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1 Introduction and conclusions

6d SCFTs and little string theories (LSTs) have been at the focal point of many recent

developments in quantum field theory and string theory [11–130]. Many of these devel-

opments were inspired by the classifications of these theories carried out in [1–4]. These

classifications have taken two different starting points. On one hand are the classifications

of [1–3] which study all the 6d SCFTs and LSTs which can be constructed by compactifying

F-theory on an elliptically fibered Calabi-Yau threefold. These classifications are incom-

plete, because as pointed out in [5], the F-theory compactifications considered by [1–3] do

not include frozen singularities. On the other hand is the classification of [4] which studies

all the consistent1 6d supersymmetric gauge theories that can arise as low energy theories

on the tensor branch of a 6d SCFT or LST, and conjectures that the corresponding 6d

SCFTs and LSTs exist. Such a classification is incomplete because there exist 6d SCFTs

and LSTs that are not described purely by a 6d supersymmetric gauge theory on their

tensor branch.

To compare the two classifications, one can compare the set of theories obtained in [4]

to the subset of those theories in [1–3] that are described purely by a gauge theory on their

tensor branch. One finds that some of the theories obtained in [4] are missing from [1–3].

We can divide such theories into two types:

1The consistency conditions are based on a version of Green-Schwarz mechanism of anomaly cancellation

in the six-dimensional context, which was first discussed in [9].
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1. First of all, there are theories which are known to have a field-theoretic inconsistency

even though they solve the consistency conditions imposed in [4]. See [11] for an

example.

2. Second, there are theories that involve sub-quivers that cannot be constructed in

F-theory without frozen singularities, but admit a construction once we allow frozen

singularities in F-theory. See [5] for a construction of some of these sub-quivers.

It is these theories that will be the main topic of discussion in this paper. It is

interesting to note that some, but not all, of these theories are known to admit a

brane construction in massive type IIA string theory2 for around 20 years now [6–8].

This paper is organized as follows. In section 2, we list down all of the possible missing

theories that involve sub-quivers that cannot be constructed in F-theory without frozen

singularities.3 We continue in section 3.1 with a brief discussion about the reasons for the

omission of such theories from the unfrozen phase of F-theory. Then, in section 3.2, we

introduce new constructions of various sub-quivers that we need to construct the theories

listed in section 2. Finally, in sections 3.3 and 3.4, we go on to explicitly show how each

theory listed in section 2 can be constructed by compactifying F-theory on an elliptically

fibered Calabi-Yau threefold involving frozen singularities.

We conjecture that the full list of 6d SCFTs and LSTs is obtained by combining the

classification of this paper with the earlier classification of [1, 3]. Our conjecture stems from

the fact that this combined classification exhausts all the possible tensor branches that can

be obtained by putting together gauge theories with known non-gauge theories like the

E-string theory and A1 (2, 0) theory. We caution that there is a small set of theories whose

F-theory construction was proposed in [1, 3] but a closer look in [12] (see also [13, 14])

revealed an inconsistency in the proposed constructions of those theories. It would be

worthwhile to investigate whether such theories can be given a consistent construction in

the frozen phase of F-theory. We leave this as an interesting problem for future work.

As a by-product of our work, we demonstrate the existence of SCFTs that do not

descend from LSTs via an RG flow. See (2.59), (2.63) and (2.64) for examples of such

theories and (3.10), (3.14), (3.15) for their F-theory constructions. Such SCFTs were

earlier expected to be inconsistent in [3] because as shown there almost all SCFTs do

admit a LST completion. As shown in this paper, this expectation is not correct.

2 Missing theories

We start in section 2.1 by listing down all the sub-quivers appearing in [4] but not admitting

a construction in the unfrozen phase of F-theory. We then list down all the possible LSTs

and SCFTs containing these sub-quivers4 in sections 2.2 and 2.3 respectively. In compiling

2See [10] for initial work on Hanany-Witten-like brane constructions of six-dimensional theories.
3We emphasize that our list also includes those theories that contain non-gauge-theoretic factors like

E-string and N = (2, 0) theory. This is unlike [4] where the discussion was entirely restricted to gauge

theories.
4We slightly enlarge the extent of the classification of [4] by allowing some non-gauge-theoretic factors to

appear in the low energy theory on the tensor branch in the form of formal gauge algebras sp(0) and su(1).
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our list, we discard those theories which involve certain sub-quivers known to have a field

theoretic inconsistency [11].

2.1 Missing sub-quivers

•
su(n)S2

(2.1)

which denotes a hyper in two-index symmetric representation S2 of su(n).

•
su(n) so(m)

(2.2)

where the edge denotes a hyper in bifundamental of su⊕ so.

•
su(4) so(7)S

(2.3)

where the edge decorated by S on one side denotes a hyper in fundamental ⊗ spinor

of su⊕ so.

•
su(4) g2

(2.4)

where the edge denotes a hyper in fundamental ⊗ 7 of su⊕ g2.

•

so(n1) sp(n) so(n3)

so(n2)

(2.5)

where the edge between sp(n) and so(ni) denotes a half-hyper in bifundamental of

sp(n)⊕ so(ni).

•

so(n1) sp(n) su(n3)

so(n2)

(2.6)

where the edge between sp(n) and su(n3) denotes a hyper in bifundamental of sp(n)⊕
su(n3).

•

so(n1) sp(4) so(7)

so(n2)

S

(2.7)

where the edge decorated by S on one side denotes a half-hyper in fundamental ⊗
spinor of sp⊕ so.
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•

so(n1) sp(4) g2

so(n2)

(2.8)

where the edge between sp and g2 denotes a half-hyper in fundamental⊗7 of sp⊕g2.

•

so(7) sp(2) so(7)

so(7)

SS

S

(2.9)

2.2 Missing LSTs

Let us first list down all the possible LSTs carrying the sub-quivers listed in section 2.1:

•
su(n0)S2 su(n1) · · · su(nk) sp(m)

(2.10)

where all the edges except the leftmost one denote a hyper in bifundamental. Here

ni = 2m + 8 + 8(k − i) with m ≥ 0 and k ≥ 0. The case m = 0 corresponds to an

E-string theory at the rightmost end of the quiver.

Its construction is given in (3.16).

•

su(n0)S2 su(n1) · · · su(nj) · · · su(nk) sp(0)

F

(2.11)

where the edge between su(nj) and F denotes a hyper in the fundamental represen-

tation F of su(nj). Here ni = 9+9(k− i) for j ≤ i ≤ k and ni = 9+9(k− j)+8(j− i)

for 0 ≤ i ≤ j with 0 ≤ j ≤ k and k ≥ 0. sp(0) is a shorthand for E-string which

allows a neighboring su(n ≤ 9). Since these theories involve an E-string, they don’t

appear in [4] but can be obtained by a mild extension of the rules considered there.

Its construction is given in (3.16).

•
su(n0)S2 su(n1) · · · su(nk) su(m) Λ2

(2.12)

where the rightmost edge denotes a hyper in two-index antisymmetric representation

Λ2 of su(m). Here ni = m + 8 + 8(k − i) with m ≥ 2 and k ≥ 0.

Its construction is given in (3.17).
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•

su(n0)S2 su(n1) · · · su(nj) · · · su(nk) 1
2Λ3

F

(2.13)

where the rightmost edge denotes a half-hyper in three-index antisymmetric represen-

tation Λ3 of su(nk). Here ni = 6+9(k−i) for j ≤ i ≤ k and ni = 6+9(k−j)+8(j−i)
for 0 ≤ i ≤ j with 0 ≤ j ≤ k and k ≥ 1.

Its construction is given in (3.20).

•
su(n1)so(n0) su(n2) · · · su(nk) sp(m)

(2.14)

Here ni = 2m + 8 + 8(k − i) with m ≥ 0 and k ≥ 1.

Its construction is given in (3.23).

•

su(n1)so(n0) su(n2) · · · su(nj) · · · su(nk) sp(0)

F

(2.15)

Here ni = 9 + 9(k − i) for j ≤ i ≤ k and ni = 9 + 9(k − j) + 8(j − i) for 0 ≤ i ≤ j

with 1 ≤ j ≤ k and k ≥ 1.

Its construction is given in (3.23).

For j = 0, we obtain

su(n1)so(n0) su(n2) · · · su(nk) sp(0)

F

(2.16)

where the edge between so(n0) and F denotes a hyper in the fundamental represen-

tation F of so(n0). Here ni = 9 + 9(k − i) with k ≥ 1.

Its construction is given in (3.23).

•
su(n1)so(n0) su(n2) · · · su(nk) su(m) Λ2

(2.17)

Here ni = m + 8 + 8(k − i) with m ≥ 2 and k ≥ 1.

Its construction is given in (3.24).

•

su(n1)so(n0) su(n2) · · · su(nj) · · · su(nk) 1
2Λ3

F

(2.18)
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Here ni = 6 + 9(k − i) for j ≤ i ≤ k and ni = 6 + 9(k − j) + 8(j − i) for 1 ≤ i ≤ j

with 1 ≤ j ≤ k and k ≥ 2.

Its construction is given in (3.25).

For j = 0, we obtain

su(n1)so(n0) su(n2) · · · su(nk) 1
2Λ3

F

(2.19)

Here ni = 6 + 9(k − i) with k ≥ 2.

Its construction is given in (3.25).

•
sp(n2)su(n0) so(n1) so(n3) · · · sp(n2k) su(m)

(2.20)

where the dots denote an alternating sp − so chain. We remind the reader that

edges between so and sp correspond to a half-hyper rather than a full hyper in

bifundamental. Here n2i+1 = 2n2i = 2m + 16(k − i) with m ≥ 2 and k ≥ 1.

Its construction is given in (3.26).

•

so(n1)su(n0) sp(n2) · · · sp(n2j) · · · sp(n2k) su(1)

1
2F

1
2
F

(2.21)

where the dots denote alternating sp−so chains and the edge between sp(n2j) and 1
2F

denotes a half-hyper in fundamental representation F of sp(n2j). su(1) at the right-

most node indicates an unpaired tensor corresponding to A1 N = (2, 0) theory. The

decoration by 1
2F on top of rightmost edge indicates that a half-hyper in fundamental

of sp(n2k) = sp(1) has to be trapped there for the edge between sp(n2k) = sp(1) and

su(1) to be consistent.5 This half-hyper is unlike the half-hyper attached to sp(n2j)

because the latter can move around as we change j but the former must remain at-

tached to sp(n2k) = sp(1). Here n2i+1 + 1 = 2n2i = 2 + 18(k − i) for j ≤ i ≤ k and

n2i+1 = 2n2i = 2 + 18(k − j) + 16(j − i) for 0 ≤ i ≤ j − 1 with 1 ≤ j ≤ k and k ≥ 1.

Its construction is given in (3.27) and (3.28).

5The existence of this trapped 1
2
F can be understood if one views the A1 N = (2, 0) theory in the

N = (1, 0) language. The N = (2, 0) R-symmetry is so(5) whose so(4) subalgebra decomposes into su(2)

N = (1, 0) R-symmetry plus an su(2) = sp(1) flavor symmetry. The N = (2, 0) tensor multiplet decomposes

into a N = (1, 0) tensor multiplet plus a N = (1, 0) hypermultiplet such that the hypermultiplet transforms

as 1
2
F under the flavor sp(1). This flavor sp(1) is gauged in (2.21) by the gauge algebra sp(n2k) = sp(1).
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For j = 0, we obtain

su(n0) so(n1) sp(n2) · · · sp(n2k) su(1)

F

1
2
F

(2.22)

where the dots denote an alternating sp−so chain. Here n2i+1+1 = 2n2i = 2+18(k−i)
with k ≥ 1.

Its construction is given in (3.27).

•

so(n1)su(n0) sp(n2) · · · sp(n2k) so(n2k+1) sp(0) su(1)

(2.23)

where the dots denote an alternating sp−so chain. Here n2i+1 = 2n2i = 16+16(k−i)
with k ≥ 1. The sub-quiver

su(1)sp(0)
(2.24)

formed by the two rightmost nodes denotes a rank two E-string theory.

Its construction is given in (3.29).

For k = 0, we obtain

so(16)su(8) sp(0) su(1)
(2.25)

Its construction is given in (3.30).

•

sp(n2)su(n0) so(n1) so(n3) · · · sp(n2k) so(n2k+1) S (2.26)

where the dots denote an alternating sp − so chain and the rightmost edge denotes

a hyper in spinor representation S of so(n2k+1). Here n2i+1 = 2n2i = 12 + 16(k − i)

with k ≥ 1.

Its construction is given in (3.31).

For k = 0, we obtain

Ssu(6) so(12)
(2.27)

Its construction is given in (3.32).

•

so(n1)su(n0) sp(n2) · · · sp(n2j) · · · sp(n2k) so(n2k+1)
1
2S

1
2F

(2.28)
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where the dots denote alternating sp−so chains and the rightmost edge denotes a half-

hyper in spinor representation S of so(n2k+1). Here n2i+1 + 1 = 2n2i = 14 + 18(k− i)

for j ≤ i ≤ k and n2i+1 = 2n2i = 14 + 18(k − j) + 16(j − i) for 0 ≤ i ≤ j − 1 with

1 ≤ j ≤ k and k ≥ 1.

Its construction is given in (3.33).

For j = 0, we obtain

so(n1)su(n0) sp(n2) · · · sp(n2k) so(n2k+1)
1
2S

F

(2.29)

where the dots denote an alternating sp − so chain. Here n2i+1 + 1 = 2n2i = 14 +

18(k − i) with k ≥ 1.

Its construction is given in (3.33).

For k = 0, we obtain

so(13)su(7) 1
2S

F

(2.30)

Its construction is given in (3.34).

•
sp(n2)su(n0) so(n1) so(n3) · · · sp(n2k) so(7)S

(2.31)

where the dots denote an alternating sp− so chain. Here n2i+1 = 2n2i = 8+16(k− i)

with k ≥ 1.

Its construction is given in (3.35).

For k = 0, we obtain

su(4) so(7)S

(2.32)

Its construction is given in (3.36).

•

so(n1)su(n0) sp(n2) · · · sp(n2j) · · · sp(n2k) g2

1
2F

(2.33)

where the dots denote alternating sp−so chains. Here n2i+1+1 = 2n2i = 8+18(k−i)
for j ≤ i ≤ k and n2i+1 = 2n2i = 8 + 18(k − j) + 16(j − i) for 0 ≤ i ≤ j − 1 with

1 ≤ j ≤ k and k ≥ 1.

Its construction is given in (3.37).
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For j = 0, we obtain

so(n1)su(n0) sp(n2) · · · sp(n2k) g2

F

(2.34)

where the dots denote an alternating sp−so chain. Here n2i+1+1 = 2n2i = 8+18(k−i)
with k ≥ 1.

Its construction is given in (3.37).

For k = 0, we obtain

su(4) g2

F

(2.35)

Its construction is given in (3.38).

•

so(n1)su(n0) sp(n2) · · · sp(n2k) so(n2k+1) sp(m)

sp(m)

(2.36)

where the dots denote an alternating sp− so chain. Here n2i+1 = 2n2i = 4m + 16 +

16(k− i) with m ≥ 0 and k ≥ 1. The case m = 0 gives rise to two E-string factors at

the right end of the quiver.

Its construction is given in (3.39).

For k = 0, we obtain

su(n0) so(n1) sp(m)

sp(m)

(2.37)

Here n1 = 2n0 = 4m + 16 with m ≥ 0.

Its construction is given in (3.40).

•

sp(n0)

so(n)

so(n) so(n1) · · · sp(n2k) su(m)
(2.38)

where the dots denote an alternating sp−so chain. Here n2i+1 = 2n2i = 2m+16(k−i)
and n = m + 8 + 8k with m ≥ 2 and k ≥ 1.

Its construction is given in (3.41).
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•

so(n)

so(n)

sp(n0) · · · sp(n2j) · · · sp(n2k) su(1)

1
2F

1
2
F

(2.39)

where the dots denote alternating sp−so chains. Here n2i+1+1 = 2n2i = 2+18(k−i)
for j ≤ i ≤ k, n2i+1 = 2n2i = 2+18(k−j)+16(j−i) for 0 ≤ i ≤ j−1, and n = 9+9k−j
with 0 ≤ j ≤ k and k ≥ 1.

Its construction is given in (3.42) and (3.43).

•

so(n + 1)

so(n)

sp(n0) so(n1) · · · sp(n2k) su(1)

F

1
2
F

(2.40)

where the dots denote an alternating sp−so chain. Here n2i+1+1 = 2n2i = 2+18(k−i)
and n = 9 + 9k with k ≥ 1.

Its construction is given in (3.44).

•

sp(n0)

so(n)

so(n) so(n1) · · · sp(n2k) su(1)
(2.41)

where the dots denote an alternating sp − so chain. Here n2i+1 = 2n2i = 16(k − i)

and n = 8+8k with k ≥ 1. The two rightmost nodes gives rise to a rank two E-string

factor in the low energy theory.

Its construction is given in (3.45).

•

sp(n0)

so(n)

so(n) so(n1) · · · sp(n2k) so(n2k+1) S (2.42)

where the dots denote an alternating sp−so chain. Here n2i+1 = 2n2i = 12+16(k−i)
and n = 14 + 8k with k ≥ 0.

Its construction is given in (3.46).
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•

so(n)

so(n)

sp(n0) · · · sp(n2j) · · · sp(n2k) so(n2k+1)
1
2S

1
2F

(2.43)

where the dots denote alternating sp−so chains. Here n2i+1+1 = 2n2i = 14+18(k−i)
for j ≤ i ≤ k, n2i+1 = 2n2i = 14 + 18(k − j) + 16(j − i) for 0 ≤ i ≤ j − 1 and

n = 15 + 9k − j with 0 ≤ j ≤ k and k ≥ 0.

Its construction is given in (3.47).

•

so(n + 1)

so(n)

sp(n0) · · · sp(n2k) so(n2k+1)
1
2S

F (2.44)

where the dots denote an alternating sp − so chain. Here n2i+1 + 1 = 2n2i = 14 +

18(k − i) and n = 15 + 9k with k ≥ 0.

Its construction is given in (3.48).

•

sp(n0)

so(n)

so(n) so(n1) · · · sp(n2k) so(7)S

(2.45)

where the dots denote an alternating sp− so chain. Here n2i+1 = 2n2i = 8+16(k− i)

and n = 12 + 8k with k ≥ 1.

Its construction is given in (3.49).

For k = 0, we obtain

so(12) sp(4) so(7)

so(12)

S

(2.46)

Its construction is given in (3.50).
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•

so(n)

so(n)

sp(n0) · · · sp(n2j) · · · sp(n2k) g2

1
2F

(2.47)

where the dots denote alternating sp−so chains. Here n2i+1+1 = 2n2i = 8+18(k−i)
for j ≤ i ≤ k, n2i+1 = 2n2i = 8+18(k−j)+16(j−i) for 0 ≤ i ≤ j−1 and n = 12+9k−j
with 0 ≤ j ≤ k and k ≥ 1.

Its construction is given in (3.51).

For k = 0, we obtain

so(12)

so(12)

sp(4) g2

1
2F

(2.48)

Its construction is given in (3.52).

•

so(n + 1)

so(n)

sp(n0) · · · sp(n2k) g2

F (2.49)

where the dots denote an alternating sp−so chain. Here n2i+1+1 = 2n2i = 8+18(k−i)
and n = 12 + 9k with k ≥ 1.

Its construction is given in (3.53).

For k = 0, we obtain

so(13)

so(12)

sp(4) g2

F (2.50)

Its construction is given in (3.54).

•

so(n)

so(n)

sp(n0) so(n1) · · · so(n2k+1) sp(m)

sp(m)

(2.51)
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where the dots denote an alternating sp− so chain. Here n2i+1 = 2n2i = 4m + 16 +

16(k − i) and n = 2m + 16 + 8k with m ≥ 0 and k ≥ 0.

Its construction is given in (3.55).

•

sp(m) so(4m + 16)

so(4m + 16)

sp(m)

sp(3m + 8) so(4m + 16) sp(m)
(2.52)

with m ≥ 0.

Its construction is given in (3.56).

•

so(7) sp(2) so(7)

so(7)

SS

S

(2.53)

Its construction is given in (3.57).

•

1
2S so(12)

so(12)

1
2S

sp(5) so(12) 1
2S

(2.54)

Its construction is given in (3.58).

2.3 Missing SCFTs

Let us now list down all the possible SCFTs carrying the sub-quivers listed in section 2.1.

Our list below will contain SCFTs that do not have an LST parent. These SCFTs

are (2.59), (2.63) and (2.64).

•

su(n0)S2 su(n1) · · · su(nk)

m0F m1F · · ·
· · ·

mkF

(2.55)

where the edge between su(ni) and miF denotes mi hypers in fundamental of su(ni).

Here m0 = n0 − 8− n1 and mi = 2ni − ni−1 − ni+1 for 1 ≤ i ≤ k with nk+1 := 0 and

k ≥ 0.

Its construction is given in (3.6).
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•

su(n1)so(n0) su(n2) · · · su(nk)

m0F m1F m2F · · ·
· · ·

mkF

(2.56)

where the edge between so(n0) and m0F denotes m0 hypers in vector of so(n0). Here

m0 = n0−8−n1 and mi = 2ni−ni−1−ni+1 for 1 ≤ i ≤ k with nk+1 := 0 and k ≥ 1.

Its construction is given in (3.7).

•

so(n1)su(n0) sp(n2) · · · sp(n2k)

m0F m1F m2F · · ·
· · ·

m2kF

(2.57)

where the dots denote an alternating sp − so chain and the edge between sp(n2i)

and m2iF denotes m2i hypers in fundamental of sp(n2i). Here m0 = 2n0 − n1,

m2i−1 = n2i−1− 8−n2i−2−n2i and m2i = 2n2i + 8− n2i−1

2 − n2i+1

2 for 1 ≤ i ≤ k with

n2k+1 := 0 and k ≥ 1. Here n2k can be zero, in which case we obtain an E-string

factor at the right end of the quiver.

Its construction is given in (3.8).

•

so(n0)su(n) sp(n1) · · · so(n2k)

mF m0F m1F · · ·
· · ·

m2kF

(2.58)

where the dots denote an alternating sp − so chain. Here m = 2n − n0, m0 =

n0− 8− n1− n, m2i = n2i− 8− n2i−1− n2i and m2i+1 = 2n2i+1 + 8− n2i
2 −

n2i+2

2 for

1 ≤ i ≤ k with n2k+1 := 0 and k ≥ 0.

Its construction is given in (3.9).

•

su(n0) so(n2)su(n1) sp(n3)

m0F m1F m2F m3F

(2.59)

Here m0 = 2n0−n1, m1 = 2n1−n0−n2, m2 = n2−8−n1−n3 and m3 = 2n3+8− n2
2 .

Its construction is given in (3.10). It was suspected in [3] that this theory is probably

not consistent since there is no LST from which it can be obtained by decoupling a

tensor multiplet. Our construction in (3.10) demonstrates that this suspicion is not

correct, and shows that there exist SCFTs that cannot be obtained via an RG flow

starting from a LST.
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•

sp(n2)so(n0) so(n3) · · · sp(n2k)

m0F m2F

so(n1)

m1F

m3F · · ·
· · ·

m2kF (2.60)

where the dots denote an alternating sp − so chain. Here m0 = n0 − 8 − n2, m1 =

n1 − 8 − n2, m2 = 2n2 + 8 − n0
2 −

n1
2 −

n3
2 , m2i−1 = n2i−1 − 8 − n2i − n2i−2 and

m2i = 2n2i + 8− n2i−1

2 − n2i+1

2 for 2 ≤ i ≤ k with n2k+1 := 0 and k ≥ 2. Here n2k can

be zero, in which case we obtain an E-string factor at the right end of the quiver.

Its construction is given in (3.11).

•

sp(n2)so(n0) so(n3) · · · so(n2k+1)

m0F m2F

so(n1)

m1F

m3F · · ·
· · ·

m2k+1F
(2.61)

where the dots denote an alternating sp − so chain. Here m0 = n0 − 8 − n2, m1 =

n1 − 8 − n2, m2 = 2n2 + 8 − n0
2 −

n1
2 −

n3
2 , m2i−1 = n2i−1 − 8 − n2i − n2i−2, m2i =

2n2i + 8− n2i−1

2 − n2i+1

2 and m2k+1 = n2k+1 − 8− n2k for 2 ≤ i ≤ k with k ≥ 1.

Its construction is given in (3.12).

•

sp(n0) sp(n2)so(n1) so(n3) sp(n4)

m0F m1F m2F

so(n5)

m5F

m3F m4F (2.62)

Here m0 = 2n0 + 8 − n1
2 , m1 = n1 − 8 − n0 − n2, m2 = 2n2 + 8 − n1

2 −
n3
2 −

n5
2 ,

m3 = n3 − 8− n4 − n2, m4 = 2n4 + 8− n3
2 and m5 = n5 − 8− n2.

Its construction is given in (3.13).
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•

sp(n0) sp(n2)so(n1) so(n3) sp(n4) so(n5)

m0F m1F m2F

so(n6)

m6F

m3F m4F m5F (2.63)

Here m0 = 2n0 + 8 − n1
2 , m1 = n1 − 8 − n0 − n2, m2 = 2n2 + 8 − n1

2 −
n3
2 −

n6
2 ,

m3 = n3−8−n4−n2, m4 = 2n4+8− n3
2 −

n5
2 , m5 = n5−8−n4 and m6 = n6−8−n2.

Its construction is given in (3.14). Like (2.59), this theory is an example of an SCFT

that cannot be obtained from an LST via an RG flow.

•

sp(n0) sp(n2)so(n1) so(n3) sp(n4) so(n5) sp(n6)

m0F m1F m2F

so(n7)

m7F

m3F m4F m5F m6F (2.64)

Here m0 = 2n0 + 8 − n1
2 , m1 = n1 − 8 − n0 − n2, m2 = 2n2 + 8 − n1

2 −
n3
2 −

n7
2 ,

m3 = n3−8−n4−n2, m4 = 2n4+8− n3
2 −

n5
2 , m5 = n5−8−n4−n6, m6 = 2n6+8− n5

2

and m7 = n7 − 8− n2.

Its construction is given in (3.15). Like (2.59) and (2.63), this theory is another

example of an SCFT that cannot be obtained from an LST via an RG flow.

3 6d SCFTs and LSTs from the frozen phase

3.1 Reasons for missing theories

We now recall the reasons due to which the theories listed in sections 2.2 and 2.3 do not

admit a construction in the unfrozen phase of F-theory. These theories can be divided into

three types.

The first type of theories involve an su(n) gauge algebra with a hyper in S2 and n− 8

hypers in F. For such a theory to admit a construction in the unfrozen phase of F-theory,

the su(n) must arise on a curve C in the base B of the F-theory compactification such that:

1. The arithmetic genus of C must be one.

2. The self-intersection of C in B must be −1.
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It was shown in appendix B of [2] that the order of vanishing of (f, g) appearing in the

Weierstrass model on such a curve C is at least (4, 6). Such a large order of vanishing

of (f, g) on a curve in B is considered to be unphysical. Hence, no such theory can be

constructed in the unfrozen phase of F-theory.

The second type of theories involve an su(m ≥ 4) gauge algebra with 2m hypers in F

such that a subset of those hypers transform in a representation R of another gauge algebra

which is either so(n) or g2. For such a theory to admit a construction in the unfrozen phase

of F-theory, the following conditions must be satisfied:

1. The su(m) must arise on a curve C and so(n) or g2 must arise on a curve D such

that C ·D 6= 0.

2. The so(n) or g2 algebra must arise from an I∗p singularity over D.

3. Since m ≥ 4, su(m) must arise from an Im singularity over C.

4. C must have genus zero and self-intersection −2.

Now, an Im singularity over such a C cannot consistently intersect an I∗p singularity. Thus,

no such theory can be constructed in the unfrozen phase of F-theory.

The third type of theories involve an sp(m ≥ 2) gauge algebra with 2m + 8 hypers in

F such that three subsets of those hypers transform respectively in representation R1, R2

and R3 of other gauge algebras h1, h2 and h3 such that each hi is either an so algebra or a

g2 algebra. For such a theory to admit a construction in the unfrozen phase of F-theory,

the following conditions must be satisfied:

1. The sp(m) must arise on a curve C and hi must arise on a curve Di such that C ·Di 6= 0

for each i.

2. The hi must arise from an I∗pi singularity over D.

3. Since m ≥ 2, sp(m) must arise from a non-split I2m singularity over C.

4. C must have genus zero and self-intersection −1.

Now, an I2m singularity over such a C cannot consistently intersect three singularities I∗pi .

Thus, no such theory can be constructed in the unfrozen phase of F-theory.

3.2 Ingredients from the frozen phase

3.2.1 New constructions of old ingredients

The frozen phase provides us with novel constructions of some gauge-theoretic ingredi-

ents that already admit a construction in the unfrozen phase. We will use the following

constructions in this paper:

1. sp(m) gauge algebra with (2m + 8)F can be constructed in the frozen phase by a

curve6 C of self-intersection −4 carrying an Î
∗
m+4 singularity where, following the

6All of the curves considered in this paper have genus zero.
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notation of [5], we add a hat on top of an I∗n singularity if it carries an algebra of sp

type7 rather than so type. In type IIB language, an Î
∗
m+4 singularity corresponds to

a stack of m D7 branes on top of an O7+ plane.8

There are a total of 4m+ 16 zeroes of the residual discriminant ∆̃C on C. Each zero

carries a 1
2F of sp(m) leading to a total of (2m + 8)F of sp(m). If all the points on

C where ∆̃C vanishes have even multiplicity of zeroes, then the Î
∗
m+4 singularity is

split. Otherwise, the Î
∗
m+4 singularity is non-split.

For future purposes, we define a divisor F =
∑

iCi where Ci are compact or non-

compact curves carrying a singularity of type Î
∗
ni

.

2. so(m) gauge algebra with (m−8)F can be constructed in the frozen phase by a curve

C of self-intersection −1 carrying a non-split Im singularity such that F · C = 2.

A non-split Im singularity on a −1 curve corresponds to a stack of m D7 branes

intersecting two O7 planes in type IIB language. Since F · C = 2, both of these O7

planes are O7+. Hence, the gauge algebra carried by C is so(m).

There are a total of m+12 zeroes of ∆̃C . 20 of these come from intersections of C with

the two O7+ planes. This is because an O7+ plane corresponds to a Î
∗
4 singularity

over which ∆ vanish to order 10. Each remaining zero carries an F of so(m), thus

leading to a total of (m− 8)F of so(m).

We will also sometimes use a non-split Im+1 on C to construct so(m) with (m− 8)F.

This should be viewed as a non-geometric Higgsing of so(m+ 1) living on Im+1 down

to so(m).

3. su(m) gauge algebra with 2mF can be constructed in the frozen phase by the following

configuration of two curves C and D

1

Ins2m

C

2

Ism

D (3.1)

where the numbers displayed over C and D denote the negative of their self-

intersections, the edge denotes that C · D = 1, the singularity over C is non-split

I2m and the singularity over D is split Im. In [5], a gauge divisor was associated

to every 6d gauge algebra. Here the gauge divisor for su(m) is Σ = 2C + D which

means that the 6d gauge algebra su(m) is embedded into the 8d gauge algebra su(2m)

carried by I2m with embedding index 2 and the 8d gauge algebra su(m) carried by

Im with embedding index 1. We also need F · Σ = 2 for consistency, which is only

possible if F · C = 1 since D cannot intersect any other singularity.

It is again possible to understand this construction perturbatively. Since F · C = 1,

one of the O7 planes intersecting the stack of 2m D7 branes on C is an O7+ and

7Notice that n ≥ 4 for an Î
∗
n singularity.

8In our notation, a superscript + denotes an O7 plane of positive RR charge and a superscript − denotes

an O7 plane of negative RR charge.
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the other is an O7− plane thus leading to an su(m) gauge algebra with embedding

index 2 on C. A split Im singularity on the −2 curve D corresponds simply to a

stack of m D7 branes on D leading to another su(m) there. Now we can perform a

non-geometric Higgsing which combines the two su(m) living on C and D.

∆̃D has no zeroes other than those coming from the intersection with Ins2m singularity

on C. ∆̃C has a total of 2m + 12 zeroes. 10 out of these come from the intersection

with O7+ and 2 of these come from the intersection with O7−. Each of the remaining

zeroes carry 2F of su(m), thus leading to a total of 2mF of su(m).

For m = 1 and m = 0, we obtain new constructions for A1 N = (2, 0) SCFT.

4. We will need another construction for sp(m) gauge algebra with (2m + 8)F which is

4

Î
∗
m+4

C

1

Ins2m

D (3.2)

with no other frozen singularity intersecting either C or D. If a curve carrying a

frozen singularity appears in a gauge divisor, then its coefficient in the gauge divisor

is the embedding index times an extra factor of half. Thus, the gauge divisor for this

configuration is Σ = 1
2C + D.

To understand this construction perturbatively, notice that the other O7 plane in-

tersecting D is an O7− plane which reduces the gauge algebra on the stack of 2m

D7 branes on D to sp(m). We then combine this sp(m) with the sp(m) living on

C. Unlike the previous case, the O7+ plane carried by C does not induce a further

reduction of gauge algebra on D. This makes sense because C and D are part of the

same gauge divisor.

∆̃C has a total of 4m+16 zeroes out of which 2m come from the intersection with the

Ins2m singularity living over D. Each other zero carries a 1
2F of the low energy sp(m),

thus leading to (m+ 8)F of sp(m) living on C. ∆̃D has a total of 2m+ 12 zeroes out

of which m + 10 come from the intersection with the Î
∗
m+4 singularity living over C.

Moreover, 2 other zeroes come from the intersection with the O7− plane. Each other

zero carries an F of the low energy sp(m), thus leading to mF of sp(m) living on D.

In total, we get (2m + 8)F of sp(m).

We will also sometimes use

4

Î
∗
m+5

C

1

Ins2m+1

D (3.3)

with Σ = 1
2C + D to construct sp(m) with (2m + 8)F.
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5. so(7) gauge algebra with 2S can be constructed in the frozen phase by the configu-

ration

1

Ins8

C

3

I∗ns2

D (3.4)

with gauge divisor Σ = 2C + D and F · C = 1, where we have performed a non-

geometric Higgsing to reduce the algebra living over I∗ns2 from so(11) to so(7).

∆̃C has a total of 20 zeroes. 8 out of these come from the I∗ns2 singularity on C.

10 other zeroes come from an intersection with O7+ plane. The remaining two

zeroes each carry an S of so(7). We propose that the zeroes of ∆̃D not coming from

intersection with Ins8 do not carry any matter content.

6. We will also construct sp(5) with 18F via

4
Î
∗ns
9

C

1

Ins11

D2

1

Ins11

D1

1

Ins11

D3

(3.5)

with Σ = 1
2C + D1 + D2 + D3 and no other frozen singularity intersects either C or

any Di. Each Di carries 6F situated at 6 zeroes of residual discriminant on Di.

3.2.2 A new ingredient

We will also need a gauge-theoretic ingredient arising in the frozen phase that does not

admit a construction in the unfrozen phase. This is su(m) with S2 + (m− 8)F and can be

constructed by a curve C of self-intersection −1 carrying an Ism singularity with F ·C = 2.

Since the intersection points of F with C are branch points for the monodromy, to obtain

a split Im, F must intersect C tangentially at a single point.

Out of m + 12 zeroes of ∆̃C , 20 come from the tangential intersection with O7+. The

remaining m− 8 zeroes each carry an F of su(m).

3.3 Construction of missing SCFTs

In this subsection, we will show that the frozen phase allows us to construct all the missing

SCFTs listed in section 2.3.

• Eq. (2.55) can be constructed via

Î
∗
4 1

Isn0

2

Isn1

· · · 2

Isnk
t

(3.6)
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where any singularity without a number attached to it denotes a non-compact curve9

carrying that singularity. The double edge with a tiny t on top of it denotes a

tangential intersection between the curve carrying Î
∗
4 and the curve carrying Isn0

.

• Eq. (2.56) can be constructed via

Î
∗
4

Î
∗
4 1

Insn0

2

Isn1

· · · 2

Isnk

(3.7)

• Eq. (2.57) can be constructed via

Î
∗
4

2

Isn0

1

Insn1

4

Î
∗
n2+4

1

Insn3

· · · 4

Î
∗
n2k+4

(3.8)

where the dots denote an alternating chain of 4

Î
∗
ni+4

and 1

Insni+1

.

• Eq. (2.58) can be constructed via

Î
∗
4

2

Isn
1

Insn0

4

Î
∗
n1+4

1

Insn2

· · · 1

Insn2k

Î
∗
4

(3.9)

where the dots denote an alternating chain of 4

Î
∗
ni+4

and 1

Insni+1

.

• Eq. (2.59) can be constructed via

Î
∗
4

2

Isn0

2

Isn1

1

Insn2

4

Î
∗
n3+4

(3.10)

This shows that (2.59) exists even though it does not have any LST parent, thus

demonstrating the existence of such SCFTs.

9We will only display non-compact curves carrying frozen singularities.

– 21 –



J
H
E
P
0
3
(
2
0
2
0
)
1
7
1

• Eq. (2.60) can be constructed via

1

Insn1

Î
∗
4

Î
∗
4

1

Insn0

4

Î
∗
n2+4

1

Insn3

4

Î
∗
n4+4

· · · 4

Î
∗
n2k+4

(3.11)

where the dots denote an alternating chain of 4

Î
∗
ni+4

and 1

Insni+1

.

• Eq. (2.61) can be constructed via

1

Insn1

Î
∗
4

Î
∗
4

1

Insn0

4

Î
∗
n2+4

1

Insn3

4

Î
∗
n4+4

· · · 1

Insn2k+1

Î
∗
4 (3.12)

where the dots denote an alternating chain of 4

Î
∗
ni+4

and 1

Insni+1

.

• Eq. (2.62) can be constructed via

1

Insn5

4

Î
∗
n0+4

Î
∗
4

1

Insn1

4

Î
∗
n2+4

1

Insn3

4

Î
∗
n4+4

(3.13)
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• Eq. (2.63) can be constructed via

1

Insn6

4

Î
∗
n0+4

Î
∗
4

1

Insn1

4

Î
∗
n2+4

1

Insn3

4

Î
∗
n4+4

1

Insn5

Î
∗
4 (3.14)

This shows that (2.63) exists even though it does not have any LST parent.

• Eq. (2.64) can be constructed via

1

Insn7

4

Î
∗
n0+4

Î
∗
4

1

Insn1

4

Î
∗
n2+4

1

Insn3

4

Î
∗
n4+4

1

Insn5

4

Î
∗
n6+4

(3.15)

This shows that (2.64) exists even though it does not have any LST parent.

3.4 Construction of missing LSTs

In this subsection, we will show that the frozen phase allows us to construct all the missing

LSTs listed in section 2.2.

• Eq. (2.10) can be constructed via

Î
∗
4 1

Isn0

2

Isn1

· · · 2

Isnk

1

Ins2m
t

(3.16)

We substitute m = 0 in (3.16) to obtain the construction for (2.11).

• Eq. (2.12) can be constructed via

Î
∗
4 1

Isn0

2

Isn1

· · · 2

Isnk

1

Ism
t

(3.17)

The following limit of (3.17)

Î
∗
4 0

Ism
t

(3.18)
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provides a construction for

su(m)S2 Λ2
(3.19)

that is dual to the construction provided in [3] using the unfrozen phase of F-theory.

Notice that the construction of [3] requires su(m) to be realized on a singular curve

in B, whereas our construction realizes su(m) on a smooth curve in B.

• Eq. (2.13) can be constructed via

Î
∗
4 1

Isn0

2

Isn1

· · · 2

Isnk−1

1

Is6
t

(3.20)

where the Is6 is tuned to give rise to a 1
2Λ3.

The following limit of (3.20)

Î
∗
4 0

Is6
t

(3.21)

with a tuned I6 provides a construction for

F

su(6)S2 1
2Λ3

(3.22)

that is dual to the construction provided in [3] using the unfrozen phase of F-theory.

Again, notice that the construction of [3] requires su(6) to be realized on a singular

curve in B, whereas our construction realizes su(6) on a smooth curve in B.

• Eq. (2.14) can be constructed via

Î
∗
4

Î
∗
4 1

Insn0

2

Isn1

· · · 2

Isnk

1

Ins2m

(3.23)

We substitute m = 0 in (3.23) to obtain the constructions for (2.15) and (2.16).

• Eq. (2.17) can be constructed via

Î
∗
4

Î
∗
4 1

Insn0

2

Isn1

· · · 2

Isnk

1

Ism

(3.24)
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• Eq. (2.18) and (2.19) can be constructed via

Î
∗
4

Î
∗
4 1

Insn0

2

Isn1

· · · 2

Isnk−1

1

Is6

(3.25)

where the Is6 is tuned to give rise to a 1
2Λ3.

• Eq. (2.20) can be constructed via

Î
∗
4

2

Isn0

1

Ins2n0

4

I∗sm1

1

Insm2

4

I∗sm3

· · · 1

Insm2k

2

Ism

(3.26)

where the dots denote an alternating chain of 4

I∗smi

and 1

Insmi+1

and the dashed

ellipse encircling the first two curves indicates that those two curves give rise to a

single gauge algebra in 6d, which in this case is su(n0) as we know from (3.1). Here

m2i = 2n2i and m2i−1 = n2i−1

2 − 4.

• Eq. (2.21) for j < k can be constructed via

Î
∗
4

2

Isn0

1

Ins2n0

4

I∗m1

1

Insm2

4

I∗m3

· · · 1

Insm2k

2
II

(3.27)

where the dots denote an alternating chain of 4

I∗mi

and 1

Insmi+1

. Here m2i = 2n2i and

m2i−1 = n2i−1

2 −4 with I∗m2i−1
singularity being split for 1 ≤ i ≤ j, and m2i = 2n2i+1,

m2i−1 = n2i−1+1
2 − 4 with I∗m2i−1

singularity being non-split for j + 1 ≤ i ≤ k. It is

known [1] that the intersection of type II singularity with Ins3 = Insm2k
captures a 1

2F

of sp(1) = sp(n2k) as required. The 1
2F of sp(n2j) is localized at the intersection of

Insm2j
and I∗nsm2j+1

.

Eq. (2.21) for j = k can be constructed via

Î
∗
4

2

Isn0

1

Ins2n0

4

I∗sm1

1

Insm2

4

I∗sm3

· · · 1

Im2k

2
I1

(3.28)
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where the dots denote an alternating chain of 4

I∗smi

and 1

Insmi+1

. Here m2i = 2n2i

and m2i−1 = n2i−1

2 − 4. It is well-known that the intersection of I1 with I2 = Im2k

captures a full F of sp(1) = sp(n2k), as required.

We substitute j = 0 in (3.27) to obtain the construction for (2.22). Here m2i =

2n2i + 1, m2i−1 = n2i−1+1
2 − 4 with every I∗m2i−1

singularity being non-split.

• Eq. (2.23) can be constructed via

Î
∗
4

2

Isn0

1

Ins2n0

4

I∗sm1

1

Insm2

4

I∗sm3

· · · 4

I∗sm2k+1

1
I0

2
I0

(3.29)

where the dots denote an alternating chain of 4

I∗smi

and 1

Insmi+1

. Here m2i = 2n2i

and m2i+1 = n2i+1

2 − 4.

Eq. (2.25) can be constructed via

Î
∗
4

2

Is8
1

Ins16
4

I∗s4
1
I0

4
I0

(3.30)

• Eq. (2.26) can be constructed via

Î
∗
4

2

Isn0

1

Ins2n0

4

I∗sm1

1

Insm2

4

I∗sm3

· · · 1

Insm2k

2

I∗sm2k+1

(3.31)

where the dots denote an alternating chain of 4

I∗smi

and 1

Insmi+1

. Here m2i = 2n2i

and m2i+1 = n2i+1

2 − 4.

Eq. (2.27) can be constructed via

Î
∗
4

2

Is6
1

Ins12
2

I∗s2

(3.32)
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• Eq. (2.28) can be constructed via

Î
∗
4

2

Isn0

1

Ins2n0

4

I∗m1

1

Insm2

4

I∗m3

· · · 1

Insm2k

2

I∗m2k+1

(3.33)

where the dots denote an alternating chain of 4

I∗mi

and 1

Insmi+1

. Here m2i = 2n2i and

m2i−1 = n2i−1

2 −4 with I∗m2i−1
singularity being split for 1 ≤ i ≤ j, and m2i = 2n2i+1,

m2i−1 = n2i−1+1
2 − 4 with I∗m2i−1

singularity being non-split for i ≥ j + 1. The 1
2F of

sp(n2j) is localized at the intersection of Insm2j
and I∗nsm2j+1

.

We substitute j = 0 in (3.33) to obtain the construction for (2.29). Here m2i =

2n2i + 1, m2i−1 = n2i−1+1
2 − 4 with every I∗m2i−1

singularity being non-split. The F of

su(n0) is localized at the intersection of Ins2n0
and I∗nsm1

.

Eq. (2.30) can be constructed via

Î
∗
4

2

Is7
1

Ins14
2

I∗ns3

(3.34)

with the F of su(7) being localized at the intersection of Ins14 and I∗ns3 .

• Eq. (2.31) can be constructed via

Î
∗
4

2

Isn0

1

Ins2n0

4

I∗sm1

1

Insm2

4

I∗sm3

· · · 1

Insm2k

2
I∗ss0

(3.35)

where the dots denote an alternating chain of 4

I∗smi

and 1

Insmi+1

. Here m2i = 2n2i

and m2i−1 = n2i−1

2 − 4.

Eq. (2.32) can be constructed via

Î
∗
4

2

Is4
1

Ins8
2

I∗ss0

(3.36)
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• Eq. (2.33) can be constructed via

Î
∗
4

2

Isn0

1

Ins2n0

4

I∗m1

1

Insm2

4

I∗m3

· · · 1

Insm2k

2
I∗ns0

(3.37)

where the dots denote an alternating chain of 4

I∗mi

and 1

Insmi+1

. Here m2i = 2n2i and

m2i−1 = n2i−1

2 −4 with I∗m2i−1
singularity being split for 1 ≤ i ≤ j, and m2i = 2n2i+1,

m2i−1 = n2i−1+1
2 − 4 with I∗m2i−1

singularity being non-split for j + 1 ≤ i ≤ k. The
1
2F of sp(n2j) is localized at the intersection of Insm2j

and I∗nsm2j+1
where I∗nsm2k+1

:= I∗ns0 .

We substitute j = 0 in (3.37) to obtain the construction for (2.34). Here m2i =

2n2i + 1, m2i−1 = n2i−1+1
2 − 4 with every I∗m2i−1

singularity being non-split. The F of

su(n0) is localized at the intersection of Ins2n0
and I∗nsm1

.

Eq. (2.35) can be constructed via

Î
∗
4

2

Is4
1

Ins8
2

I∗ns0

(3.38)

with the F of su(4) being localized at the intersection of Ins8 and I∗ns0 .

• Eq. (2.36) can be constructed via

Î
∗
4

2

Isn0

1

Ins2n0

4

I∗sm1

1

Insm2

4

I∗sm3

· · · 1

Insm2k

4

I∗sm2k+1

1

Ins2m

1

Ins2m

(3.39)

where the dots denote an alternating chain of 4

I∗smi

and 1

Insmi+1

. Here m2i = 2n2i

and m2i−1 = n2i−1

2 − 4.
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Eq. (2.37) can be constructed via

Î
∗
4

2

Isn0

1

Ins2n0

4

I∗sm1

1

Ins2m

1

Ins2m

(3.40)

where m1 = n1
2 − 4.

• Eq. (2.38) can be constructed via

Î
∗
4

Î
∗
4 1

Insn

1

Insn

4

Î
∗
n0+4

1

Ins2n0

4

I∗sm1

· · · 1

Insm2k

2

Ism

(3.41)

where the dots denote an alternating chain of 4

I∗smi

and 1

Insmi+1

and the dashed

ellipse encircling the first two curves indicates that those two curves give rise to a

single gauge algebra in 6d, which in this case is sp(n0) as we know from (3.2). Here

m2i = 2n2i and m2i−1 = n2i−1

2 − 4.

• Eq. (2.39) for j < k can be constructed via

Î
∗
4

Î
∗
4 1

Insn

1

Insn

4

Î
∗
n0+4

1

Ins2n0

4

I∗m1

· · · 1

Insm2k

2
II

(3.42)

where the dots denote an alternating chain of 4

I∗mi

and 1

Insmi+1

. Here m2i = 2n2i and

m2i−1 = n2i−1

2 −4 with I∗m2i−1
singularity being split for 1 ≤ i ≤ j, and m2i = 2n2i+1,
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m2i−1 = n2i−1+1
2 − 4 with I∗m2i−1

singularity being non-split for j + 1 ≤ i ≤ k. The 1
2F

of sp(1) = sp(n2k) is localized at the intersection of Insm2k
= Ins3 and type II singularity.

The 1
2F of sp(n2j) is localized at the intersection of Insm2j

and I∗nsm2j+1
.

Eq. (2.39) for j = k can be constructed via

Î
∗
4

Î
∗
4 1

Insn

1

Insn

4

Î
∗
n0+4

1

Ins2n0

4

I∗sm1

· · · 1

Im2k

2
I1

(3.43)

where the dots denote an alternating chain of 4

I∗smi

and 1

Insmi+1

. Here m2i = 2n2i

and m2i−1 = n2i−1

2 −4. The 1
2F+ 1

2F of sp(1) = sp(n2k) is localized at the intersection

of Im2k
= I2 and I1.

• Eq. (2.40) can be constructed via

Î
∗
4

Î
∗
4 1

Insn+2

1

Insn+1

4

Î
∗ns
n0+5

1

Ins2n0+1

4

I∗nsm1

· · · 1

Insm2k

2
II

(3.44)

where the dots denote an alternating chain of 4

I∗nsmi

and 1

Insmi+1

. Here m2i = 2n2i+1

and m2i−1 = n2i−1+1
2 − 4. The 1

2F of sp(1) = sp(n2k) is localized at the intersection

of Insm2k
= Ins3 and type II singularity. The so(n+ 1) is realized by Insn+2 and the so(n)

is realized by Insn+1. The curves encircled by the dashed ellipse give rise to sp(n0).
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• Eq. (2.41) can be constructed via

Î
∗
4

Î
∗
4 1

Insn

1

Insn

4

Î
∗
n0+4

1

Ins2n0

4

I∗sm1

· · · 1

Im2k

2
I0

(3.45)

where the dots denote an alternating chain of 4

I∗smi

and 1

Insmi+1

. Here m2i = 2n2i

and m2i−1 = n2i−1

2 − 4.

• Eq. (2.42) can be constructed via

Î
∗
4

Î
∗
4 1

Insn

1

Insn

4

Î
∗
n0+4

1

Ins2n0

4

I∗sm1

· · · 1

Insm2k

2

I∗sm2k+1

(3.46)

where the dots denote an alternating chain of 4

I∗smi

and 1

Insmi+1

. Here m2i = 2n2i

and m2i−1 = n2i−1

2 − 4.

• Eq. (2.43) can be constructed via

Î
∗
4

Î
∗
4 1

Insn

1

Insn

4

Î
∗
n0+4

1

Ins2n0

4

I∗m1

· · · 1

Insm2k

2

I∗m2k+1

(3.47)

where the dots denote an alternating chain of 4

I∗mi

and 1

Insmi+1

. Here m2i = 2n2i and

m2i−1 = n2i−1

2 −4 with I∗m2i−1
singularity being split for 1 ≤ i ≤ j, and m2i = 2n2i+1,
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m2i−1 = n2i−1+1
2 − 4 with I∗m2i−1

singularity being non-split for i ≥ j + 1. The 1
2F of

sp(n2j) is localized at the intersection of Insm2j
and I∗nsm2j+1

.

• Eq. (2.44) can be constructed via

Î
∗
4

Î
∗
4 1

Insn+2

1

Insn+1

4

Î
∗ns
n0+5

1

Ins2n0+1

4

I∗nsm1

· · · 1

Insm2k

2

I∗nsm2k+1

(3.48)

where the dots denote an alternating chain of 4

I∗nsmi

and 1

Insmi+1

. Here m2i = 2n2i+1

and m2i−1 = n2i−1+1
2 − 4. The so(n + 1) is realized by Insn+2 and the so(n) is realized

by Insn+1. The curves encircled by the dashed ellipse give rise to sp(n0).

• Eq. (2.45) can be constructed via

Î
∗
4

Î
∗
4 1

Insn

1

Insn

4

Î
∗
n0+4

1

Ins2n0

4

I∗sm1

· · · 1

Insm2k

2
I∗ss0

(3.49)

where the dots denote an alternating chain of 4

I∗smi

and 1

Insmi+1

. Here m2i = 2n2i

and m2i−1 = n2i−1

2 − 4.

Eq. (2.46) can be constructed via

Î
∗
4

1

Ins12

Î
∗
4 1

Ins12
4

Î
∗s
8

1

Ins8
2

I∗ss0

(3.50)
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• Eq. (2.47) can be constructed via

Î
∗
4

Î
∗
4 1

Insn

1

Insn

4

Î
∗
n0+4

1

Ins2n0

4

I∗m1

· · · 1

Insm2k

2
I∗ns0

(3.51)

where the dots denote an alternating chain of 4

I∗mi

and 1

Insmi+1

. Here m2i = 2n2i and

m2i−1 = n2i−1

2 −4 with I∗m2i−1
singularity being split for 1 ≤ i ≤ j, and m2i = 2n2i+1,

m2i−1 = n2i−1+1
2 − 4 with I∗m2i−1

singularity being non-split for j + 1 ≤ i ≤ k. The
1
2F of sp(n2j) is localized at the intersection of Insm2j

and I∗nsm2j+1
where I∗nsm2k+1

:= I∗ns0 .

Eq. (2.48) can be constructed via

Î
∗
4

1

Ins12

Î
∗
4 1

Ins12
4

Î
∗s
8

1

Ins8
2

I∗ns0

(3.52)

with the 1
2F of sp(4) being localized at the intersection of Ins8 and I∗ns0 .

• Eq. (2.49) can be constructed via

Î
∗
4

Î
∗
4 1

Insn+2

1

Insn+1

4

Î
∗ns
n0+5

1

Ins2n0+1

4

I∗nsm1

· · · 1

Insm2k

2
I∗ns0

(3.53)
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where the dots denote an alternating chain of 4

I∗nsmi

and 1

Insmi+1

. Here m2i = 2n2i+1

and m2i−1 = n2i−1+1
2 − 4. The so(n + 1) is realized by Insn+2 and the so(n) is realized

by Insn+1. The curves encircled by the dashed ellipse give rise to sp(n0).

Eq. (2.50) can be constructed via

Î
∗
4

1

Ins13

Î
∗
4 1

Ins14
4

Î
∗ns
9

1

Ins9
2

I∗ns0

(3.54)

The so(13) is realized by Ins14 and the so(12) is realized by Ins13 .

• Eq. (2.51) can be constructed via

Î
∗
4

Î
∗
4 1

Insn

1

Insn

4

Î
∗
n0+4

1

Ins2n0

4

I∗sm1

· · · 1

Insm2k

4

I∗sm2k+1

1

Ins2m

1

Ins2m

(3.55)

where the dots denote an alternating chain of 4

I∗smi

and 1

Insmi+1

. Here m2i = 2n2i

and m2i−1 = n2i−1

2 − 4.

• Eq. (2.52) can be constructed via

1

Ins4m+16

4

Î
∗
m+4

4

Î
∗
m+4

1

Ins4m+16

4

Î
∗
3m+12

1

Ins4m+16

4

Î
∗
m+4

(3.56)
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• Eq. (2.53) can be constructed via

1

Ins8

3

I∗ns2

3

I∗ns2

1

Ins8
4

Î
∗s
6

1

Ins8
3

I∗ns2

(3.57)

where the curves encircled by each dashed ellipse give rise to an so(7) with 2S as we

suggested in (3.4).

• Eq. (2.54) can be constructed via

1

Ins11

3

I∗s2

3

I∗s2

1

Ins11
4

Î
∗ns
9

1

Ins11
3

I∗s2

(3.58)

where the four curves encircled by the dashed circle give rise to an sp(5) with 18F as

we suggested in (3.5).
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[92] N. Haouzi and C. Kozçaz, The ABCDEFG of Little Strings, arXiv:1711.11065 [INSPIRE].

[93] T. Bourton and E. Pomoni, Instanton counting in Class Sk, arXiv:1712.01288 [INSPIRE].

[94] F. Apruzzi and M. Fazzi, AdS7/CFT6 with orientifolds, JHEP 01 (2018) 124

[arXiv:1712.03235] [INSPIRE].

[95] M. Del Zotto, J. Gu, M.-X. Huang, A.-K. Kashani-Poor, A. Klemm and G. Lockhart,

Topological Strings on Singular Elliptic Calabi-Yau 3-folds and Minimal 6d SCFTs, JHEP

03 (2018) 156 [arXiv:1712.07017] [INSPIRE].
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[130] C. Núñez, J.M. Peńın, D. Roychowdhury and J. Van Gorsel, The non-Integrability of

Strings in Massive Type IIA and their Holographic duals, JHEP 06 (2018) 078

[arXiv:1802.04269] [INSPIRE].

– 42 –

https://doi.org/10.1007/JHEP03(2019)002
https://doi.org/10.1007/JHEP03(2019)002
https://arxiv.org/abs/1811.02577
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.02577
https://arxiv.org/abs/1811.02837
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.02837
https://doi.org/10.1103/PhysRevD.99.066013
https://arxiv.org/abs/1811.03387
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.03387
https://arxiv.org/abs/1811.04921
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.04921
https://doi.org/10.1007/JHEP10(2019)192
https://arxiv.org/abs/1811.04938
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.04938
https://doi.org/10.1007/JHEP07(2019)127
https://arxiv.org/abs/1811.06987
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.06987
https://arxiv.org/abs/1811.07884
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.07884
https://doi.org/10.1007/JHEP05(2019)187
https://arxiv.org/abs/1811.12400
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.12400
https://doi.org/10.1007/JHEP04(2019)006
https://arxiv.org/abs/1812.04637
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.04637
https://doi.org/10.1007/JHEP06(2019)069
https://arxiv.org/abs/1901.08598
https://inspirehep.net/search?p=find+EPRINT+arXiv:1901.08598
https://arxiv.org/abs/1903.00079
https://inspirehep.net/search?p=find+EPRINT+arXiv:1903.00079
https://doi.org/10.1007/JHEP06(2018)078
https://arxiv.org/abs/1802.04269
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.04269

	Introduction and conclusions
	Missing theories
	Missing sub-quivers
	Missing LSTs
	Missing SCFTs

	6d SCFTs and LSTs from the frozen phase
	Reasons for missing theories
	Ingredients from the frozen phase
	New constructions of old ingredients
	A new ingredient

	Construction of missing SCFTs
	Construction of missing LSTs


