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Abstract: We consider the SU(N) Yang-Mills theory, whose topological sectors are re-

stricted to the instanton number with integer multiples of p. We can formulate such a

quantum field theory maintaining locality and unitarity, and the model contains both 2π-

periodic scalar and 3-form gauge fields. This can be interpreted as coupling a topological

theory to Yang-Mills theory, so the local dynamics becomes identical with that of pure

Yang-Mills theory. The theory has not only ZN 1-form symmetry but also Zp 3-form sym-

metry, and we study the global nature of this theory from the recent ’t Hooft anomaly

matching. The computation of ’t Hooft anomaly incorporates an intriguing higher-group

structure. We also carefully examine that how such kinematical constraint is realized in

the dynamics by using the large-N and also the reliable semiclassics on R3 × S1, and we

find that the topological susceptibility plays a role of the order parameter for the Zp 3-form

symmetry. Introducing a fermion in the fundamental or adjoint representation, we find that

the chiral symmetry becomes larger than the usual case by Zp, and it leads to the extra

p vacua by discrete chiral symmetry breaking. No dynamical domain wall can interpolate

those extra vacua since such objects must be charged under the 3-form symmetry in order

to match the ’t Hooft anomaly.
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1 Introduction

In the path-integral formulation, we should integrate over all possible field configurations

in order to define a quantum field theory (QFT). In many interesting QFTs, the space of

field configurations is disconnected and those disconnected components often have different

topological numbers. It is a fundamental and important question to consider how we sum

up different topological sectors when we define a QFT.

It has been widely believed that the summation over topological sectors is uniquely

fixed by unitarity and locality of QFTs [1–4]. Especially, the locality, or the cluster-

decomposition property, is supposed to require that we must sum up all possible topological

sectors. For example, in the pure SU(N) Yang-Mills (YM) theory, the gauge field config-

urations are distinguished by the instanton number, which takes integer values. Assume

that we are trying to consider the path integral only on the zero-instanton sector. Even in

the trivial sector, however, there are configurations with an instanton (I)–anti-instanton
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(I) event. When I and I are sufficiently separated with each other, the cluster decompo-

sition shows that this produces the same effect of the single instanton event. Following the

above standard lore, we are summing up all instanton sectors, and multiply the U(1) phase

(eiθ)ν for ν-instanton sectors, and we obtain the θ vacua of the Yang-Mills theory. This

argument clearly shows that the local physics, such as the particle spectra, does not care

about the global condition, and this insight is indeed quite useful in order to understand

the numerical lattice simulation of gauge theories at the fixed topology [5, 6].

However, this does not necessarily mean that QFT without summing up all instantons

is ill-defined as a local and unitary QFT [7–9]. The current understandings of QFT requires

us to specify more data, such as the content of extended operators like the Wilson loop [10–

12], in order to uniquely fix the possible summation over topological sectors. This affects

significantly on the global nature of the theory, especially for the vacuum structure.

In this paper, we constrain the possible instanton in various QFTs, including the SU(N)

YM theory, N = 1 super YM (SYM) and quantum chromodynamics (QCD) without chang-

ing the local degrees of freedom. As shown in ref. [10], this is possible if we sum up the

topological sectors whose instanton numbers are divisible by p ∈ Z. In order for this con-

straint to be consistent with locality, we have to introduce the 2π-periodic scalar field χ and

the U(1) 3-form gauge field c(3). Interestingly, these extra fields do not propagate locally, so

the local dynamics is identical with that of the pure Yang-Mills theory. However, they can

provide the globally nontrivial topological degrees of freedom, and it turns out that we nec-

essarily have the Zp 3-form symmetry, although the local dynamics is exactly same with that

of unmodified 4d QFT. Therefore, restricting the instanton sum to multiples of topological

charge p can be interpreted as coupling a topological quantum field theory (TQFT) to QFT,

in particular to YM and QCD. In this paper, we call them as generalized YM and QCD.

In the following, let us summarize the main outcomes obtained in this paper.

To understand the physical consequences of modified topological sum, we consider its

effect on YM and SYM theories from the viewpoint of ’t Hooft anomaly [13, 14] (see also

refs. [15–44] for recent advances) and semiclassics on R3×S1 [45–54]. Because of the modi-

fied sum over instantons, the periodicity of Yang-Mills topological angle, θYM, is shortened

as θYM ∼ θYM + 2π
p instead of the usual 2π periodicity. In section 3, we find that the 1-form

symmetry Z[1]
N and the 3-form symmetry Z[3]

p forms an intriguing 4-group structure, and

we denote it as Z[1]
N ×̃Z[3]

p to emphasize that it is not a direct product. By introducing the

appropriate background gauge field for Z[1]
N ×̃Z[3]

p , we find that this periodicity is extended

to 2πN periodicity. As a consequence, we can expect that the generalized YM theory has

Np branch structure. This expectation is confirmed by the large-N counting and by the

semiclassical computations. We also find that the Z[3]
p symmetry is unbroken so long as

the topological susceptibility Xtop of the YM theory is nonzero.

We also discuss compatibility of abelian duality and semi-classics with mixed anomaly.

In this context, we consider center-stabilized YM theory on small R3 × S1, a theory that

admits a reliable semi-classical treatment, in which confinement and mass gap can be

shown [47] by using similar techniques with Polyakov model [55]. In particular, we prove

that the abelian dual formulation based on dilute gas of monopole-instantons of YM pro-
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duces the same mixed anomaly polynomial [21] as the original Yang-Mills theory, and Np

branched vacuum structure. This provides further evidence for the adiabatic continuity

idea [47].

As we will show in section 4, for SYM with modified instanton sum, the discrete chiral

symmetry becomes Z2Np, so it is greater than the usual case by Zp. As a correspondence

to the existence of Np-branch structure in pure generalized YM theory, the discrete chiral

symmetry is spontaneously broken to Z2, so the theory has Np vacua. There is a subtle

issue related to these Np-vacua, since our QFT has a TQFT component, which we explain.

The N vacua related by the usual discrete chiral transformation, which corresponds to

θYM → θYM + 2π, show the same dynamical behaviors as in the usual SYM. On the other

hand, other vacua, related by θYM → θYM + 2π
p , turn out to have a distinct feature: there is

no domain wall as a dynamical excitation interpolating between them! A mixed anomaly

between chiral and three-form symmetry shows that such wall-type excitation must be

charged under the three-form symmetry. Thus, such configuration is not allowed unless

we insert the 3-volume operator, the order parameter for the three-form symmetry, in the

path integral. This leads to much stronger superselection rule than what we usually think

of in the local QFT, and we propose to call such distinct vacua as different universes.1 In

other words, breaking of the Zp ' Z2Np/Z2N part of chiral symmetry is due to the mixed

anomaly with Z[3]
p , leading to distinct universes. It has the different physical origin from the

breaking of Z2N , since the spontaneous breaking Z2N → Z2 is a dynamical IR phenomenon

as in usual SYM, leading to superselection sectors within each universe. The difference

between the usual superselection sectors and universes is discussed in details in section 4.2.

We also consider, in section 5, the modified instanton sum in QCD with one-flavor

fundamental quark. In the usual case, the massless point does not have any axial sym-

metry because of quantum anomaly [56, 57]. In the case of modified sum, we obtain the

discrete chiral symmetry Z2p as a combination of two quantum-mechanically broken U(1)

symmetries, U(1) axial symmetry and Peccei-Quinn U(1) symmetry. We show the mixed

’t Hooft anomaly for chiral symmetry, Z2p, and three-form symmetry, Z[3]
p , and find that

there are p distinct universes.

In this paper, we focus on the effect of modified instanton sum in 4d gauge theories. In

the case of 2d field theories, these constructions are equivalent to charge-p sigma models on

gerbes [7–9]. Our construction provides an interpretation for the enriched vacuum structure

obtained in these works, which exhibit a very similar structures of vacua to 4d generalized

gauge theory. In order to uncover the reason for this, in section 6, we prove that these

theories share the same anomaly structure so that it is quite natural to have the same

vacuum structures.

1In a related discussion in a 2d QFT, Zohar Komargodski emphasized the distinction between various

types of vacua. He referred to vacua which obey much stronger superselection rule as universes. The authors

thank Zohar Komargodski for proposing this nice name and helpful discussions.
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2 Modification of instanton sum in Yang-Mills theory

In this section, we first give a brief review on the SU(N) Yang-Mills theory, and consider

the restriction of the instanton number modulo p following [10]. This will give a generalized

version of Yang-Mills theory which is locally the same but globally different compared to

original theory.

2.1 Instanton sum in Yang-Mills theory

Let a be the dynamical SU(N) gauge field, and the classical action of the Yang-Mills theory

is given by

SYM =
1

2g2
YM

∫
tr[F (a) ∧ ?F (a)] +

i θYM

8π2

∫
tr[F (a) ∧ F (a)]. (2.1)

In our convention, a is locally a Hermitian traceless matrix (su(N))-valued one-form, and

the field strength is given by

F (a) = da+ i a ∧ a. (2.2)

For simplicity, the spacetime manifold is restricted to closed four-dimensional spin mani-

folds throughout this paper.

On closed four-dimensional manifold, the instanton number is quantized as

1

8π2

∫
tr[F ∧ F ] = ν ∈ Z. (2.3)

This topological number is determined completely by the transition function of the princi-

pal SU(N) bundle [58]. When the instanton numbers of two gauge field configurations are

the same, we can perform the gauge transformation so that the transition functions of those

field configurations are the identical. Therefore, the path integral on the fixed instanton sec-

tor, Zν , can be obtained as the integration over all possible su(N)-valued one-form field δa,

Zν =

∫
D[δa] exp

(
− 1

2g2
YM

∫
tr[F (aν + δa) ∧ ?F (aν + δa)]

)
, (2.4)

where aν is an arbitrary reference gauge field with the instanton number ν. We define the

theta vacua by summing up all the instanton sectors as

Z(θYM) =
∑
ν∈Z

e−i ν θYMZν . (2.5)

By definition, there is the 2π periodicity of the theta angle, θYM ∼ θYM + 2π.

Why do we have to sum up all the instanton sectors? The answer comes out of the

locality and the unitarity of QFT [1–4] (see also [59]). The locality of QFT requires that

if the closed spacetime is given by the disjoint union then the partition function is

ZM1tM2 = ZM1ZM2 . (2.6)

The unitarity is translated as the reflection positivity, so when we flip the orientation of

the spacetime, denoted as −M , the partition function is complex conjugated,

Z−M = ZM . (2.7)
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Because of the fact that there is a configuration with any given instanton number on any

closed 4-manifolds, we get

Zν,M1tM2 =
∑
ν′∈Z

Zν−ν′,M1Zν′,M2 , (2.8)

where Zν,M is the path integral over M at the ν-instanton sector. Therefore, (2.5) is the

unique form of solutions that is consistent with locality and unitarity, when Zν,M 6= 0 for

any ν ∈ Z.

2.2 Modifying the summation over topological sectors

Now, instead of performing the path integral over all possible instanton sectors as in (2.5),

let’s consider the modified instanton sum. It was a lore that such a procedure breaks the

cluster decomposition property of QFT, because the instanton number is globally defined.

However, recently, it is uncovered that this is too strict as a requirement of local QFT [10].

The trick is to introduce the dynamical U(1) three-form gauge field c(3) and the 2π-

periodic scalar field χ. The action of the theory is given as follows:

SgYM =
1

2g2

∫
tr[F (a) ∧ ?F (a)] +

iθYM

8π2

∫
tr[F (a) ∧ F (a)]

+i

∫
χ ∧

(
1

8π2
tr[F (a) ∧ F (a)]− p

2π
dc(3)

)
+

iθ̂

2π

∫
dc(3), (2.9)

and we call this as generalized YM. There are two alternative ways to think about it as

follows.

The equation of motion of χ gives

1

8π2
tr[F (a) ∧ F (a)] =

p

2π
dc(3). (2.10)

Therefore, the equation of motion can be solved if and only if the instanton number is

divisible by p. Since the constraint equation (2.10) is local, the locality of QFT is manifest.

Also, the local fluctuation of c(3) is completely constrained by (2.10) up to the gauge

transformation, so c(3) does not have the locally propagating degree of freedom.

Alternatively, the equation of motion of c(3) is locally given by

dχ = 0, (2.11)

so χ does not have the propagating degree of freedom either. To see the restriction to

charge-p sector, we note that the possible values of χ are given by χ = 2π
p `, ` = 0, 1, . . . , p−

1. The sum over ` for sectors with instanton numbers k 6= 0 mod p vanishes leading to the

same conclusion that only sectors with instanton number divisible by p survive.

Since neither χ nor c(3) are propagating degrees of freedom, the local dynamics of

generalized YM, (2.9), is identical with that of the usual Yang-Mills theory.

Using (2.10), we can combine two theta terms into the one term as

iθYM

8π2

∫
tr[F (a) ∧ F (a)] +

iθ̂

2π

∫
dc(3) =

i(θ̂ + p θYM)

2π

∫
dc(3). (2.12)
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Therefore, we can set one of them to be zero without loss of generality. The periodicity of

θ̂ is 2π, and we can relate it to the usual Yang-Mills theta angle by

θ̂ = p θYM. (2.13)

In the conventional θYM angle, the periodicity looks to be shortened to 2π/p from 2π. This

is the consequence of the fact that we are only summing up the instanton sectors with

multiples of p.

3 Vacuum structures of generalized Yang-Mills theory

In this section, we study the physical consequences out of the restriction of instanton sum.

We first identify the symmetry of the generalized YM, and observe that there is ZNp mixed

anomaly between the higher-form symmetries and the θ-angle periodicity. This naturally

leads to the existence of Np-branch structure, and we explicitly confirm it by the large-N

discussion and also by the semiclassical analysis on R3×S1 with double-trace deformation.

3.1 Extended operators and higher-form symmetry

Since we have the extra field contents, the theory is expected to have the larger set of

symmetry. Indeed, the theory (2.9) has the 1-form symmetry Z[1]
N and 3-form symmetry

Z[3]
p , and we denote it as

Z[1]
N ×̃Z[3]

p . (3.1)

We use a special symbol ×̃ instead of ×, because the group structure may not be the naive

direct product but contains a nontrivial extension. In the next subsection, we will discuss

that this possible extension indeed occurs, and find the 4-group structure appears. Here,

in order to identify each ingredient of the symmetry, Z[1]
N and Z[3]

p , we first list the relevant

gauge invariant operators, and check the commutation relation by solving the equation of

motion.

Point-like operators. In addition to the usual point-like operators, tr[FµνFρσ], in the

pure Yang-Mills theory, the generalized YM theory has the U(1)-valued scalar field,

U0(x) = eiχ(x). (3.2)

It is notable that the equation of motion of c(3) gives p dχ = 0, and thus this operator is

the codimension-4 topological defect. We shall see that this is the generator of Z[3]
p .

Line operators. The theory has the Wilson line operators along the closed line M1,

W (M1) = tr

[
P exp

(
i

∫
M1

a

)]
. (3.3)

This is the charged object under Z[1]
N .
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Surface operators. In the pure Yang-Mills theory, there is the topological codimension-

2 defect, U2(M2) [60, 61]. This operator can be regarded as the world sheet of the Dirac

string emitted from the ’t Hooft loop operator [62]. As a consequence of the Wilson-’t Hooft

commutation relation,〈
U2(M2)W (M1)

〉
= exp

(
2πi

N
Link(M2,M1)

)〈
W (M1)

〉
. (3.4)

Therefore, U2(M2) is the generator of Z[1]
N symmetry that acts on W (M1).

Volume operator. We can consider the Wilson volume operator on closed 3-manifolds

M3 as

V (3)(M3) = exp

(
i

∫
M3

c(3)

)
. (3.5)

This is the charged object under Z[3]
p . Indeed, solving the equation of motion of χ, we

obtain 〈
eiχ(x)V (3)(M3)

〉
= exp

(
2πi

p
Link(x,M3)

)〈
V (3)(M3)

〉
, (3.6)

which shows that Z[3]
p is generated by U0(x).

3.2 Mixed anomaly between Z[1]
N ×̃Z[3]

p symmetry and the θ-angle periodicity,

and 4-group structure

In order to figure out the vacuum structure of the generalized YM, we study the gen-

eralized ’t Hooft anomaly, or the global inconsistency, between Z[1]
N ×̃Z[3]

p symmetry and

the periodicity of θ angle. In the process of gauging, we encounter an interesting 4-group

structure.

Let us first try to gauge the ZN 1-form symmetry. For this purpose, we realize the ZN
two-form gauge field as a pair of U(1) one-form and two-form gauge fields, B(1), B(2), with

the constraint,

NB(2) = dB(1). (3.7)

Following refs. [60, 63], we introduce the U(N) gauge field, ã, and relate it to the dynamical

SU(N) gauge field a locally as

ã = a+
1

N
B(1). (3.8)

Since each term on the right hand side does not have a gauge-invariant meaning, this

expression should be understood as a formal expression, and it means that the path integral∫
Dã is performed over the U(N) gauge fields with the constraint

tr [ã] = B(1). (3.9)

In order to gauge Z[1]
N correctly, we have to postulate the invariance under the one-form

gauge transformation,

B(2) 7→ B(2) + dΛ(1), B(1) 7→ B(1) +NΛ(1), (3.10)
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and

ã 7→ ã+ Λ(1). (3.11)

In the case of pure Yang-Mills theory, we can do this by replacing the SU(N) field strength

F (a) in the Lagrangian by the gauge-invariant combination of the U(N) field strength

F̃ = F (ã) and B(2):

F (a)⇒ F̃ −B(2). (3.12)

This operation produce the mixed anomaly between θ-angle periodicity and ZN 1-form

symmetry, i.e,

ZYM(θYM + 2π) = exp

(
i
N

4π

∫
B(2) ∧B(2)

)
ZYM(θYM) (3.13)

because of the quantization condition:

N

8π2

∫
B(2) ∧B(2) ∈ 1

N
Z. (3.14)

corresponding to a non-trivial ’t Hooft flux.

However, this operation does not work in the generalized YM theory. Equation of

motion of Lagrange multiplier χ gives

1

8π2
(trF̃ 2 −N(B(2))2) +

p

2π
dc(3) = 0. (3.15)

This automatically requires that

N

8π2

∫
B(2) ∧B(2) ∈ Z, (3.16)

in sharp contrast with (3.14). Hence, the nontrivial ’t Hooft magnetic flux cannot be

consistently introduced as the background field. This shows that we cannot gauge the Z[1]
N

by itself.

We can resolve this puzzle by gauging Z[3]
p at the same time. In order to gauge it,

we introduce the U(1) 3-form and 4-form gauge fields D(3) and D(4). The 3-form gauge

transformation is defined by

D(4) 7→ D(4) + dΛ(3), D(3) 7→ D(3) + pΛ(3), (3.17)

and

c(3) 7→ c(3) + Λ(3). (3.18)

The minimal coupling procedure for the Lagrange-multiplier term gives

i

2π
χ ∧

[
1

4π
trF̃ 2 − p dc(3) + dD(3)

]
. (3.19)

This is clearly U(1) three-form gauge invariant. At the first sight, however, this may not

seem to be invariant under the 1-form gauge transformation because F̃ transforms non-

trivially. We can establish it by requiring that D(3) transforms under the one-form gauge

transformation as

D(3) 7→ D(3) −
(
N

2π
B(2) ∧ Λ(1) +

N

4π
Λ(1) ∧ dΛ(1)

)
. (3.20)
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Since the right hand side has the correct periodicity as the U(1) three-form gauge field,

i.e.,
∫
M4

d(. . .) ∈ 2πZ, this is a well-defined transformation. Notice that the equation of

motion of χ does no longer give any constraint on B(2), and thus the nontrivial magnetic

flux is now allowed to be inserted. Because of this extra one-form transformation, the pair

(D(3), D(4)) is no longer the naive Zp four-form gauge field, but it is affected by the ZN
two-form background gauge field. The constraint equation turns out to be

pD(4) = dD(3) +
N

4π
B(2) ∧B(2). (3.21)

As a consequence,∫
D(4) =

2π

Np

(
N

∫
dD(3)

2π︸ ︷︷ ︸
∈NZ

+
N2

8π2

∫
(B(2))2︸ ︷︷ ︸
∈Z

)
∈ 2π

Np
Z. (3.22)

This expression shows that at the intersection of two generic codimension-2 defects U2, we

must assign the ZNp phase, and the one-form symmetry is transmuted to the three-form

symmetry. The analogous situation also appears between the 0-form and 1-form symmetry,

which leads to the 2-group structure [64–66]. Accordingly, ours is an example of the 4-group

structure in 4-dimensional QFT.2

The gauged action is

Sgauged =
1

2g2

∫
tr|F̃ −B(2)|2 +

iθYM

8π2

∫
tr[(F̃ −B(2))2]

+i

∫
χ ∧

(
1

8π2
tr[F̃ 2]− p

2π
dc(3) + dD(3)

)
+

iθ̂

2π

∫
(dc(3) −D(4)). (3.23)

Thus, the shift θYM → θYM + 2π/p (⇔ θ̂ → θ̂ + 2π) gives the extra phase of the partition

function by

Z(θYM + 2π/p) = exp

(
−i

∫
D(4)

)
Z(θYM), (3.24)

and the overall ZNp phase is characterized by the background gauge fields. When θYM is

quantized in an odd-integer multiple of π/p (half of its domain 2π/p), this relation can

be used to obtain the mixed ’t Hooft anomaly or the global inconsistency between CP

symmetry and Z[1]
N ×̃Z[3]

p , generalizing [21–24, 68] to cases involving 4-group symmetry.

2This turns out to be a special case of the general theorem discussed in section 3.2 of ref. [67]. We

consider a d-dim QFT that has the global symmetry Z[n]
N ×Z[m]

p with mixed ’t Hooft anomaly. By gauging

the non-anomalous subgroup Z[m]
p , the resultant theory has the remnant symmetry Z[n]

N and acquires the

dual symmetry Z[d−m−2]
p . As a consequence of the mixed ’t Hooft anomaly in the original theory, the

group structure between Z[n]
N and Z[d−m−2]

p needs a nontrivial extension, Z[n]
N ×̃Z[d−m−2]

p , which forms a

(d − 1 − m)-group structure. In our case, Z[n]
N = Z[1]

N is the center symmetry of SU(N) pure Yang-Mills

theory, and Z[−1]
p ⊂ U(1)[−1] is a subgroup of “(-1)-form symmetry” that means the 2π-periodicity of the

θ parameter. This argument clarifies that the 4-group structure in this paper can be interpreted as a

consequence of the generalized mixed anomaly, or global inconsistency, in pure Yang-Mills theory.

The authors thank the anonymous referee pointing out the above arguments, clarifying the underlying

structure.
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Recently, this type of relation (for 1-form symmetry) itself is understood as the generalized

’t Hooft anomaly with the θ-angle periodicity [69], and it naturally leads to the existence

of multi-branch structure as will be discussed in the following subsections.

3.3 Large-N limit

In order to get an insight how the anomaly is matched by low-energy physics, we study its

dynamics by using the large-N discussion in this subsection and the semiclassical analysis

on R3 × S1 in the next subsection.

Here, we set θ̂ = 0 and discuss the physics of θYM. We first perform the path integral

over the SU(N) gauge field following the standard large-N counting [70, 71]. Introducing

the ’t Hooft coupling λt = g2N , the Yang-Mills action can be written as

SYM = N

∫ [
1

2λt
tr|F |2 + i

θYM + χ

N
∧ 1

8π2
tr(F 2)

]
. (3.25)

Therefore, the natural angle parameter in the large-N limit is given by θYM/N instead of

θYM itself, and the energy density of a ground state is given by

E = N2f

(
θYM + χ

N

)
' Xtop

2
(θYM + χ)2, (3.26)

where Xtop is the topological susceptibility. The overall factor N2 counts the number of

local degrees of freedom, and f is an N -independent function. Since this prescription

breaks the 2π periodicity of the pure YM theory, we have to recover it by introducing the

multi-branch structure [70, 71]. They are labeled by k ∈ Z with the energy density

Ek =
Xtop

2
(θYM + χ+ 2πk)2. (3.27)

The partition function of the Yang-Mills theory is then given by

ZYM(θYM, χ) =
∑
k

exp(−Vol Ek(θYM, χ)), (3.28)

where Vol is the four volume of the spacetime.

In order to obtain the partition function of the generalized YM, we next perform the

path integral over χ and c(3):

ZgYM =

∫
DχDc(3) exp

(
−i

p

2π

∫
χ ∧ dc(3)

)
ZYM(θYM, χ). (3.29)

The path integral over c(3) can be performed exactly, and it gives a delta functional con-

straint on χ so that

χ =
2π

p
`, (` = 0, 1, . . . , p− 1). (3.30)

As a result, we obtain

ZgYM(θYM) =
∑
k∈Z

p−1∑
`=0

exp

(
−Vol

Xtop

2

(
θYM +

2π

p
`+ 2πk

)2
)
, (3.31)
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and we correctly find the 2π/p-periodicity in terms of θYM. In order to characterize the

multi-branch, we have introduced the two integer, ` ∼ ` + p and k ∼ k + N , while the

periodicity of k cannot be seen in the large-N limit. In the expression of the (quasi)

ground-state energies, the periodicity of these labels should have the following extension,

(`+ p, k) ∼ (`, k + 1). (3.32)

This relation is nothing but the realization of the relation between the four-form and two-

form background gauge fields given in (3.21).

We can also show that Zp 3-form symmetry is unbroken for generic θYM. For simplicity,

let us consider the case θYM = 0. In order to judge if the three-form symmetry is broken

or not, we compute the expectation value,〈
V (3)(M3)

〉
=
〈

exp

(
i

∫
M3

c(3)

)〉
, (3.33)

in the limit M3 becomes larger. If 〈V (3)〉 → 0 in that limit after appropriate renormaliza-

tion, then the three-form symmetry is unbroken. Let us rewrite this operator as

V (3)(M3) = exp

(
i

∫
V4

dc(3)

)
, (3.34)

where V4 is a subregion of the four-dimensional spacetime bounded by M3, ∂V4 = M3.

Therefore, insertion of V (3)(M3) shifts the scalar field χ by 2π/p if it is inside of M3, while

fields outside of M3 are not affected. Since we take the vacuum configuration outside of

M3, the energy density inside of M3 is given by

E(2π/p)− E(0) =
Xtop

2

(
2π

p

)2

, (3.35)

and thus 〈
V (3)(M3)

〉
' exp

(
−2π2Xtop

p2
Vol(V4)

)
. (3.36)

This shows that, in the large-N limit, the Zp three-form symmetry is a symmetry with an

order parameter Xtop. Therefore, in the large-N , we obtain the following criterion,

Xtop = 0 ⇔ Z[3]
p

SSB−−→ 1,

Xtop 6= 0 ⇔ Z[3]
p unbroken. (3.37)

In the YM, Xtop ∼ Λ4, where Λ is the strong scale, so the three-form symmetry of general-

ized YM is unbroken. We expect that in d-dimensional QFT, (d−1)-form symmetries can-

not generally be broken unless a mixed anomaly requires it, and this is consistent with that

expectation. The above discussion assumes that the large-N counting works nicely, and

we note that the numerical lattice simulation supports its correctness (see, e.g., ref. [72]).

In the later sections, we shall see that the three-form symmetry is spontaneously broken if

the massless fermion is introduced, and this is consistent with the above observation.
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3.4 Semiclassics with double-trace deformation on R3×S1 vs. mixed anomaly

In the previous subsection, we discuss the dynamics of generalized YM in the large-N

limit. The large-N counting provides a useful picture about the θ-dependence, but the

discussion there is qualitative because the theory is a matrix-like model. In order to get

more quantitative understanding, we consider the small S1 compactification with size L,

and we add the double trace term in order to force the confinement of Polyakov loops [45–

47]. The following semiclassical analysis turns out to be reliable without any infrared

divergences if the condition NLΛ� 1 is satisfied. Below, we set θ̂ = 0 and simply denote

θYM = θ. The notation of the su(N) Lie algebra used below is summarized in appendix A.

By S1 compactification, the Wilson loop wrapping around S1 provides the compact

adjoint scalar field, W (S1) = exp(iφ), and we take the Polyakov gauge so that φ is in

the Cartan subalgebra. In components, we denote it as φ =
∑N−1

i=1 φiαi = (φ1, φ2 −
φ1, . . . ,−φN−1) with 2π-periodic fields φi. At generic values of φ, the off-diagonal 3d

gluon fields aij gets the mass term |φ ·αij |/L, and the adjoint Higgsing occurs so that the

gauge group is broken to SU(N)→ U(1)N−1 (and the Weyl group Wsu(N)).

In the case of pure YM, the one-loop effective potential of W (S1) favors the center-

broken minima [73], φ = 0, and the adjoint Higgsing does not occur. In order to study

the physics of the confined phase, we must add certain deformations, so that the minima

is given by the center-symmetric one, eiφ? = (1, ω, ω2, . . . , ωN−1) up to Wsu(N), with ω =

e2πi/N . For this purpose, we add the double-trace deformation to the effective potential,∑bN
2
c

k=1 |trW (S1)k|2. This deformation arise naturally from a microscopic theory, QCD

with multi-flavor adjoint fermion with mass term endowed with the periodic boundary

conditions, and it may be considered as a low energy effective description. Then, all the off-

diagonal gluons gets the mass ≥ 2π/NL, and below its energy scale the perturbative physics

is completely Abelianized, which is sometimes called the classical Coulomb branch. We

denote the diagonal gluons as a =
∑

i aiαi with canonically normalized U(1) gauge fields ai.

We first analyze the YM sector. The effective Yang-Mills action on R3 × S1 at the

classical Coulomb branch is given by

SYM =

∫
R3

(
1

2g2L
|dφ|2 +

L

2g2
|da|2 +

iθ

4π2
dφ · da

)
. (3.38)

In order to perform the 3d Abelian duality, we add the auxiliary RN−1-valued one-form

field h with the term g2

8π2L
|h|2. By shifting h 7→ h+ 2πiL

g2
? da, we obtain

∫
R3

(
1

2g2L
|dφ|2 +

g2

8π2L
|h|2 +

i

2π

(
h+

θ

2π
dφ

)
· da

)
. (3.39)

The path integral over a gives

h+
θ

2π
dφ = dσ, (3.40)

where the dual photon field σ has the periodicity σ ∼ σ + 2πµi for i = 1, . . . , N − 1. In

components, we can denote it as σ =
∑

i σiµi with 2π-periodic scalars σi.
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Let us check if the anomaly of the θ-angle periodicity can be reproduced in the dual

picture. We decompose the four-dimensional ZN two-form gauge fields as

B
(2)
4d = A3d ∧

dx4

L
+B3d. (3.41)

For notational simplicity, we omit the subscript 3d in the following of this subsection. A

is the one-form gauge field for Z[0]
N that acts on φ. In components, Z[0]

N is generated by

φn 7→ φn + 2π
N n, and thus the covariant derivative takes the form

N−1∑
n=1

(dφn − nA)αn = dφ−NAµN−1. (3.42)

To obtain the right hand side, we have used
∑N−1

m=1 mαm = NµN−1 = (1, . . . , 1, 1 − N).

Similarly, we obtain
N−1∑
n=1

(dan − nB)αn = da−NBµN−1. (3.43)

The 3d Abelian duality with these background gauge fields give

Seff =

∫ (
1

2g2L

∣∣∣dφ−NAµN−1

∣∣∣2 +
g2

8π2L

∣∣∣dσ − θ

2π
(dφ−NAµN−1)

∣∣∣2)
−
∫

iN

2π
µN−1 · dσ ∧B. (3.44)

We can readily reproduce the anomaly for the θ-angle periodicity of the pure Yang-Mills

theory. Under the shift θ 7→ θ + 2π, we have to perform

dσn 7→ dσn +αn · (dφ−NAµN−1)

= dσn +

N−1∑
m=1

(αn ·αm)dφm − δn,N−1NA, (3.45)

in order to make the kinetic term invariant. Since A is the ZN gauge field, this is well defined

as the transformation of the 2π periodic scalar fields σn. Substituting this transformation,

we find that

Seff 7→ Seff +
iN

2π

∫
A ∧B, (mod 2π) (3.46)

and this is nothing but the generalized anomaly between (Z[0]
N )3d × (Z[1]

N )3d and the 2π-

periodicity of θ.

Below, let us take into account the effect of the double-trace term, and we set eiφ =

eiφ? = (1, ω, . . . , ωN−1) as the classical vacuum configuration. This process requires the

gauge fixing of the remnant discrete gauge invariance by the Weyl group Wsu(N). The

Abelianization of the gauge invariance makes the system weakly coupled, so the path

integral is dominated by the saddle-point configuration in each sector. Such configurations

of the 3-dimensional compact Abelian gauge theory are characterized by the topological

and magnetic charges, and they are called as monopole-instantons.
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There are N types of the fundamental monopoles that are relevant to the analysis of

YM with the double-trace deformation. (N−1) of them are basically the ’t Hooft-Polyakov

monopole [74, 75], and their effect can be written as the monopole vertex,

Mi(x) = e−SI/Neiαi·σ(x)eiθ/N (i = 1, . . . , N − 1). (3.47)

Here, SI = 8π2/g2 is the instanton action, and importantly SI/N = 8π2/(g2N) remains

finite in the ’t Hooft large-N limit. The last one [76–80] corresponds to the Affine simple

root, αN = −α1 − . . .−αN−1, and the monopole vertex itself takes the very same form,

MN (x) = e−SI/NeiαN ·σ(x)eiθ/N . (3.48)

All these monopole-instantons have the topological charge 1/N , but they are distinguished

by the magnetic charge (see also [81]). Because the theory is in the weak-coupling regime,

the path integral can be well approximated by the dilute gas approximation of these N

types of monopole-instantons. In order for such ensemble to make sense as a configuration

on the compact 3-dimensional space M3, the total magnetic charge of that ensemble must

be equal to zero. Importantly, the zero-mode integration of σ imposes this magnetic

neutrality condition, so we do not need to put extra constraint to achieve it. The magnetic

neutrality also guarantees the quantization of the topological charge ν ∈ Z.

Applying the dilute gas approximation, we obtain the monopole-instanton induced

potential as

V = −e−SI/N
N∑
n=1

cos

(
αn · σ +

θ + χ

N

)
. (3.49)

Here, in order to take into account the effect of χ field, we replace θ by θ+ χ. Solving the

saddle point equation, we get the N distinct saddle points,

σk =
2π

N
kρ ≡ 2π

N
k

N−1∑
i=1

µi, (3.50)

with k = 0, 1, . . . , N −1 and ρ is the Weyl vector. Then, we obtain the N -branch structure

as

Ek = −Ne−SI/N cos

(
θ + 2πk + χ

N

)
. (3.51)

In order to obtain all the vacua of generalized YM theory, we must perform the path

integral over c(3) and χ. Path integral over c(3) gives

χ =
2π

p
` (` = 0, 1, . . . , p− 1), (3.52)

and we correctly obtain the Np-branch structure with the energy,

E`,k = −Ne−SI/N cos

(
θ

N
+

2π(`+ pk)

Np

)
. (3.53)

As we have seen in the large-N discussion, the label for (quasi) ground-state energies, (`, k),

cannot be simply regarded as an element of Zp × ZN , but it should have an extension,

(`+ p, k) ∼ (`, k + 1). (3.54)
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All the qualitative behaviors expected in the large-N analysis are nicely obtained in the

explicit evaluation of the path integral on R3 × S1 with NLΛ � 1. Indeed, it has been

proposed that this semiclassically computable regime, NLΛ� 1, is adiabatically connected

to the large volume limit, L→∞, without any phase transitions [45–54] for suitable matter

contents or after double-trace deformation.3 This proposal is based on the observation that

the large-N volume independence works so long as the system is in the confined phase [82–

85], and the story is that the large-N volume independence is true for L & 1/Λ and it has

a smooth transition to the above semiclasically confined regime, L� 1/NΛ. Even though

this adiabatic continuity to the semiclassical regime is still an open issue, let us point out

that a recent numerical lattice study [86] of the topological susceptibility on R3 × S1 with

the double-trace deformation shows the evidence of volume independence, so it seems that

the first half of the story is being verified.

4 Vacuum structure of generalized super Yang-Mills theory

Here, we introduce one adjoint Weyl fermion:

λσµ (∂µλ+ i[aµ, λ]) . (4.1)

For p = 1, this is the N = 1 super Yang-Mills theory. This theory has Z2N discrete chiral

symmetry, and there are N vacua associated with the chiral symmetry breaking, Z2N →
Z2 [87]. In the following, we consider the case p > 1, by restricting the instanton sum.

4.1 Z2Np chiral symmetry and mixed ’t Hooft anomaly

Let us identify the 0-form symmetry, which we will call chiral symmetry. Under the rotation

λ 7→ eiαλ, often denoted as U(1)R, the fermion measure gives the contribution

iα
2N

8π2

∫
tr(F ∧ F ). (4.2)

We can combine this with another U(1) transformation χ 7→ χ + β, and then we get the

additional term as

i
2Nα

8π2

∫
tr(F ∧ F ) + iβ

∫ (
1

8π2
tr(F ∧ F )− p

2π
dc(3)

)
= i

2Nα+ β

8π2

∫
tr(F ∧ F )− i

pβ

2π

∫
dc(3). (4.3)

In order for this to be a symmetry, we require that

2Nα+ β ∈ 2πZ, pβ ∈ 2πZ. (4.4)

This is solved as

α =
2π

2Np
n, β = −2π

p
n, (4.5)

3Adaiabatic continuity can be viewed as a stronger version of persistent order. Persistent order allows

phase transitions that are admitted by mixed anomaly matching. Adiabatic continuity is the realization of

a single phase at any compactification size L, from weak to strong coupling.
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with n ∼ n+ 2Np. This shows that we have Z2Np discrete chiral symmetry, generated by

λ 7→ e
2πi
2Npλ, eiχ 7→ e

− 2π
p

i
eiχ. (4.6)

Therefore, the chiral symmetry is enlarged by Zp. The reason for this enhancement is that

we can combine the discrete symmetry by a combination of two quantum-mechanically

broken U(1) symmetries, U(1)R and the Peccei-Quinn U(1) symmetry [88, 89]. As in the

p = 1 case, the subgroup Z2 ⊂ Z2Np is the fermion parity, and it cannot be broken in the

Lorentz-invariant vacuum.

For the minimal generator of Z2Np,

α =
2π

2Np
, β = −2π

p
, (4.7)

the theta angles θYM and θ̂ are shifted as

θYM 7→ θYM + 2Nα+ β = θYM, θ̂ 7→ θ̂ − pβ = θ̂ + 2π. (4.8)

As we have discussed in section 3.2, the θ-angle periodicity has a mixed anomaly with

Z[1]
N ×Z[3]

p . In the case of SYM, this leads to the mixed ’t Hooft anomaly with the discrete

chiral symmetry. By introducing the background U(1) higher-form gauge fields with the

constraint

NB(2) = dB(1), pD(4) = dD(3) +
N

4π
B(2) ∧B(2), (4.9)

we find that the discrete chiral transformation gives the phase rotation of the partition

function as

Z 7→ exp

(
−i

∫
D(4)

)
Z. (4.10)

This shows that the system has ZNp ’t Hooft anomaly. We will see in the following that

the anomaly is matched by the discrete chiral symmetry breaking Z2Np → Z2.

4.2 Symmetry breaking, superselection sectors, and universes

In this section, we discuss the consequence of the ’t Hooft anomaly matching. We can set

θYM = θ̂ = 0. Since the path integral over c(3) can be done exactly, we find that

χ ∈ 2π

p
Z. (4.11)

For each fixed χ, the path integral over a and λ is identical with the usual SYM with

θYM = χ, so we obtain the N vacua distinguished by the gluino condensate,

〈λλ〉 = Λ3 exp

(
−i

χ

N
+

2πi

N
k

)
. (4.12)

Substituting χ = 2π
p `, we find that the theory has Np vacua characterized by the conden-

sates,

〈λλ〉n = Λ3 exp

(
−2πi

Np
n

)
, 〈eiχ〉n = e2πin/p, (4.13)
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hei�in = e2⇡in/p

h��in = ⇤3 exp

✓
�2⇡i

Np
n

◆

Figure 1. The vacuum structure of SU(N) SYM theory where instanton sum is restricted to

multiples of charge-p (N = 4, p = 2 in the figure). The theory has Np vacua. These vacua

split naturally to two sets, denoted by the blue circles and the red squares. The vacua for which

n1 − n2 = 0 mod p are relative superselection sectors. There are dynamical domain walls in

between. The vacua for which n1−n2 6= 0 mod p are different universes. There exists no dynamical

domain walls that can connect them, and no tunneling in between exists even when the theory is

compactified. Only external probes charged under Z[3]
p can connect them. When mass deformation

is added, this structure extrapolates to Np branches of generalized YM theory.

for n = 0, 1, . . . , Np − 1. Here, we combine the label (`, k) as a single integer, n = `+ pk,

because of the identification (`+ p, k) ∼ (`, k + 1). This is shown in figure 1.

Since Z2Np discrete chiral symmetry is spontaneously broken to Z2, we are tempted

to conclude that there are Np superselection sectors. However, the existence of the Zp
three-form symmetry tells us a more strong rule, and we call them as different universes.

To explain it, let us start with the explanation of superselection rule. Let H be the

Hilbert space of a given QFT, then we say that

• |Φ1〉, |Φ2〉 ∈ H are distinguished by superselection rule.

⇔ For any local observables O, 〈Φ1|O|Φ2〉 = 0.

The definition of superselection rule crucially depends on the choice of allowed observables.

In the context of local QFT, the space of observables is usually taken to be the set of local

operators, and we also adopt this convention here. We therefore have the superselection

sectors by spontaneous symmetry breaking, because the transition from one symmetry-

broken vacuum to another is an extensive operation while the local operator cannot create

such extensive energy. In order to go to another vacuum, we need a nonlocal operation

such as heating up the whole magnet above the critical temperature and cooling it down.

In the case of QFT, the superselection rule usually appears only in the infinite volume

limit. In the finite volume, the symmetric state always has a lower energy than asymmetric

states by an exponentially small energy.4 The physical interpretation of this is the existence

of domain wall as a dynamical excitation connecting different symmetry-broken vacua.

4In some QFTs, the domain wall may be associated with some fermionic zero modes under a suitable

boundary condition, and then it does not lead the energy splitting at the finite volume. Even in such cases,

we can prepare a certain local point-like operator to find the would-be exponentially small energy splitting,

and we can notice the existence of dynamical domain wall. As we will explain, the distinction as universes

is stronger than such situations.
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In the case of generalized YM, the situation is different because of the topological

coupling,
ip

2π

∫
χ ∧ dc(3). (4.14)

The path integral over c(3) exactly requires that χ must be a constant modulo 2π. There-

fore, there does not exist any configurations χ(t) connecting different vacua, such as

χ(−∞) = 0, χ(+∞) =
2π

p
. (4.15)

The path integral with this boundary condition is exactly zero even in the finite volume.

This conclusion does not change after inserting any local point-like operators. Therefore,

at any finite volume, the off-diagonal matrix elements for two states, χ = 0 and χ = 2π
p ,

of any local operator vanishes, 〈χ = 0|O(x)|χ = 2π/p〉 = 0. That is, the superselection

rule persists to the finite volume if two states have different values of the scalar field χ.

This superselection rule is clearly stronger than the ordinary one, and to emphasize the

distinction, we call them different universes.

We call two states |Φ1〉, |Φ2〉 ∈ H as different universes if

• Even in the finite volume, the superselection rule distinguishes them:

〈Φ1|O(x)|Φ2〉 = 0 for any local observable O(x) and any finite volume.

• There is no dynamical domain wall connecting those two states, Φ1 and Φ2.

We believe that these two statements are equivalent for local QFT.

In the case of generalized SYM, there is a good symmetry reason why there are different

universes. Because of the mixed anomaly between the chiral symmetry Z2Np and Zp 3-form

symmetry, the discrete chiral transformation by one unit generates the Zp phase. Therefore,

the wall configuration connecting two vacua, n = 0 and n = 1, has to be charged under

the Zp three-form symmetry. However, the existence of three-form symmetry means that

there is no dynamical wall excitations charged under it. Therefore, the mixed anomaly

between 0-form and 3-form symmetries ensures that the symmetry broken vacua for the

0-form symmetry are distinguished as different universes and superselection sectors. This

fact can be generalized to d-dimensional QFT if it has a mixed anomaly between 0-form

and (d − 1)-form symmetries. Indeed, in the case of d = 2, charge-p models discussed in

refs. [38–40, 43, 44] can be interpreted as realizations of different universes by having a

0-form and 1-form mixed anomaly.

The two vacua are different universes if χ takes different values in mod 2π. More

explicitly, if we consider two vacua n = n1 and n2 in (4.13), then they are different universes

if and only if n1 6= n2 mod p. If they are different in mod p, the wall configuration is possible

only after we insert the external probe,

exp

(
i(n1 − n2)

∫
c(3)

)
. (4.16)

The insertion of this probe shifts χ → χ + 2π
p (n1 − n2) mod 2π, and these configurations

are related by spontaneously broken chiral symmetry, so the wall configurations connecting
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different universes are obtained by insertion of this probe operator. As a consequence,

unlike generalized YM, the Z[3]
p symmetry is spontaneously broken in generalized SYM,

and one can confirm with the criterion (3.37). When n1 = n2 + pk, there is a dynamical

domain wall connecting those vacua, and it is consistent with the fact that the above

operator becomes neutral under Z[3]
p . If k is not a multiple of N , then the mixed anomaly

between chiral and one-form symmetries shows that the effective field theory on the domain

wall has an ’t Hooft anomaly for the ZN one-form symmetry. For the study of the physics

on the wall, see, e.g., refs. [21, 25, 38, 39, 42, 90–92].

It is important to emphasize that the absence of dynamical domain wall is completely

characterized by the mixed anomaly between a 0-form symmetry and a (d− 1)-form sym-

metry in d-dim QFTs. In the case of generalized YM theory, it comes out of TQFT (4.14).

Therefore, in the Z2Np → Z2 chiral symmetry breaking pattern, the breaking of the

Zp ' Z2Np/Z2N part of chiral symmetry can be viewed as a UV (or all-scale) phenomenon

due to its TQFT nature, leading to different universes. The breaking of ZN is a dynami-

cal IR phenomenon, leading to superselection sectors within each universe, and these two

chiral-symmetry breakings have different physical origins.

An interesting implication of this is that the distinction between superselection sectors

and universes can be emergent in the low-energy effective description if we introduce a

finite UV cutoff. For example, the action (4.14) can be regarded as the low-energy effective

description of ∫
1

2

(
v2|dχ|2 + λ(1− cos(pχ))

)
. (4.17)

Here, v and λ are dimensionful parameters, with mass dimensions [v] = 1 and [λ] = 4,

and this theory is not renormalizable because of the cosine-type interaction. We assume

that this is already some low-energy effective description of a UV complete theory, but, for

our purpose, such details are unimportant. This model has the ordinary Zp symmetry as

χ 7→ χ + 2π/p, but there is no 3-form symmetry. In this case, the three-form symmetry

of (4.14) is an emergent symmetry in the low-energy effective description. The fact that

the wall is charged under the emergent Zp 3-form symmetry tells us that the dynamical

domain wall may be possible in the UV description, but the energy density of such wall

is controlled by the typical energy scale of that UV theory. For example, in the specific

UV theory given above, the domain-wall energy density is characterized by v
√
λ/p, and it

goes to infinity as sending the parameters of UV theory to infinity, v, λ→∞. This has the

sharp contrast with the fact that the energy density of the dynamical domain walls (i.e.,

when n1 − n2 = 0 mod p) is controlled by the strong scale of N = 1 SYM.

5 Generalized QCD with fundamental fermion

Let us briefly discuss the modified instanton sum in QCD with one-flavor fundamental

quark,

ψγµ(∂µ + iaµ)ψ. (5.1)

At the classical level, the theory has the U(1)A axial symmetry. In the ordinary 1-flavor

QCD, the instanton contribution breaks this axial symmetry completely, and thus the
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additive mass renormalization exists. However, the massless point is still a well-defined

point at least within the continuum formulation, since the additive renormalization by

instanton contribution is softer than the mass effect in the high momentum limit [28].

The special feature of the massless point becomes very evident when we consider

the modified instanton sum. In order to see it, let us consider the axial transformation

ψ 7→ eiαγ5ψ and χ 7→ χ+ β, then the total change of the action is given by

2iα
1

8π2

∫
tr(F ∧ F ) + iβ

∫ (
1

8π2
tr(F ∧ F ) +

p

2π
dc(3)

)
. (5.2)

Therefore, this transformation is a symmetry if

2α+ β ∈ 2πZ, pβ ∈ 2πZ. (5.3)

This shows that modified instanton sum in massless 1-flavor QCD provides Z2p discrete

chiral symmetry, and it is generated by

ψ 7→ exp

(
2π

2p
iγ5

)
ψ, eiχ 7→ exp

(
−2π

p
i

)
eiχ. (5.4)

The subgroup Z2 ⊂ Z2p is the fermion parity, so it cannot be spontaneously broken in

Lorentz-invariant vacuum. We will see that this discrete chiral symmetry is spontaneously

broken as

Z2p
SSB−−→ Z2, (5.5)

and we have p distinct vacua. Moreover, they are different universes.

In order to see it, we discuss the mixed anomaly between the discrete chiral symmetry

and the higher-form symmetry. Since the pair creation and annihilation of fundamental

quarks break the string of Wilson lines, this theory does not have Z[1]
N . Therefore, we must

turn off B(2) and B(1) in the analysis of section 3.2, and thus the background gauge fields

D(4) satisfies

pD(4) = dD(3). (5.6)

This is the background gauge field for Z[3]
p acting on V (3) = exp(i

∫
c(3)). By performing

the Z2p discrete chiral transformation under the existence of D(4), the partition function

transforms as

Z 7→ exp

(
i

∫
D(4)

)
Z. (5.7)

Therefore, there is the Zp mixed ’t Hooft anomaly for Z[0]
2p ×Z[3]

p . This anomaly is matched

by the spontaneous breaking of discrete chiral symmetry. Also, this mixed anomaly tells us

that superselection rule between different symmetry-broken vacua holds true for any finite

volumes, and no dynamical domain wall can interpolate between them.

It should be noted that this construction itself does not provide a framework in which

Z2p symmetry protects fermion mass operator from being generated, despite the fact that

it forbids the mass operator, ψψ. How is this possible? For example, small instanton

amplitudes of the form e−SIψPRψ is forbidden due to Z2p but e−SIψPRψeiχ is allowed. As

emphasized earlier, the vev 〈eiχ〉n 6= 0 is an all scale property, valid at both UV and IR
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due to topological coupling (4.14). Because of this reason, formally, the chiral symmetry

breaking scale via this operator may be viewed as UV energy scale, and a soft mass term is

generated due to instantons in any one of the p universes. However, it is possible that our

generalized QCD can emerge as an effective description of another QFT, with emergent 3-

form symmetry at low energies. Even in such cases, the domain-wall excitations or the false-

vacuum decays are exponentially suppressed because of the emergent 3-form symmetry, so

our consideration here may lead to interesting physical consequences.

6 Connection between modified instanton sums in 4d and 2d

So far, we have discussed the effect of modified instanton sum in the context of 4d Yang-

Mills theory and QCD, revealing the implications of the proposal in [10]. There are works in

the context of 2d charge-p Schwinger and sigma models which can be interpreted as modified

instanton sums:[7–9, 38–40, 43, 93, 94] and indeed, very similar vacuum structures can be

found there. Especially in [93], using the terminology of this paper, it has been observed

that the path integral of charge-p CPN−1 model has the decomposition into p universes,

and the summation over those universes give the projection operator in 2 dimensions.

The purpose of this section is to uncover the possible connection between these two

class of theories (in 4d vs. 2d) in view of anomaly, following the idea of refs. [26, 29–31, 95].

We note that, applying the discussion of ref. [96], we can obtain more explicit connection

between generalized YM theory on T 3 × R with ’t Hooft flux and the charge-p CPN−1

model on R × S1 with ZN twisted boundary condition. The p = 1 version of the twisted

CPN−1 model was proposed to show the volume independence in refs. [97, 98], and it (and

its cousins) have been discussed in details in refs. [99–107].

We consider the compactification on two torus T 2 = (S1)L1 × (S1)L2 of 4d generalized

YM theory, and discuss the anomaly of the effective 2-dimensional field theory. We denote

our four-dimensional spacetime as M4 = (S1)L1 × (S1)L2 ×M2, and the size of M2 is much

larger than (S1)L1 × (S1)L2 . In order to obtain the anomaly of effective 2d theory, it is

sufficient to identify the contents of background gauge fields on M2 induced from M4. First,

we decompose B(2) as

B(2) = A1 ∧
dx1

L1
+A2 ∧

dx2

L2
+B, (6.1)

where A1 and A2 are ZN one-form gauge field and B is ZN two-form gauge field on M2.

Therefore,
N

4π

∫
T 2

B(2) ∧B(2) = −N
2π
A1 ∧A2, (6.2)

and this provides the ZN two-form gauge field.

Next, we consider the compactification of D(4) and D(3) as

D(4) = D ∧ dx1 ∧ dx2

L1 L2
, D(3) = C ∧ dx1 ∧ dx2

L1 L2
. (6.3)

As a compactification of the constraint equation (3.21), we obtain

pD = dC − N

2π
A1 ∧A2. (6.4)
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As a summary, by considering T 2 compactification, the higher-form symmetry is converted

as (
Z[1]
N × Z[3]

p

)
4d
⇒
(
Z[0]
N

)
1
×
(
Z[0]
N

)
2
× Z[1]

N × Z[1]
p . (6.5)

A1 and A2 are the background gauge fields for
(
Z[0]
N

)
1,2

, D is the two-form gauge field for

Z[1]
p , and the flux of D is affected by the 0-form symmetry. This shows that, under the

shift of θYM → θYM + 2π/p, we obtain the anomalous phase as

ZM2 [A1, A2, D] 7→ exp

(
−i

∫
D

)
ZM2 [A1, A2, D]. (6.6)

This is indeed the slight generalization of the anomaly of CPN−1 model computed in

ref. [24] for the charge-p model and by restricting the PSU(N) symmetry to ZN ×ZN [34].

This explains why 2d charge-p CPN−1 model studied in refs. [7–10] shows very similar

vacuum structure with that of generalized YM theory.

7 Conclusions and outlooks

The main results of this work can be summarized as follows:

• Modifying instanton sums into the integer multiples of topological charge p can be

established within local QFTs. This modification is realized by coupling a TQFT to

QFT. In the case of 4d SU(N) YM theory, this process naturally creates a 3-form

symmetry.

• In general, (d − 1)-form symmetries in d spacetime dimensions cannot be sponta-

neously broken in the absence of mixed anomalies. If broken due to a mixed anomaly,

we will always obtain universes instead of superselection sectors.

• In generalized Yang-Mills theory, we showed mixed anomaly between Z[1]
N ×̃Z[3]

p sym-

metry and the θ-angle periodicity. Gauging this symmetry correctly necessitates an

intriguing 4-group structure. The vacuum has Np branches.

• Generalized SYM has Np isolated vacua and 1-flavor QCD has p vacua. The vacua

separated by n1 − n2 = 0 mod p units are interpreted as superselection sectors,

while the ones for which n1 − n2 6= 0 mod p are referred to as universes. There

are no dynamical domain walls connecting them. But the wall configuration can be

generated in the presence of an external probe charged under Z[3]
p .

• The distinction as universes appears if the broken 0-form symmetry has a mixed

anomaly with a (d− 1)-form symmetry in d-dim QFT. If the would-be domain wall

connecting distinct vacua is charged under the (d− 1)-form symmetry, such configu-

ration cannot arise as a dynamical excitation.

• We proved compatibility of abelian duality with mixed anomaly, in the context of

center-stabilized YM theory on R3×S1. Both original and dual formulation produce
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the same mixed anomaly polynomials.5 For the generalized YM, the dilute gas of

monopole-instantons in the semi-classical regime produces the correct Np branched

structure.

• Generalized YM theory, upon compactification on T 2×M2, reduce to charge-p CPN−1

model. This uncovers the close connection between modified instanton sums in 4d

and 2d field theories.

We still have many open issues related to this study. Let us briefly summarize our

outlook for possible extensions:

• We should look for physical applications of the notion of universes. We describe an

outlook on this point later in more detail.

• We have studied the modified instanton sum for SU(N) gauge theories. Generaliza-

tion to the non-simply connected gauge groups needs to be explored.

• We derived the anomaly of 3d dual theory for deformed YM on R3×S1, however it is

not immediately obvious how we can generalize to other compactified gauge theories

on R3 × S1. Especially, it is important to study how we can concretely obtain the

anomaly of compactified N = 1 SYM in a consistent way with known effective (Affine

Toda) superpotential based on monopoles.

• In 2d, the modified instanton sum has a nice application to define the lattice θ

angle [108, 109]. Does it have a generalization to 4d Yang-Mills theory?

It would be especially interesting to apply the observations of this study into realistic

physical situations. Our study shows that if one QFT couples to other hidden sectors

with a (d − 1)-form symmetry, then the total system has the decomposition into distinct

sectors, called universes. We hope that this observation has an interesting application to

the false vacuum to decay. Let us assume that the system is trapped by the false vacuum

distinguished as the universe from the true ground state, then the false-vacuum decay is

prohibited. In order for the false vacuum decay, the system has to create bubbles of the

true vacuum, which is nothing but the wall configuration between the true and false vacua.

Then, the boundary of the bubble must be charged under the (d − 1)-form symmetry,

and this means that it can appear only after insertion of a (d − 1)-dimensional external

probe. When the (d− 1)-form symmetry is emergent, this selection rule is true only in the

approximate sense. Still, it means that the system has to create very large bubbles of the

true vacuum in order for the bubble to expand by the pressure difference between inside

and outside of the bubble. We can expect that the life-time of the false vacuum becomes

much longer than usual cases.

5From many examples of semi-classics (within its regime of applicability) on R3×S1, and mixed anoma-

lies, it is already known that the two never contradict each other. Our construction goes one step beyond this

point and derives the anomaly polynomial of the original theory from the dual semi-classical formulation.
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A Explicit formulas of roots and weights of su(N)

su(N) is the Lie algebra of the N × N Hermitian, traceless matrices. Let ei be the i-

th N -dimensional unit vector, then the canonical basis of su(N)C is given by the Cartan

generator {Hm}m=1,...,N−1 and the root {Eαij}1≤i 6=j≤N :

Hm =
1√

m(m+ 1)

(
m∑
i=1

ei ⊗ ei −mem+1 ⊗ em+1

)
, Eαij = ei ⊗ ej . (A.1)

It satisfies

tr[HiHj ] = δij , tr[EαijEαk` ] = δi`δjk, (A.2)

where the trace is taken for the defining representation (i.e. the faithful representation

with the smallest dimension), and this makes the length squared of root as α2 = 2. The

commutation relation is

[Hm, Eαk` ] =
(ek − e`) · (e1 + · · ·+ em −mem+1)√

m(m+ 1)
Eαk` . (A.3)

Since the vectors (e1 + · · ·+ em −mem+1)/
√
m(m+ 1) form the orthonormal basis of the

(N−1)-dimensional subspace of RN , this commutation relation tells us that the root vector

of Eαk` is

αk` = (ek − e`), (A.4)

and we call they are positive if k < `. The simple roots are

αi = αi i+1 = (ei − ei+1), (A.5)

and then αk` = αk + · · · + α`−1 for k < `. In this convention, it is now evident that

|αk`|2 = 2, and thus we can identify the co-root/root and co-weight/weight as α∨i = αi
and µ∨i = µi, respectively (i.e. Λ∨R = ΛR and Λ∨W = ΛW ). We can check that the Cartan

matrix is of the class AN−1,

Cij :=
2(αi ·αj)
|αj |2

= αi ·α∨j = 2δij − δi j+1 − δi+1 j . (A.6)

The inner product between the root space and H, such as αi ·H, is understood as

αi ·H =

N−1∑
m=1

αi · (e1 + · · ·+ em −mem+1)√
m(m+ 1)

Hm

= −
√
i− 1

i
Hi−1 +

√
i+ 1

i
Hi = ei ⊗ ei − ei+1 ⊗ ei+1, (A.7)
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and then [Eαi , E−αi ] = αi ·H holds.

To write down the fundamental weights, it is convenient to introduce the following

vectors in the root space,

e′i = ei −
1

N

N∑
k=1

ek. (A.8)

By definition, e′i = 1
N

∑
j αij ∈

∑N−1
k=1 αkR, and e′i · αj = ei · αj = δij − δi j+1. The

fundamental weights are given by

µi =
i∑

j=1

e′i, (A.9)

and thus e′i = µi−µi−1 setting µ0 = µN = 0. Therefore, the simple roots can be written as

αi = e′i − e′i+1 = 2µi − µi+1 − µi−1. (A.10)

Using this property, let us compute ΛW /ΛR(= Λ∨W /Λ
∨
R) explicitly. Let λ =

∑
i λiµi

be a weight. In ΛW /ΛR, we regard αi ∼ 0, which can be solved as µn ∼ nµ1 and Nµ1 ∼ 0

for fundamental weights. As a result,

λ =
∑
n

λnµn ∼
∑
n

(nλn)µ1 (A.11)

and the coefficient is further identified by modulo N . Therefore, ΛW /ΛR ' ZN =

Z(SU(N)) and the isomorphism is given by the mapping

(λ1, . . . , λN−1) 7→
∑
n

nλn mod N, (A.12)

which is called N -ality.
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[43] T. Misumi, Y. Tanizaki and M. Ünsal, Fractional θ angle, ’t Hooft anomaly and quantum

instantons in charge-q multi-flavor Schwinger model, JHEP 07 (2019) 018

[arXiv:1905.05781] [INSPIRE].

[44] A. Cherman, T. Jacobson, Y. Tanizaki and M. Ünsal, Anomalies, a mod 2 index and
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