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2 superconformal field theories arising from N M5-branes wrapped on a hyperbolic 3-

manifold, M3. Via the 3d-3d correspondence, the partition functions of these 3d N = 2

superconformal field theories are related to simple topological invariants on the 3-manifold.

The partition functions can be expressed using only classical and one-loop perturbative

invariants of PSL(N,C) Chern-Simons theory around irreducible flat connections on M3.

Using mathematical results on the asymptotics of the invariants, we compute the twisted

partition functions in the large N limit including perturbative corrections to all orders in

1/N . Surprisingly, the perturbative expansion terminates at finite order. The leading part

of the partition function is of order N3 and agrees with the Bekenstein-Hawking entropy

of the dual black holes. The subleading part, in particular the logN -terms in the field

theory partition function is found to precisely match the one-loop quantum corrections in

the dual eleven dimensional supergravity. The field theory results of other terms in 1/N

provide a stringent prediction for higher order corrections in the holographic dual, which

is M-theory.
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1 Introduction

The mathematical equivalence of a field theory to a theory containing gravity in the context

of the AdS/CFT correspondence [1] has always been viewed as potentially a direct way

to uncover intricate and intuition-defying aspects of gravity. First among these are issues

related to black hole physics and, in particular, the microscopic understanding of black

hole entropy.

Recently a remarkable result has been obtained providing a microscopic understanding

of the entropy of certain magnetically charged, asymptotically AdS4 black holes in the

context of AdS4/CFT3 [2]. This impressive achievement has been extended to various

situations including dyonic black holes [3], black holes with hyperbolic horizons [4], black

holes in massive IIA theory [5, 6] and to certain black holes in universal sectors of higher-

dimensional embeddings [7]; for a review and a complete list of references, see [8].
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Most of these results have been propelled by an improved understanding of three-

dimensional N = 2 supersymmetric field theories thanks to supersymmetric localization,

see [9–11] for the original developments and [12–15] for some recent relevant applications.

The stringy origin of many of those field theories can be tracked to M2 and D2 brane con-

figurations. For example, the marquee case worked out in detail in [2] exploits the duality

between a Chern-Simons matter theory known as ABJM [16] and its eleven dimensional

gravity dual arising from M2 branes. Another class of 3d supersymmetric field theories,

which we are interested in here, arises as the low energy limit of M5 branes wrapping a

hyperbolic 3-manifold [17]. In this manuscript we pursue the counting of microstates for

the case of wrapped M5 branes, we will encounter several advantages along the way over

M2-brane setups with which the reader might be more familiar.

The advantages are mainly rooted in the 3d-3d correspondence, which relates the 3d

field theory on N wrapped M5’s to pure Chern-Simons theory defined on the hyperbolic

3-manifold. This correspondence enables us to calculate the exact N dependence of the

partition functions, see [18, 19] for reviews on the subject. Most of the results on topologi-

cally twisted indices of 3d theories have been obtained at leading order in N [20, 21]. One

of the key problems plaguing a sub-leading understanding of N = 2 partition functions

is that they are given in terms of solutions to certain Bethe-Ansatz equations, and there

is no suitable framework to calculate the sub-leading contributions. Indeed, only a few

partial results for sub-leading structures have been obtained and they involved substantial

numerical efforts [22–24]. Let us emphasize that going beyond the leading order for the

field theory partition function is not merely of academic interest; it promises to clarify

intricate aspects of gravity on the holographic side.

The M5 brane has long been one of the most intriguing and least understood objects in

string theory. For M5 branes wrapping a hyperbolic 3-manifold, the holographic descrip-

tion as well as its place in the context of the 3d-3d correspondence has been elucidated

in a series of works [25–27]. In those works, the leading large N behavior of supersym-

metric quantities, such as the squashed 3-sphere partition function and twisted partition

functions, were obtained using 3d-3d relations and matched nicely to the supergravity

computations. In this manuscript we explore subleading corrections to the twisted parti-

tion functions, and we present the exact subleading correction terms as the main result.

The exact computation is made possible since 3d-3d relations connect the twisted parti-

tion functions to simple topological invariants on 3-manifolds, for which we employ certain

mathematical results. We also provide a gravitational understanding of logarithmic terms

in the subleading corrections.

The rest of the manuscript is organized as follows. We briefly review basic aspects of

holography of wrapped M5 branes in section 2. We cover various entries in the AdS/CFT

dictionary and present some of the gravitational backgrounds relevant to our work, we

also review the field theory formulation of the relevant partition functions. In section 3

we present some of the details of Chern-Simons theory that facilitate the computation

of various ingredients in the partition functions via the 3d-3d correspondence. Section 4

develops the large N expansion in some detail. In section 5 we present the one-loop effective

action around the black hole background and show agreement of the logN terms with the
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AdS4/CFT3 from M2-branes from M5-branes

M-theory set-up N M2-branes probing Cone(Y7) N M5-branes wrapped on M3

Dual Known only for Systematic algorithm

Field theory special examples of Y7 applicable to general M3

Gravity dual AdS4 × Y7 Warped AdS4 ×M3 × S̃4

Symmetry Isometry of Y7 (⊃ U(1)R) Only U(1)R

L2/G4
N3/2π2√
27/8vol(Y7)

2N3vol(M3)
3π2

L/Lp ∝ N1/6 ∝ N1/3

Table 1. Comparison between two well-established classes of AdS4/CFT3 using M-theory. Y7 is a

Sasakian-Einstein 7-manifold while M3 is a closed hyperbolic 3-manifold. Lp is the Planck length

and L is the radius of the AdS4.

field theory computation. We conclude in section 6 with a summary of our work and by

pointing out some interesting open problems. In appendix A we present explicit expressions

for the analytic torsion used in the main body of the paper.

2 Holography for wrapped M5-branes

In this section we briefly review the AdS4/CFT3 correspondence associated to wrapped

M5-branes on a compact (closed) hyperbolic 3-manifold, M3 = H3/Γ. To help acquaint

the reader with the M5 duality we present a comparison with the more standard form of

AdS4/CFT3 based on M2-branes probing a cone over a Sasakian-Einstein 7-manifold Y7 in

table 1. A peculiarity of AdS4/CFT3 from M5-branes is that we can use the 3d-3d corre-

spondence [17, 28–48] which provides an alternative way of computing some supersymmetic

quantities, using geometry. Moreover, this geometrical perspective becomes a conduit to

the possibility of exact results in N .

On the field theory side, we consider a large class of 3d N = 2 superconformal field the-

ories (SCFTs) known as TN [M3] arising from wrapped M5-branes on a compact hyperbolic

3-manifold M3.

N M5-branes: R1,2 ×M3 (⊂ T ∗M3)

Low energy worldvolume theory−−−−−−−−−−−−−−−−−−−−−−−→ 3d N = 2 SCFT TN [M3] on R1,2 .
(2.1)

The system preserves 4 supercharges and the infra-red (IR) world-volume theory generically

has 3d N = 2 supersymmetry. The field theoretic way to understand this situation is:

6d AN−1 (2,0) theory on R1,2 ×M3

Low energy effective theory−−−−−−−−−−−−−−−−−−−−→ 3d N = 2 SCFT TN [M3] on R1,2 .
(2.2)

To preserve some supersymmetries, we perform a partial topological twisting along M3

using the SO(3) subgroup of the SO(5) R-symmetry of the 6d theory. The topolgical

twisting preserves 4 supercharges and SO(2) R-symmetry out of the SO(5). For generic

– 3 –
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N , the 3d theory has only the U(1) = SO(2) R-symmetry and no other flavor symmetry.

Practically, the absence of flavor symmetry implies that in the partition functions there are

no extra fugacities and, therefore, we are limited to the universal sector. This is precisely

the situation described in [7], albeit from a different embedding point of view, as we will

discussed below.

2.1 Holographic dual

To anticipate details of the holographic description we start in eleven dimensions where

the M5-brane naturally resides. Moreover, to incorporate the 3d hyperbolic manifold M3

we consider its cotangent bundle denoted by T ∗M3 which is a local Calabi-Yau.

11d space-time : R1,2 × (T ∗M3)× R2. (2.3)

Now the holographic background should be the back-reacted AdS solution where M5-branes

are partly wrapped on M3. When M3 is the hyperbolic space, the gravity dual of TN [M3]

is proposed to be [49]

AdS4/CFT3 : TN [M3] = ( M-theory on Pernici-Sezgin AdS4 solution ) . (2.4)

Here Pernici-Sezgin (PS) solutions [50] are magneto-vac solutions of 7d SU(2)-gauged

supergravity, and they include an AdS4 whose 11d uplift is the gravity dual we are looking

for. In 11d, the solution takes the form of a warped product AdS4 ×M3 × S̃4 with 4-form

fields turned on along various directions, see e.g. [26] for details. The S̃4 is a squashed

4-sphere with U(1) isometry which corresponds to U(1) R-symmetry in the field theory.

The explicit construction of the gravity solutions exploits the fact that locally the

hyperbolic 3-manifold M3 looks like H3. However, globally we need to consider the quotient

H3/Γ. We will explain how the group Γ is to be obtained from the construction of the

hyperbolic 3-manifold we use in other sections where we consider closed 3-manifold M3

obtained by a Dehn surgery along a knot K. For the impatient reader we anticipate

that Γ = π1(M3).

The maximally supersymmetric 7d SO(5)-gauged supergravity is a consistent trunca-

tion of 11d supergravity, and in turn it can be again consistently truncated to a 4d N = 2

gauged supergravity via a consistent truncation [51]. The Einstein-graviphoton part of the

action is simply

I =
1

16πG4

∫
d4x
√
−g
(
R+

6

L2
− L2

4
F 2

)
. (2.5)

This is also the universal sector discussed recently in [7] in the context of microscopic

counting of black hole entropy. Here the crucial difference is the embedding into M-theory

and, more precisely, the scaling of Newton’s constant with the number of branes N . In

the action above F is the field strength for U(1) gauge field in AdS4 which couples to the

U(1) R-symmetry in the boundary CFT. The 4d Newton constant G4 after the consistent

truncation is related to N in the following way [26] .

G4/L
2 =

3π2

2N3vol(M3)
. (2.6)
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The standard embedding, or the consistent truncation leading to the above pure N = 2

supergravity Lagrangian can also be obtained in the context of M2 solutions where U(1)R
is realized geometrically as the Reeb vector of Y7, which is a Sasaki-Einstein space so

always written as a U(1) bundle over a Kähler-Einstein 6d space [52]. In the consistent

truncation of [26], however, the U(1)R direction is identified with an unbroken isometry of

the squashed S̃4.

2.2 Twisted partition functions dual to wrapped M5 branes

Let us now discuss the field theory dual of some of the entries in the AdS/CFT dictionary

pertaining to wrapped M5 branes. We are particularly interested in a certain class of

partition functions when the field theory is not placed on the typical R1,2 but on a more

general background. Namely, we are interested in placing the effective 3d field theory on a

circle bundle over a genus−g Riemann surface Σg. The approach to this problem requires

that we preserve supersymmetry on curved backgrounds MνR
p,g. Later, we will restrict our

attention to the case when p ∈ 2Z and νR = 1
2 .

Our goal is to understand the holographic dictionary using twisted partition functions

ZνRg,p [15, 53] which are defined on the curved background Mp,g which denotes a S1-bundle

of degree p over a Riemmann surface Σg of genus g, that is,

S1 p−→Mg,p → Σg . (2.7)

The metric is

ds2 = β2
(
dψ − pa(z, z̄)

)2
+ 2gzz̄dzdz̄ , (2.8)

where z, z̄ are local coordinates on the Riemann surface and ψ ∼ ψ+ 2π parameterizes the

S1-fiber of length β. The 1-form a on Σg has curvature Fa := da normalized as

1

2π

∫
Σg

da = 1 . (2.9)

To preserve some supersymmetries, we turn on the following background gauge field coupled

to U(1) R-symmetry.

AR = βνR(dψ − pa) + nR(π∗a) , (2.10)

with proper quantization conditions for (νR, nR) [54]. Here π∗a is a 1-form on Mg,p given

as the pull-back of a using the projection map π : Mg,p → Σg. Large gauge transforma-

tions relate

(νR, nR) ∼ (νR + 1, nR + p) . (2.11)

For even p, Z2 ⊂ H1(Mg,p,Z2) and we can consider two types of supersymmetric back-

grounds with different choice of spin-structures

p ∈ 2Z : (νR, nR) = (0, g − 1) or

(
1

2
, g − 1 +

p

2

)
. (2.12)
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The νR = 0 corresponds to the usual periodic boundary condition while νR = 1
2 corresponds

to anti-periodic boundary condition under the Z2. For odd p, only the background with

νR = 0 is allowed. When p = 0, the partition functions on the two curved backgrounds

have the following interpretation

ZνR=0
p=0,g = TrH(Σg)(−1)2j3 , ZνR= 1

2
p=0,g = TrH(Σg)(−1)R . (2.13)

Here j3 is the Lorentz spin and R is the charge of U(1) R-symmetry. We focus on the case

p ∈ 2Z≥0 where there are two possible supersymmetric choices of νR, 0 or 1
2 , depending on

spin-structure. We further restrict our consideration to the case νR = 1
2 :

νR =
1

2
, nR =

p

2
+ g − 1 , p ∈ 2Z . (2.14)

For p = 0 case, the partition function determined by this background or boundary condi-

tions counts ground states of the 3d theory on a topologically twisted Riemann surface Σg

with signs.

The twisted partition functions for general N = 2 theory can be written as [15, 53, 55]

ZνRp,g =
∑
α

(HανR)g−1(FανR)p , (2.15)

where α labels vacua of the 3d N = 2 on R2 × S1, called Bethe-vacua, and H and F are

called ‘handle-gluing’ and ‘fibering’ operators, respectively.

2.3 Taub-Bolt solutions in AdS4

According to the standard dictionary of AdS/CFT, the twisted partition functions at lead-

ing order in the 1/N expansion can be holographically computed from the on-shell gravi-

tational action

ZνR= 1
2

p,g (TN [M3]) =
∑
α̂

e−I
gravity
p,g (α̂) . (2.16)

Here α̂ runs over all the large N saddle points of the M-theory which asymptotically

approach the MνR= 1
2

p,g geometry in the AdS4 boundary. In recent work [54], two BPS su-

pergravity solutions called Taub-Bolt solutions (Bolt±) with asymptotic boundaryMνR= 1
2

p∈2Z,g
were constructed. From the computation of the holographically renormalized on-shell su-

pergravity actions for the two solutions, we have

Igravity
p,g (Bolt±) =

π(4(1− g)∓ p)L2

8G4
+ (subleading corrections in G4) ,

=
(4(1− g)∓ p)N3

12π
vol(M3) + (subleading corrections in 1/N) .

(2.17)

For the sub-leading corrections, we need to consider M-theory on the 11d uplifted su-

pergravity background. Assuming that the Bolt+ (and Bolt−) solution gives a dominant

– 6 –
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contribution in the large N limit for p > 0 (p = 0), holography predicts

ZνR= 1
2

p≥0,g (TN [M3])

N→∞−−−−−−−→ exp

(
(4(g − 1) + p)N3

12π
vol(M3) + subleading

)(
1 + e−(...)

)
.

(2.18)

Here e−(...) stands for exponentially suppressed terms at large N .

2.4 Magnetically charged black hole in AdS4

For p = 0, the twisted partition functions have an alternative interpretation on the holo-

graphic dual side. It counts the microstates of a magnetically charged black hole in AdS4

with signs.

The gauged supergravity admits the following 1/2 BPS magnetically charged asymp-

totically AdS4 black hole solution [56–59]

ds2

L2
= −

(
ρ− 1

2ρ

)2

dt2 +
1

(ρ− 1
2ρ)2

dρ2 + ρ2ds2(Σg) ,

F =
1

L2
(volume form on Σg) .

(2.19)

Thanks to the consistent truncation discussed previously, any solution of the 4d action

above can be embedded in 11d in a way that admits an M5 brane interpretation. Note

that this is the starting point of [7], which considered what we call the M2 embedding into

11d supergravity.

We assume g > 1 and ds2(Σg) is a uniform hyperbolic metric on a Riemann surface Σg

of genus g normalized as vol(Σg) = 4π(g− 1). The black hole solution interpolates asymp-

totically AdS4 with conformal boundary Rt × Σg and AdS2 × Σg near-horizon geometry:

AdS4 (ρ =∞)→ AdS2 × Σg

(
ρ =

1√
2

)
(2.20)

The Bekenstein-Hawking entropy of the black hole is

SBH =
Ahorizon

4G4
+ (subleadings) =

2π(g − 1)L2

4G4
+ (subleadings) ,

=
(g − 1)vol(M3)N3

3π
+ (subleadings) .

(2.21)

Ultimately, the entropy should be understood from ‘microstates counting’ of the asymp-

totically AdS4 black hole:

SBH(g,N,M3) = log d(g,N,M3). (2.22)

Via the AdS4/CFT3 correspondence, the number of black hole microstates d(g,N,M3) is

mapped to the number of ground states on Σg in the dual TN [M3].

AdS4/CFT3 : d(g,N,M3) := dR∈2Z(g,N,M3) + dR∈2Z+1(g,N,M3) .

= (the number of ground states of TN [M2] on Σg) .
(2.23)

– 7 –
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3D TN [M3] theory on R2 × S1 PSL(N,C) CS theory on M3

Bethe vacuum α Irreducible flat connection Aα

Fibering operator Fα
νR= 1

2

exp(− 1
2πiS

α
0 ) = exp( 1

4πiCS[Aα;M3])

Handle gluing operator Hα
νR= 1

2

N exp(−2Sα1 ) = N ×Tor
(α)
M3

(τadj, N)

Table 2. A 3d-3d dictionary for basic ingredients in twisted ptns computation. Tor
(α)
M3

(τ,N)

is analytic torsion (Ray-Singer torsion) for an associated vector bundle in a representation τ ∈
Hom[PSL(N,C)→ GL(Vτ )] twisted by a flat connection Aα. The dictionary for the handle gluing

operator works only for M3 with vanishing H1(M3,ZN ).

On the other hand, the twisted partition function for p = 0 computes

ZνR= 1
2

p=0,g = dSUSY(g,N,M3) := dR∈2Z(g,N,M3)− dR∈2Z+1(g,N,M3) . (2.24)

Although there could be huge cancellations between states with R ∈ 2Z and R ∈ 2Z+1, the

twisted index turns out to reproduce the Bekenstein-Hawking entropy of AdS4 black hole

at large N for various models of AdS4/CFT3 [2–7]. It would be interesting to see if they

also match even at finite N . One of the goals of this paper is to explore the microstate

counting beyond the leading order on the field theory side and subsequently perform a

one-loop effective action calculation on the gravity side that leads to the logarithmic in

N term.

3 3d-3d relation for twisted partition functions

In this section, we relate the twisted partition functions ZνR= 1
2

g,p∈2Z(TN [M3]) to simple topo-

logical quantities on the 3-manifold M3 via a 3d-3d relation. The final expression is given

in (3.10). We derive the 3d-3d dictionary using the explicit field theoretic construction

of TN [M3] proposed in [17, 34, 48]. As an non-trivial consistency check, we confirm the

integrality of the topological quantities for the p = 0 case with explicit examples.

The relevant 3d-3d relations are summarized in table 2. The Chern-Simons functional is

CS[A;M3] :=

∫
M3

Tr

(
AdA+

2

3
A3

)
. (3.1)

Extremizing the functional, we have flat-connection equation

dA+A ∧A = 0 . (3.2)

There is a one-to-one correspondence between

{PSL(N,C) flat-connections Aα on M3}/(gauge equivalence)

1−1←−−→ {ρα : ρα ∈ Hom[π1(M3)→ PSL(N,C)]/(conjugation)}.
(3.3)

For N = 2, the gauge PSL(N,C) is identical to the orientation-preserving isometry group

of hyperbolic upper half-plane H3.

Isom+(H3) = PSL(2,C) . (3.4)

– 8 –
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For hyperbolic M3, it is known that there is a discrete and faithful PSL(2,C) representa-

tion ρgeom

ρgeom : discrete and faithful PSL(2,C) representation of π1(M3) . (3.5)

The representation ρgeom above precisely furnishes a geometric construction of the 3-

manifold as M3 = H3/Γ where the group action Γ is identified with

Γ = ρgeom (π1(M3)) ⊂ Isom+(H3) . (3.6)

TorαM3
(τ,N) denotes the analytic torsion [60] of an associated vector bundle for PSL(N,C)

principal bundle over M3 in a representation τ ∈ Hom (PSL(N,C)→ GL(Vτ )),1

Tor
(α)
M3

(τ,N) :=
[det′∆1(τ,Aα)]1/2

[det′∆0(τ,Aα)]3/2
. (3.7)

Here ∆n(τ,Aα) is a Laplacian action on Vτ -valued n-form twisted by a PSL(N,C) flat

connection Aα:

∆n(τ,A) = dA ∗ dA ∗+ ∗ dA ∗ dA , dA = d+A ∧τ . (3.8)

Note that d2
A = 0 for flat connections A. In table 2 τadj denotes the adjoint representation

of PSL(N,C). In the above, det′∆n is the zeta regularized determinant of the Laplacian

∆n. The torsion for adjoint representation, τ = τadj, is related to the one-loop perturbative

correction of PSL(N,C) Chern-Simons theory [62, 63]∫
D(δA)

(gauge)
e−

1
2~CS[Aα+δA;M3]

~→0−−−−−−→ exp

(
1

~
Sα0 + Sα1 + o(~)

)
∝ exp

(
− 1

2~
CS[Aα;M3]

)
1√

TorαM3
(τadj, N)

(
1 + o(~)

)
.

(3.9)

In the expansion, we are sloppy in the subtle overall factor independent on ~ and use the

symbol ‘∝’ instead of ‘=’. Using the relations, we finally have

ZνR= 1
2

p∈2Z,g(TN [M3]) =
∑

α∈χirred(N,M3)

exp

(
p
CS[Aα]

4πi

)
Ng−1

(
Tor

(α)
M3

(τadj, N)
)g−1

,

χirred(N,M3) = {set of irreducible PSL(N,C) flat-connections on M3} ,

(3.10)

for arbitrary closed hyperbolic 3-manifold M3 with vanishing H1(M3,ZN ).

1The torsion here is the inverse of torsion in some mathematical literatures. For example, TorM3(τ) is

1/TM3(τ) in [61].
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3.1 Derivation

Some ingredients of the 3d-3d dictionary were originally studied in [28]. In that work, a

one-to-one correspondence between PSL(N,C) flat connections on M3 and Bethe vacua on

R2 × S1 was found. In the correspondence, the on-shell twisted superpotential of a Bethe

vacuum is identified with the classical PSL(N,C) Chern-Simons action of the corresponding

flat connection. Combined with the fact that TN [M3] does not have any flavor symmetry,

it explains the entry in the dictionary in table 2 for fibering operators modulo a subtle

issue which we now discuss. The issue is whether all flat connections are relevant for the

3d theory TN [M3], or only a subset is enough.

T full
N [M3] versus T DGG

N [M3]: the subtle issue becomes more relevant in 3d-3d corre-

spondence after a concrete and beautiful field theoretic construction, say T DGG
N [N], for

3-manifolds N with torus boundaries was proposed in [17]. The construction is based on

an ideal triangulation of N and thus can not see all the flat connections on N but only sees

irreducible flat connections [39]. The construction has been generalized to the case of closed

3-manifold M3 (without any boundary), say T DGG
N [M3], in [48] by incorporating Dehn fill-

ing operation to the Dimofte-Gaiotto-Gukov’s construction. The construction for closed

3-manifold also can not see reducible flat connections. Taking the absence of reducible flat

connections as a serious problem, it is argued that there should be a better, alternative

field theoretic construction, say T full
N [M3], which contains all the flat connections on M3 as

Bethe vacua on R2 × S1 [39]. Later, concrete field theoretic descriptions of T full
N [M3] for

certain classes of non-hyperbolic 3-manifolds are proposed in [42, 45].2 But, as far as we

are aware of, there is no known concrete example of T full
N [M3] for hyperbolic M3.3 This

is rather surprising and disappointing since most 3-manifolds are hyperbolic [64]. If one

only wishes to see irreducible flat connections, then the 3d theories corresponding to small

hyperbolic 3-manifolds can be easily identified [47]. More recently, the subtle issue was

revisited in [48] where it was argued that for hyperbolic 3-manifolds M3 we do not expect

to see all flat connections from a single 3d effective theory TN [M3]. This is because for gen-

eral hyperbolic 3-manifold, there can be several disconnected components in the vacuum

moduli space on R3 of the 6d twisted compactification along M3. Thus, we need to choose

a single branch in taking the low energy limit and we only see the single branch in the

effective low-dimensional theory. If this argument is correct, the existence of non-trivial su-

perconformal field theory T DGGN [M3] (which only sees irreducible flat connections) implies

2For non-hyperbolic 3-manifolds M3, on the other hand, the corresponding T DGGN [M3] theories are

rather trivial, either mass gapped topological theory (possible with decoupled free chirals) or a theory with

spontaneously broken supersymmetry.
3One tricky example is the case when 3-manifolds are mapping tori over one-punctured torus with N = 2

as studied in [29, 35]. On the 3-manifolds, there exist reducible PSL(2,C) flat-connections only when the

PSL(2,C) holonomy around the puncture is trivial. The eigenvelues of the puncture holonomy is related to

the real mass parameter coupled to a U(1)punt flavor symmetry in the corresponding N = 2 field theory. In

general, only the Bethe-vacua at generic values of real mass parameters of a 3d gauge theory have a definite

physical meaning, i.e. invariance under IR dualities. Ignoring the unphysical reducible flat connections,

there are only irreducible PSL(2,C) flat connections on the 3-manifold and thus T full = T DGG. See the

section 4.1.1 of [18] for the similar story for mapping cylinder case.
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the non-existence of T full
N [M3] for hyperbolic M3.4 According to [48], the T DGGN [M3] for

hyperbolic M3 is proposed to be the 3d effective theory sitting on a vacuum on R3 which

becomes the ‘irreducible’ Bethe-vacua on R2 × S1 in the compactification R → S1. The

proposal has been supported by various independent reasonings, such as the resurgence

analysis [65] and explicit field theoretic checks [48, 66–68] of the symmetry enhancements

of T DGGN [M3] theories, which are geometrically predicted from the proposal. We will as-

sume that the T DGGN [M3] is actually the 3d theory TN [M3] appearing the AdS4/CFT3

correspondence in (2.4) for hyperbolic M3.

Basic assumption : T DGGN [M3] = (TN [M3] in eq. (2.4)) . (3.11)

This assumption has passed large N consistency checks using a squashed 3-sphere partition

function [26]. From now on, we will erase the superscript ‘DGG’ and derive the dictionary

for the handle-gluing operator in table 2 using the explicit field theoretic description.

Sketch of the derivation: the 3d-3d dictionary for handle gluing operators in table 2

follows from direct comparison between localization computation using the explicit field

theoretic construction [17, 34, 48] of TN [M3] and the computation of Tor
(α)
M3

(τadj, N) using

a state-integral model. The comparison can be summarized by following diagram:

M3 =
(⋃k

i=1 ∆i
⋃s
a=1 Sa

)
/ ∼

DGG
��

state-integral model

**
TN [M3]

localization−−−−−−−−→ Hα Tor
(α)
M3

For a given closed hyperbolic 3-manifold, we can decompose it into to basic building blocks,

i.e. ideal tetrahedron ∆ and solid-torus S. The topological gluing datum ∼ encodes the

field theoretic description of TN [M3], and F and H can be computed using the general

localization results. From the gluing datum, on the other hand, state-integral models for

PSL(N,C) Chern-Simons partition function are developed and the perturbative invariants,

4Here, let us speculate on why we can construct T full
N [M3] for non-hyperbolic manifolds studied in [42, 45].

In that cases, the twisted compactification of 6d (2, 0) theory enjoys an additional flavor symmetry, say

U(1)β , due to a Seifert-fibered structure on the 3-manifolds. Thanks to the additional symmetry, we can

introduce a suspersymmetry preserving real mass deformation and the continuous deformation may connect

all the Bethe-vacua on R2 × S1 of the system in a way that the vacua on R3 after the decompactification

has a single component. This might be the reason why we can see all flat-connections from a single

effective 3d gauge theory. In 3d-3d correspondence, partition functions of TN [M3] on squashed Lens spaces

are identified with partition functions of PSL(N,C) Chern-Simons theories on M3 [40]. Reducible flat

connections can not contribute to the complex CS partition functions, since its stabilizer group is non-

compact with infinite volume. This is a crucial difference between Chern-Simons theory with compact and

non-compact gauge group. For non-hyperbolic 3-manifolds considered in [42, 45], one can regularize the

infinite volume by turning on real mass, or fugacity, coupled to U(1)β and can see the contributions from

reducible flat connections after the regularization. See the section 3 of [19] for more explanations on the

point. This is compatible with our speculation that the contributions from reducible flat connections can

be seen in a single effective 3d theory only for 3-manifolds with extra structure which gives an additional

flavor symmetry U(1)β .
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Sα0 and Sα1 in (3.9), can be computed from the state-integral models [34, 44, 69–73]. The

1-loop part Sα1 is simply related to the torsion Tor
(α)
M3

as in (3.9). The comparison is almost

straightforward. Our explanation will focus on two subtle points in the 3d-3d dictionary:

i) the factor N in the hand-gluing operator H and ii) the reason why we assume the

topological condition H1(M3,ZN ) = 0. These subtle issues play important roles in a)

checking integrality of the twisted indices at finite N and b) reproducing correct subleading

logN corrections of twisted indices compatible with supergravity analysis at large N . For

general hyperboilc 3-manifold M3 with non-vanishing H1(M3,ZN ), we know the 3d-3d

dictionary should be modified slightly but it is not clearly exactly how.

Some of previous studies on twisted indices in 3d-3d correspondence can be found in [27,

45, 74]. In particular, in [27], two of the current authors proposed an analogous dictionary

for handle-gluing operator. The derivation there simply follows from the combination of two

known facts, a) a 3d-3d dictionary for perturbative expansions of holomorphic blocks [28,

75] and b) the general relation [53, 76] between the first two terms in the perturbative

expansion and the two operators, FνR=1/2 and HνR=1/2. In the derivation, however, there

are several subtle issues such as i) whether the gauge group of complex Chern-Simons

theory is SL(N,C) or PSL(N,C) and ii) what is the correct N -dependent overall factor

in the perturbative expansion (3.9). These subtle issues are irrelevant in computing large

N leading behavior of the twisted partition functions. Since we are now more interested

in subleading 1/N corrections, we need to be extremely careful in the derivation. So,

we will derive the 3d-3d relation directly from the field theoretic construction of TN [M3]

without relying on indirect relations. From an honest derivation, we clarify two subtle

points mentioned above which were not addressed in [27].

Brief review of the construction of TN [M3]: for simplicity, consider hyperbolic 3-

manifolds obtained by an integral Dehn surgery along a hyperbolic knot K with a slope P .

M3 = (S3\K)Pµ+λ . (3.12)

Refer to appendix A for the notation of surgery representation of 3-manifold. For the field

theoretic description for the TN [M3], we first need to consider the 3d theory TN [S3\K;µ]

associated with the knot complement constructed in [17, 34]. The case when N = 2 was

first studied in [17] based on an ideal triangulation of the knot complement

S3\K =

(
k⋃
i=1

∆i

)
/ ∼ . (3.13)

For an arbitrary hyperbolic knot K, an ideal triangulation of the knot complement S3\K
is available in a computer program SnapPy [77]. In [34, 72], the construction is generalized

to higher N by introducing N -decomposition which replace each ideal tetrahedron ∆ in

the triangulation by 1
6N(N2 − 1) copies of octahedra ♦:

N -decomposition : S3\K =

(
k⋃
i=1

∆i

)
/ ∼ −→

 k⋃
i=1

1
6
N(N2−1)⋃
α=1

♦(α)
i

 / ∼ . (3.14)

– 12 –



J
H
E
P
0
3
(
2
0
2
0
)
1
6
4

The 3d theory constructed from the N -decomposition has an explicit UV field theoretic

description whose gauge group is

U(1)
k
6
N(N2−1) . (3.15)

There are also as many as k
6N(N2 − 1) chiral fields in the theory TN [S3\K,µ] and mixed

Chern-Simons levels of the gauge group and superpotential interactions are determined by

the N -decomposition. The theory has manifest U(1)N−1 flavor symmetry associated to the

torus boundary of the knot complement. In [48], it was argued that the UV symmetry is

enhanced to PSU(N) = SU(N)/ZN in IR.5 The 3d gauge theory associated to the Dehn

filled closed manifold can be simply obtained by gauging the IR PSU(N) flavor symmetry6

TN [M3 = (S3\K)Pµ+λ]

= (Gauging PSU(N) flavor symmetry of TN [S3\K;µ] with additional CS level P ) .

(3.16)

Handle-gluing operator for knot complement theory. Applying the general local-

ization formula to the explicit field theoretic description of TN [S3\K;µ], it is straightfor-

ward to check that

HνR= 1
2
(TN [S3\K;µ]) = det

(
A(~Em) ·∆z′′ +B(~Em) ·∆z−1

)∏
(zi)

f ′′i (z′′i )fi . (3.17)

Here A,B are square matrices of size k
6N(N2−1) and ~f, ~f ′′ are vectors of size k

6N(N2−1).

They are determined by the gluing rule of octahedra in the N -decomposition. In the field

theory side, the matrices determine the mixed Chern-Simons levels among U(1)k
N(N2−1)

6

gauge group and the vectors determine the mixed CS levels between the gauge group and

the background u(1)R gauge field. In the above, we define

∆z′′ := diag
{
z′′1 , . . . , z

′′
kN(N2−1)

6

}
, z′′i := 1− z−1

i ,

∆z−1 := diag
{
z−1

1 , . . . , z−1
kN(N2−1)

6

}
.

(3.18)

Here {zi} are exponentiated complexified holonomy variables along S1 ⊂ R2 × S1 for

u(1)k
N(N2−1)

6 gauge group. The determinant factor comes from the Hessian of the twisted

5The theory T DGGN [S3\K; γ] depends on the choice of primitive boundary 1-cycle γ ∈ H1

(
∂(S3\K),Z

)
.

For generic choice of γ, there is no symmetry enhancement. When γ is chosen such that χirred
(
(S3\K)γ , N

)
is empty, the U(1)N−1 is enhanced to SU(N) (or PSU(N)) if γ is a trivial (or a non-trivial) element in

H1

(
S3\K,Z2

)
= Z2. For γ = µ (meridian) case, χirred

(
(S3\K)γ = S3, N

)
is obviously empty since there

is no irreducible flat connections on S3. Note also that µ is a generator of H1

(
S3\K,Z2

)
.

6The Chern-Simons level for background gauge field coupled to the PSU(N) symmetry of TN [S3\K, γ =

µ] depends on the choice of dual bounday 1-cycle γdual ∈ H1

(
∂(S3\K),Z

)
which intersects γ once. We

choose the γdual as longitude λ. In the gauging, we introduce additional CS interaction of level P in addition

to the CS level determined by the choice of γdual.
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superpotential and remaining products come from the so-called effective dilaton. Bethe

vacua are given as solutions of the following algebraic equations

Bethe equations :
∏(

(−1)fjzj
)Aij((−1)f

′′
j z′′j
)Bij =

{
mi , for 1 ≤ i ≤ N − 1

1 , for i ≥ N
(3.19)

Here {ma}N−1
a=1 are the background S1-holonomies copuled to U(1)N−1 flavor symmetry of

the TN [S3\K;µ] theory. On the 3-manifold side, on the other hand, the {zi} parametrize

the shape of octahedra in the N -decomposition. The above Bethe equations are actually

identical to the gluing equations for the octahedra. For each solution to the gluing equa-

tions, there is a corresponding PSL(N,C) flat connection on S3\K whose holonomy along

the boundary meridian cycle µ is given by

P exp

(
−
∮
µ∈H1(∂(S3\K),Z)

A

)
= exp

(
N−1∑
a=1

Ea logma(~z, ~z
′′)

)
. (3.20)

The ma depends on the choice {Ea} of psu(N) Lie-algebra basis, such that
∑

Ea logma

is kept invariant. Through the Bethe equations in (3.19), the first (N − 1) rows, say

(AN−1, BN−1), of the matrices (A,B) also depend on the choice. Under the basis change
~E1 → ~E2 = g · ~E1 with g ∈ GL(N − 1,R), the matrices AN−1 and BN−1 transform as

AN−1(~E2) = (g−1)T ·AN−1(~E1) ,

BN−1(~E2) = (g−1)T ·BN−1(~E1) .
(3.21)

For the resulting 3d theory to have properly quantized mixed CS levels, the matrices should

be integer valued. Upon the following choice of basis {~Em}, the matrices become integer

valued [72, 78].7∑
a

caEam := − diag {0, c1, c1 + c2, . . . , c1 + . . . cN−1}+ C IN×N ,

C :=
1

N

N−1∑
a=1

(N − a)ca .

(3.22)

In the construction of TN [S3\K,µ], for properly quantized CS levels, we need to use (A,B)

matrices associated to the basis {~Em}. This is the reason why the basis {~Em} appears in

the handle-gluing operator in (3.17). On the other hand, the torsion TorS3\K(τadj, N ;µ)

can be computed using a state-integral model developed in [71, 79] and the result is

TorS3\K(τadj, N ;µ) = det
(
A(~El) ·∆z′′ +B(~El) ·∆z−1

)∏
(zi)

f ′′i (z′′i )fi . (3.23)

7If the first (N − 1) rows of (A,B) matrices are associated to a primitive boundary cycle γ which is a

non-trivial element of H1(S3\K,Z2) = Z2, then the matrices are integer valued when we choose ~E = ~Em.

On the other hand, if the (A,B) are associated to a primitive boundary cycle γ which is a trivial element

in the Z2-homology, then the matrices become integer valued when we choose ~E = ~El. Here the (A,B) are

associated to the boundary 1-cycle µ, see eqn (3.20) and (3.19), which is the generator of the Z2-homology.
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TN [S3\K,µ] on R2 × S1 PSL(N,C) CS theory on S3\K
Bethe equations Octahedral gluing equations in (3.19)

Bethe vacua Irreducible flat connections

On-shell twisted superpotential WνR=1/2 Classical action S0 in (3.9)

S1 holonomy M coupled to flavor PSU(N) PSL(N,C) holonomy along µ

L ' exp
(
∂logMWνR=1/2

)
in (3.35) PSL(N,C) holonomy along λ

HνR=1/2 N ×Tor(τadj;µ)

Table 3. Summary of 3d-3d correspondence for knot complement S3\K.

The adjoint torsion on a knot complement, S3\K, also depends on the choice of primitive

boundary cycle γ ∈ H1

(
∂(S3\K),Z

)
[80]. We denote the torsion as TorS3\K(τadj, N ; γ) to

specify the choice. The above torsion is identical to the handling gluing operator in (3.17)

except the basis change, from ~Em to ~El. The new basis is defined as follows:

N−1∑
a=1

c(a)El
a = diag

{
c(1), c(2) − c(1), . . . , c(N−1) − c(N−2),−c(N−1)

}
. (3.24)

Two basis are related by a linear transformation determined by the Cartan matrix κab
of su(N):

El
a =

N−1∑
b=1

κabEbm , κab := Tr(El
a · El

b) =


2, a = b

−1, |a− b| = 1

0, otherwise

. (3.25)

Two basis are conjugate to each other in the following sense

Tr(Eam · El
b) = δab . (3.26)

The determinant of the Cartan matrix is

det
a,b

(κab) = N . (3.27)

From equations in (3.17), (3.21), (3.23), (3.25) and (3.27), we finally have

HνR= 1
2
(TN [S3\K;µ]) = N ×TorM3(τadj, N ;µ) . (3.28)

To arrive at the 3d-3d dictionary in table 2 for handle gluing operator from (3.28), we

only need to show that the way of handling gluing transforms under the gauging operation

is equal to the transformation of torsion under the Dehn filling, see (3.16). Depending on

whether g.c.d(P,N) = 1 or not, the hand gluing operator transforms slightly differently

under the gauging procedure. Here we only analyze for the simpler case, when g.c.d(P,N) =

1, and will check that the two transformation rules are identical which prove the 3d-3d

dictionary in table 2. On the 3-manifold side, the condition g.c.d(P,N) = 1 is mapped

into the following topological condition

H1(M3 = (S3\K)Pµ+λ,ZN ) = Z|g.c.d(P,N)| = 0 . (3.29)
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This is the technical reason why we assume the topological condition for the simpler 3d-3d

relation. It would be an interesting future work to generalize this analysis to derive the

3d-3d relation for general hyperbolic 3-manifold.

Handle-gluing operator under gauging. Under the PSU(N) gauging with an addi-

tional Chern-Simons level P in (3.17), the handle gluing transform as follows

HνR= 1
2
(TN [M3 = (S3\K)Pµ+λ])

=HνR= 1
2
(TN [S3\K;µ];M)

×
N deta,b ∂logma∂logmb

(
WνR= 1

2
[TN [S3\K];M] + P

2 Tr(logM)2
)

∏
α∈Λ+

adj
(1− α(M)) (1− α(M−1))

,

when g.c.d(P,N) = 1 .

(3.30)

The basic structure of the above formula can be understood from the general localization

result in [53]. However, there are several subtle points in applying the general result to

the PSU(N) gauging case. The subtleties are fixed by requiring to reproduce the known

Verlinde formula for pure Chern-Simons theory when we choose WνR= 1
2

= 0.

Let us explain the expression (3.30) in detail. The matrix M is the complexified holon-

omy of the PSU(N) = SU(N)/ZN along the S1 ⊂ R2 × S1 where ma=1,...,N−1 parametrize

the holonomy in the following way

logM =
N−1∑
a=1

logmaEam := log diag{u1(~m), . . . , uN (~m)} , (3.31)

and {Eam}N−1
a=1 is a basis given in (3.22). Then, WνR= 1

2
[TN [S3\K];M] is the (on-shell)

twisted superpotential of TN [S3\K,µ] in the presence of background holonomy M coupled

to the PSU(N) symmetry. Following standard notation, α ∈ Λ+
adj denotes positive roots

of psu(N) ∏
α∈Λ†adj

(1− α(M))(1− α(M−1)) =
∏
i 6=j

(1− ui(~m)/uj(~m)) . (3.32)

Bethe-vacua are given by solutions of the following equations modulo a quotient by Weyl

group action

[MP · L] = [IN×N ] . (3.33)

Here [M] denotes the equivalence class of the ZN in PSU(N) = SU(N)/ZN

[M] = [eiθM] , θ = 0,
2π

N
, . . . ,

2π(N − 1)

N
, (3.34)

and its conjugate psu(N) matrix L is defined as

logL
(
~̀(~m)

)
=

N−1∑
a=1

log `(a)(~m)El
a

log `(a) := ∂logmaWνR= 1
2
[TN [S3\K];M] ,

(3.35)
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TN [(S3\K)Pµ+λ] on R2 × S1 PSL(N,C) CS theory on (S3\K)Pµ+λ

Gauging PSU(N)P of TN [S3\K;µ] Dehn filling on S3\K with slope P

Bethe equations in (3.33) Gluing equations in (A.15)

Bethe vacua Irreducible flat connections

HνR=1/2 under the gauging in (3.30) Tor(τadj) unde the Dehn filling in (3.40)

Table 4. Gauging/Dehn filling in 3d-3d correspondence. Here we assume g.c.d(P,N) = 1.

where {El
a}N−1
a=1 is a basis given in (3.24). In choosing the Bethe-vacua, we need to choose

solutions of (3.34) which are not fixed points of the Weyl-action

α(M) 6= 0 for all α ∈ Λ+
adj . (3.36)

As a consistency check for the formula, consider a pure N = 2 PSU(N) theory with a

Chern-Simons level k > 0. It corresponds to WνR= 1
2

= 0 and P = k in the formula:8

H(PSU(N)k) =
N deta,b ∂logma∂logmb(

k
2

∑N
i=1(log ui)

2)∏
i 6=j(1− eui/euj )

=
kN−1∏

i 6=j(1− eui/euj )
, (3.37)

ZνR= 1
2

p=0,g (PSU(N)k) =
∑

[Mk]=[IN×N ];ui+1>ui

k(g−1)(N−1)∏
i 6=j(1− eui/euj )g−1

(3.38)

Note that the summation is over {ma}N−1
a=1 satisfying the above constraints modulo M ∼

e
2πin
N M with n = 0, . . . , N − 1. Recall the definition of ui(~m) in (3.31). For the case when

g.c.d(k,N) = 1, the expression is actually equivalent to the following Verlinde formula [81]:

ZνR= 1
2

p=0,g (PSU(N)k) =
(g.c.d(k,N))g

Ng
ZνR= 1

2
p=0,g (SU(N)k) ,

ZνR= 1
2

p=0,g (SU(N)k) =



(
k

2

)g−1 k+1∑
j=1

∣∣∣∣ sin jπk
∣∣∣∣2−2g

, N = 2(
N

k

)g ∑
S⊂{1,...,k};|S|=N

∏
s∈S,t∈Sc

∣∣∣∣2 sinπ
s− t
k

∣∣∣∣g−1

, N ≥ 3

(3.39)

In the expression, we take into account of the 1-loop CS level shift kN=0 + N = kN=2

comming from integrating out the auxiliary massive gaugino in the N = 2 vector multiplet.

Adjoint torsion under Dehn filling. The transformation rule (3.30) of the handle

gluing operator is exactly the same as the way the adjoint torsion transforms under the

8Or one may choose WνR= 1
2

= P1
2

Tr(logM)2 and P = k − P1. The final answer is independent on the

choice of P1 since L(~l) = M(~m)P1 if log `(a) = ∂logma
P1
2

Tr(logM)2. This gives a zero-th order consistency

check for the formulae in (3.30) and (3.33).
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Dehn filling along a slope Pµ+ λ:

TorM=(S3\K)Pµ+λ(τadj, N)

= TorS3\K(τadj, N ;µ)
N deta,b ∂logma∂logmb

(
S0(S3\K;M) + P

2 Tr(logM)2
)∏

i 6=j(1− eui/euj )
.

(3.40)

On the 3-manifold side, S0(S3\K,M) is the classical Chern-Simons action for a flat-

connection on S3\K with boundary PSL(N,C) holonomy M. According to a 3d-3d re-

lation [28], the action is identical to the on-shell twisted superpotential:

S0(S3\K;M) =WνR= 1
2
[TN [S3\K];M] . (3.41)

The matrix L in (3.35) corresponds to the PSL(N,C) holonomy of the flat connection

along the dual boundary 1-cycle γdual, which is chosen as longitude λ. Then, the Bethe

equations in (3.33) corresponds to the conditions that a PSL(N,C) flat connection on

S3\K can be extended to the Dehn filled closed manifold, see (A.15) in appendix A. So

the solutions to the Bethe equations give flat connections on the closed 3-manifold. The

numerator in (3.40) comes from the change of boundary 1-cycle. Under the change of

boundary 1-cycle, in general, the adjoint torsion transforms as follows [82]:

TorS3\K(τadj, N ;Pµ+Qλ)

= TorS3\K(τadj, N ;µ)× det
a,b

(
∂(P logma +Q

∑
c κac log `(c))

∂ logmb

)
,

= TorS3\K(τadj, N ;µ) det

(
P I +Qκ · ∂ log `

∂ logm

)
.

(3.42)

The basis ~El is given in (3.24) and κ is the Cartan matrix of su(N) as defined in (3.25).

Using the following facts

detκ = N, (3.43)

(κ−1)ab = ∂logma∂logmb

(
1

2
Tr(logM)2

)
and log `(a) = ∂logmaS0[S3\K,M],

we verify that

det

(
P I + κ · ∂ log `

∂ logm

)
= N × det

a,b
∂logma∂logmb

(
P

2
Tr(logM)2 + S0[S3\K,M]

)
. (3.44)

The denominator in (3.40) comes from the effect of Dehn filling [80]:

TorM3=(S3\K)Pµ+λ(τadj, N) =
TorS3\K(τadj, N ;Pµ+ λ)∏

i 6=j(1− eui/euj )
. (3.45)

Combining (3.28), (3.30) and (3.40), we finally derive the 3d-3d relation the for handle-

gluing operator in table 2.
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3.2 Consistency check: integrality of twisted indices

Generally, the partition function ZνRp,g for p = 0 should be integer-valued since it counts

the number of ground states of 3d SCFT on Σg with signs. In the expression (3.10), the

integrality of ZνR= 1
2

p=0,g (TN [M3]) is far from obvious. We check the integrality for several

examples below, and naturally we conjecture it is always true. This is a curiosity, and the

integral property of torsion has been already reported in the mathematical literature [83].

One crucial difference is that they consider torsions in the fundamental representation,

while we consider here the adjoint representation.

Example of M3 = (S3\41)5µ+λ and N = 2: the corresponding 3d gauge theory was

proposed in [47]9

TN=2[(S3\41)5µ+λ]

= (N = 2 U(1) vector coupled to a chiral Φ of charge +1 with CS level k = −7/2) .

(3.46)

The Witten index for the theory is [84]

|k|+ 1/2 = 4 . (3.47)

Therefore, there are four Bethe vacua of the theory which are given as solutions to the

following algebraic equation extremizing the twisted superpotential (z := eZ)

exp
(
∂ZWνR= 1

2
(Z)
)

=
1− z
z4

= 1 , WνR= 1
2
(Z) = Li2(e−Z)− 3

2
Z2 + iπZ. (3.48)

The four solutions are

{ẑα}4α=1 = {0.248126− 1.03398i, 0.248126− 1.03398i, −1.22074, 0.724492}. (3.49)

The handle gluing operator is [15, 53]

H(α)

νR= 1
2

=
(1− 1

z )

z

(
∂Z∂ZWνR= 1

2
(Z)
) ∣∣∣∣

z=ẑα

=
4− 3z

z2

∣∣∣∣
z=ẑα

. (3.50)

Their numerical values are{
H(α)

νR= 1
2

for TN=2[M3 = (S3\41)5µ+λ]
}4

α=1

= {−3.81076− 1.13799i, −3.81076 + 1.13799i, 5.14169, 3.47983} .
(3.51)

9In this example, the 3d theory has an additional U(1)top flavor symmetry whose coserved charge counts

monopole charge of the U(1) gauge field. Such an accidental bonus symmetry can appear in TN [M3] theory

only for small N as argued in [48]. In this example, the IR superconformal R-symmetry U(1)R is a mixture

of compact SO(2) R-symmetry originated from 6d SO(5) R-symmetry and the accidental U(1)top. The IR

R-symmetry charge is not properly quantized, hence we can not use it for the topological twisting along

Σg. In this example, we use the SO(2) symmetry for the topological twisting. The 3d-3d relation table 2

works for the twisted index using the SO(2) R-symmetry which is always identical to the IR superconformal

R-symmetry for sufficiently large N .
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Comparing the analytic torsions in (A.23) for four irreducible PSL(2,C) flat-connections

on M3, we confirm the 3d-3d relation for the handle-gluing operator in table 2. Applying

these results to (3.10), we have{
ZνR= 1

2
p=0,g (TN=2[M3 = (S3\41)5µ+λ])

}∞
g=0

=
{

0g=0, 4g=1, 1g=2, 65g=3, 97g=4, 1045g=5, . . .
}
.

(3.52)

Note that these are all integers! Using the explicit formulae in appendix A, one can compute

Tor
(α)
M3=(S3\41)Pµ+Qλ

[τadj, N = 2] for arbitrary (P,Q)s and check that the ZνR= 1
2

p=0,g (TN [M3])

in (3.10) is always integer when the P is odd. The oddness of P is equivalent to the topo-

logical condition of vanishing H1

(
M3 = (S3\41)Pµ+Qλ,Z2

)
. This provides a non-trivial

consistency check for the 3d-3d relation for handle-gluing operator in table 2.

4 Full perturbative 1/N expansion of twisted partition functions

Combining the expression in (3.10) with a mathematical result on asymptotic properties

of the analytic torsion, we determine the full perturbative 1/N corrections to the twisted

partition functions. The final perturbative expression is given in (4.13) and (4.15). See [85]

for previous studies on full perturbative 1/N corrections to the twisted index for different

classes of 3d theories.

4.1 Two dominant Bethe-vacua from the hyperbolic structure

In TN [M3] theory for a hyperbolic M3, there are two special Bethe-vacua which correspond

to two irreducible flat-connections, Ageom
N and Ageom

N , on M3. The flat connections can be

constructed using the unique hyperbolic structure on M3

Ageom
N = τN · (ω + ie) , Ageom

N = τN · (ω − ie) , (4.1)

ω and e are spin-connections and vielbein of the unique hyperbolic metric on M3. They

form two PSL(2,C) irreducible flat-connections ω ± ie, which are lifted to two PSL(N,C)

irreducible flat connections, Ageom
N and Ageom

N , via the N -dimensional irreducible represen-

tation τN of su(2). We define

τm := Sym⊗(m−1)τ2 , τ2 := fundamental representation of su(2) . (4.2)

The flat connection Ageom
N=2 is actually identical to the flat connection ρgeom given in (3.5).

The fibering operators for the Bethe-vacua are

|Fgeom

νR= 1
2

(TN [M3])| =
∣∣∣∣ exp

(
CS[Ageom

N ]

4πi

)∣∣∣∣ = exp

(
− N3 −N

12π
vol(M3)

)
,

|Fgeom

νR= 1
2

(TN [M3])| =
∣∣∣∣ exp

(
CS[Ageom

N ]

4πi

)∣∣∣∣ = exp

(
N3 −N

12π
vol(M3)

)
.

(4.3)
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Refer to [25] for the computation of Chern-Simons functionals for these two flat connections.

Moreover, it is known that∣∣∣∣ exp

(
CS[Ageom

N ]

4πi

)∣∣∣∣ < ∣∣∣∣ exp

(
CS[AαN ]

4πi

)∣∣∣∣ < ∣∣∣∣ exp

(
CS[Ageom

N ]

4πi

)∣∣∣∣ (4.4)

for arbitrary PSL(N,C) flat connection AαN other than the two special irreducible flat

connections.

LargeN expansion of |Hgeom| = |Hgeom|: the two flat-connections are simply related

by complex conjugation and so are their analytic torsions

Tor
(geom)
M3

(τadj, N) = eiθN,M3 |Tor
(geom)
M3

(τadj, N)| ,

Tor
(geom)
M3

(τadj, N) = e−iθN,M3 |Tor
(geom)
M3

(τadj, N)| ,
(4.5)

where eiθN,M3 is a phase factor. From the branching rule

(τadj of su(N)) = ⊕N−1
m=1(τ2m+1 of su(2)) , (4.6)

we can decompose the analytic torsion for PSL(N,C) into products of analytic torsions for

PSL(N = 2,C)

log |Tor
(geom)
M3

(τadj, N)| =
N−1∑
m=1

log |Tor
(geom)
M3

(τ2m+1, N = 2)| . (4.7)

According to [61, 86],

log |Tor
(geom)
M3

(τ2m+1, N = 2)| ,

=
1

π
vol(M3)

(
m2 +m+

1

6

)
+
∑
[γ]

∞∑
k=m+1

log |1− e−k`C(γ)| .
(4.8)

The above expression at large m can be numerically checked up to o(m) terms for many

examples of M3 = (S3\41)Pµ+Qλ using the explicit expression given in appendix A. Com-

bining the branching rule (4.6) and the above mathematical result, we have the following

large N expansion of the adjoint torsion

log |Tor
(geom)
M3

(τadj, N)|

=

N−1∑
m=1

(
1

π
vol(M3)

(
m2 +m+

1

6

)
+
∑
[γ]

∞∑
k=m+1

log |1− e−k`C(γ)|
)
,

=
vol(M3)

6π
(2N3 −N − 1)−Re

∑
[γ]

∞∑
s=1

1

s

((
e−s`C(γ)

1− e−s`C(γ)

)2

−
(
e−

s(N+1)
2

`C(γ)

1− e−s`C(γ)

)2)
.

(4.9)
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Note that the last term is exponentially suppressed at large N . In the formulae above,

[γ] runs over the nontrivial primitive conjugacy classes of π1(M3). The PSL(2,C) flat

connection Ageom
N=2 on M3 gives a homomorphism ρgeom

ρgeom ∈ Hom[π1(M3)→ PSL(2,C)] . (4.10)

The complex length `C of γ is defined by

Trρgeom(γ) = 2 cosh

(
1

2
`C(γ)

)
, Re`C > 0 . (4.11)

4.2 For p > 0

From (3.10) and (4.4), we have following large N expansion of the twisted partition function

with p ∈ 2Z>0 :

ZνR= 1
2

g,p∈2Z>0
(TN [M3]) =

∑
Aα∈χirred(N,M3)

Ng−1 exp

(
p
CS[Aα]

4πi

)
Tor

(α)
M3

(τadj, N)g−1 .

=Ng−1 exp

(
p
CS[Ageom

N ;M3]

4πi

)
Tor

(geom)
M3

(τadj, N)g−1

+ (exponentially smaller corrections when N →∞)

(4.12)

From (4.3) and (4.9), we obtain the following full perturbative 1/N expansion∣∣ZνR= 1
2

g,p∈2Z≥1
(TN [M3])

∣∣
N→∞−−−−−−−→ exp

((
4(g − 1) + p

)
vol(M3)

12π
(N3 −N) +

vol(M3)

6π
(g − 1)(N − 1)

+ (g − 1) logN − (g − 1)Re
∑
[γ]

∞∑
s=1

1

s

e−2s`C(γ) − e−s(N+1)`C(γ)

(1− e−s`C(γ))2

)

×
(

1 + e−(...)
)
. (4.13)

This expression is valid for any closed hyperbolic 3-manifold M3 with trivial H1(M,ZN ).

We denote exponentially suppressed terms at large N terms by e−(...) as above. Note that

the leading term nicely reproduces the gravity free energy (2.17) for AdS-Taub-Bolt+ solu-

tion. Two remarkable properties of the above asymptotic expansion are worth highlighting:

1. The perturbative expanson in 1/N terminates at finite order o(N0).

2. Logarithmic correction to the logZ is (g − 1) logN .

4.3 For p = 0 and g > 1

For p = 0 and g > 1 case, we expect that only two irreducible flat-connections, Ageom
N and

Ageom
N , equally give the most dominant contributions to the twisted index at large N :

ZνR= 1
2

g,p=0 (TN [M3]) =
∑

Aα∈χirred(N,M3)

Ng−1
(
Tor

(α)
M3

(τadj, N)
)g−1

.

=Ng−1
[
(Tor

(geom)
M3

(τadj, N))1−g + (Tor
(geom)
M3

(τadj, N))g−1
]

+ (exponentially smaller corrections when N →∞) .

(4.14)
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From (4.5) and (4.9), we obtain the following simple large N asymptotic expansion

|ZνR= 1
2

g,p=0 (TN [M3])|

N→∞−−−−−−−→ 2 cos
(
(1− g)θN,M3

)
× exp

(
(g − 1)

(
vol(M3)

6π
(2N3 −N − 1) + logN

)
− (g − 1)

(
Re
∑
[γ]

∞∑
s=1

1

s

e−2s`C(γ) − e−s(N+1)`C(γ)

(1− e−s`C(γ))2

))
×
(

1 + e−(...)
)
. (4.15)

Again, this expression is valid for any closed hyperbolic 3-manifold M3 with trivial

H1(M,ZN ). Note that the leading term nicely reproduce the gravity free-energy (2.17) for

AdS-Taub-Bolt solution when p = 0 or equivalently the Bekenstein-Hawking entropy (4.9)

for magnetically charged AdS blackhole [27]. Two remarkable properties of the above

asymptotic expansion are worth singling out:

1. Modulo an overall factor 2 cos
(
(1− g)θN

)
, the 1/N expanson terminates at o(N0).

2. Logarithmic correction to the logZ is (g − 1) logN .

The logarithmic correct will be reproduced from a supergravity analysis.

5 Logarithmic corrections from supergravity

The Bekenstein-Hawking entropy of any black hole is proportional to the area of its event

horizon. This term, however universal, should be viewed as the leading contribution in a

quantum expansion. Studying corrections to the Bekenstein-Hawking entropy is, therefore,

crucial for a quantum understanding of black holes and for clarifying the microscopic

degrees of freedom responsible for the macroscopic entropy. Within all the corrections

that might be present, logarithmic corrections are particularly central because they are

determined by the massless degrees of freedom of the gravitational theory and are fairly

independent of the details of its ultraviolet completion. In the context of asymptotically

flat black holes the computations of logarithmic corrections to the black hole entropy

have convincingly provided an infrared window into ultraviolet physics; in every case the

supergravity (IR) results have perfectly matched the string theory prediction (see, for

example, [87–91] and references therein). Given the recent advances in our understanding

of the microscopic description of certain asymptotically AdS black hole entropy via field

theory localization, it is of paramount importance that we extend those remarkable results

for asymptotically flat black holes to the context of asymptotically AdS black holes. Doing

so will advance the inherent promise of the AdS/CFT correspondence of providing a non-

perturbative path to quantum gravity in asymptotically AdS spacetimes. Indeed, for a

class of black holes some progress has been reported in [23] after preliminary explorations

in [22, 92].

Let us also point out that everything we stated about black holes above applies to other

supergravity backgrounds where we consider instead of the entropy the on-shell action and
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one-loop quantum corrections around the solution. Indeed, an early application matched

the logarithmic in N term in the free energy of a large class of 3d Chern-Simons matter

theory with the one-loop eleven dimensional supergravity computation [93]. Similarly, the

computations we perform apply not only to the extremal, magnetically charged asymp-

totically AdS4 black hole reviewed in section 2 but also to the Taub-Bolt-AdS4 solution

when embedded in eleven dimensional supergravity. We have already matched the leading

part of the on-shell action in section 2 (see also [27]) and in what follows we will match

the coefficient of the logarithmic in N term as computed from the one-loop effective action

to the microscopic answer following from the appropriate partition function computed in

section 4.

Given the wide range of diverse topics covered in this manuscript we provide a brief

review of the main arguments involved in computations of logarithmic corrections to black

hole entropy in the context of 11d supergravity, we refer the reader to some relevant work

including [22, 23, 92, 93] for more details.

In this section we first make a general comment about the nature of logarithmic terms

in one-loop effective actions. We highlight that in odd dimensional spaces only zero modes

and boundary terms can contribute to the logarithmic expression. We make the assumption

that the whole contribution to the one-loop effective action comes from the asymptotic

AdS4 region as was the case in [93] for the AdS4 solution and in [23] for the magnetically

charged asymptotically AdS4 black hole case. This assumption will turn out a posteriori

to lead to the answer which agrees with the field theory expectation. It does, however,

deviates from the standard paradigm where logarithmic corrections are computed using

exclusively the near horizon geometry; we believe that this is a feature of asymptotically

AdS black holes that deserves further scrutiny.

5.1 Robustness of logarithmic terms in one-loop effective actions

To construct the one-loop effective action we integrate, in the path integral, the quadratic

fluctuations around the black hole supergravity background. This process leads to the

computation of determinants of the corresponding operators. For a given kinetic operator

O one naturally defines the logarithm of its determinant as

1

2
ln det′O =

1

2

∑
n

′ lnκn (5.1)

where prime denotes that the sum is over non-vanishing eigenvalues, κn, of O. It is conve-

nient to define the heat Kernel of the operator O formally as

K(τ) = e−τO =
∑
n

e−κnτ | φn〉〈φn | . (5.2)

As emphasized already more than three decades ago in an exquisitely pedagogical

manner by Duff and Toms in [94], the heat kernel contains information on both the non-

zero modes as well as the zero modes. There is a very clear prescription widely utilized by

Sen and collaborators (see for example, [89–91]), which we now review, on how to subtract

the zero mode contribution in the heat kernel.
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Let n0
O be the number of zero modes of the operator O. We can write,

−1

2
ln det′O =

1

2

∫ ∞
ε

dτ

τ

(
TrK(τ)− n0

O
)

(5.3)

where ε is a UV cutoff. At small τ , we can employ the Seeley-De Witt expansion for the

heat kernel which leads to

TrK(τ) =
1

(4π)d/2

∞∑
n=0

τn−d/2
∫
ddx
√
g an(x, x). (5.4)

Since non-zero eigenvalues of a standard Laplace-like operator O scale as L−2, it is natural

to redefine τ̄ = τ/L2. The expression for the determinant of the operator O can be

rewritten as

−1

2
ln det′O =

1

2

∫ ∞
ε/L2

dτ̄

τ̄

( ∞∑
n=0

1

(4π)d/2
τ̄n−d/2 L2n−d

∫
ddx
√
g an(x, x)− n0

O

)
. (5.5)

From the above expression it is clear that the logarithmic contribution to ln det′A comes

only from the term n = d/2,

−1

2
ln det′O =

(
1

(4π)d/2

∫
ddx
√
g ad/2(x, x)− n0

O

)
logL+ . . . . (5.6)

On very general grounds of diffeomorphic invariance, it can be argued that in odd-

dimensional spacetimes, the coefficient ad/2 vanishes [95]. Therefore, the only contribution

to the heat kernel comes from the zero modes in the form n0
O above. Applied to our case,

the one-loop contribution due to 11d supergravity comes from the analysis of zero modes.

The one-loop partition function can then be written schematically as

Z1-loop[β, . . .] =
∑
D

(−1)D
(

1

2
log det′D

)
+ ∆F0, (5.7)

where D stands for kinetic operators corresponding to various fluctuating fields and

(−1)D = −1 for bosons and 1 for fermions. The prime indicates removal of the zero

modes, which are accounted for separately by

∆F0 = log

∫
[dφ]|Dφ=0, (5.8)

where exp(−
∫
ddx
√
gφDφ) = 1. The structure of the logarithmic term is then given by

logZ[β, . . . ] =
∑
{D}

(−1)D(βD − 1)n0
D logL+ ∆FGhost + · · · , (5.9)

where the ghost contributions are treated separately, as in [23, 93], and βD is due to

the integration over zero modes, eq. (5.8), in the path integral, as studied in various

cases of logarithmic contributions to the black hole entropy and the one-loop partition

function [87–89, 93].
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It is worth noting that the coefficient of the logarithmic in L term is independent of

the UV cutoff, ε, and, therefore, independent of the UV details of the theory — this fact

attest to the robustness of the logarithmic corrections to the black hole entropy. Whenever

a microscopic UV theory, which in our case are supersymmetric field theories, presents

us with a prediction for the logarithmic coefficient, we can test if our macroscopic long

distance gravity theory generates the same contribution.

These properties have, in fact, been already exploited in the context of the logarithmic

corrections to BMPV black holes in [90] whose logarithmic contributions come from an

effective five-dimensional supergravity theory. Analogously, the authors of [93] successfully

matched the logarithmic term in the large N expansion of the ABJM free energy on S3

with a gravity computation performed in 11d supergravity which essentially reduced to the

contribution of a two-form zero mode. More recently, a similar approach applied to the

magnetically charged asymptotically AdS4 black holes dual to the topologically twisted

ABJM theory lead to perfect agreement with the field theory [23].

5.2 Zero-mode contributions

As explained in the previous section, the computation of the one-loop effective action in

odd-dimensional spacetimes reduces to a careful treatment of the zero modes of the relevant

operators. When integrating over zero modes for a kinetic operatore D, there is a factor of

L±βD for each zero mode. The total contribution to the partition function from the zero

modes is

L±βD n0
D . (5.10)

In what follows we will discuss the coefficients βD and n0
D closely following arguments

already present in the literature. In particular, we are going to be most concerned with

the effective theory on AdS4 where a complete control of the various zero modes has

been achieved [90, 96]. The zero modes we deal with in asymptotically AdS spacetimes

originate in modes that would have been pure gauge were it not for the fact that the gauge

parameters are not normalizable. It is interesting to note that the mathematical literature

has its idiosyncratic and completely equivalent approach by way of L2 cohomology [97, 98].

We are going to closely follow the presentation of [90] .

Typically, zero modes are associated with certain asymptotic symmetries. For example,

with gauge transformations that do not vanish at infinity. The key idea in determining

βD above in equation (5.10) is to find the right variables of integration and to count the

powers of L that such integration measure contributes when one starts from fields that

would naturally be present in the action.

For example, let Aµ be a vector field in d-dimensional spacetime and gµν be the back-

ground metric which we assume can be written as L2g
(0)
µν ; where L is the radius of curvature

and g
(0)
µν is independent of L. The path integral over Aµ is normalized such that∫

[DAµ] exp

[
−
∫
ddx

√
detg gµν Aµ Aν

]
= 1, (5.11)

i.e. ∫
[DAµ] exp

[
− Ld−2

∫
d3x

√
detg(0) g(0) µν Aµ Aν

]
= 1, (5.12)
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Then, the correctly normalized integration measure will be∏
x,(µ)

D
(
L(d−2)/2 Aµ(x)

)
(5.13)

Gauge fields zero modes are associated with deformations produced by the gauge trans-

formation with non-normalizable parameters δAµ ∝ ∂µΛ(x). Therefore, when integrating

over vector zero modes one has

βA =
d− 2

2
. (5.14)

Similarly we arrive to analogous expressions for various fields. For example, the expression

for gravitons, gravitinos, and p-form fields has been discussed in [90]. Everything we need

has been spelled out clearly in Sen’s copious bibliography on the subject. In particular, we

make heavy use of section 2 of [90]. Here, we will only need the expression for a 3-form

potential as pertains to 11d supergravity. To compute βC3 we assume similar scaling as

before and obtain

βC3 =
d− 6

2
. (5.15)

For ease of visualization of the structure of the one-loop effective action, it is helpful to

consider the dimensional reduction from the 11d supergravity fields to AdS4; we emphasize

that the actual computation takes place in 11d and this is just a convenient book-keeping

device. For the metric fluctuations we essentially have GMN = {hµν , hµn, hmn}, where the

Greeek indices µ, ν are indices on AdS4, the Latin indices m,n, denote directions in seven-

dimensional manifold. The dimensional reduction of the metric leads to: one graviton in

AdS4, seven vector fields and a number of scalars.

The other field of 11d supergravity is the 3-form potential C3. Recall that the general

action for quantizing a p-form Ap requires p generalized ghosts [99, 100]. The gist of

the argument, as succinctly explained in [99], is that when quantizing a p-form, Ap, one

attempts to fix the invariance Ap = dΛp−1. However, the ghost arising by fixing a gauge,

acquires a gauge transformation since it is itself invariant under Λp−1 that are themselves

exact. The prescription is cleverly summarized as — ghosts themselves have ghosts [99].

The combined action for the p-form and its ghosts is given by [100]:

S = −1

2

p∑
j=0

1

(p− j)!
(Ap−j , (∆p−j)

j+1Ap−j), (5.16)

where the standard scalar product of forms is denoted by (·, ·) and ∆p−j is the Hodge

Laplacian. The (p − j)-forms Ap−j is treated as a commuting field if j is even and as an

anticommuting field if j is odd. The contribution to the one-loop effective action is thus

Γ(1)
p = −1

2

p∑
j=0

(−1)j(j + 1) ln det ∆′p−j , (5.17)

where prime indicates removing of the zero modes.

Since we are computing the one-loop effective action in an odd-dimensional space-

time we know that the contribution to the logarithmic term can only come from the zero
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modes. Recall that in AdS2M there is only a M -form zero mode [101]; we are thus inter-

ested in tracking the contribution of the 2-form zero mode present in asymptotically AdS4

backgrounds.

The zero mode contribution, in turn, can only come from 2-form Ap−j=2 which corre-

sponds for p = 3 to j = 1 and leads to the following one-loop contribution

(−1)j(β2 − 1− 1)n0
2 lnL = (2− β2)n0

2 lnL. (5.18)

Given the backgrounds, the 3-form potential of 11d supergravity can be decomposed as

CMNP = {Cµνρ, Cµνp, Cµnp, Cmnp}, where Greek indices are legs on the asymptotic AdS4

space and Latin indices are legs on Y7. Then a 2-form zero mode on the AdS4 part can

contribute if there is a 1-form zero mode on Y7. We will assume for now that such a

one-form zero mode does not exist, that is, b1(Y7) = 0 and proceed; this limitation is in

accordance with the field theory conditions we have encountered. We will return to the

slightly more general case toward the end of the section.

One might wonder if there are contributions arising form the quantization of the gravi-

ton. This problems has been explicitly addressed in, for example, [102] and, given the

gauge invariance, requires the introduction of ghosts fields. In particular, there is a vec-

tor ghost, see equation (3.10) in [102]. However, the form of the operator in this case is

V ∗M (−gMN� − RMN )VN which does not admit zero modes due to background Einstein

space we discuss: RMN ∝ GMN .

5.3 The one-loop effective action and logarithmic correction

The most important ingredient in formulating the answer for the one-loop effective action is

thus the number of two-form zero modes. Although our background is intrinsically eleven-

dimensional, we can exploit the four dimensional point of view described in section 2. Let

us consider, for example the black holes that the action (2.5) admits.

As can be see from equation (2.19), the black hole we are interested in is an extremal

one. It is known that for matters of thermodynamics, it is best to approach the com-

putation of the effective action of the extremal solution through the computation in the

non-extremal branch and then taking the limit to extremality. This prescription has been

discussed in detail in the context of the quantum entropy function [103] and used more

recently in a context similar to the one we consider here [23]. The generic form of the

non-extremal magnetically charged asymptotically AdS4 black hole with arbitrary genus g

horizon topology takes the form

ds2 = −f(r)dt2 +
dr2

g(r)
+ h(r)ds2(Σg), (5.19)

In principle the functions f(r), g(r) and h(r) will depend on the charges.

Let us denote the number of 2-form zero modes of these solution by n0
2. As explained

in [23], n0
2 is the result of a regularized object and can be best understood as the properly

defined in L2 Euler characteristic. An interesting application of such regularized Euler

characteristic was explicitly presented in [104] to elucidate aspects of quantum inequivalence
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in N = 8 gauged supergravity in four dimensions. The number of 2-form zero is

n0
2 = 2(1− g). (5.20)

It is important that this value is independent of the particular charges of the black hole.

Therefore, as long as we approach the extremal solution through this branch we obtain the

same result as for the non-extremal solution. Similarly, our computation applies for the

one-loop quantum effective action of the Taub-Bolt-AdS4 solution discussed in section 2

as it admits the same embedding in eleven dimensional supergravity and has the same

number of 2-form zero modes.

The full contribution to the logarithmic terms of the one-loop effective action is thus

given only by the 2-form zero modes and we have:

logZ1−loop = (2− β2)n0
2 logL = (2− 7/2)2(1− g) logL = −(1− g) logN, (5.21)

where according to the structure of the M5 brane solution we have L3 ∼ N (see table 1).

This result perfectly matches the field theory expectation and constitutes one of the main

results of the manuscript.

Let us further discuss this result and understand its potential generalizations. In

articular, we need to be aware of potential contributions coming from the fact that we are

truly working in an eleven dimensional setup.

Given that the only zero mode in AdS4 is a 2-form and assuming that the solution

is roughly of the form of warped products of AdS4 ×M3 × S̃4 we need to decompose the

kinetic operator along these three subspaces. For the 2-form zero mode of AdS4 to survive

we need to have the corresponding part of the kinetic Laplace-like operator also vanishing.

The number of zero modes depends on the topology of the full space.

Let us now address the crucial role of the compactness of M3. Given that M3 is locally

H3, one might assume naively that M3 = H3. This would imply that the 2-form zero

mode in AdS4 is lifted because there are no zero modes on H3. Given that H3 is simply

connected the De Rham intuition indicates that there might be a zero mode. However,

for a non-compact space, and in the context of L2 cohomology, a constant function is not

L2-normalizable and does not contribute.10 This would imply that there are no zero modes

in the full solution and, therefore, no contribution to the logarithmic term. This gravity

intuition might inform attempts to wrap M5 branes on non-compact hyperbolic spaces, we

do not pursue this direction in this manuscript.

Let us return to M3 compact and admitting a one-form zero mode. We have assumed

that M3 is compact and connected, that is, b0(M3) = 1; similarly we have assume that S̃4

is topologically a 4-sphere and therefore b0(S̃4) = 1 and b4(S̃4) = 1 with all other Betti

numbers for S̃4 vanishing. Depending on the topology of M3 there could also be other

contributions to the coefficient of the logarithmic in N term. For example, if M3 admits

one-form zero modes we could construct a 3-form zero mode which is the wedge product of

the 2-form zero mode on AdS4 and the one-form on M3. This will contribute through the

C3 integration. Let us explicitly compute such contribution. Recall that the expression for

10We thank Wenli Zhao for various clarifications on L2 cohomology.
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βC3 given in equation (5.15) leads to βC3 = 5/2 in d = 11 dimensions. The contribution to

the one-loop effective action following from the master equation (5.7) is:

logZ
∣∣
C3

= (βC3 − 1)n
(0)
C3

logL

=

(
5

2
− 1

)
2(1− g)b1 logL

= 3(1− g)b1 logL

= (1− g)b1 logN, (5.22)

where in the last equality we have again translated from L3 ∼ N according to table 1.

For completeness we note that the one-form zero mode on M3 can not contribute

through the one-form ghost determinants because there are no normalizable 0-form in the

asymptotically AdS4 region. Similarly the 3-form zero mode on M3 can not contribute

through the C3 integration.

The most general expression that we have is, therefore:

logZ1−loop = (g − 1)(1− b1) logN. (5.23)

It would be interesting to relax the b1(M3) = 0 condition on the field theory side and

compare with this gravity prediction for the logarithmic in N term. Alternatively, this

expression can be used as an IR consistency check for would-be UV expressions.

6 Conclusions

In this manuscript we have considered partition functions of 3d field theories denoted by

TN [M3] which are obtained as the low energy limit of N M5 branes wrapping a hyperbolic

3-manifold, M3. By exploiting the connection of the TN [M3] theory with PSL(N,C) Chern-

Simons theory on M3 we were able to produce expressions for the partition functions in the

large N limit including perturbative corrections to all orders in 1/N . This is an important

achievement, especially in comparison with the state of the art of generic computations

of the topologically twisted indices of other 3d field theories arising as the worldvolume

theories of D2 or M2 branes. In those cases the field theory supersymmetric observables are

only obtained at leading order in N [20, 21] or, with some numerical effort, at sub-leading

order [22, 24].

One important sub-leading result obtained in the manuscript is a logarithmic in N

term on the field theory side. On the dual gravity side, the coefficient of the logarithmic

in N term is an IR window into the UV physics as eloquently stated by Sen [89]. In

our case the UV physics of the gravity theory is provided by the field theory. Exploiting

the connection with Chern-Simons and results in the mathematical literature, we now

have an analytic result for the coefficient of the logN contribution. This is a substantial

improvement with respect to previous results in the literature of partition functions for

generic N = 2 supersymmetric field theories in 3d. We have also computed the coefficient

of the logarithmic in N corrections using exclusively the massless degrees of freedom of the

dual eleven dimensional supergravity describing the stack of M5 branes and found precise
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agreement with the field theory result. Using these IR data we have a perfect match with

the UV answer coming from the field theoretic analysis. We have also demonstrated that

the result is rather universal in the sense that it depends on a few topological aspects of

the hyperbolic 3-manifold, M3. We have pointed out that improvements on the field theory

and gravity sides are possible. It would be interesting to better understand the field theory

for arbitrary homology of the 3-manifold M3. In particular, there is a gravity prediction

for hyperbolic 3-manifolds of an arbitrary first Betti number b1. The gravity side of the

computation is easily extendable to more general cases and we expect more stringent tests

to take place in the future.

Given the nature of the field theory answer, it would be quite interesting to understand

other terms in the 1/N expansion from the gravitational point of view. In particular, it

would be quite interesting to provide a Wald entropy interpretation for various terms in

the expansion of the topologically twisted index, see [105, 106] for recent developments in

understanding the quantum entropy function from AdS gravity side.

Recall that in the context of the AdS/CFT correspondence the field theory provides the

exact answer via the index to the gravity question of quantum entropy. Through AdS/CFT

this amounts to having the UV complete answer to the question of microstates counting

on the gravity side. Understanding the structure of the indices in 3d supersymmetric field

theory more broadly thus corresponds to uncovering the precise structure of the underlying

string theory. Let us elaborate on this possibility of high precision holography where the

field theory is providing the analog of the full string theory partition function as was

the case in [107]. One ultimate goal of the program we pursue here is to achieve a full

understanding of the asymptotic form of the partition function; similar to certain dyonic

states in string theory [108, 109] where it was demonstrated that the quantum corrected

macroscopic entropy agrees precisely with the microscopic counting for an infinite tower

of fundamental string states to all orders in an asymptotic expansion. In our case we

were aided by the relation to Chern-Simons theory for which there are many results in the

mathematical literature which we can re-direct to our purpose. It would be interesting to

pursue this program for more general N = 2 superconformal field theories.

The non-trivial issue of integrality which was crucial in previous approaches has been

addressed here with explicit examples. We hope to understand this aspect in a more general

and formal manner, although the evidence for it is convincing enough. The number of states

(quantum entropy) log d(Qi, Pi) should be related to an integer number of states. In the

derivation of the 3d-3d relation in table 2, we use a field theoretic construction of the 3d

field theory TN [M3]. It would be interesting to derive the relation directly from the 6d

definition of the TN [M3] as done in [36–38] for other supersymmetric partition functions.

We leave some of these questions for future research.
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Figure 1. Figure-eight knot, K = 41.
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A Analytic torsions on M3 = (S3\41)Pµ+Qλ

In this appendix we give an explicit expression for the analytic torsion TαM3
(τ2n+1, N = 2)

for 3-maniofolds M3 = (S3\41)Pµ+Qλ obtained from Dehn surgeries along a ‘figure-eight’

knot (41). Refer to, for example, to [71, 80, 110] for recent mathematical developments on

the topic.

Closed 3-manifold from surgery along a knot K: one systematic way of construct-

ing closed 3-manifolds is using Dehn surgery along a knot K in 3-sphere S3. The Dehn

surgery can be done in two steps, drilling and filling. First, we remove a tubular neighbor-

hood of the knot K and create a 3-manifold S3\K called knot complement:

Drilling : S3\K := S3 − (Tubular neighborhood of a knot K) . (A.1)

The 3-manifold has a single torus boundary, which corresponds to the boundary of removed

tubular neighborhood of the knot.

H1

(
∂(S3\41),Z

)
= H1(T2,Z) = Z× Z = 〈µ, λ〉 (A.2)

There is a canonical basis of boundary 1-cycles called meridian (µ) and longitude (λ). µ is

the generator of H1(S3\K,Z) while λ is a trivial element in the homology.

H1(S3\K,Z) = Z = 〈µ〉 ,
λ is a trivial element in H1(S3\K,Z) .

(A.3)

As the last step, we glue back to the removed solid-torus in a way that the boundary cycle

pµ + qλ is glued to the shrinking cycle of the solid-torus. The procedure is called Dehn

filling and the resulting closed 3-manifold will be denoted as (S3\K)Pµ+Qλ:

Dehn filling : (S3\K)Pµ+Qλ =
(
(S3\K) ∪ (solid-torus)

)
/ ∼ ,

(Pµ+Qλ) ∼ (shrinkable boundary 1-cycle of solid-torus) .
(A.4)
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Fundamental group π1(M3): the fundamental group of the figure-eight knot comple-

ment S3\41 is

π1(S3\41) = 〈a, b : ab−1a−1ba = bab−1a−1b〉 . (A.5)

Its peripheral subgroup is

π1(∂(S3\41)) = Z× Z = 〈m := a, l := ab−1aba−2bab−1a−1〉 ⊂ π1(S3\41) . (A.6)

There is an isomorphism between π1

(
∂(S3\41)

)
and H1

(
∂(S3\41),Z

)
:

mP lQ ↔ Pµ+Qλ . (A.7)

The fundamental group of a closed 3-manifold M3 = (S3\41)Pµ+Qλ (P,Q are co-prime

integers) is

π1(M3) = {mP lQ = aP (ab−1aba−2bab−1a−1)Q = 1} ∩ π1(S3\41) . (A.8)

The closed manifold is always hyperbolic except for the following 10 choices of (P,Q)’s,

which are called exceptional slopes

(P,Q) = (0, 1), (1, 0), (±1, 1), (±2, 1), (±3, 1), (±4, 1) . (A.9)

First homology of M3 = (S3\K)Pµ+Qλ is

H1(M3,Z) = Z|P | . (A.10)

χirred(N = 2,M3) from solving gluing equations: the figure-eight knot complement

can be triangulated using two ideal tetrahedra [64]. The gluing equations for the ideal

triangulation are followings [71]

Gluing equation I : ziz
′
iz
′′
i = −1 , z−1

i + z′′i − 1 = 0 , z2
1z

2
2z
′′
1z
′′
2 = 1 , (A.11)

Solutions to the gluing equations give irreducible PSL(2,C) = PGL(2,C) = GL(2,C)/C∗

flat connections on the knot complement with the following holonomy matrices

M := A := P exp

(
−
∮
a
A
)

=

[( z2
z1

+ 1
z′2
− z2
z1

− 1
z1z′2

+ 1
z′2

1
z1z′2

)]
∼conj

[(
1 0

∗ m

)]
,

B := P exp

(
−
∮
b
A
)

=

[(
1 0

1− 1
z2

z′1
z2

)]
,

L := A ·B−1 ·A ·B ·A−2 ·B ·A ·B−1 ·A−1 = P exp

(
−
∮
l
A
)
∼conj

[(
`−1 0

∗ `

)]
,

where

m = −z1z2z
′′
1 , ` =

1

z2
1z
′′
1

. (A.12)
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In the above, [A] denotes the equivalence class of a 2 × 2 matrix A under the C∗ = C\{0}
action

[A] = [tA] for t ∈ C∗ . (A.13)

Through the gluing equations in (A.11), the m and ` are constrained by the following

algebraic equation

A41
poly(m, `) = 2 + `+

1

`
−m2 +m+

1

m
− 1

m2
= 0 . (A.14)

The polynomial is called A-polynomial of figure-eight knot. To obtain flat connections on

M3 = (S3\41)pµ+qλ, we additionally impose the following conditions after having imposed

gluing conditions in (A.11)

Gluing equation II : [MP · LQ] = [I] . (A.15)

Let (ẑi, ẑ
′
i, ẑ
′′
i )α be solutions for the gluing equations in (A.11) and (A.15). The number of

solutions is finite and the each solution give

ρα ∈ Hom[π1(M3)→ PSL(2,C)] , where

ρα(a) = A|(zi,z′i,z′′i )=(ẑi,ẑ′i,ẑ
′′
i )α , ρα(b) = B|(zi,z′i,z′′i )=(ẑi,ẑ′i,ẑ

′′
i )α .

(A.16)

Not all solutions give different irreducible flat-connections and we need to further quotient

by conjugation

χirred(N = 2,M3) ⊂ Hom[π1(M3)→ PSL(2,C)]/(conj)

= {ρα : (ẑi, ẑ
′
i, ẑ
′′
i )α is a solution of gluing equations in (A.11) and (A.15)

}
/(conj) .

(A.17)

Tor
(α)
M3

[τadj, N = 2] from state-integral model: the analytic torsion TorS3\41
[τadj, N ;

Pµ+Qλ] depends on the choice of a primitive boundary 1-cycle, Pµ+Qλ with co-primes

(P,Q). The torsion for N = 2 can be computed as [71]

TorS3\41
[τadj, N = 2;Pµ+Qλ]

= det

[(
2 2

P
2 − 2Q P

2

)(
z′′1 0

0 z′′2

)
+

(
1 1

P
2 −Q 0

)(
1/z1 0

0 1/z2

)]
z1z2 .

(A.18)

Using the formula in (3.45), the torsion Tor
(α)
M3

[τadj, N = 2] for a flat-connection ρα ∈
χirred(N = 2,M3) on the Dehn filled closed 3-manifold M3 = (S3\41)Pµ+Qλ is given by

Tor
(α)
M3

[τadj, N = 2] =
Tor

(α)
S3\41

[τadj, N = 2;Pµ+Qλ](
1− (mα)R(lα)2S

)(
1− (mα)−R(lα)−2S

) . (A.19)

Here integers (R,S) are chosen such that(
P Q

R S

)
∈ SL(2,Z) . (A.20)
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The choice is not unique but can be shifted as follows:

(R,S)→ (R,S) + Z(P,Q) . (A.21)

Note that the torsion in (A.19) is invariant under the shift due to the gluing equations

in (A.15).

Example: M3 = (S3\41)5µ+λ. The are 4 PSL(2,C) flat-connections, ρα=1,...,4, in

χirred(N = 2,M3). Giving numerical expressions of the flat connections

α = 1 , (z1, z2) = (0.169304 + 2.39229i, 0.80957 + 0.0692817i) ,

ρ(a) =

(
1.61306 − 0.169296i −1.02826 + 0.548774i

0.409747 + 0.61154i 0.175049 − 0.232062i

)
,

ρ(b) =

(
1.20331 − 0.780836i 0.

−0.1903 + 0.302934i 0.584796 + 0.379478i

)
,

α = 2 , (z1, z2) = (0.169304 − 2.39229i, 0.80957 − 0.0692817i) ,

ρ(a) =

(
1.61306 + 0.169296i −1.02826− 0.548774i

0.409747 − 0.61154i 0.175049 + 0.232062i

)
,

ρ(b) =

(
1.20331 + 0.780836i 0.

−0.1903− 0.302934i 0.584796 − 0.379478i

)
,

α = 3 , (z1, z2) = (−0.544322− 0.324476i,−0.544322 + 0.324476i) ,

ρ(a) =

(
−0.245108− 1.46992i 0.409586 + 0.48354i

−0.409586− 2.4563i 0.574064 + 1.46992i

)
,

ρ(b) =

(
0.164478 + 0.986381i 0.

−0.409586 + 2.4563i 0.164478 − 0.986381i

)
,

α = 4 , (z1, z2) = (0.0654485 + 0.807157i, 0.0654485 − 0.807157i) ,

ρ(a) =

(
0.237556 − 0.468055i −0.690139− 0.423667i

0.690139 − 1.35978i −1.14272 + 0.468055i

)
,

ρ(b) =

(
−0.452583 + 0.891722i 0.

0.690139 + 1.35978i −0.452583− 0.891722i

)
. (A.22)

The α = 1 and α = 2 corresponds to α = (geom) and α = (geom) respectively. The analytic

torsion for these flat-connections can be computed using equations in (A.18) and (A.19):

Tor
(α)
M3

[τadj, N = 2]

= {−1.905381− 0.568995i, −1.905381 + 0.568995i, 2.570846, 1.739916} .
(A.23)

TorM3[τ2n+1, N = 2] from Fox calculus: according to the Cheeger-Muller theorem,

the analytic Ray-singer torsion is actually equivalent to the Reidemeister torsion. The Rei-

demeister torsion is a purely combinatorial invariant and the quantity on knot complement
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can be computed from Fox differential calculus on its fundamental group. For example,

the torsion Tor
(α)
S3\41

[τ2n+1, N ;λ] can be given as [110].

∆(τ2n+1; ρα) =
det
(
I2n+1 − t−1AnB

−1
n A−1

n +AnB
−1
n A−1

n Bn − tBn +BnAnB
−1
n A−1

n

)
det(tI2n+1 −Bn)

,

An := τ2n+1(ρα(a)) ,

Bn := τ2n+1(ρα(b)) ,

Tor
(α)
S3\41

[τ2n+1, N = 2;λ] = lim
t→1

∆(τ2n+1, t; ρα)

t− 1
. (A.24)

Then, the torsion with respect to the general primitive boundary 1-cycle, Pµ+Qλ, is given

by the following transformation rule [80]

Tor
(α)
S3\41

[τ2n+1, N = 2;Pµ+Qλ] ,

=
∂(P2 logmα +Q log `α)

∂ log `α
Tor

(α)
S3\41

[τ2n+1, N = 2;λ] ,

=

(
−P

2

`∂`A
41
poly(m, `)

m∂mA
41
poly(m, `)

∣∣∣∣
m=mα,`=`α

+Q

)
Tor

(α)
S3\41

[τ2n+1, N = 2;λ] ,

=

(
P

(`α − 1
` α

)m2
α

(m2
α − 1)(4− 2mα + 4m2

α)
+Q

)
Tor

(α)
S3\41

[τ2n+1, N = 2;λ] .

(A.25)

Using the transformation rule of torsion under the Dehn filling [80], we finally have

Tor
(α)
M3=(S3\41)Pµ+Qλ

[τ2n+1, N = 2] =
Tor

(α)
S3\41

[τ2n+1, N = 2;Pµ+Qλ]∏n
a=1

(
1− (mα)aR(lα)2aS

)(
1− (mα)−aR(lα)−2aS

) .
(A.26)

Example: M3 = (S3\41)5µ+λ. Using the above formule in (A.22), (A.24), (A.25)

and (A.26), we can compute the torsions and their numerical values are{
log |Torgeom

M3
[τ2n+1, N = 2]|

}∞
n=1

= {0.6873, 1.5033, 3.3932, 5.8423, 8.9316, 12.777, 17.120,

22.108, 27.740, 33.983, 40.856, 48.354, 56.475, 65.222, . . .}

(A.27)

This series shows the expected asymptotic behavior in (4.8){
log |Torgeom

M3
[τ2n+1, N = 2]| − (n2 + n)

π
vol(M3)

}∞
n=1

=
{

0.0626,−0.3708,−0.3552,−0.4052,−0.4397,−0.3424,−0.3732,

− 0.3826,−0.3741,−0.3784,−0.3780,−0.3762,−0.3772,−0.3773, . . .
} (A.28)

The hyperbolic volume of the 3-manifold is [77]

vol(M3) = 0.98136882889 . . . . (A.29)
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According to (4.8), the above series is expected to approach to a constant given by

log |TorM3(N = 1)| −
∑
[γ]

∞∑
k=1

log |1− e−k`C(γ)|

= |Torgeom
M3

[τ5, N = 2]| − 6

π
vol(M3)−

∑
[γ]

∞∑
k=3

log |1− e−k`C(γ)|

= −0.3708−
∑
[γ]

∞∑
k=3

log |1− e−k`C(γ)| .

(A.30)
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