

remainder functions from the ones given in (B.3) and (B.4) to

F̃ (2) = F (2) + iπεc2sq
2 log q2 , F̃ (3) = F (3) + π2(c3 − c2)s2q2 log q2 , (5.22)

and the eikonal in (5.5) to

δ̃2 = δ2 −
4iG3s2εΓ3(1− ε)
~(1− 2ε)(πb2)1−3ε

+O(ε2) . (5.23)

The tilde’d quantities now satisfy the consistency check (5.18), provided that the parame-

ters appearing in (5.21) satisfy the constraint

c3 = c2 −
4

3

(
3ζ3 − π2

)
. (5.24)

This modification, however, turns out to be insufficient to cure a mismatch at higher-loop

order, as we shall now argue.

We can follow the logic of (5.1) and use the first four terms in the ε-expansion of the

`-loop result for (5.3) as a check of remainder functions proposed in (5.22). The `-loop

eikonal prediction (5.3) for the subleading amplitude still does not agree with the (IR-

divergent) prediction of the momentum-space exponentiation (2.4), even when using the

modified remainder functions (5.22). Furthermore, this mismatch is independent of the

choice for the residual parameter c2, which is thus unfixed by these checks. The mismatch

first appears at order 1/ε`−3 (for ` > 3), and has the following pattern:

(lhs− rhs)Eq. (5.3) ∼
iπsq2 log q2

ε`−3(`− 4)!
, (5.25)

where the proportionality constant is independent of ` and all the quantities are calculated

using (5.21)–(5.24). Amazingly, the mismatch (5.25) could be avoided for all ` by the

following further redefinition of the three-loop remainder function

F̂ (3) = F̃ (3) + 2π2s2q2 ζ3

ε
. (5.26)

Such a redefinition, however, is not allowed if all infrared divergences are captured by the

exponentiation of the one-loop result as assumed in (2.4).

It is difficult to assess the meaning of the few mismatches we found when weighed

against the large number of successful checks. One possibility is that factorization can

slightly break in the non-conservative contributions to the amplitude since, by themselves,

they do not carry a physical meaning. If so, one should check whether some inconsistency

is still present after computing a more physical quantity such as an infrared-finite inclusive

cross section. Another, perhaps more interesting possibility, is that the two results have

different regimes of validity depending on whether the IR cutoff is the lowest energy scale

in the problem or not. We will add further comments on this point in the final section.
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6 The D = 4 eikonal using a momentum cutoff

So far we have regularized infrared divergences by using dimensional regularization and

have checked exponentiation in impact parameter space at the leading and first subleading

level in t/s and at different orders in the small-ε expansion. We have then obtained the

D = 4 results by taking, at the end, the ε→ 0 limit.

In this section, we try to make a more direct connection with the approach of [17] by

deriving again δ2 while staying all the time in D = 4 supplemented with a low-momentum

cutoff. We will show that the D = 4 result for the real part of δ2 agrees with the one

obtained in the previous section while this does not appear to be the case for its imaginary

part. We will give an interpretation for these two contrasting results.

We will start again from the exact expression (4.1) and first perform a small-ε expansion

for a generic kinematics. A straightforward calculation leads to:

A(1) =
1

ε

[
s log

−s
µ2

+ t log
−t
µ2

+ u log
−u
µ2

]
+

[
u log

−s
µ2

log
−t
µ2

+ t log
−s
µ2

log
−u
µ2

+ s log
−u
µ2

log
−t
µ2

]
, (6.1)

which agrees with the known result (see, e.g. [69]). As in the previous sections we specify

the Riemann sheet along the positive real s-axis by taking log(−s) = log s− iπ. Using also

s+ t+ u = 0 to eliminate u we get:

A(1) =−iπs
(

1

ε
−log

−t
µ2

)
−iπt log

s+t

−t
−s log

s

s+t

(
1

ε
−log

−t
µ2

)
+t log

−t
s+t

(
1

ε
−log

s

µ2

)
.

(6.2)

Up to now this expression is exact. We now expand it for s � |t| keeping only terms up

to O(t) (and neglecting those of O(t2/s)) to get

A(1) = −iπs
(

1

ε
− log

−t
µ2

)
− iπt log

s

−t
+ t

(
1

ε
− log

−t
µ2

)
+ t log

−t
s

(
1

ε
− log

s

µ2

)
. (6.3)

As a double check, we can extract the terms of order 1
ε and of order ε0 of eq. (4.2) and

show that eq. (6.3) is exactly reproduced.

We now get rid of ε by introducing an infrared momentum cutoff λ through the relation:

1

ε
≡ log

λ2

µ2
⇒ 1

ε
− log

−t
µ2

= − log
−t
λ2

;
1

ε
− log

s

µ2
= − log

s

λ2
. (6.4)

We then arrive at

A(1) ∼ iπ(s+ t) log
−t
λ2
− t log

−t
λ2

(
log

s

λ2
− 1
)
− iπt log

s

λ2
+ t log2 s

λ2
(6.5)

and note that all dependence on µ has also disappeared as a consequence of UV finiteness.

This gives, for the one-loop amplitude,

iA(1)

2s
=
iA

(0)
L

2s

G

π~
A(1)∼−4πG2s2

q2
log

q2

λ2
−4πG2s log

s

q2
+4iG2s log

q2

λ2

(
log

s

λ2
−1
)
, (6.6)

where we have used (2.5) for the tree amplitude A
(0)
L .
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Using formulae from appendix A the (D = 4) Fourier transform of the first term is

given by∫
d2q

(2π~)2
eiqb/~

(
−4πG2s2

q2
log

q2

λ2

)
= −1

2

(
Gs

~

)2

log2

(
b2λ2

~2

)
=

1

2
(2iδ0)2 , (6.7)

where, in this section, 2iδ0 is the ε→ 0 limit of the Fourier transform of the tree amplitude

iA
(0)
L /(2s) given in eq. (2.5) with the above identification ε−1 = log(λ2/µ2). The Fourier

transform of the second term in (6.6) gives∫
d2q

(2π~)2
eiqb/~

(
−4πG2s log

q2

s

)
= Im(2∆1) =

4G2s

b2
. (6.8)

Finally, the Fourier transform of the third term is equal to∫
d2q

(2π~)2
eiqb/~

(
4iG2s log

q2

λ2

)(
log

s

λ2
− 1
)

= 2iRe∆1 = −4iG2s

πb2

(
log

s

λ2
− 1
)
. (6.9)

In conclusion, we have checked (to this order) the exponentiation of the leading eikonal

and we have determined the real and imaginary part of ∆1 that we rewrite here:

Re(2∆1) = −4G2s

πb2

(
log

s

λ2
− 1
)

; Im(2∆1) =
4G2s

b2
. (6.10)

Comparing the above results with the ε→ 0 limit of those obtained in (4.8a) and (4.8b) we

note that there is agreement in the latter case (Im(2∆1)) but not in the former (Re(2∆1)).

The mismatch looks quite substantial since (4.8a) produces, as ε→ 0, a log b2 term which

is clearly absent in (6.10). We will argue that the origin of these two contrasting results is

related to the fact that Im(2∆1) is infrared finite while Re(2∆1) is infrared divergent.

As a first guess one might argue that we have taken too quickly the ε → 0 limit in

computing the subleading one-loop amplitude. This however is not the case: a direct

expansion of the one-loop amplitude (4.2) shows that no log2 q2 term is generated in the

ε → 0 limit. As a consequence, a two-dimensional Fourier transform cannot produce a

log b2 contribution. Therefore the reason for the discrepancy must be found in the order

in which one performs the Fourier transform itself. And indeed, if one performs first the

Fourier transform in 2− 2ε dimensions and then takes the limit, the log b2 term does come

out as in (4.8a). The relevant maths is perfectly exemplified by the function:

q−2ε

ε2
(
ε log(q2/s) + 2

)
(6.11)

whose ε→ 0 limit has log q2 but no log2 q2 terms, and whose Fourier transform at finite ε

develops a log b2 contribution in that same limit.

Our conclusion is that for infrared-divergent terms one has to work all the time within

a consistent regularization scheme. One such scheme is usually assumed to be dimensional

regularization — which we have also adopted — while introducing a straight momentum

cutoff is not obviously a consistent scheme (one could try instead to work in a finite box

and then take the limit as done in lattice gauge theories). In any case one should compare
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physical infrared-finite quantities in both schemes. For these reasons in the rest of this

section we shall limit ourselves to the calculation of Re(δ2) for which only the knowledge

of the infrared-safe Im(∆1) is needed.

Starting from (2.4) and keeping only terms up to order ε0 in A(1) and the leading terms

in F (`) we have at order G3

iA(2)

2s
=
iA

(0)
L

2s

G2

π2~2

(
1

2
(A(1))2 + F (2)

)
, (6.12)

which should be compared with the corresponding expansion of the eikonal exponentiation

(1 + 2i∆1)e2iδ0+2iδ2 ∼ 1

3!
(2iδ0)3 − (2δ0)(2∆1) + 2iδ2 + . . . (6.13)

For the reasons explained above we will compare only the imaginary part of these two

equations. Starting from the first term in eq. (6.12), we have

iA
(0)
L

2s

G2

2π2~2
(A(1))2 ∼−2πiG3s3

~q2
log2 q

2

λ2
+

4G3s2

~

[
iπ log2 q

2

λ2
− iπ log

q2

λ2
log

s

λ2

]
, (6.14)

where we focused on the leading and the first subleading contributions in the Regge limit.

We can extract the expression for the second term in eq. (6.12) from [52]. By focusing

on the imaginary terms that are the relevant ones at high energy one gets15

iA
(0)
L

2s

G2

π2~2
F (2) ∼ −2πiG3s2

~

(
log

q2

λ2
− log

s

λ2

)2

− 4πiG3s2

~
log q2 . (6.15)

The leading term in s comes from the first term in (6.14) whose Fourier transform is∫
d2q

(2π~)2
eiqb/~

(
−2iπG3s3

~q2
log2 q

2

λ2

)
=

i

3!

(
Gs

~
log

(
b2λ2

~2

))3

=
1

3!
(2iδ0)3 (6.16)

in agreement with the first term of eq. (6.13). Note that in the subleading terms the

contributions proportional to log q2 log s cancel. The Fourier transform of the rest gives∫
d2q

(2π~)2
eiqb/~

(
2πiG3s2

~
log2 q

2

λ2
− 4πiG3s2

~
log

q2

λ2

)
=

4iG3s2

~b2
log

(
b2λ2

~2

)
+

4iG3s2

~b2
.

(6.17)

Using now:

(2iδ0)(−Im2∆1) =
4iG3s2

~b2
log

(
b2λ2

~2

)
, (6.18)

as well as the imaginary part of (6.13), we immediately find:

Re(2δ2) =
4G3s2

~b2
. (6.19)

15The terms relevant at high energy can be extracted from eq. (6.1) of ref. [52], where all the factors of

log(x) should be replaced by log(x) − iπ. Then one can check that eq. (6.1) of ref. [52] agrees with the

result of [55]. We would like to thank J.M. Henn for a clarifying discussion on this point.

– 23 –



J
H
E
P
0
3
(
2
0
2
0
)
1
7
3

Happily, the value of Re(2δ2) coincides with the one obtained in (4.25) and with eq. (5.26)

of ref. [17]. (As expected, a similar agreement does not hold for the term of order ε0 in

Im(2δ2) whose explicit calculation we omit.)

We finally note that, if we expand up to order ε0 the quantity

(2iδ0)(−Im(2∆1)) = −4iG3s2(πb2)3εΓ3(1− ε)(1 + ε)

ε~b2
(6.20)

needed in the calculation of Re(2δ2), we get

− 4iG3s2

~b2

(
1

ε
+ 3 log(πb2)− 3ψ(1) + 1

)
(6.21)

whose term with log b2 differs by a factor 3 from the one of (6.18), while, as mentioned,

the results for Re(2δ2) agree. This is due to the following reason: the interference terms

ε× 1/ε that we neglected in calculating (6.18) in D = 4 are identical to the corresponding

interference terms neglected in (6.14). This happens because the 1/ε contribution is a

constant in both cases and so the Fourier transform acts non-trivially only on the O(ε)

term mapping exactly the O(ε) contribution of A(1) into that of ∆1. Once more the same

cancellation does not occur for Im(2δ2).

7 Summary and outlook

Four-point amplitudes in N = 8 supergravity are known with a great degree of precision.

In this work we set up a systematic approach for the analysis of these loop amplitudes

in the Regge regime where the momentum transferred is much smaller than the centre

of mass energy. A first result is that, even in this highly supersymmetric setup, some of

the contributions that grow polynomially with the energy are not accounted for by the

exponentiation of the leading eikonal (2.6) alone. Instead they give rise to a new classical

contribution (2iδ2 in (5.5)) that modifies the leading eikonal at 3PM order, i.e. (R/b)2 in

D → 4 and in the Regge regime R � b, where b is the impact parameter and R is a scale

related to the energy of the process (2.11). Corrections at 2PM order are absent in massless

theories, see the comment after (2.14), but it is interesting to notice that in a maximally

supersymmetric setup, they are absent also when the external states are massive [53].

Our results show that this cancellation, motivated by supersymmetry, does not survive

at higher orders when both particles are dynamical. Further corrections at 5PM order,

i.e. (R/b)4, are expected and should be extracted from the sub-subleading terms in the

four-loop amplitude.

Notice that these power-like contributions are different from the most logarithmically

enhanced terms discussed in [70, 71]. In theories with only spin 1 particles, the dominant

terms in the Regge limit are proportional to (log2(t/s))` at ` loops. By contrast, in gravity

theories these terms take the form (t log2(t/s))`, and thus become increasingly power-

suppressed in t as the loop order increases. Nevertheless, an algorithm exists for deriving

them at arbitrary order [70, 71], and they should be resummed in order to describe the

scattering process for values of the impact parameter b that are closer to R (even before

reaching Planckian scales).
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The main property of the classical eikonal is that it should exponentiate, see in (2.15):

in this way the full amplitude has the expected classical limit ~ → 0, where the only

singular term is a WKB-like exponential, see [60] for a closely related discussion. Contrary

to what happens for the leading eikonal and for the 2PM correction when this is present,

the 3PM result (2δ2) contains both a real and an imaginary part. The real part is directly

related to physical observables such as the deflection angle and the Shapiro time delay and

so one would expect it to be free of IR divergences. This is the case in our result since

the infrared divergent term in the real part of the two-loop amplitude is cancelled in the

subtraction (4.13) yielding an IR finite result for Re(2δ2). The imaginary part of the eikonal

is IR divergent and it would be very interesting to study a physical observable, such as an

inclusive cross section, which is sensitive to Im(2δ2), so as to check how the cancellation

of the IR divergences works at higher order, generalising for instance the discussion after

eq. (4.9) at two loops.

There is another interesting aspect related to IR divergences that we analysed in some

detail: the relation between the IR exponentation in momentum space (2.4) and the eikonal

exponentiation in impact parameter space (2.15). At leading level in the Regge regime the

two expressions match in a non-trivial way in the common regime of validity for any value

of the dimensional regularisation parameter ε as already discussed [51]. The leading eikonal

is universal, i.e. it does not depend on the presence of supersymmetry and is the same

for all gravity theories that at large distances reduce to CGR. Then the relation between

the two exponentiations provides an easy set of predictions for the terms of the `-loop

gravitational amplitudes that scale as s`+1 for small t. In this paper we extended this logic

to the subleading terms in the Regge regime. At this order the amplitudes depend on the

details of the theory and we focused on the case of N = 8 supergravity.16 By using the

explicit results of [52] we compared the two exponentiations at all loops for the first four

terms in the ε→ 0 expansion. As discussed in section 5, there is an impressive agreement

between the eikonal prediction (2.15) and the explicit results of [52] that satisfy perfectly

the IR exponentation in momentum space (2.4). However there is a mismatch for one term

appearing at the lowest power of 1/ε and the lowest power of log(q2) accessible with the

current data. At three-loop order the mismatch appears in the IR finite part, see (5.20):

then a correction in the O(ε) part of the 3PM eikonal or the finite part of the three-

loop amplitude can restore the agreement at three loops between the two exponentiations.

However the tension resurfaces at four loops and higher in the terms O(ε4−`), see (5.25).

What is most puzzling is that such a mismatch indicates a breakdown of either the eikonal

or the IR exponentation. It may be that one has to restrict the comparison of the two results

only to physical/IR finite observables. Understanding this point better is of course of great

interest and would probably require to specify better the regime of validity of both formulas.

The standard approach to amplitude calculations is to fix the kinematics, including the

Mandelstam variables, and take the small ε expansion to focus around D = 4. This implies

that the IR regulator is the smallest scale in the problem. In the eikonal approach we kept

ε fixed (even when small) and then considered all values of the exchanged momentum |q|:

16However it is interesting to notice that Re(δ2) seems to be universal, see the comment after (4.25).
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actually the most important contributions to the large distance physics (b � R) relevant

to the Regge regime are those that are divergent as |q| → 0. It would be interesting to

understand whether the discrepancy mentioned above is related to the different kinematics

where the two exponentiations are valid.17 Clarifying this point may be relevant beyond

the N = 8 case studied in this work, since now, even for the physically interesting case of

the massive scattering in CGR, the focus is on 3PM and higher order corrections [45, 46]

where such subtleties may play some role.

Acknowledgments

We thank Emil Bjerrum-Bohr, Marcello Ciafaloni, Arnau Koemans Collado, Andrea Cristo-

foli, Poul Henrik Damgaard, Einan Gardi, Henrik Johansson, Marios Hadjiantonis, Carlo

Heissenberg, Johannes Henn and Andrés Luna for useful conversations. The research of

SGN is supported in part by the National Science Foundation under Grant No. PHY17-

20202. CDW and RR are supported by the U.K. Science and Technology Facilities Coun-

cil (STFC) Consolidated Grant ST/P000754/1 “String theory, gauge theory and duality,

and/or by the European Union Horizon 2020 research and innovation programme under

the Marie Sk lodowska-Curie grant agreement No. 764850 “SAGEX”. PDV, RR and GV

would like to thank the Galileo Galilei Institute for hospitality during the workshop “String

theory from the worldsheet perspective” where they started discussing this topic. PDV was

supported as a Simons GGI scientist from the Simons Foundation grant 4036 341344 AL.

The research of PDV is partially supported by the Knut and Alice Wallenberg Foundation

under grant KAW 2018.0116.

A Useful Fourier transforms to impact parameter space

In this appendix we derive the Fourier transforms into impact parameter space that we

have used in this paper. The basic starting formula is:18

∫
dD−2q

(2π~)D−2
eibq/~

(
q2

~2

)ν
=

22ν

π1−ε
Γ(1 + ν − ε)

Γ(−ν)(b2)ν+1−ε ; D − 4 = −2ε . (A.1)

It can be rewritten as follows:∫
dD−2q

(2π~)D−2
eibq/~

∞∑
n=0

νn

(n+ 1)!
logn+1

(
q2

~2

)
= −f(ν)(πb2)ε

πb2

∞∑
n=0

(−1)nνn

n!
logn b2 , (A.2)

where

f(ν) = 22ν Γ(1 + ν)

Γ(1− ν)
≡
∞∑
m=0

f (m)

m!
νm. (A.3)

17See refs. [72–75] for studies relating the exponentiation of infrared singularities to known properties of

the Regge limit in a gauge theory context.
18For non integer values of D − 2 this is defined, as usual, via analytic continuation from all positive

integer values of that same quantity.
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The first few coefficients of the above sum are:

f (0) = 1 ; f (1) = log 4 + 2ψ(1) ; f (2) = (log 4 + 2ψ(1))2 ; ψ(1) = −γE . (A.4)

Inserting the expansion in eq. (A.3) in eq. (A.2) we get

∫
dD−2q

(2π~)2
eibq/~ logn+1

(
q2

~2

)
=−(n+1)

(πb2)ε

πb2

n∑
m=0

(
n

m

)
f (m)(−1)n−m logn−m b2. (A.5)

For n = 0 we get

∫
dD−2q

(2π~)D−2
eibq/~ log

(
q2

~2

)
= −(πb2)ε

πb2
, f (0) = 1 . (A.6)

For n = 1 we get

∫
dD−2q

(2π~)D−2
eibq/~ log2

(
q2

~2

)
= −2(πb2)ε

πb2

(
−f (0) log b2 + f (1)

)
=

2(πb2)ε

πb2
log

b2

ef
(1)

=
2(πb2)ε

πb2

(
log

b2

4
− 2ψ(1)

)
. (A.7)

For n = 2 we get

∫
dD−2q

(2π~)2
eibq/~ log3

(
q2

~2

)
= −3(πb2)ε

πb2

(
f (0) log2 b2 − 2f (1) log b2 + f (2)

)
= −3(πb2)ε

πb2

(
log2 b2

ef
(1)
− (f (1))2 + f (2)

)
= −3(πb2)ε

πb2
log2 b2

4e2ψ(1)
. (A.8)

In the main text we are also using the inverse Fourier transform (from b to q-space) which

can be easily derived from the above results using the well known properties of the Fourier

transform. As an example the analog of (B.1) reads:

∫
dD−2b e−ibq/~(b2)−ν =

π
D−2
2

22ν+2−D
Γ
(
D
2 − 1− ν

)
Γ(ν)

(
q2

~2

)1+ν−D
2

(A.9)

from which we can derive another useful relation

∫
dD−2b e−ibq/~(b2)−ν log b2 =

π
D−2
2

22ν+2−D
Γ
(
D
2 − 1− ν

)
Γ(ν)

(
q2

~2

)1+ν−D
2

×
[
log

(
4~2

q2

)
+ ψ

(
D

2
− 1− ν

)
+ ψ(ν)

]
. (A.10)
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B Results of Henn and Mistlberger

In this appendix we write the eikonal limit of the three-loop N = 8 4-point amplitude

recently derived in [52] up to order ε0 in dimensional regularization. We write also the

two-loop result up to order ε2 included in the same paper. With respect to [52], we write

the result in the s-forward channel, i.e. with s > 0 and t, u < 0 and, for simplicity, in the

equations below we set the dimensional regularization scale to one µ = 1. As mentioned in

the main text, we focus only on the non-analytic terms as |t| = q2 → 0 as they are the only

ones yielding a long-range interaction in the impact parameter space and so are captured

by the eikonal exponentiation (2.15). We organise the formulas by writing first the leading

eikonal terms (proportional to s` at ` loops) and then the first subleading term. For each

of the two contributions we order the various terms according to the power n of logn(q2).

At two-loop order we have

A(2) = s2

{
−π

2

3
ε2 log4(q2) +

2π2

3
ε log3(q2)− π2 log2(q2) + log(q2)

(
π2

ε
− 6π2ζ3ε

2

)}
+ sq2

{
2iπ

15
ε2 log5(q2) + log4(q2)

[(
π2

3
+

4iπ

3

)
ε2 − 1

3
iπε

]
(B.1)

+ log3(q2)

[
ε2
(
−7iπ3

9
− 4π2

3
− 8iπ

3
− 8iπ

3
log s

)
+

(
−2π2

3
− 4iπ

3

)
ε+

2iπ

3

]
+ log2(q2)

[
ε2
(
41iπζ3 + 5iπ3

)
− iπ

ε
+ ε

(
7iπ3

6
+ 2π2 + 4iπ + 4iπ log s

)
+ π2

]
+ log(q2)

[
+
iπ

ε2
+
−π2 + 2iπ

ε
− 7iπ3

6
− 2π2 − 4iπ − 4iπ log s

−ε
(
35iπζ3 + 5iπ3

)
+ ε2

(
−86iπζ3 − 12iπζ3 log s− 31iπ5

15

)]}
+ . . .

and at three-loop order we have

A(3) = s3

{
−3iπ3

4
log3(q2) +

3iπ3 log2(q2)

4ε
− iπ3 log(q2)

2ε2

}
(B.2)

+ s2q2

{
−9π2

8
log4(q2) + log3(q2)

[
5π2

4ε
+

3iπ3

4
− 3π2

4
+

3

4
π2 log s

]
+ log2(q2)

[
−π

2

ε2
− 3

4

iπ3 + π2 + π2 log s

ε
+

11π4

8
− 9iπ3

4
+

9π2

2
+

9π2

2
log s

]
+ log(q2)

[
π2

2ε3
+
iπ3 + 3π2 + π2 log s

2ε2

+
3iπ3

2 − 3π2 − 11π4

12 − 3π2 log s

ε
− 35π4

6
− 91π2

2
ζ3

]}
+ . . . .

Finally, we can derive the IR divergent part of the four-loop amplitude by using the ex-

ponentiation (2.4). For this it is sufficient to know the two-loop remainder function up to

order ε and that of three-loop remainder function at order O(ε0) and both these results are

provided in the ancillary files of [52]. Once translated in our s-channel convention (s > 0,
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t, u < 0), they read

F (2) = π2s23εζ3 + πsq2

{
− 5i

12
ε log4(q2) +

[
i

3
+ ε
(
i log s+

π

2
− i
)]

log3(q2)

+

[
−π

2
+ i− i log s+ ε

(
− i log2 s

2
+ log s

(
i− π

2

)
+

5iπ2

12
+ i+

π

2

)]
log2(q2)

+

[
i log2 s+ (π−2i) log s− 2iπ2

3
−π−2i+ε

(
− i log3 s

3
+
(
i−π

2

)
log2 s

+

(
iπ2

2
+2i+π

)
log s− 33iζ(3)+

π3

6
+2i− 7iπ2

2
+π

)]
log(q2) (B.3)

+
1

6
log s

(
(−2i log s− 3π + 6i) log s+ 4iπ2 + 6π + 12i

)
+ 4iζ(3) +

π3

4

+
2iπ2

3
+ π + 2i+ ε

(
ζ3

2
(50i log s+ 19π + 50i) +

1

12
log s

(
log s

(
3i log2 s

+ 6(π − 2i) log s− 36i+ π(−18− 11iπ)
)
− 2π(18 + π(4π − 13i))− 72i

)
+

151iπ4

180
+

5π3

6
+

13iπ2

6
− 3π − 6i

)}
+ . . .

and

F (3) = −2

3
iπ3s3ζ(3) + π2s2q2

{
1

12
log4(q2) +

(
−1

3
log s+

iπ

6
+

1

3

)
log3(q2)

+

(
log2 s

2
−
(

1 +
iπ

2

)
log s− π2

3
+
iπ

2
− 1

)
log2(q2)

+

(
− log3 s

3
+

(
1 +

iπ

2

)
log2 s+

(
2 +

2π2

3
− iπ

)
log s− 4ζ(3)

)
log(q2) (B.4)

+
log4 s

12
− 1

6
i(π − 2i) log3 s− 1

6

(
6− 3iπ + 2π2

)
log2 s− iπ(ζ(3)− 1)

+ 8ζ3 +
5ζ5 − 2ζ2

3

π2
+

2π2

3
− iπ3

4
− 841π4

5670
− 2

}
+ . . . .

Then the non-analytic part of A4 reads

A(4) = s4π4

{
− log q2

6ε3
+

log2 q2

3ε2
− 4 log3 q2

9ε

}
+ s3q2π3

{
10i

9ε
log4 q2 +

[
− 8i

9ε2
+

4(π − 2i log s)

9ε

]
log3 q2 (B.5)

+

[
i

2ε3
− π−2i−2i log s

3ε2
− 16i log s+ 5iπ2 + 8π + 16i

6ε

]
log2 q2

+

[
−i
6ε4

+
π−4i−2i log s

6ε3
+

16i log s+5iπ2+8π+16i

12ε2
+

173iζ(3)+21iπ2

6ε

]
log q2

}
.
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