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1 Introduction

The properties of a medium with acceleration and vorticity are controlled by fundamental

laws that arise at the quantum-field level [1–6]. Various quantum-field effects associated

with acceleration and vorticity have been discovered: the chiral vortical effect (CVE) [1–5],

the Unruh effect [6], phase transitions due to rotation [7] and acceleration [8–10] of the

medium. These effects are now also the subject of an experimental search in heavy ion

collisions and quark-gluon plasma, in particular, vorticity, or more precisely the thermal

vorticity tensor, can lead to polarization of hadrons [11–14], and acceleration is considered

as a possible source of thermalization and hadronization [15, 16].

A remarkable observation is that these effects allow to show the duality of various the-

oretical approaches. An example is the CVE, which can be obtained in the framework of
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different statistical approaches [17–21], using the hydrodynamic approach with the quan-

tum axial anomaly [2], in the framework of an effective field theory [4], on the basis of the

gravitational anomaly [5]. Another example is the chiral magnetic effect [4, 22].

In this paper, we focus on another well-known effect related to the motion of a medium

such as the Unruh effect [6]. According to this effect, the accelerated observer perceives the

Minkowski vacuum as a medium with a temperature TU , proportional to the acceleration

modulus |a|

TU =
|a|
2π

. (1.1)

This temperature is known as Unruh temperature.

In recent years, a fundamental theoretical approach has been developed that allows

one to study the effects associated with acceleration. It is based on the Zubarev quantum

statistical density operator [17, 18, 23–26]. Acceleration-related effects can be obtained

by calculating quantum corrections to the mean values of the observed quantities in the

inertial system described by the Minkowski metric. Thus, in particular, corrections up to

the fourth order in acceleration to the energy-momentum tensor of Dirac field [16, 27], as

up to the second order for scalar field [17, 18, 26] were calculated.

The mean values calculated in this way correspond to the normalization at which the

contribution corresponding to the Minkowski vacuum is subtracted. Thus, it becomes

possible to verify the Unruh effect from the point of view of quantum statistical mechanics.

Indeed, this effect should lead to a situation where the mean values vanish at the proper

temperature equal to the Unruh temperature: so the Minkowski vacuum corresponds to

an accelerated medium with Unruh temperature [28–31].

Some results in this direction have already been obtained: in particular, the Unruh

effect in this way was shown for the massless Dirac field [16, 27], for which it was necessary to

calculate fourth-order corrections in acceleration. In addition, a new effect was discovered

related to the instability at Unruh temperature [16, 28].

In this paper, we test the statement about the Unruh effect in a statistical approach

for a wider class of theories and show that it is general. We calculated the corrections

to the energy-momentum tensor of the real and complex free massless scalar fields, as

well as the quadratic mass corrections for scalar and Dirac fields. We show that in all

investigated cases the calculated coefficients exactly satisfy the condition of vanishing at

Unruh temperature. Thus, we conclude that the effect previously shown in [27] is universal.

Despite the fact that the final conclusion about the Unruh effect is the same for fermions

and scalar fields, the quantum corrections themselves have a different structure. If for

fermions the fourth-order terms turned out to be finite, then for scalar fields these terms

contain infrared divergences. We show that the appearance of infrared divergences in higher

orders of perturbation theory follows from the general structure of the correlator, related

to the coefficient of the n-th order. We discuss the connection of infrared divergences with

Matsubara zero modes and substantiate the procedure for their regularization.

An amazing observation that we make is the emergence of conical geometry in the

Zubarev statistical approach. This conclusion is based on the fact that the calculated
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quantum corrections exactly correspond to the results obtained in the framework of quan-

tum field theory in a space with a conical singularity [29, 30, 32–35]. The emergence of

conical geometry in the statistical approach was first noted by us and discussed in the case

of massless fermions in [16]. In this paper, we show that this is a general phenomenon,

which is also true for massless scalar fields and for massive scalar and Dirac fields.

In particular, this duality of two approaches to describing the thermodynamics of

an accelerated medium — statistical one, with the Zubarev operator, and geometrical

approach with a conical singularity — allows one to obtain effects for an accelerated medium

from the point of view of an inertial observer, using the available results for cosmic strings

and vice versa [30].

The revealed duality also allows us to make a number of valuable statements regarding

the statistical approach. First, in the conical singularity approach, the polynomiality of

the energy-momentum tensor and the absence of higher-order corrections in acceleration

can be explicitly demonstrated. Accordingly, we predict, on the basis of the duality, the

absence of such corrections in the statistical approach. We have verified this statement

directly in a particular case when calculating acceleration corrections for massive fields.

In addition, we get additional confirmation of the possibility of using the method of

regularization of infrared divergences.

The paper has the following structure. In section 2, we discuss the possibility of

describing an accelerated medium from the point of view of two different approaches,

statistical and geometrical, based on field theory in conical space, and also discuss some

aspects related to the discovered duality between them. Section 3 provides calculation

of quantum corrections of the fourth-order in acceleration to energy-momentum tensor of

real scalar field in the massless case and in the quadratic order in mass. It is shown that

when calculating acceleration corrections, infrared divergences arise and the procedure for

their regularization is described. In the section 4 we give similar results for complex scalar

field. Section 5 contains earlier results for massless fermions, as well as the calculation of

quadratic mass corrections for massive Dirac field. Section 6 discusses the emergence of

conical geometry in the Zubarev statistical approach. In the section 7 we establish the

need for perturbative consideration of the effects of mass. Section 8 is devoted to various

aspects of infrared divergences: their relationship with Matsubara zero modes, the need

for summation in the massive case and the possibility of subtraction in the massless one.

In the section 9 generalizing remarks about the observed universality of the Unruh effect

in the statistical approach are made, and the consequences from the duality are discussed.

In the section 10 conclusions are given.

2 Overview of the duality between quantum-statistical and field-theo-

retical approaches

There exist two different approaches to evaluate various matrix elements, in equilibrium

as functions of temperature T , chemical potential µ, vorticity ωµ, acceleration aµ. In the

first approach the central role is played by Zubarev density operator ρ̂ [17, 23, 24]

ρ̂ =
1

Z
exp

(
−βµP̂µ +

1

2
$µν Ĵ

µν
x + ξQ̂

)
, (2.1)

– 3 –



J
H
E
P
0
3
(
2
0
2
0
)
1
3
7

where βµ = uµ/T and uµ is the 4-velocity of an element of the medium, P̂µ is the operator

of the 4-momentum, Ĵµνx are the generators of the Lorentz transformations, shifted by

vector xµ, Q̂ is the charge operator conjugated with the chemical potantial µ. Moreover

$µν =
1

2

(
∂νβµ − ∂µβν

)
, (2.2)

denotes the thermal vorticity. In the hydrodynamic setup, the operator Ĵµν and tensor

$µν in eq. (2.1) can be decomposed as

Ĵµν = uµK̂ν − uνK̂µ − εµνρσuρĴσ ,
$µν = αµuν − ανuµ − εµναβuαwβ , (2.3)

where K̂µ is the boost operator and Ĵµ is the angular momentum, and vectors wµ and

αµ are related to the usual vorticity and acceleration by the relations wµ = ωµ/T and

αµ = aµ/T in the state of global equilibrium.

Note that in many cases, see, e.g., textbook [36] the term containing the boost operator

is not included into the density operator ρ̂. The main advantage and motivation to still

use eq. (2.1) is that it is explicitly Lorentz-covariant, see, in particular [28]. Note that

inclusion of the boost operator makes explicit calculations of the statistical averages much

more involved since the boost operator does not commute with the Hamiltonian.

Statistically averaged matrix elements can be calculated perturbatively, by expanding

the density operator in aµ, ωµ and are expressed through the integrals over the momentum

d3p with the weight function representing the Bose or Fermi distribution, depending on

the spin of the fields. In this way one evaluates one-loop effects perturbatively within the

statistical approach. It is worth emphasizing that the expansion in acceleration of the

equilibrium matrix elements is a novel technique elaborated only recently [28]. The most

advanced explicit example of such calculations at the moment is provided by the evaluation

of terms of fourth order in acceleration in expansion of the energy-momentum tensor [37].

The other approach can be called geometrical, or field theoretical. It has been elabo-

rated not in all the generality but only in some particular cases. The most interesting case

is µ, ω = 0, a 6= 0. It is well known that for an accelerated observer there exists a horizon.

In other words, the relevant space-time has a boundary. In the Euclidean version, the

temperature also acquires a geometrical meaning. Namely, the Euclidean time coordinate

is compact and the length of the corresponding circle is the inverse temperature. Qualita-

tively, these simple observations alone allow for a geometrical treatment of the effects of

acceleration,

Quantitatively, to accommodate temperature and acceleration as independent param-

eters one considers the Rindler space with a conical singularity. Introduce first Rindler

space with Minkowskian signature

ds2 = − r2dη2 + dr2 + dx2
⊥ , (2.4)

where η = γλ, x = r cosh η, t = r sinh η, dx2
⊥ = dy2 + dz2 and γ = const. The proper

acceleration |a| =
√−aµaµ and the proper time of accelerated observer can be expressed

– 4 –



J
H
E
P
0
3
(
2
0
2
0
)
1
3
7

in terms of the variables λ and r

|a| = r−1, τ = γrλ . (2.5)

At finite temperature, the proper time τ is to be made imaginary and periodic in the

inverse proper temperature T−1. Thus, the metric (2.5) takes the form

ds2 = r2dη2 + dr2 + dx2
⊥ . (2.6)

The space (2.6) describes a flat two-dimensional cone with angular deficit 2π− |a|/T (plus

a factorized transverse 2d Euclidean space). Further details (and a picture) can be found

in [16].

Now, by expanding in modes one can evaluate energy density ρ ≡ 〈T 0
0 〉 associated with

various quantum fields living on the space (2.6). For massless particles of spin 1/2 the

result is [30]

ρs=1/2 =
7ν4

960π2r4
+

ν2

96π2r4
− 17

960π2r4
, (2.7)

where ν = 2πTr. Since r = 1/|a|, eq. (2.7) allows to unambiguously fix the energy

density, associated with quantum massless field of spin 1/2 as function of temperature and

acceleration.

Thus, knowing the eq. (2.7) one could have predicted in advance the corresponding

statistical one-loop average of the operator T̂ 0
0 evaluated along the lines discussed above.

There is a word of caution, however. There are two different field theories behind deriva-

tion of eq. (2.7) and the statistical perturbation theory. Any field-theoretic calculation

might suffer uncertainties due to divergences. Moreover, eq. (2.7) is derived within so to

say fundamental field theory (on a nontrivial manifold) which is valid in ultraviolet. The

statistical perturbation theory deals with effective interaction introduced within thermody-

namical approach rather on a macroscopical scale, or in the infrared. Thus, the structure

of divergences (if any) could be very different. Moreover, there are specific features of the

two theories which might make the comparison of the results difficult. In particular, the

first term in the r.h.s. of eq. (2.7) represents the pure thermal energy, and is fixed by the

Stephan-Boltzmann law. However, the last term in the r.h.s. of eq. (2.7) represents the

pure quantum Casimir effect due to existence of the boundary, or horizon on the Rindler

space. The statistical approach weighs all the types of energy with the 1/T factor and, in

this sense, deals with various types of thermal contributions.

Within the statistical approach ρs=1/2(a, T ) has been evaluated perturbatively, see [16]

and references therein, up to the fourth order in acceleration. The result coincides with (2.7)

exactly. Since the statistical approach is formulated in Minkowski space and reproduces

the Casimir energy due to the Rindler horizon, one could even talk about the horizon as

an emergent notion.

In any case, duality in description of ρs=1/2(a, T ) has been established without any

adjustment of parameters, or else. Within the statistical approach the equilibrium energy

is understood as energy of real particles in the state with maximal entropy. While within

the field-theoretic approach the energy is a sum of the lowest energy levels of quantum

oscillators, (1/2)ωn, and is associated with virtual particles living on a non-trivial manifold.
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Although the coincidence of the results is impressive by itself, there are a few subtle

points to be mentioned. First, turn to the structure of divergences. The original expres-

sion for the Rindler vacuum energy (2.7) is ultraviolet divergent and it is rendered finite by

subtracting the Minkowski expression, see [30]. Since the Minkowski vacuum is character-

ized by TU = |a|/2π one can say that the vanishing of the r.h.s. of eq. (2.7) at the Unruh

temperature is imposed through a subtraction. There is no need for such a subtraction in

case of the statistical approach, see [37].

It is worth also emphasizing that the eq. (2.7) is valid only at T ≥ TU . This is obvious

in the geometric language, since the angular deficit cannot be negative. On the other hand,

if one concentrates on the statistical perturbation theory in Minkowski space there is no

such a limitation. Moreover, we are confronted with another question. Namely, eq. (2.7)

makes it explicit that there are only three terms, of order |a|0, |a|2, |a|4 in the expression

for the Rindler vacuum energy. Explicit evaluation of such terms within the statistical

perturbation theory does reproduce eq. (2.7), for details see [37] and references therein. It

remains unclear, however, why higher terms in the ratio |a|2/T 2 are not in fact present.

Both problems have been resolved through working out a non-perturbative expression

for ρs=1/2 within the statistical approach. Namely, the following integral representation

was proposed for ρs=1/2 in the massless case [27]

ρs=1/2 = 2

∫
d3p

(2π)3

(
|p|+ i|a|

1 + e
|p|
T

+
i|a|
2T

+
|p| − i|a|

1 + e
|p|
T
− i|a|

2T

)
+ 4

∫
d3p

(2π)3
|p|

e
2π|p|
|a| − 1

. (2.8)

Eq. (2.8) is motivated on theoretical grounds and goes through a number of non-trivial

checks, for details see [27] and references therein. In particular, expansion of (2.8) in

the acceleration |a| is exhausted by the first three terms and coincides with (2.7), once

the latter equation is rewritten in terms of |a| and T . Also, the representation (2.8)

reveals non-analyticity at the Unruh temperature, TU = |a|/2π which cannot be detected

perturbatively. Moreover, E.g. (2.8) suggests an analytical continuation to T < TU and, in

this respect, is more informative than eq. (2.7), for details see [16].

To summarize, the statistical perturbation theory and field theory on non-trivial mani-

folds provide in case of massless fermions dual descriptions which are rather complementary

to each other and allow for novel applications. In this paper we explore the possibility of

extending these results to scalar fields and massive Dirac fields.

3 Real scalar field

3.1 Massless real scalar field

In the case of a medium with acceleration, the density operator (2.1) contains a term with

acceleration and a boost operator

ρ̂ =
1

Z
exp

{
− βµP̂µ − αµK̂µ

x

}
. (3.1)

Using (3.1), corrections related to acceleration to the energy-momentum tensor can be

calculated. From symmetry considerations it follows that in the fourth order of the per-
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turbation theory the energy-momentum tensor has the form

〈T̂µν〉 = (ρ0 +A1T
2|a|2 +A2|a|4)uµuν − (p0 +A3T

2|a|2 +A4|a|4)∆µν

+(A5T
2 +A6|a|2)aµaν +O(a6) ∆µν = gµν − uµuν . (3.2)

The purpose of this section is to calculate quantum corrections in acceleration to the

mean value of energy-momentum tensor of free scalar field. The energy-momentum tensor

of a free real scalar field has the well-known operator form

T̂µν = ∂µϕ̂∂νϕ̂− 1

2
gµν(∂λϕ̂∂

λϕ̂−m2ϕ̂2) . (3.3)

In this subsection, we will consider the case of massless fields m = 0.

The coefficients ρ0 and p0 correspond to standard formulas for the energy density and

pressure of gas of massless bosons (they can also be found directly using (3.1))

ρ0 =
π2T 4

30
, p0 =

π2T 4

90
. (3.4)

Coefficients An are to be found on the basis of (3.1). In [17, 26], the second-order coefficients

in acceleration A1, A3, A5 were calculated

A0
1 =

1

12
, A0

3 = − 1

18
, A0

5 =
1

12
, (3.5)

where the index 0 means that we are considering the case of m = 0. However, in the second

order, the condition necessary to justify the Unruh effect was not fulfilled. One can easily

check using (3.4) and (3.5), that 〈T̂µν〉(T = TU ) 6= 0. Therefore, higher order corrections

must be calculated. We proceed to calculate the coefficients A2, A4, A6.

The general algorithm of calculation of the hydrodynamic coefficients on the basis

of (3.1) is described in [17, 21, 26], and in the case of fourth-order corrections, in [27, 37].

To find the coefficients A2, A4, A6, it is necessary to expand eq. (3.1) in the series of

the perturbation theory in the acceleration and calculate quantum correlators with boost

operators and operator of the quantity under study. Rewriting the boost operator through

the energy-momentum tensor, we will need to calculate five-point quantum correlators of

the form

Cα1α2|α3α4|α5α6|α7α8|α9α10|ijkl =

∫ |β|
0

dτxdτydτzdτfd
3xd3yd3zd3f

×xiyjzkf l〈Tτ T̂α1α2(τx,x)T̂α3α4(τy,y)T̂α5α6(τz, z)T̂α7α8(τf , f)T̂α9α10(0)〉β(x),c . (3.6)

The index β(x), c means that mean value is to be defined using the operator (3.1) with

αµ = 0 and that only connected correlators are taken into account, Tτ means ordering by

inverse temperature, and |β| = 1
T . The coefficients in (3.2) are expressed in terms of (3.6)

as follows

A2 =
1

4!
C00|00|00|00|00|3333 , A4 =

1

4!
C00|00|00|00|33|2222 ,

A6 = −A4 +
1

4!
C00|00|00|00|33|3333 . (3.7)
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We present the result of calculation for the coefficient A2 in integral form

A0
2 =

∫ ∞
0

|p|3d|p|
72π2

(
n
(4)
B (|p|) + |p|n(5)B (|p|) +

7|p|2

20
n
(6)
B (|p|) +

|p|3

25
n
(7)
B (|p|)

+
9|p|4

5600
n
(8)
B (|p|)

)
, (3.8)

where n
(k)
B (p) = dk

dpk
1

ep/t−1 is the derivative of the Bose-Einstein distribution.

An essential property of (3.8) is the appearance of infrared divergence in the limit

|p| → 0. The appearance of this infrared divergence is a direct consequence of the Bose

distribution pole for p→ 0 in (3.8). It turns out that if we extract this divergence as a term

of the Laurent series with negative power of the momentum, then the infinite integral (3.8)

can be represented as the sum of the finite contribution and the divergent integral of the

form
∫
d|p|/|p|2.

A similar situation will be for the other coefficients in (3.2). We write out the final

expressions for the coefficients, representing them as the sum of the finite and diverging

contributions

A0
2 = − 11

480π2
+

4T

15π2

∫ ∞
0

d|p|
|p|2

,

A0
4 =

19

1440π2
− 6T

35π2

∫ ∞
0

d|p|
|p|2

,

A0
6 = − 1

48π2
+

26T

105π2

∫ ∞
0

d|p|
|p|2

. (3.9)

A standard technique in quantum theory of massless fields is to equate separately

appearing divergent integrals of the form
∫
d|p|/|p|2 to zero, which is associated with the

absence of a dimensional parameter in the integral [38–40]. This statement is known as

Veltman’s formula. Now we will follow this rule, while in the section 8 we give a more

detailed and rigorous justification.

Subtracting the divergences in (3.9) and taking into account the coefficients (3.4)

and (3.5), we obtain the next expression for the energy-momentum tensor

〈T̂µν〉0real =

(
π2T 4

30
+
T 2|a|2

12
− 11|a|4

480π2

)
uµuν −

(
π2T 4

90
− T 2|a|2

18

+
19|a|4

1440π2

)
∆µν +

(
T 2

12
− |a|

2

48π2

)
aµaν +O(a6) . (3.10)

One can easily check that 〈T̂µν〉0real vanishes at the Unruh temperature

〈T̂µν〉0real(T = TU ) = 0 . (3.11)

The fulfilment of condition (3.11) is a direct indication of the Unruh effect: the Minkowski

vacuum corresponds to the proper temperature equal to the Unruh temperature.

– 8 –
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3.2 Massive real scalar field

Mass corrections can be calculated using the same algorithm used in massless theory. Mass

effects are contained in the energy-momentum tensor itself (3.3), as well as in propaga-

tors [17]. The terms of the order m2T 2 can be obtained from the standard formulas for ρ0
and p0, which describe the energy density and pressure of static gas of massive bosons. The

corresponding standard formulas can also easily be calculated using the Zubarev density

operator, and in this case it will be necessary to subtract the standard ultraviolet-diverging

vacuum contribution. The finite parts will have the form

ρ0 =
1

2π2

∫ ∞
0

d|p| |p|2EpnB(Ep) ,

p0 =
1

6π2

∫ ∞
0

d|p|
Ep
|p|4nB(Ep) , (3.12)

where Ep =
√
m2 + |p|2. In the order m2 we obtain, in particular, for ρ0

ρm2
0 =

π2T 4

30
− m2T

4π2

∫ ∞
0

d|p|1 + e|p|/T (|p|/T − 1)

(e|p|/T − 1)2
. (3.13)

The integral in (3.13) converges and we obtain (similarly for p0)

ρm2
0 =

π2T 4

30
− m2T 2

24
,

pm2
0 =

π2T 4

90
− m2T 2

24
. (3.14)

Corrections of the order m2|a|2 can be obtained on the basis of the formulas [26] or [17].

In general case of m 6= 0 coefficients A1, A3, A5 are

A1 =
1

48π2T 2

∫ ∞
0

d|p|Ep(m2 + 4|p|2)n′′B(Ep) ,

A3 = − 1

144π2T 2

∫ ∞
0

d|p|
Ep
|p|2(8|p|2 + 15m2)n′′B(Ep) ,

A5 =
1

24π2T 2

∫ ∞
0

d|p|
Ep
|p|2(2|p|2 + 3m2)n′′B(Ep) . (3.15)

We note, however, that we did not find these formulas for real scalar fields in the form (3.15)

in the literature. Exactly the same formulas, but with a factor 2, are given in [17] for

complex scalar fields. Despite the fact that it is obvious in advance that the result for

a real scalar field will be two times smaller, we derived (3.15) directly from the density

operator with a scalar field, following the algorithm [17].

Corrections of the order m2 can be obtained in the same way as above, by expanding

the integrands in (3.15) in a series in mass. In particular, for the coefficient A1 we get

Am2
1 =

1

12
− m2

48π2T 5

∫ ∞
0

d|p| |p|e|p|/T
(

2|p|(4e|p|/T + e2|p|/T + 1)

−3T (e2|p|/T − 1)
)

(e|p|/T − 1)−4 . (3.16)
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As in the previous section, when calculating the terms |a|4, the integral (3.16) contains

the infrared divergence of the form 1/|p|2. We isolate this divergence as a separate term.

Then the coefficient Am2
1 will be presented as a combination of a finite term and a divergent

integral. A similar situation is realized for the remaining coefficients in (3.15). As a result,

we obtain

Am2
1 =

1

12
+

m2

96π2T 2
− m2

8π2T

∫ ∞
0

d|p|
|p|2

,

Am2
3 = − 1

18
+

m2

96π2T 2
+

m2

72π2T

∫ ∞
0

d|p|
|p|2

,

Am2
5 =

1

12
− m2

12π2T

∫ ∞
0

d|p|
|p|2

. (3.17)

The terms of the order m2|a|4/T 2 can be calculated on the basis of the formulas (3.7)

and (3.6), where it is necessary to keep the mass in the propagators and the energy-

momentum tensor. Moreover, we find that these terms contain only infrared divergences,

and the finite contribution in all coefficients is zero.

Accordingly, in the order m2 we obtain (we keep the divergences that appeared earlier)

Am2
2 = − 11

480π2
+

4T

15π2

∫ ∞
0

d|p|
|p|2

− 2m2T

5π2

∫ ∞
0

d|p|
|p|4

,

Am2
4 =

19

1440π2
− 6T

35π2

∫ ∞
0

d|p|
|p|2

+
2m2T

35π2

∫ ∞
0

d|p|
|p|4

,

Am2
6 = − 1

48π2
+

26T

105π2

∫ ∞
0

d|p|
|p|2

− 6m2T

35π2

∫ ∞
0

d|p|
|p|4

. (3.18)

Acting in the same way as in the case of infrared divergences in (3.9) and (3.17), we

cancel the divergences
∫
d|p|/|p|2 and

∫
d|p|/|p|4 in (3.18). However, as will be shown

in the section 8, the situation in the massive case becomes more non-trivial compared to

the massless one. In contrast to the massless case, it is now necessary to sum up the

complete series of divergences
∫
d|p|/|p|2n in all orders in mass. However, the result of

such a summation does not contribute to the corrections of the order of m0 and m2, and

therefore, effectively these divergences can be subtracted from the terms considered by us

now. As a result, taking into account (3.14), (3.17) and (3.18) we obtain the following

expression for the corrections of the order m2 to the energy-momentum tensor

∆〈T̂µν〉m2
real = m2

(
−T

2

24
+
|a|2

96π2

)
uµuν

−m2

(
−T

2

24
+
|a|2

96π2

)
∆µν +O(a6) . (3.19)

It follows from (3.19) that

∆〈T̂µν〉m2
real(T = TU ) = 0 , (3.20)

and thus, the condition necessary for the Unruh effect is also satisfied in the order m2.

– 10 –



J
H
E
P
0
3
(
2
0
2
0
)
1
3
7

4 Complex scalar field

4.1 Massless complex scalar field

We will consider complex scalar fields with zero chemical potential µ = 0. The results

obtained in this case are predictably the same as for the real scalar field, and differ only by

a factor of 2, which is associated with a double number of degrees of freedom. However,

at the technical level, the two cases are a bit different, which, in particular, is due to the

fact that in the case of complex scalar field there is an additional conjugate field. This

simplifies the application of Wick theorem and from a technical point of view, calculations

in the case of complex scalar fields turn out to be less complicated.

We start with the following standard expression for the energy-momentum tensor of

complex scalar fields

T̂µν = ∂µϕ̂†∂νϕ̂+ ∂νϕ̂†∂µϕ̂− gµν(∂λϕ̂
†∂λϕ̂−m2ϕ̂†ϕ̂) . (4.1)

Calculating the corrections according to the algorithm described in the previous section,

we find that all the coefficients for complex scalar fields are described exactly by the

formulas (3.4), (3.5) and (3.9), but with an additional coefficient of 2. And as a result, we

get a 2 times larger value for the mean value of energy-momentum tensor

〈T̂µν〉0complex = 2〈T̂µν〉0real , 〈T̂µν〉0complex(T = TU ) = 0 . (4.2)

Thus, the Unruh effect is also observed statistically for massless complex scalar fields.

4.2 Massive complex scalar field

In the case of massive complex scalar fields, acceleration corrections can be calculated based

on the formulas (3.6) and (3.7) and the formulas from [17], in exactly the same way as it

was done in the previous section for real scalar fields. As a result, the mass corrections are

described by the same formulas as for the real scalar fields (3.14), (3.17) and (3.18), but

with an additional coefficient of 2. The final result for the corrections of the order m2 to

the mean value of the energy-momentum tensor is the doubled real scalar one

∆〈T̂µν〉m2
complex = 2∆〈T̂µν〉m2

real , ∆〈T̂µν〉m2
complex(T = TU ) = 0 . (4.3)

Thus, massive complex scalar field also satisfies the condition associated with the Unruh

effect.

5 Dirac field

5.1 Massless Dirac field

In this section, for completeness, we present the results for massless fermions obtained

in [27]. The calculation of the coefficients (3.2) for fermions can be done on the basis of
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the formulas (3.6) and (3.7), where it is necessary to use the energy-momentum tensor of

fermions. As a result, we obtain the following coefficients

ρ0 =
7π2T 4

60
, p0 =

7π2T 4

180
, A0

1 =
1

24
, A0

2 = − 17

960π2
,

A0
3 =

1

72
, A0

4 = − 17

2880π2
, A0

5 = 0 , A0
6 = 0 , (5.1)

where the second-order coefficients A1, A3, A5 were calculated in [17]. The energy-momen-

tum tensor takes the form

〈T̂µν〉0fermi =

(
7π2T 4

60
+
T 2|a|2

24
− 17|a|4

960π2

)
uµuν

−
(

7π2T 4

180
+
T 2|a|2

72
− 17|a|4

2880π2

)
∆µν +O(a6) . (5.2)

Unlike scalar fields (3.9), the energy-momentum tensor of fermions is free from infrared

divergences. This situation corresponds to the fact that in the Fermi-Dirac distribution, in

contrast to the Bose distribution, there is no singularity at zero energy.

It is easy to see that the Unruh effect is statistically fulfilled

〈T̂µν〉0fermi(T = TU ) = 0 . (5.3)

5.2 Massive Dirac field

Coefficients of the order m2 can be calculated in the same way as previously. As a result,

we obtain

ρm2
0 =

7π2T 4

60
− m2T 2

12
, pm2

0 =
7π2T 4

180
− m2T 2

12
, Am2

1 =
1

24
+

m2

48π2T 2
,

Am2
2 = − 17

960π2
, Am2

3 =
1

72
+

m2

48π2T 2
, Am2

4 = − 17

2880π2
,

Am2
5 = 0 , Am2

6 = 0 , (5.4)

where the coefficients ρm2
0 , pm2

0 are calculated by expanding the standard formulas for the

energy and pressure of the static gas of massive fermions. The coefficients Am2
1 , Am2

3 , Am2
5

are calculated by expanding in mass the formulas from [17], while the coefficients Am2
2 ,

Am2
4 , Am2

6 can be obtained based on the formulas (3.6) and (3.7), by holding the mass

in the propagators and the energy-momentum tensor (complete formulas are not given

because of their too large size). Taking into account (5.4), we obtain the next expression

for the mean value of the energy-momentum tensor of Dirac field in the order m2

〈T̂µν〉m2
fermi = 〈T̂µν〉0fermi +m2

(
−T

2

12
+
|a|2

48π2

)
uµuν −m2

(
−T

2

12
+
|a|2

48π2

)
∆µν

+O(a6) , (5.5)

where 〈T̂µν〉0fermi corresponds to massless case (5.2). It is easy to see that the energy-

momentum tensor (5.5) satisfies the condition resulting from the Unruh effect

〈T̂µν〉m2
fermi(T = TU ) = 0 . (5.6)
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According to (5.4), when calculating corrections with acceleration in the hydrodynamic

coefficients of massive fermions, there are no divergences and all terms are finite. The same

situation was in the case of massless fermions. It is also important to note that the terms

of higher order m2|a|4/T 2, as can be seen from the formulas for Am2
2 , Am2

4 , Am2
6 , are equal

to zero.

6 The emergence of conical geometry in the Zubarev statistical approach

It turns out that all the formulas (3.10), (3.20), (4.2), (4.3), (5.2), (5.5), calculated in the

framework of the perturbation theory following from the Zubarev density operator (3.1)

in an ordinary flat Minkowski space, can be obtained in another approach based on the

consideration of a space with a conical singularity [29, 30, 32–35]. This allows us to talk

about the emergent conical geometry in the statistical approach of Zubarev or about the

duality of the two approaches. The first indications of such duality were noted by us in [16],

and now we will show it at a more general level.

Now, to consider the medium with acceleration, we move into space-time with an

event horizon described by the Rindler metric (2.4), which at finite temperature takes the

form (2.6). As noticed in the section 2, the space, described by (2.6) contains a flat two-

dimensional cone with an angular deficit 2π − |a|/T . One of the important properties of

the space (2.6) is the presence of a conical singularity at r = 0. We note in this case that

despite the fact that the acceleration depends on the coordinate as |a| = 1/r, the angular

deficit is constant, since T ∼ 1/r, and |a|/T = const, which is a consequence of global

thermodynamic equilibrium [17].

In the papers [29, 30, 32–35] a quantum field theory in space-time of a cosmic string

was considered. This space-time is equivalent to the Euclidean Rindler space-time (2.6)

up to change of the numbering of coordinates [30]. In particular, the energy density in

space-time (2.6) turns out to be equal to the vacuum average of the component T 2
2 of

the energy-momentum tensor in space-time of the cosmic string: ρRindler = 〈T 2
2 〉string.

In [29, 30, 32–35] the expressions for the 〈T 2
2 〉 of massless real scalar field (s = 0) and

fermion field (s = 1/2) are given

〈T 2
2 〉s=0 =

ν4

480π2r4
+

ν2

48π2r4
− 11

480π2r4
,

〈T 2
2 〉s=1/2 =

7ν4

960π2r4
+

ν2

96π2r4
− 17

960π2r4
, (6.1)

where ν defines the period 2π/ν of the angular coordinate for the space-time of the cosmic

string. For ν = 1, the conical singularity disappears. In order to move to space (2.6), it is

necessary to replace ν = 2πTr and take into account the relation ρRindler = 〈T 2
2 〉string. As

a result, we get

ρs=0 =
π2T 4

30
+

T 2

12r2
− 11

480π2r4
,

ρs=1/2 =
7π2T 4

60
+

T 2

24r2
− 17

960π2r4
. (6.2)
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Taking into account (2.5) we get exactly the energy density from (3.10) and (5.2)

ρs=0 =
π2T 4

30
+
T 2|a|2

12
− 11|a|4

480π2
,

ρs=1/2 =
7π2T 4

60
+
T 2|a|2

24
− 17|a|4

960π2
. (6.3)

In [33, 34] the results of calculation of quantum corrections with quadratic mass cor-

rections for real scalar fields are given

〈T 2
2 〉m2
s=0 =

ν4

480π2r4
+

ν2

48π2r4
− 11

480π2r4
+

m2

96π2r2
(1− ν2) , (6.4)

which, taking into account the comments made earlier, leads to energy density in space (2.6)

ρm2
s=0 =

π2T 4

30
+
T 2|a|2

12
− 11|a|4

480π2
+m2

(
−T

2

24
+
|a|2

96π2

)
. (6.5)

This formula exactly coincides with the expression for energy density, following from (5.5).

In [35] the case of massive fermions in a space of cosmic string is considered. However,

we did not find a derivation of corrections of the order m2 from the general formula given

in [35]. Further we present such a calculation. According to [35] and taking into account

the correspondence between the Rindler metric and the metric with a cosmic string, the

energy density of fermions with mass m is described by the formula

ρs=1/2 = −3T0 + T1 , (6.6)

where T0 and T1 are of the form

T0 =
|a|m2T cos π

2T
|a|

π2

∫ ∞
0

dyK2

(
2m cosh y

2
|a|

)
sinh y

2 sinh πTy
|a|

cosh2 y
2

(
cosh 2πTy

|a| − cos 2π2T
|a|

) ,

T1 = −
2m3T cos π

2T
|a|

π2

∫ ∞
0

dyK1

(
2m cosh y

2
|a|

)
sinh y

2 sinh πTy
|a|

cosh y
2

(
cosh 2πTy

|a| − cos 2π2T
|a|

) , (6.7)

where K1 and K2 are the modified Bessel functions of the second kind. We expand the

functions in (6.7) in a series in mass up to the order of m2. Then the energy density will

take the form

ρm2
s=1/2 = I0 +m2I1 , (6.8)

where the integrals I0 and I1 are of the form

I0 = −
3|a|3T cos π

2T
|a|

2π2

∫ ∞
0

dy sinh y
2 sinh πTy

|a|

cosh4 y
2

(
cosh 2πTy

|a| − cos 2π2T
|a|

) ,
I1 =

|a|T cos π
2T
|a|

2π2

∫ ∞
0

dy sinh y
2 sinh πTy

|a|

cosh2 y
2

(
cosh 2πTy

|a| − cos 2π2T
|a|

) . (6.9)
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The integrals (6.9), can be found

I0 =
7π2T 4

60
+
T 2|a|2

24
− 17|a|4

960π2
,

I1 = −T
2

12
+
|a|2

48π2
, (6.10)

and, thus, the energy density for fermions in the order m2 takes the following form

ρm2
s=1/2 =

7π2T 4

60
+
T 2|a|2

24
− 17|a|4

960π2
+m2

(
−T

2

12
+
|a|2

48π2

)
. (6.11)

The formula (6.11) exactly matches the result from the Zubarev operator (5.5).

Summarizing, despite the difference between the two methods, statistical (with

Zubarev operator) and geometrical (either in Euclidean Rindler space-time or space-time

of cosmic string), both at the ideological and technical levels, it is striking that both meth-

ods lead to exactly the same results: formulas (3.10), (3.20), (5.2), (5.5) exactly coincide

to (6.3), (6.5) and (6.11).

Thus, we should talk about the emergent conical geometry in the statistical approach

of Zubarev or about the duality of the two methods. The first method is statistical; all

calculations are carried out in a flat space described by the Minkowski metric. This method

“knows nothing” about curvilinear coordinates, but nevertheless leads to relations directly

following from the Unruh effect: the coefficients turn out to be precisely such that the

Minkowski vacuum corresponds to a proper temperature equal to Unruh temperature. The

second method considers space with a boundary, an event horizon, which then transforms

into space with a conical singularity. In this method, it is obvious in advance that all

observables vanish at the Unruh temperature, since even at the level of the Green function,

subtraction was performed at the Unruh temperature. In this sense, the first approach is

an independent verification of the Unruh effect, while the second considers it as the initial

premise.

7 Beyond expansion in mass: the need for perturbative consideration

After reading sections 3.2, 4.2 and 5.2, the question may arise — is it possible to evaluate

the Unruh effect without using mass expansion? Indeed, the coefficients of |a|2 and |a|4

terms can be found outside the expansion in mass, by accounting mass in propagators. We

confine ourselves to considering the energy density of massive fermions.1

In the zero order in acceleration, the energy density of Dirac fields is well known

ρ0(m,T ) =
2

π2

∫ ∞
0

d|p| |p|2EpnF (Ep) . (7.1)

1We are grateful to F. Becattini and M. Buzzegoli, with whom we discussed the issues investigated in

the next two sections.
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4

Figure 1. Various contributions to the energy density in (7.3) at Unruh temperature and their

sum as functions of mass.

Coefficient A1(m,T ) of |a|2 term is described by the formula (5.30) in [17]. Coefficient

A2(m,T ) was found in [37] and has the form

A2(m,T ) =

∫ ∞
0

|p|2d|p|
2880π2Ep

(
5(15m2 + 19|p|2)n(4)F (Ep) + 8Ep(9m

2 + 20|p|2)n(5)F (Ep)

+2(4m4 + 25m2|p|2 + 27|p|4)n(6)F (Ep) +
16

35
Ep|p|2(5m2 + 14|p|2)n(7)F (Ep)

+
9

35
E2
p |p|4n

(8)
F (Ep)

)
, (7.2)

(formula (7.2) is equivalent to that given in [37]). As a result, we can check what the energy

density is at Unruh temperature for an arbitrary mass, without using mass expansion

ρ(m,TU ) = ρ0(m,TU ) +A1(m,TU )T 2
U |a|2 +A2(m,TU )|a|4 . (7.3)

The graph of (7.3) is shown in figure 1. As might be expected, for small masses

ρ(m,TU ) ≈ 0, however, for larger masses this condition is violated. This fact should not

be surprising — in fact, in formula (7.3) we have taken into account only terms up to

the order |a|4. Section 9 gives arguments in favor of the absence of corrections to (7.3),

but only in the case of a mass equal to zero or in the corrections m2. In general case,

such a correction arises and should be taken into account when considering the Unruh

effect. There is no doubt that in the general case the energy density should turn to zero

at the Unruh temperature, since the Unruh effect is a universal phenomenon (look, in

particular, (6.9)).

Given the comments made, the mass expansion used in the previous sections is seen

as a suitable way of analyzing the Unruh effect in massive theories.

8 Infrared divergences: summation, zero modes, nonperturbative terms

In this section, we discuss in more detail the infrared divergences that appeared in the

sections 3, 4. The infrared divergences arose for both massless (3.9) and massive scalar
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fields (3.17), (3.18). We first consider the case with massless fields and restrict ourselves

to the consideration of divergences in the energy density (the conclusions made below are

to be valid for other divergences in the energy-momentum tensor).

First, it can be shown from the general structure of the perturbation theory that

in 2n-th order in acceleration, a leading infrared divergence of the form
∫
d|p|/|p|2n−2

arises, unless the coefficient at it turns out to be zero. Indeed, the contribution to the

energy density of a massless real scalar fields in the 2n-th order in acceleration can be

schematically represented in the form [17, 37]

ρ ∼ An|a|2n ∼ |a|2n
∑

ω1...ω2n+1

∫
dτ1 . . . dτ2nd

3p1 . . . d
3p2n+1d

3x1 . . . d
3x2nx

(3)
1 . . . x

(3)
2n

×∆(P1) . . .∆(P2n+1)e
pxeτω

2n+1∏
i=1

D00
i , (8.1)

where ∆(P ) = 1/(P 2 +m2) is the scalar thermal Green function, px denotes a linear com-

bination of scalar products of the form pixj , τω denotes a linear combination of products

of the form τiωj , and D00
i denotes D00(±iPi′ ,±iPi′′) — the operator that occurs when the

energy-momentum tensor is presented in a split form [17, 37]. Summing over the Mat-

subara frequencies and leaving in the expression (8.1) only the terms contributing to the

leading divergence, we obtain

An|a|2n ∼ |a|2n
∫
d3p

∂2n

(∂pi)2n

(
1

|p1| . . . |p2n+1|

2n+1∏
i=1

D00
i nB(|pi|)

)∣∣∣∣∣
pi=±p

, (8.2)

where ∂2n

(∂pi)2n
denotes a linear combination of derivatives of the 2n-th order of the form

∂2n

∂p
(3)
i1
∂p

(3)
i2
...∂p

(3)
i2n

(without proof, we assume that the explicit dependence on the coordinates

in any order can be rewritten through the derivatives and the integration of the exponential

factor epx leads to the replacement of all the momenta of the form pi → ±p as it was in all

orders of perturbation theory considered so far). Given that D00
i is quadratic in momenta,

the first term of the Laurent series, which gives the leading infrared divergence, in (8.2)

has the form

An|a|2n ∼ |a|2nT
∫
d|p|/|p|2n−2 , (8.3)

which was to be proved.

On the other hand, it can be shown that the diverging contribution in the massless

case (3.9) exactly corresponds to the Matsubara zero modes. Indeed, expression (3.8) is

formed from a set of correlators of the same type, the number of which is determined by

Wick theorem (24 for Dirac fields and complex scalar fields and 24 × 16 for real scalar

fields). In particular, for real scalar fields, the coefficient A2 equals [37]

A2 =

∫
dτxdτydτzdτfd

3xd3yd3zd3fd3pd3qd3kd3rd3l

4!(2π)15
x3y3z3f3 (8.4)

×e−ip(x−y)−iqx−ik(y−z)−ir(z−f)−ilf
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×
∑

pn,qn,kn,rn,ln

1

|β|5
eipn(τx−τy)+iqnτx+ikn(τy−τz)+irn(τz−τf )+ilnτf

×∆(P )∆(Q)∆(K)∆(R)∆(L)

×D00(iL,−iR)D00(iR,−iK)D00(iK,−iP )D00(iP, iQ)D00(−iQ,−iL) + . . . ,

where ellipsis includes similar 24 × 16 − 1 terms from other correlators in Wick theorem.

Keeping in (8.4) the contribution of only pn = qn = kn = rn = ln = 0 and making the

necessary integrations, we find that this contribution entirely enters the infrared divergence

Aω=0
2 =

4T

384× 15π2

∫ ∞
0

d|p|
|p|2

+ . . . . (8.5)

A direct calculation of the remaining correlators shows that their contributions are equal

and, as a result, we obtain

Aω=0
2 =

4T

15π2

∫ ∞
0

d|p|
|p|2

, (8.6)

which exactly corresponds to the divergence (3.9). Thus, indeed, the divergences arising

in the massless theory are entirely determined by the zero Matsubara modes.

The regularization proposed in the section 3, in fact, has serious physical grounds. We

consider integrals independent of the dimensional parameter, which, by definition, satisfy

the relation [40]

I(αp) = αlI(p) , (8.7)

in particular,
∫
d(α|p|)/(α|p|)2n = α1−2n ∫ d|p|/|p|2n. It turns out that in dimensional

regularization, such integrals are always zero

I(p) = 0 , (8.8)

which is connected with the axioms and definitions of dimensional regularization [38, 40]

and is sometimes called Veltman’s formula in the literature [39]. Property (8.8) is often

used in quantum field theory, including quantum field theory at finite temperatures (see,

in particular, chapter 2 of [41]).

It would seem that in this way, we immediately get confirmation of the recipe for

dealing with these divergences by subtracting them. However, as noted, for example,

in [41], the situation becomes nontrivial, if higher orders of perturbation theory lead to an

infinite series of similar divergences. And then, despite the fact that each of the diverging

integrals separately is axiomatically zero, their sum can give a finite contribution.

To test the possibility of such a situation, it is necessary to consider higher orders of

perturbation theory in acceleration, which is a difficult task from a technical point of view.

However, a partial answer to the question about the divergences in higher orders can be

obtained if we consider only the contribution of zero modes.
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In particular, the sixth-order term in perturbation theory is described by the formula

ρ ∼ A3|a|6 =

∫
dτ1 . . . dτ6d

3x1 . . . d
3x6d

3p1 . . . d
3p7

6!(2π)18
x
(3)
1 . . . x

(3)
6

×eip1x1−ip2(x1−x2)−ip3(x2−x3)−ip4(x3−x4)−ip5(x4−x5)−ip6(x5−x6)−ip7x6

×
∑

ω1n...ω7n

1

|β|7
e−iω1nτ1+iω2n(τ1−τ2)+iω3n(τ2−τ3)+iω4n(τ3−τ4)+iω5n(τ4−τ5)+iω6n(τ5−τ6)+iω7nτ6

×∆(P1)∆(P2)∆(P3)∆(P4)∆(P5)∆(P6)∆(P7)

×D00(iP1,−iP2)D00(iP2,−iP3)D00(iP3,−iP4)D00(iP4,−iP5)D00(iP5,−iP6)

×D00(iP6,−iP7)D00(iP7,−iP1) + . . . , (8.9)

where the ellipsis corresponds to the contribution of the other terms coming from the Wick

theorem. Using the equation∫
d3p1 . . . d

3p7d
3x1 . . . d

3x6 F (p1, . . . ,p7)x
(3)
1 . . . x

(3)
6

eip1x1−ip2(x1−x2)−ip3(x2−x3)−ip4(x3−x4)−ip5(x4−x5)−ip6(x5−x6)−ip7x6

= (2π)18
∫
d3p

∂2

∂p
(3)
1 ∂p

(3)
7

(
∂

∂p
(3)
2

+
∂

∂p
(3)
1

)
. . .

×

(
∂

∂p
(3)
5

+ . . .+
∂

∂p
(3)
1

)
F (p1, . . . ,p7)

∣∣∣∣∣
pi=p

, (8.10)

and considering the contribution of the zero modes ω1 = . . . = ω7 = 0 we get that the

contribution of the correlator under consideration is equal to zero. Assuming that, as in the

case of fourth-order coefficients, the contributions of zero modes from different correlators

arising from Wick theorem are equal, we obtain

Aω=0
3 |a|6 = 0 . (8.11)

In the same way we also obtain

Aω=0
4 |a|8 = 0 . (8.12)

Thus, at least, the leading divergences in the first two higher orders of the perturbation

theory apparently do not arise. If this situation is general (no leading divergences in

higher orders and no subleading divergences), we can remove the divergences from the

expressions (3.9) based on (8.8).

We now consider the divergences for the finite mass (3.17) and (3.18). For a finite

mass, all divergences arising, both
∫
d|p|/|p|2 and

∫
d|p|/|p|4, are fictitious in the sense

that the integral formulas themselves, in particular (3.15), as functions of mass, do not

contain divergences, which can be verified directly numerically.

On the other hand, if we sum up all the divergences in all orders in mass, then, as

we will now show, we eliminate the fictitious divergences and get the correct expression
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for the perturbative series. A similar procedure of summation of infrared divergences was

realized, in particular, in [41].

We first consider the divergences in the order a2. By directly decomposing the inte-

grand in (3.15) and isolating the divergences as negative-power terms of the Laurent series,

we can show that a series of divergences arises

A1 =
1

12
+

1

96π2
m2

T 2
− 1

8π2T

∫ ∞
0

d|p| m
2

|p|2
+

1

8π2T

∫ ∞
0

d|p| m
4

|p|4

− 1

8π2T

∫ ∞
0

d|p| m
6

|p|6
+ . . . , (8.13)

where the ellipsis includes both terms of higher orders and integrals from the nondiver-

gent parts of the orders m4,m6. In this case, there are no subleading infrared diver-

gences. We can also assume that the infrared divergences form a geometric progres-

sion. To sum up these divergences mathematically rigorously, we consider the integrand

A1(m) =
∫∞
0 d|p|a1(m2, |p|2) in (3.15). It is easy to prove that by expanding it in a series

of m2, the leading divergence in the order m2n has the form m2n/|p|2n. Then the expansion

of a1(m
2, |p|2) in a series has the form

a1(m, |p|) = a1(0, |p|) +

∞∑
n=1

gn
m2n

|p|2n
+

∞∑
n=1

g(1)n

m2n

|p|2n−1
+ . . . . (8.14)

We will replace |p| → λ|p|, m→ λm, after which we find the limit λ→ 0. This will allow

us to sum up the leading infrared divergences

lim
λ→0

a1(λ
2m2, λ2|p|2)− a1(0, λ2|p|2) =

∞∑
n=1

gn
m2n

|p|2n
. (8.15)

The left-hand side in (8.15) can be easily found, we get

− 1

8π2T

m2

m2 + |p|2
=

∞∑
n=1

gn
m2n

|p|2n
, (8.16)

and, thus, the assumption made in (8.13), that the leading infrared divergences form a

geometric progression, is confirmed. In particular, expanding the left-hand side of (8.16)

in a series, we would obtain the terms (8.13).

Integrating (8.16), we obtain a contribution to the energy density∫ ∞
0

d|p|
∞∑
n=1

gn
m2n

|p|2n
= −

∫ ∞
0

d|p| 1

8π2T

m2

m2 + |p|2
= − m

16πT
. (8.17)

The contribution (8.17) can be called nonperturbative in mass, since it has the form√
m2 and does not directly follow from the perturbative expansion in m2. Thus, in the

order m2, taking into account the contribution of infrared divergences, we obtain

A1 =
1

12
+

1

96π2
m2

T 2
− m

16πT
+ . . . , (8.18)

– 20 –



J
H
E
P
0
3
(
2
0
2
0
)
1
3
7

where the ellipsis denotes the potential contribution of subleading divergences and finite

terms in orders m2n, n > 1.

Note that the correctness of the result obtained (8.18) can be checked numerically by

finding the numerical value of the derivatives of the integral ∂
∂mA1(m) and ∂2

∂m2A1(m),

which, in particular, are finite.

We can also rigorously prove that there are no subleading divergences. In particular,

this follows from the equality
∞∑
n=1

g(k)n

m2n

|p|2n−k
= lim

λ→0

∂k

k!∂λk

(
a1(λ

2m2, λ2|p|2)− a1(0, λ2|p|2)
)
. (8.19)

The absence of subleading divergences corresponds to equality of (8.19) to a finite polyno-

mial with positive powers. This has been verified for a number of values k (k = 1, 2, 3, 4).

A similar situation will be with the divergences in the order a4. In particular, the

divergence
∫
d|p|/|p|2, which, as previously described, can be excluded in the massless

case, since it is equal to zero, should now be summed with all terms of higher orders m2n.

There is no contradiction with what we talked about previously in the massless case, since

each of the divergences is equal to zero separately, but their sum can be finite.

First, we need an expression for the coefficient in energy density for an arbitrary mass,

without expansion in mass. This can be done by holding the mass in the energy-momentum

tensor and propagators, as a result of which we obtain an expression similar to (3.8)

A2(m) =

∫ ∞
0

d|p|
72π2

([
3m2|p|2

4Ep
+
|p|4

Ep

]
n
(4)
B (Ep) +

[
3m2|p|2

10
+ |p|4

]
n
(5)
B (Ep)

+

[
m4|p|2

20Ep
+

13m2|p|4

40Ep
+

7|p|6

20Ep

]
n
(6)
B (Ep) +

[
m2|p|4

70
+
|p|6

25

]
n
(7)
B (Ep)

+
9Ep|p|6

5600
n
(8)
B (Ep)

)
. (8.20)

Expanding (8.20) in a series in mass, we obtain a series of divergences

A2 = − 11

480π2
+

4T

15π2

∫ ∞
0

d|p| 1

|p|2
− 2T

5π2

∫ ∞
0

d|p| m
2

|p|4
+

T

4π2

∫ ∞
0

d|p| m
4

|p|6

+
T

3π2

∫ ∞
0

d|p| m
6

|p|8
+ . . . . (8.21)

As in the previous case, we see that there are no subleading divergences. It can be shown

that the leading divergences are of the order m2n−2/|p|2n. Accordingly, expanding the

integrand in (8.21), we obtain

a2(m
2, |p|2) =

∞∑
n=1

gn
m2n−2

|p|2n
+
∞∑
n=1

g(1)n

m2n−2

|p|2n−1
+ . . . . (8.22)

Replacing |p| → λ|p|, m→ λm and taking the limit λ→ 0, we get

∞∑
n=1

gn
m2n−2

|p|2n
= lim

λ→0
λ2a2(λ

2m2, λ2|p|2) = T
|p|2(15m4 + 40m2|p|2 + 16|p|4)

60π2(m2 + |p|2)4
. (8.23)

Thus, we have found the sum of the leading divergences.
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After integration we obtain∫ ∞
0

d|p|
∞∑
n=1

gn
m2n−2

|p|2n
=

9T

128πm
, (8.24)

and the contribution to the coefficient A2

A2 = − 11

480π2
+

9T

128πm
+ . . . , (8.25)

which is also confirmed numerically.

Thus, the infrared divergences found in the section 3 can indeed be excluded both in the

massless case and for the massive theory. In the case of a massive theory, these divergences

can be summed up and give a finite nonperturbative and odd-in-mass contribution, and

in this sense they can be excluded from terms of the zeroth and m2 order. The study of

these terms from the point of view of the Unruh effect requires additional consideration of

nonperturbative in acceleration terms, which is beyond the scope of this paper.

We also note that there is another way to cancel the infrared divergences, if we require

the execution of Tµν(T = TU ) = 0 from the very beginning. This approach is similar to [29,

32, 35] and also leads to the exclusion of terms with divergences. However, nonperturbative

terms m|a|2, |a|4/m may be lost.

In conclusion, we discuss a possible connection with Bose condensation. Indeed, ac-

cording to, for example, [41], the appearance of infrared divergences is a possible indication

of Bose condensation. The question of the possibility of Bose condensation due to accel-

eration is a non-trivial problem requiring a separate consideration. The main argument

in favor of the absence of such a phenomenon is the lack of such condensate in the dual

approach with a conical singularity. In this approach, condensation does not occur, at least

in the temperature range T > TU .

In the statement of the problem, we consider a gas of free particles. At zero chemical

potential, Bose condensate does not occur in such a gas. When the system acquires ac-

celeration, we would not expect the appearance of condensate, since acceleration leads to

heating of the medium, and temperature, as a rule, plays the role of a factor that destroys

the condensate.

The conclusion is that the appearance of infrared divergences is typical consequence

of the Bose distribution, but is not necessarily associated with Bose condensation (in par-

ticular, in the simplest example, expanding the energy density of the Bose gas in a series

in mass, we would also get a similar series of infrared divergences).

9 Discussion

In the sections 3, 4, 5 we calculated quantum corrections related to acceleration to the

energy-momentum tensor. We have shown that both in the case of massless fields and in

the case of massive fields in the first order in mass, the calculated corrections satisfy the

condition following from the Unruh effect. It is clear, since the calculated mean value of

the energy-momentum tensor is normalized to the Minkowski vacuum, which corresponds
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to taking all the products of the operators using normal ordering [26]. Then, according

to the Unruh effect, the Minkowski vacuum is perceived by the accelerated observer as a

heat bath with Unruh temperature. Therefore, at the proper temperature equal to the

Unruh temperature, the mean value of the energy-momentum tensor should be zero. This

is what we have shown for a wide class of theories. Thus, we can talk about confirming

the universality of the Unruh effect in the framework of the Zubarev approach, which is

a general quantum-field phenomenon that does not depend on the type of fields under

consideration.

We have also shown the emergence of conical geometry [29, 30, 32–35] in the statistical

Zubarev approach [17, 23, 24]. The expressions obtained in the framework of statistical

approach exactly coincide with the mean values calculated in the space-time with a conical

singularity both in the case of massless fields and in the quadratic order in mass.

In particular, this allows one to obtain expressions for an accelerated medium from

known results for cosmic strings and vice versa.

An important consequence about the non-renormalization of the obtained expressions

follows from this duality. When considering the formulas (3.10), (3.20), (4.2), (4.3), (5.2),

(5.5) the question arises as to whether the calculated acceleration orders are maximal.

Now we have received a positive answer to this question. Indeed, in formulas (6.3), (6.5)

and (6.11), obtained using the geometrical approach, the calculated orders are maximal as

the acceleration effects are taken into account in a nonperturbative way.

Thus, we can make a prediction that the calculation of subsequent acceleration correc-

tions, in which negative degrees of temperature could formally appear, within the frame-

work of the statistical approach with the operator (3.1) will give zero. We have also verified

this statement directly in a particular case of corrections of the order m2|a|4/T 2 in the co-

efficients Am2
2 , Am2

4 and Am2
6 in (3.18) and (5.4). These corrections turned out to be zero

(in the case of scalar fields, after subtracting the divergences).

We also note that absence of higher orders or polynomiality is associated with the

properties of Sommerfeld integrals when integrated in the complex plane [16] as was also

discussed in section 2. Moreover, according to [16], it is necessary to make a substantial

remark that formulas of the form (3.10), (3.20), (4.2), (4.3), (5.2), (5.5) are exact nonper-

turbative expressions only in the region T > TU . When considering the domain T < TU ,

perturbative formulas of the form (5.2) may stop to be applicable and additional nonpertur-

bative contributions can appear. Moreover, we can talk about the existence of instability

at the boundary of two regions at T = TU at least for Dirac field.

10 Conclusions

We have calculated quantum corrections related to the acceleration to free-field energy-

momentum tensors using the statistical Zubarev density operator. A wide class of theories

is considered: massless real and complex scalar fields, Dirac field, and also massive fields

in the quadratic order in mass. All calculated corrections satisfy the Unruh effect: the

energy-momentum tensor, taking into account the obtained corrections, turns out to be
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zero at the proper temperature equal to the Unruh temperature. Thus, the universality of

the Unruh effect in the statistical approach is demonstrated.

In the case of Dirac field, the studied corrections lead to finite momentum integrals,

both in the massless case and for the corrections of the order of m2. However, for scalar

fields, infrared divergences appear in the corrections of the order O(|a|4) and O(m2|a|2). In

the case of massless theory, these divergences correspond to the Matsubara zero modes and

can be excluded based on Veltman’s formula. In the case of massive fields, a summation of

an infinite series of infrared divergences can be made, as a result of which it was shown that

they contribute to the odd terms in mass, a detailed study of which is beyond the scope of

this paper. To summarize, effectively these divergences can be regularized by subtracting

the corresponding negative power terms of the Laurent series of the form 1/|p|2 and 1/|p|4.
As a result, we obtain the expressions for the energy-momentum tensor satisfying the Unruh

effect.

It is shown that in the used statistical approach of Zubarev, conical geometry emerges.

In particular, the calculated quantum corrections exactly correspond to the corrections

calculated in the framework of field theory in a space with a conical singularity [29, 30, 32–

35] in all cases considered. We can also talk about the duality of statistical and geometrical

approaches. This duality was first noted in [16], and in this paper we show that it is a

general phenomenon.

We began to study the consequences of the discovered duality. In particular, since all

the expressions calculated in a space with a conical singularity were exact and nonpertur-

bative, it should be expected that in the statistical approach all the higher order terms will

be also equal to zero. We have verified this directly in particular cases by calculating quan-

tum corrections of the order of m2|a|4/T 2 for all considered field theories. All corrections

of this type turned out to be equal to zero.

The statistical approach inherently describes an effective interaction, introduced on a

macroscopic scale or in the infrared. At the same time, the dual quantum field approach

in a space with a conical singularity, as expected, on the contrary should be valid on

a microscopic scale in the ultraviolet region. The existence of the duality of these two

approaches makes it possible to smoothly join two regions of scales.

In addition, duality allows us to discuss the issue of Bose condensation in an accelerated

medium. From the point of view of the statistical approach, Bose condensation associated

with acceleration should be investigated as a separate non-trivial case. On the other

hand, field theory with a conical singularity indicates the absence of such a phenomenon,

which is confirmed by general arguments about the relationship between acceleration and

temperature resulting from the Unruh effect.
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