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1 Introduction

Defects are important observables in quantum field theory: they serve as probes that

allow to extract physics otherwise inaccessible from the study of local operators. In four-

dimensional gauge theories, it is well understood by now that models with the same local

correlators might have different line operators, and therefore correspond to distinct physical

theories [1]. In this work, we concentrate on line defects in 4d superconformal theories

with N = 2 supersymmetry. In particular, we consider half-BPS defects that preserve an

osp(4∗|2) subalgebra of the full su(2, 2|2) superconformal algebra.

An important example of such a defect is a Wilson line operator, which describes a

charged heavy particle moving in the vacuum of a gauge theory. Due to the high amount of

supersymmetry preserved by the configuration, it is possible to obtain exact formulas using

localization and related matrix model techniques [2]. For example, the Bremsstrahlung

function, which captures the energy radiated by the particle, can be calculated exactly [3–

6]. A way to understand this is that the Bremsstrahlung is proportional to the one-point

function of the stress tensor in the presence of the line, and the latter can be obtained from

localization. This relation between Bremsstrahlung and the stress tensor was conjectured

in [6] for N = 2 theories, and later proven in [7] using only superconformal symmetry.

The literature on Wilson operators in N = 2 theories is vast, however work on con-

figurations with insertions along the contour has been scarce. Here we study this system

from the 1d CFT perspective by analyzing correlators of operators inserted on the line.

Although 1d theories are non-local due to the absence of a stress tensor, they are consistent

when interpreted as defect theories. Correlators on a defect can be thought of as describing

a lower dimensional CFT embedded in a higher dimensional bulk. In particular, four-point

functions exhibit crossing symmetry and have a conformal block expansion with positive

coefficients. Thanks to this positivity property, one can use the numerical bootstrap of [8]

to constrain the CFT data. We should mention that if one considers operators outside the

defect the positivity property is lost, and the numerical bootstrap does not apply. One can

nevertheless use analytical bootstrap techniques, see [9, 10] for recent progress.

The canonical operator that is always present on a defect CFT is the displacement

operator. This operator measures deformations orthogonal to the defect, and is the closest

one can have to a conserved stress tensor. Indeed, the stress tensor and the displacement

are related by a Ward identity [11]. Due to its universal character, in this work we con-

centrate on the four-point function of the displacement operator. Because the system we

are considering is supersymmetric, in order to study the displacement operator, it will be

necessary to study the corresponding superconformal multiplet. Our bootstrap analysis is

based on symmetry and we will not commit to any particular theory. This work is com-

plementary to the bulk N = 2 superconformal bootstrap program [12–14], where the main

focus is the study of correlators of local operators.1

In N = 4 SYM, the corresponding line defect with insertions has been studied recently

using a variety of techniques. These include explicit holographic calculations [15], the

1We should also mention that N = 2 theories admit a wide variety of codimension-2 surface operators,

but here we only concentrate on codimension-3 defects.
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conformal bootstrap [16, 17], truncations to the topological sector [18, 19], and perturbative

calculations at weak coupling [20, 21]. Another related system is the monodromy line of

the 3d Ising model [22], which was studied using bootstrap techniques in [23]. Apart from

their intrinsic interest, 1d CFTs are also a useful laboratory in which bootstrap ideas can

be explored. Recent work includes exact functionals that allow to extract the spectrum

analytically [24–26], inversion formulas [27, 28] (see also [29, 30] for the closely related case

of BCFT), and intriguing positivity properties [31].

The structure of the paper is as follows. In section 2 we review the geometry of our

setup and present the preserved osp(4∗|2) superconformal algebra. We find all its unitary

representations and explicitly construct the multiplets of long and short operators that

will play a role in later discussions. In section 3 we construct correlation functions using

superspace, concentrating on those containing the multiplet of the displacement operator.

With the superspace at hand, in section 4 we use the Casimir approach to calculate the

superconformal blocks involving four displacement multiplets. We write the associated

crossing equations, and find a solution that interpolates between bosonic and fermionic free-

field theory. We apply standard numerical bootstrap techniques to our crossing equations

in section 5, and we find that the free-field solutions sit in interesting points of the allowed

regions of the plots, where they saturate the numerical bounds. In section 6 we employ

analytic techniques to find a solution to crossing which we interpret as a perturbative

first-order correction to the strong-coupling limit of our line defect. Finally, we conclude in

section 7 by giving an outlook on possible future directions of research. We complement the

text with our conventions (appendix A), and a compendium of superconformal blocks of

unprotected long operators (appendix B), which can be useful in future studies of this setup.

We also provide a Mathematica file with a number of technical results as supplementary

material.

2 Preliminaries

There are several configurations one can consider when studying defect CFTs: correlation

functions of local operators in the presence of the defect, correlators of defect operators, i.e.

local excitations that are constrained to live on the defect, and also mixed configurations

with both local and defect operators (see figure 1). Because defects break some of the

conformal symmetry, even low-point correlators tend to have non-trivial structure. One-

point functions of local operators are generically non-zero, and two-point functions have a

non-trivial dependence on two conformal invariants [11], which makes them analogous to

four-point functions in bulk CFTs with no defects.

In this work we will study line defects in four dimensions, and we concentrate exclu-

sively on defect excitations. We will consider correlators of the canonical operator that

is always present on a defect CFT: the displacement operator. This universal operator

measures deformations orthogonal to the defect. Intuitively, it can be thought of as the

orthogonal components of the stress tensor, which is the generator of translations. Since

we are resticting ourselves to the line, our system is described by a 1d CFT and all the

usual bootstrap techniques apply.2 In particular, four-point functions have a conformal

2See appendix A of [32] for a general introduction to 1d CFTs.
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Figure 1. In the presence of a defect, one can consider correlators of local and defect operators.

Because the defect breaks the conformal algebra down to a subalgebra, even low-point functions can

acquire non-trivial coordinate dependence. In this work we will concentrate exclusively on defect

excitations (hatted operators in the figure) which define a lower dimensional CFT.

block expansion with positive coefficients and they satisfy a crossing symmetry equation.

The symmetry algebra preserved by our defect is osp(4∗|2),3 which is a subalgebra

of the full N = 2 superconformal algebra. This is the maximal possible superalgebra

consistent with the geometry of the configuration. In Lagrangian theories, special boundary

conditions can be chosen in order to preserve osp(4∗|2), but here we will not consider any

particular model and we rely only on algebraic and symmetry constraints: the osp(4∗|2)

symmetry algebra will be our starting point.

In four dimensions a line defect has three orthogonal directions, and therefore the

displacement is a vector. In the supersymmetric setup we are considering, the displacement

sits in a supermultiplet whose highest weight is a scalar. This means that after taking into

account all the constraints coming from supersymmetry, our analysis will be similar to

the 1d bosonic bootstrap. In the next subsection we review the osp(4∗|2) superalgebra

together with its representation theory, with special emphasis on the multiplets which will

be relevant when studying crossing symmetry in section 4.

2.1 The superalgebra

We are interested in line defects that preserve the maximum amount of supersymmetry

osp(4∗|2), with bosonic subalgebra sl(2;R) ⊕ su(2)j ⊕ su(2)R. In addition to the sl(2;R)

factor which captures the 1d conformal symmetry, there is an extra so(3) ∼= su(2)j which

can be interpreted as rotations around the defect. The quantum number associated to it,

which we label by j, is called transverse spin. The last usp(2) ∼= su(2)R is the leftover R-

symmetry preserved by the configuration. For transverse-spin indices we will use a = 1, 2,

and for R-symmetry indices A = 1, 2. The fermionic generators are given by supercharges

Q and S, and carry both types of indices. The bosonic part of the superalgebra is given by

[D,P] = P,
[D,K] = −K,
[K,P] = 2D, (2.1)

[M b
a ,M d

c ] = −δ d
a M b

c + δ b
c M d

a ,

3A very complete presentation of superalgebras and their real forms can be found in [33].
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[RA
B,RC

D] = −δADRC
B + δCBRA

D.

The fermionic generators anticommute as follows

{QA
a ,QB

b } = εABεabP,
{SaA,SbB} = εABε

abK,
{QA

a ,SbB} = −2δ b
a RA

B + δAB(M b
a + δ b

a D).

(2.2)

Finally, the fermionic generators have the following commutation relations with the bosonic

subalgebra

[D,QA
a ] =

1

2
QA
a ,

[P,QA
a ] = 0,

[K,QA
a ] = εABεabSbB,

[M b
a ,QC

c ] = δ b
c QC

a −
1

2
δ b
a QC

c ,

[RA
B,QC

c ] = δCBQA
c −

1

2
δABQC

c ,

[D,SaA] = −1

2
SaA,

[P,SaA] = −εABε
abQB

b ,

[K,SaA] = 0,

[M b
a ,ScC] = −δ c

a SbC +
1

2
δ b
a ScC,

[RA
B,ScC] = −δACScB +

1

2
δABScC.

(2.3)

The above superalgebra is compatible with the natural hermitian conjugation in radial

quantization

D† = D, P† = K,
(
M b

a

)†
=M a

b ,
(
RA

B

)†
= RB

A,
(
QA
a

)†
= SaA. (2.4)

2.2 Unitary multiplets

Let us now turn to the study of unitary representations of osp(4∗|2). The multiplet that

contains the displacement operator has been constructed in [7], and a similar analysis for

the case of Wilson loops in ABJM can be found in [34, 35]. Unitary representations of

osp(4∗|2) have been previously discussed in [36], although here we give a more complete

treatment following the work of [37].

Highest-weight representations of superconformal algebras are constructed starting

from a superconformal primary field V, which is anhilated by the K and S generators,

and transforms in some representation of the bosonic subalgebra. For the case of interest

to us, we label the primary by [∆, j, R], where ∆ is the conformal dimension, and j, R are

positive half-integers that label the transverse spin and R-symmetry respectively. Acting

with Q supercharges on V, one obtains the conformal descendants, which are conformal

primary fields, i.e. fields anhilated by the K generator. It is then clear that the conformal

descendants form representations of the conformal algebra (but not of the superconformal

algebra) on their own. Requiring positivity of the the norm of these descendants at levels

1 and 2, imposes the unitarity bounds and shortening conditions summarized in table 1.

To our knowledge, these results have not been presented systematically elsewhere, but we

do not derive them here. Instead, we refer the reader to the works [37, 38], which give

a detailed treatment on how to obtain unitarity bounds for all superconformal theories

in d ≥ 3.

– 4 –



J
H
E
P
0
3
(
2
0
2
0
)
1
2
1

Name Primary Unitarity Bound Null State

L [∆, j, R] ∆ > 2R+ j + 1 −

A1 [∆, j, R], j > 0 ∆ = 2R+ j + 1 [∆ + 1
2 , j −

1
2 , R+ 1

2 ]

A2 [∆, 0, R] ∆ = 2R+ 1 [∆ + 1, 0, R+ 1]

B1 [∆, 0, R] ∆ = 2R [∆ + 1
2 ,

1
2 , R+ 1

2 ]

Table 1. Shortening conditions in one-dimensional N = 2 SCFTs.

Given a superconformal primary field transforming in one of the representations of

table 1, it will be important for our analysis to know the explicit quantum numbers of all

the conformal descendants. This can be achieved efficiently by means of the Racah-Speiser

algorithm [39], which has been described in great detail in [37]. Note that the weights of

the supercharges in our conventions are

Q1
1 ∼

[
+

1

2
,+

1

2
,+

1

2

]
, Q1

2 ∼
[
+

1

2
,−1

2
,+

1

2

]
,

Q2
1 ∼

[
+

1

2
,+

1

2
,−1

2

]
, Q2

2 ∼
[
+

1

2
,−1

2
,−1

2

]
.

(2.5)

For a long multiplet, we act on the highest weight in all possible ways with the four Q’s,

so we obtain a representation of dimension

dimL = 16(2j + 1)(2R+ 1). (2.6)

In order to construct the A1 supermultiplet, we need to set Q1
2 = 0, since this super-

charge has the weights that correspond to the null state in table 1. The corresponding

representation has dimension

dimA1 = 8(1 + j + 3R+ 4jR). (2.7)

In a similar way, the A2 multiplet is obtained by setting Q1
1Q1

2 = 0, and the B1 multiplet

by setting Q1
1 = 0. The corresponding dimensions are

dimA2 = 8(3R+ 1), dimB1 = 8R. (2.8)

In this work, we will be mostly concerned with the displacement operator which has pro-

tected conformal dimension ∆ = 2, and transforms as a vector under rotations orthogonal

to the defect. Therefore, it must have quantum numbers [2, 1, 0], and it has to sit at

the bottom component of the short multiplet that contains it. A careful analysis of the

representation theory shows that it can only be contained in the [A2]R=0 multiplet [7]

[A2]R=0 : [1, 0, 0]→
[

3

2
,

1

2
,
1

2

]
→ [2, 1, 0]. (2.9)
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Of special relevance will be the following multiplets, some of which will appear in the OPE

of two displacement multiplets

[B1]R=1 : [2, 0, 1]→
[

5

2
,

1

2
,

1

2

]
→ [3, 0, 0],

[A1]j=1
R=0 : [2, 1, 0]→

[
5

2
,

3

2
,

1

2

]
→ [3, 2, 0],

[A1]
j=1/2
R=1/2 :

[
5

2
,

1

2
,

1

2

]
→ [3, 0, 0]⊕ [3, 1, 0]⊕ [3, 1, 1]

→
[

7

2
,
1

2
,
1

2

]
⊕
[

7

2
,

3

2
,

1

2

]
→ [4, 1, 0],

[L]j=0
R=0 : [∆, 0, 0]→

[
∆ +

1

2
,

1

2
,

1

2

]
→ [∆ + 1, 1, 0]⊕ [∆ + 1, 0, 1]

→
[
∆ +

3

2
,
1

2
,
1

2

]
→ [∆ + 2, 0, 0],

[L]j=1
R=0 : [∆, 1, 0]→

[
∆ +

1

2
,

1

2
,

1

2

]
⊕
[
∆ +

1

2
,

3

2
,

1

2

]
→ [∆ + 1, 0, 0]⊕ [∆ + 1, 1, 0]⊕ [∆ + 1, 1, 1]⊕ [∆ + 1, 2, 0]

→
[
∆ +

3

2
,
1

2
,
1

2

]
⊕
[
∆ +

3

2
,

3

2
,

1

2

]
→ [∆ + 2, 1, 0].

(2.10)

When the above long operators approach the unitarity bound, we get the following recom-

binations rules:

lim
∆→1

[L]j=0
R=0 = [A2]R=0 ⊕ [B1]R=1,

lim
∆→2

[L]j=1
R=0 = [A1]j=1

R=0 ⊕ [A1]
j=1/2
R=1/2.

(2.11)

Therefore, we can think of the [A2]R=0 and [A1]j=1
R=0 multiplets as the longs [L]j=0

R=0 and

[L]j=1
R=0 at their respective unitarity bounds, and [A1]

j=1/2
R=1/2 as the leftover part after the

recombination of [L]j=1
R=0.

As we pointed out in the introduction, our setup is closely related to the work [17],

which considered line defects in four-dimensional N = 4 theories preserving osp(4∗|4)

symmetry. By carefully studying how our osp(4∗|2) algebra is embedded in osp(4∗|4), we

can decompose the multiplets of N = 4 into their N = 2 counterparts. The most important

multiplets in the N = 4 case are B1, which contains the diplacement operator, and B2,

which is the lowest dimension multiplet in the OPE of two diplacements. They decompose

in the following way

B1 → [A2]R=0 + 2[B1]R=1/2,

B2 → [L]∆=2
j=R=0 + 2[A2]R=1/2 + 3[B1]R=1.

(2.12)

Therefore, the analogous of the B1 multiplet in our setup is [A2]R=0, since they both contain

the displacement operator. Moreover, the role that was played by the B2 multiplet will be

played now by [L]∆=2
j=R=0. With the numerical results, it will become clear that this intuition

is correct.
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3 Superspace

Having reviewed the symmetry algebra and its representation theory, we now proceed to

construct a superspace suitable for the type of correlators we want to study. There are

several kinds of superspaces in the literature, and which one to use usually depends on the

type of multiplet being studied. Harmonic superspace is quite useful to study half-BPS

multiplets, while chiral superspace is more efficient for chiral multiplets. In this work we

are interested in the displacement operator, which sits in a multiplet which is neither half-

BPS nor chiral, however it has the simplifying feature that its highest weight is neutral

under su(2)j ⊕ su(2)R. We therefore use the most standard superspace in which we add

one fermionic coordinate for each conserved Q supercharge. In this section we will follow

closely [40, 41].

3.1 Basic definitions

Since we study a 1d CFT which preserves the supersymmetry algebra osp(4∗|2), the super-

space must have one generator P for translations, and four generators QA
a for supertrans-

lations. These supercharges have to satisfy the algebra

{QA
a ,QB

b } = εabε
ABP, [P,QA

a ] = 0, (3.1)

where A = 1, 2 and a = 1, 2. In this section we will show how to build a superspace

consistent with these commutation relations, and how to obtain the natural differential

and covariant derivative. We take the coordinates of superspace to be zM = (x, θaA), and

a finite supertranslation to be implemented by the operator

g(z) = g(x, θ) = exp
(
xP + θaAQA

a

)
. (3.2)

The composition of two supertranslations g(ε, ξ)g(z) = g(z′) can be evaluated using the

Baker-Campbell-Hausdorff formula eXeY ≈ eX+Y+ 1
2

[X,Y ], giving

x′ = x+ ε− 1

2
ξθ,

θ′ = θ + ξ .
(3.3)

Here and in what follows, we use the index-free notation introduced in appendix A, where

for example ξθ ≡ εabε
ABξaAθ

b
B = ξaAθ

A
a . The differential of a function in superspace is

defined as

d ≡ dzM
∂

∂zM
⇒ df = dx

∂f

∂x
+ dθaA

∂f

∂θaA
. (3.4)

It will prove convenient to rewrite it in terms of the covariant derivative DA
a and the

“covariant one-form” e(z). Looking at the differential of a supertranslation (3.3)

dx′ = dx− 1

2
ξdθ,

dθ′ = dθ,
(3.5)

– 7 –
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we see that it is natural to define the one-form e(z) ≡ dx+ 1
2θdθ, which has the property

e(z′) = e(z) for any constant supertranslation. By rewriting the differential in terms of

e(z), we get

d = e(z)
∂

∂x
+ dθaAD

A
a , (3.6)

where the covariant derivative is

DA
a ≡

∂

∂θaA
+

1

2
θAa

∂

∂x
, {DA

a , D
B
b } = εabε

AB ∂

∂x
. (3.7)

The covariant one-form e(z) will be important in the next section in order to derive the

Killing equation satisfied by superconformal changes of coordinates. The covariant deriva-

tive will be important as well, when we implement shortening conditions in superspace, see

section 3.1.4.

3.1.1 Killing equation

After having defined the one-form e(z), we are now ready to derive the equation satisfied by

a superconformal change of coordinates, which will be analogous to the conformal Killing

equations in standard CFT.

A superconformal transformation is defined as a change of coordinates z → z′(z) such

that e(z) transforms as

e(z′)2 = Ω2(z)e(z)2. (3.8)

Under a generic change of coordinates z → z′(z), we have

e(z′) = e(z)

(
∂x′

∂x
− 1

2

∂θ′

∂x
θ′
)

+ dθaA

(
DA
a x
′ − 1

2

(
DA
a θ
′) θ′) . (3.9)

Therefore, it is clear that the superconformal Killing equations are given by

DA
a x
′ =

1

2

(
DA
a θ
′) θ′, Ω(z) =

∂x′

∂x
− 1

2

∂θ′

∂x
θ′. (3.10)

We will see that the usual superconformal transformations solve these constraints, but it is

instructive to first expand the first equation for infinitesimal transformations x′ = x + δx

and θ′ = θ + δθ:

DA
a

(
δx− 1

2
δθ θ

)
= δθAa . (3.11)

In this form, it is clear that there is an infinite family of superconformal transformations.

In particular, given any function h(z), we can construct a solution of the Killing equa-

tion (3.11) with

δx = h− 1

2
θ(Dh), δθaA = Da

Ah. (3.12)

It is not surprising that there is an infinite number of solutions, since this is analogous

to the statement that in an ordinary one-dimensional space any change of coordinates

x′ = f(x) is conformal.

– 8 –
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There are three particularly simple solutions to the Killing equation (3.10), which can

be associated with translations, supertranslations and dilatations:

exp(aP) : x′ = x+ a, θ′ = θ,

exp(ξQ) : x′ = x− 1

2
ξθ, θ′ = θ + ξ,

exp(λD) : x′ = λx, θ′ =
1

2
λθ.

(3.13)

Here a and ξ are not necessarily infinitesimal parameters, and λ does not need to be close

to one. In the following sections we will describe how to obtain the full set of osp(4∗|2)

transformations starting from the above three.

3.1.2 Inversion

Inversions are special types of superconformal transformations with the property I2 =

1, but such that det I = −1. Since they belong to the disconnected component of the

superconformal group, they cannot be expanded infinitesimally around the identity. To

find an inversion we must require that it squares to one and satisfies the finite Killing

equation (3.10). In our superspace, such a transformation is

x
I−→ xI =

x

x2 + 1
8θ

4
, θaA

I−→ (θI)
a
A =

(σ3)ab(x θ
b
A −

1
2(θ3)bA)

x2 + 1
8θ

4
, (3.14)

where (σ3)ab denotes the components of the third Pauli matrix, and the fermionic contrac-

tions θ3 and θ4 are defined in appendix A. Using equation (3.10) we can find the reescaling

associated with the previous inversion

Ω(z) =
−1

x2 + 1
8θ

4
. (3.15)

Inversions provide a simple way to generate new solutions to the Killing equation (3.10).

Imagine L is a solution, then one can compose it with two inversions to obtain a new

superconformal transformation L′ = I L I. Using this procedure we obtain the special

superconformal transformations

K = IPI, S = IQI , ⇒ ebK = IebPI, eηS = IeηQI . (3.16)

Notice that this provides a definition of the finite action of K and S which is not limited

to infinitesimal transformations.

3.1.3 Differential operators

Given a solution of the infinitesimal Killing equation (3.11), we can use it to build a

differential operator that implements the corresponding infinitesimal transformation

L = δx ∂x + δθaA∂
A
a . (3.17)
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If we compose two transformations as [L1,L2] = −L3, one can show that δx3 and δθ3 still

satisfy the Killing equation. From the commutation relations of the superalgebra (2.2),

we see that we can obtain M and R by looking at the anticommutator of Q with S,

schematically

{Q,S} ∼ R+M+D. (3.18)

In this way we can construct all the differential operators P,K, . . . of our superconformal

algebra. However, before doing so, we need to consider a slight generalization.

In general, we are interested in the action of differential operators on superfields OI,i(z)

which have a conformal dimension ∆, transverse-spin index i, and R-symmetry index I. If

such a field is evaluated at z = 0, then the action of the generators simplifies

DOI,i(0) = ∆OI,i(0),

M b
a OI,i(0) =

(
M b
a

)i
j
OI,j(0),

RA
BOI,i(0) =

(
RA

B

)I
J
OJ,i(0), (3.19)

where M b
a and RA

B form representations of the transverse-spin and R-symmetry subal-

gebras. Demanding that the differential operators act on operators at the origin as (3.19),

and that they act on the coordinates as described in this section, we obtain4

P = ∂x,

D = x∂x +
1

2
θaA∂

A
a + ∆,

K =

(
x2 − 1

8
θ4

)
∂x +

(
xθaA +

1

2
(θ3)aA

)
∂Aa + 2∆x+

1

2
θaAθ

A
b M

b
a − θaAθBa RA

B,

M b
a = θbA∂

A
a −

1

2
δ b
a θ

c
C∂

C
c +M b

a ,

RA
B = θaB∂

A
a −

1

2
δABθ

c
C∂

C
c +RA

B,

QA
a = ∂Aa −

1

2
θAa ∂x,

SaA = −1

2

(
xθaA +

1

2
(θ3)aA

)
∂x + x∂bB −

1

2

(
θaAθ

b
B + 3θbAθ

a
B

)
∂Bb

−∆θaA − θbAM a
b + 2θaBR

B
A.

(3.20)

Notice also that {QA
a , D

B
b } = 0. This standard property of the covariant derivative ensures

that shortening conditions constructed with it are invariant under supersymmetry.

4Here we are abusing notation by using the same symbols for the differential operators and the gen-

erators of the superalgebra. Moreover, as usual in this type of superspace constructions, the differential

operators (3.20) follow the commutation relations (2.1)–(2.3) with an extra minus sign, i.e. [L1,L2} = −L3.

In principle, one would need to be careful with these extra minus signs, however for the problems we will

study this will not be an issue.
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3.1.4 Multiplets in superspace

A generic multiplet with transverse spin j and R-symmetry R can be represented in terms

of a superfield

OA1...A2R
a1...a2j

(z) = O(A1...A2R)
(a1...a2j) (z), (3.21)

where we use (a1 . . . am) to denote symmetrization of the indices. The superspace depen-

dence is obtained by applying a supertranslation to the superfield at the origin

OA...
a... (x, θ) = exp

(
xP + θQ

)
OA...
a... (0) . (3.22)

The short multiplets from table 1 can be obtained by setting the conformal dimension

∆ to the appropriate value, and then imposing extra shortening conditions in terms of

covariant derivatives

A1 : εabD(A
a O

B1)...B2R

bb2...b2j
= 0, (3.23a)

A2 : εabD(A
a DB

b OC1)...C2R = 0, (3.23b)

B1 : D(A
a OB1)...B2R = 0. (3.23c)

It is not hard to check that the content of these shortened multiplets is in perfect agree-

ment with the decompositions in terms of conformal primaries given by the Racah-Speiser

algorithm of section 2.2. In the rest of this section we will work out explicitly the example

of the displacement multiplet [A2]R=0.

We start with a long scalar multiplet of conformal dimension ∆, namely a superfield

that carries no transverse-spin or R-symmetry indices. In equation (2.10) one can see the

decomposition of this multiplet in terms of conformal primaries, which in superspace takes

the form

O(x, θ) = A(x) + θaAB
A
a (x) + θaAθ

b
B

(
CAB
ab (x) + EAB

ab (x)
)

+ (θ3)aAF
A
a (x) + θ4G(x) ,

(3.24)

where CAB
ab = C

[AB]
(ab) and EAB

ab = E
(AB)
[ab] . Expanding equation (3.22) and comparing terms,

one can obtain the explicit form of the components

BA
a (x) = QA

a A(x),

CAB
ab (x) = −1

2
Q[A

(aQ
B]
b) A(x),

EAB
ab (x) = −1

2
Q(A

[a Q
B)
b] A(x),

FA
a (x) = −1

9

(
(Q3)Aa +

1

2
QA
a P
)
A(x),

G(x) = +
1

144

(
Q4 + P2

)
A(x).

(3.25)

Some of these terms are not annihilated by K and therefore do not correspond to conformal

primaries. By using the commutation relations (2.1)–(2.3), we see that A, BA
a , CAB

ab and
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EAB
ab are indeed primaries, but we need to take

F p(x) = F (x)− 1

2(2∆ + 1)
PB(x), Gp(x) = G(x) +

1

16(2∆ + 1)
P2A(x). (3.26)

The displacement superfield D(z) corresponds to the short multiplet [A2]R=0, so from

table 1 and equation (2.9) it is clear that we need to send ∆→ 1, and remove the conformal

descendants E = F p = Gp = 0. We are then left with the superfield

D(x, θ) = A(x) + θaAB
A
a (x) + θaAθ

b
BC

AB
ab (x) +

1

6
(θ3)aA∂xB

A
a (x)− 1

48
θ4∂2

xA(x). (3.27)

One can obtain the same expression by making an ansatz for D(z) of the form (3.24) and

imposing the shortening condition (3.23b)

εabD(A
a D

B)
b D(z) = 0 . (3.28)

Then equation (3.27) is the most general solution to this condition, or equivalently, it

implies that E = F p = Gp = 0.

3.2 Correlation functions

Having introduced the basics of our superspace, we are now ready to construct correlation

functions of long and short operators. In general, superconformal theories have additional

kinematical structures when compared to standard CFTs. A well known example is that

already at the three-point level there can be non-trivial superconformal invariants [40].

We start by constructing all such invariants up to four points in section 3.2.1, and then

compute the correlation functions for scalar long operators in section 3.2.2. We finish by

specifying our results to the displacement operator multiplet in section 3.2.3.

3.2.1 Invariants

The superconformal invariants that will form the bulding blocks of our correlators can be

obtained as described in [40]. The most general case we will consider in this work is that

of four points z1, . . . , z4. Notice that these points can be fixed to standard values in the

following way

1. Fix z = 0 by doing a translation P with parameter a = −x followed by a supertrans-

lation Q with parameter ξ = −θ.

2. Fix x =∞ by doing a special conformal transformation K with parameter b = −xI ,
and then fix θ = 0 using an S transformation of parameter η = −θI . Here we

are denoting zI = (xI , θI) the coordinates obtained from z by an inversion, see

equation (3.14).

We can combine these two types of transformations to go to a frame where two of the

points are fixed to z = 0 and z′ = (∞, 0). For our purposes, it will be convenient to work

in two different frames

F1 : z1, z2 unfixed, z3 = 0, z4 = (∞, 0),

F2 : z1 = 0, z2 = (∞, 0), z3, z4 unfixed.
(3.29)
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In either frame, one can construct the invariants as the combinations of the unfixed zi
which are invariant under the leftover symmetry generators D, M and R.

Consider first the case of three points in the frame F2, where the only unfixed coordi-

nates are z3 = (x3, θ3). If there is a quantity built from θ3 which is invariant underM and

R, then it must not have any uncontracted indices. As discussed in appendix A, the only

such object is (θ3)4. On the other hand, x3 is automatically invariant underM and R, and

the only independent combinations of both that is also invariant under dilatations D is

J
∣∣
F2

=
θ4

3

x2
3

. (3.30)

One can invert the transformations that led to the frame F2, to obtain the general expres-

sion of the three-point invariant

J =

(
θ4

12

y2
12

+
2 θ12θ12θ23θ23

y12 y23
+ cycl. perms.

)
+

2(θ12θ23θ31)(θ12θ31θ23)

y12 y23 y31
, (3.31)

where yij and θij are the supertranslation invariant combinations

yij = xi − xj −
1

2
θiθj , θij = θi − θj . (3.32)

We do not provide details on how to carry out this calculation, but one can find a similar

setup in appendix A of [42]. It is worth stressing how from a very simple expression for

the invariant in a certain frame (3.30), we obtain a much more complicated equation in

the general case (3.31).

Let us now consider the four-point case, in which one of the invariants is the standard

1d cross-ratio, and the remaining ones correspond to nilpotent quantities. Unlike the three-

point case, with four points there is freedom in how to choose the invariants, and we fix it

by working with a basis which is simple in the frame F1. In our conventions, we take the

bosonic invariant to be

z
∣∣
F1

= 1− x2

x1
, (3.33)

which corresponds to the supersymmetric generalization of the standard 1d cross-ratio

χ = x12x34
x13x24

. From the discussion of appendix A, more precisely equations (A.6) and (A.7),

one can see that a complete basis for the nilpotent invariants is5

I1

∣∣
F1

=
θ1θ2

x1
, I2

∣∣
F1

=
θ1θ1θ1θ1

x2
1

, I3

∣∣
F1

=
θ1θ1θ1θ2

x2
1

,

I4

∣∣
F1

=
θ1θ1θ2θ2

x2
1

, I5

∣∣
F1

=
θ1θ2θ1θ2

x2
1

, I6

∣∣
F1

=
θ1θ2θ2θ2

x2
1

, (3.34)

I7

∣∣
F1

=
θ2θ2θ2θ2

x2
1

, I8

∣∣
F1

=
(θ1θ2)3

x3
1

, I9

∣∣
F1

=
θ4

1θ
4
2

x4
1

.

5We remind the reader that we are using an index-free notation for the contractions of anticommuting

variables, which we describe in detail in appendix A.
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As before, one could undo the transformation that led to the frame F1, and find expressions

for Ii in a completely general frame. The resulting expressions are rather involved, and

we do not present them here. Actually, for the discussions in this paper, we will mostly

need Ii in the frame F1, and we will only need the expressions in the frame F2 to obtain

the shortening conditions of equation (3.49). The readers interested in this calculation can

find the Ii|F2 in the supplementary material.

In order to study crossing symmetry, we will be interested in the invariants Ĩi obtained

from Ii with the replacement z1 ↔ z3. They take simple forms when expressed in terms of

the original invariants, for example the bosonic cross-ratio becomes

z̃ = 1− z +
I1

2
, (3.35)

while the nilpotent invariants become

Ĩi = Ii for i = 1, 2, 8, 9,

Ĩ3 = I2 − I3,

Ĩ4 = I2 − 2I3 + I4,

Ĩ5 = I2 − 2I3 + I5,

Ĩ6 = I2 − 3I3 +
3

2
I4 +

3

2
I5 − I6,

Ĩ7 = I2 − 4I3 + 3I4 + 3I5 − 4I6 + I7.

(3.36)

3.2.2 Scalar long multiplets

We are finally ready to write our first correlators. In analogy with standard CFT, the build-

ing block of scalar correlators are combinations Z2
ij of the coordinates zi and zj such that

Z2
ij =

(Z ′ij)
2

Ω(z′i)Ω(z′j)
. (3.37)

Here z′i represent the coordinates obtained from zi by a superconformal transformation

with conformal factor Ω(z), see equation (3.10). The combination Z2
ij must be built out of

the supertranslation invariant intervals yij and θij , defined in equation (3.32). At order x2,

the most general combination we can build from them which transforms correctly under

D,M and R is y2
12 +kθ4

12. We can fix the relative coefficient by requiring that (3.37) holds

also for inversions I, and we find

Z2
ij ≡ y2

ij +
1

8
θ4
ij . (3.38)

Notice that we only defined Z2
ij because |Zij | = (Z2

ij)
1/2 does not have a simple form in

terms of yij and θij . From the above discussion, it is clear that the two-point function of

long scalar fields is

〈O1(z1)O2(z2)〉 =
δ∆1,∆2(
Z2

12

)∆1
, (3.39)
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while the three-point function is

〈O1(z1)O2(z2)O3(z3)〉 =
λO1O2O3(1 + c J)(

Z2
12

) 1
2

(∆1+∆2−∆3)(
Z2

13

) 1
2

(∆1+∆3−∆2)(
Z2

23

) 1
2

(∆2+∆3−∆1)
. (3.40)

This has the usual form of a three-point function, except for the presence of the three-

point invariant J defined in (3.31), and the free parameter c that cannot be fixed by

superconformal symmetry. Finally, the four-point function of long scalar fields is

〈O1(z1)O2(z2)O3(z3)O4(z4)〉 =
F (Ia)(

Z2
12

) 1
2

(∆1+∆2)(
Z2

34

) 1
2

(∆3+∆4)

(
Z2

24

Z2
14

) 1
2

∆12
(
Z2

14

Z2
13

) 1
2

∆34

(3.41)

where ∆ij = ∆i −∆j and F (Ia) is an arbitrary function of the four-point superconformal

invariants. We can expand F (Ia) in the nilpotent basis as

F (Ia) = f0(z) +

9∑
i=1

fi(z)Ii, (3.42)

where f0(z), . . . , f9(z) are arbitrary functions not fixed by superconformal symmetry.

3.2.3 The displacement operator

Our main objective in this work is to bootstrap the four-point function of the displacement

operator. This operator can be obtained as the ∆→ 1 limit of a long scalar, provided that

the shortening condition (3.28) is satisfied.

For example, the two point function of the displacement multiplet is

〈D(z1)D(z2)〉 =
1

Z2
12

, (3.43)

which is compatible with the shortening condition (3.28)

εabD
(A
1,aD

B)
1,b 〈D(z1)D(z2)〉 = εabD

(A
2,aD

B)
2,b 〈D(z1)D(z2)〉 = 0. (3.44)

Similarly, the three-point function of two displacements and one long scalar O of dimen-

sion ∆ is

〈D(z1)D(z2)O(z3)〉 =
λDDO

(
1− ∆(∆−2)

48 J
)

(
Z2

12

) 1
2

(2−∆) (
Z2

13

) 1
2

∆ (
Z2

23

) 1
2

∆
, (3.45)

where the coefficient c = − 1
48∆(∆− 2) is fixed by the the shortening conditions at points

1 and 2. We could also consider the three-point function of displacement operators, in

which case we set ∆ = 1 in equation (3.45), and the shortening condition at z3 is automat-

ically satisfied. The previous study of the three-point functions implies the following OPE

selection rule

[A2]R=0 × [A2]R=0 ∼ 1 + [A2]R=0 +
∑
∆>1

[L]∆R=j=0 + . . . , (3.46)
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where the . . . represent long or short multiplets such that R, j 6= 0. One way to complete

the right-hand side of this equation would be study more general three-point functions. In

section 4.1 below we will follow a different route, and derive the full OPE selection rule by

solving the Casimir equations.

Finally, let us consider the four-point function of displacement multiplets, which in the

frame F1 takes the form

〈D(z1)D(z2)D(0)D(∞, 0)〉 =
F (Ia)

Z2
12

. (3.47)

In this frame it is simple to impose the shortening condition (3.28) at points z1 and z2,

leading to the constraints

f2(z) =
(z + 2)(1− z)f ′0(z)

24z
− 1

48
(1− z)2f ′′0 (z),

f3(z) = −(1− z)f ′0(z)

6z
+

(z + 2)f1(z)

6z
− 1

6
(1− z)f ′1(z),

f4(z) =
(1− z)f ′0(z)

8z
+
f1(z)

4z
− 1

2
(z + 1)f6(z) +

1

4
(1− z)zf ′6(z) + zf8(z),

f5(z) = −f1(z)

2z
, (3.48)

f6(z) = −f
′
0(z)

6z
+
f1(z)

3z
− 1

6
f ′1(z),

f7(z) =
f ′0(z)

12z
− 1

48
f ′′0 (z),

f8(z) =
f ′0(z)

24
+

(5z − 12)f ′′0 (z)

96
− (z + 4)(z − 1)f0

(3)(z)

96
− z(z − 1)2f0

(4)(z)

192

− f ′1(z)

4
+

(1− z)f ′′1 (z)

8
+ 12zf9(z).

One should also impose shortening at the points z3 and z4. The simplest way to achieve

this is to consider the four-point function in the frame F2, but now special care is needed

since equations (3.33)–(3.34) are no longer valid in this frame. All in all, one obtains one

extra constraint

f9(z) =−
(
z2 + z + 2

)
f ′0(z)

288z3
+

(z(4− 5z) + 8)f ′′0 (z)

1152z2
+

(z + 4)(z − 1)f0
(3)(z)

1152z

+
(z − 1)2f0

(4)(z)

2304
− (z + 2)f1(z)

144z3
+

(z + 2)f ′1(z)

144z2
+

(z − 1)f ′′1 (z)

144z
.

(3.49)

Summarizing, we have found that the four-point function of displacements depends on two

unfixed functions f0(z) and f1(z). These two functions will be the subject of the bootstrap

analysis of the following sections.

4 Superconformal blocks

Armed with the four-point functions in superspace we can now calculate the relevant

superconformal blocks. There are several approaches that have been used to calculate
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superblocks with varying degrees of success. These include explicit calculation of three-

point couplings of descendants [43, 44], the shadow formalism [45, 46], Ward identities

in harmonic superspace [47–50], the Casimir operator [45, 51–53], and the connection to

Calogero-Sutherland models [54]. Because the multiplets we are considering are scalars

with no R-symmetry or transverse-spin indices, we will use the most conventional of these

methods, which is to consider superblocks as eigenfunctions of the Casimir operator.6 In

the main text we will concentrate on the blocks for the displacement multiplet, however

in appendix B we present more general correlators that also include non-protected long

operators.

4.1 From the Casimir equation

Superconformal blocks are given by a finite sum of 1d bosonic blocks, that capture the

contributions of the sl(2;R) primaries in the conformal multiplets:

g∆12,∆34

∆ (z) = z∆
2F1(∆−∆12,∆ + ∆34, 2∆, z). (4.1)

The coefficients in this sum are fixed by supersymmetry, so we can make an ansatz for

the functions fi in terms of bosonic blocks. After acting with the Casimir operator on

the four-point function, we will obtain a coupled system of equations for the functions fi
that we will use to fix the coefficients in our ansatz. Since we will use the coupled set

of differential equations only to fix these coefficients, the superblocks will automatically

satisfy the correct boundary conditions.

The Casimir of the osp(4∗|2) superalgebra is given by

C2 = +D2 − 1

2
(PK +KP) +

1

2
M b

a M a
b −RA

BRB
A −

1

2
[QA

a ,SaA]. (4.2)

When it acts on an operator O with quantum numbers [∆, j, R] it has the following

eigenvalue

C2O = c∆,j,RO, c∆,j,R = ∆(∆ + 1) + j(j + 1)− 2R(R+ 1). (4.3)

Given a four-point function, we can evaluate it by taking OPEs in the (12) → (34) channel,

leading to the usual expansion in terms of superconformal blocks

〈D(z1)D(z2)D(z3)D(z4)〉 =
1

Z2
12Z

2
34

∑
O∈D×D

λ2
DDO GO(Ia). (4.4)

In order to obtain a superconformal block, we act with the Casimir on the four-point

function and find the solution to the eigenvalue problem7

C2
12 G∆,j,R(Ia) = c∆,j,R G∆,j,R(Ia). (4.5)

6In some selected cases we will also calculate three-point couplings of descendants as a non-trivial check

for our computations.
7Notice that the dependence on Z2

12 drops from the eigenvalue problem since C2
12Z

2
12 = 0.
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The differential operator C2
12 is constructed from the Casimir (4.2) and the symmetry

generators in differential form (3.20). Note that the operators need to be evaluated at

points z1 and z2, namely L12 = L1 + L2. In order to solve the above equation, we take

G to be of the form (3.42) with the shortening conditions (3.48) and (3.49). Furthermore,

we evaluate the Casimir equation in the frame F1 where the calculations are simpler. The

resulting system of differential equations is

−z2
[
(z − 1)f ′′0 (z) + f ′0(z)

]
− 4zf1(z) = c∆,j,R f0(z), (4.6a)

−(z − 1)z
(
zf ′′1 (z) + 4f ′1(z)

)
+ (2− z)

(
1

2
f ′0(z) + 2f1(z)

)
= c∆,j,R f1(z). (4.6b)

Notice the similarity of (4.6a) with the usual non-supersymmetric 1d Casimir equation. To

solve these equations one should make an ansatz for the fi in terms of 1d bosonic blocks.

However, as discussed in [52], it is simpler to first “change basis” to a set of functions Gi(z),

where each of the Gi captures the contribution of the external superconformal descendants,

and build an ansatz for the Gi instead. Let us review in detail how to implement this idea.

We start by expanding the displacement multiplets in terms of their conformal descen-

dants (3.27), so that the four-point function becomes

〈D(z1)D(z2)D(0)D(∞, 0)〉 = 〈A(x1)A(x2)A(0)A(∞)〉
− θa1,Aθb2,B〈BA

a (x1)BB
b (x2)A(0)A(∞)〉+ . . .

(4.7)

Note that since we work in the frame F1, we have θ3 = θ4 = 0, so only the superconformal

primary A at points 3 and 4 will appear. There are only three four-point functions of

descendants that contribute to the above expansion, and for each of them we define a new

function Gi as

〈A(x1)A(x2)A(0)A(∞)〉 → 1

|x12|2
G0(z),

〈BA
a (x1)BB

b (x2)A(0)A(∞)〉 → x12 ε
ABεab
|x12|4

G1(z),

〈CAB
ab (x1)CCD

cd (x2)A(0)A(∞)〉 → εABεCD(εacεbd + εadεbc)

|x12|4
G2(z),

(4.8)

On one hand, we can introduce (4.8) in the expansion (4.7), and on the other, we can

expand the four-point function of displacements (3.47) in terms of θ1 and θ2. By matching

the components of the two sides, we get that the change of basis is

f0(z) = G0(z), f1(z) = −1

z

[
G0(z) +G1(z)

]
. (4.9)

Furthermore, we see that G2 must be related to G0 and G1 by

G2(z) =
1

8
G0(z) +

1

48
z(z − 4)G′0(z)− 1

48
z2(z − 1)G′′0(z) +

1

2
G1(z) +

1

12
z(z − 2)G′1(z).

(4.10)
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It is natural that G2 is related to G0 and G1, since the four-point function of displacements

contains only two unfixed functions f0(z) and f1(z). However, we still had to include G2

in (4.8), because a priori we did not know what this relation was.

The virtue of the Gi basis is that now the ansatz in terms of 1d bosonic blocks is

very simple

Gi(z) = ai g
0,0
∆ (z) + bi g

0,0

∆+ 1
2

(z) + ci g
0,0
∆+1(z) + di g

0,0

∆+ 3
2

(z) + ei g
0,0
∆+2(z). (4.11)

We finally have all the ingredients to solve the Casimir equations (4.6). If we consider the

case of an exchanged multiplet [∆, 0, 0], then the Casimir eigenvalue is c = ∆(∆ + 1), and

the equations are solved by

G0(z) = g0,0
∆ (z) +

(∆− 1)∆(∆ + 1)

4(∆ + 2)(2∆ + 1)(2∆ + 3)
g0,0

∆+2(z),

G1(z) =
1

2
(∆− 2)g0,0

∆ (z)− (∆− 1)∆(∆ + 1)(∆ + 3)

8(∆ + 2)(2∆ + 1)(2∆ + 3)
g0,0

∆+2(z).

(4.12)

From now on, we will sometimes use vectorial notation G(z) = (G0(z), G1(z)). Depending

on the value of ∆, the solution (4.12) is interpreted as follows:

• For ∆ = 0 the block reduces to G1(z) = (1,−1), and corresponds to the identity

operator being exchanged.

• For ∆ = 1 the block reduces to GA2(z) =
(
g0,0

1 (z),−1
2g

0,0
1 (z)

)
, and corresponds to a

displacement multiplet [A2]R=0 being exchanged.

• For ∆ > 1 the block G
[0,0]
∆ (z) is given by (4.12), and corresponds to a long scalar

multiplet [L]j=R=0
∆ being exchanged.

One can also consider an exchanged multiplet [∆, 1, 0], in which case the Casimir eigenvalue

is c = ∆(∆ + 1) + 2, and the equations are solved by

G0(z) = g0,0
∆+1(z), G1(z) = −1

2
g0,0

∆+1(z). (4.13)

The solution (4.13) is interpreted as follows:

• For ∆ = 2 the block reduces to GA1(z) =
(
g0,0

3 (z),−1
2g

0,0
3 (z)

)
. Note that from the

recombination rules (2.11), we could interpret the solution as either an [A1]j=1
R=0 or

an [A1]
j=1/2
R=1/2. The correct interpretation is that it is actually [A1]

j=1/2
R=1/2 which is

exchanged, in particular its descendant with quantum numbers [3, 0, 0], see equa-

tion (2.10).

• For ∆ > 2 the block G
[1,0]
∆ (z) is given by (4.13), and corresponds to a long scalar

multiplet [L]j=1,R=0
∆ being exchanged.

We have tried solving the Casimir equation considering other possible exchanges, but in

all cases there were no new solutions found, so the above are all the operators that can

appear in the OPE of two displacement multiplets.
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OPE selection rule. Summarizing the above results, we obtain the following selec-

tion rule

[A2]R=0 × [A2]R=0 ∼ 1 + [A2]R=0 + [A1]
j=1/2
R=1/2 +

∑
∆>1

[L]
[0,0]
∆ +

∑
∆>2

[L]
[1,0]
∆ , (4.14)

which completes the partial selection rule (3.46) obtained from the three-point function

analysis.

4.2 From two- and three-point functions

In this section, we calculate the superconformal blocks in the [∆, 0, 0] channel (4.12) follow-

ing the approach of [43]. This provides a non-trivial consistency check for our results, and

sheds light on the structure of such blocks. The key insight is that the coefficients appearing

in the superconformal blocks are OPE coefficients and norms of conformal descendants

G0(z) =
λ2
AAA

〈A|A〉
g0,0

∆ (z) +
λ2
AAG

〈G|G〉
g0,0

∆+2(z),

G1(z) =
λAAAλBBA
〈A|A〉

g0,0
∆ (z) +

λAAGλBBG
〈G|G〉

g0,0
∆+2(z).

(4.15)

Here λO1O2O3 denotes the OPE coefficient of two fields from the displacement multiplet

with one operator from a long scalar multiplet, namely O1, O2 ∈ D and O3 ∈ O, see

equations (3.24) and (3.27) for more details. On the other hand, 〈O|O〉 denotes the norm

of an operator that belongs to the long multiplet O, and can be computed from the two-

point function as explained below.

The procedure to obtain the OPE coefficients resembles the way we obtained the change

of basis in equation (4.9). Let us take the three-point function (3.45) of two displacement

operators and a long scalar of dimension ∆. On one hand, we expand it in the fermionic

variables, while on the other we expand the external superfields in terms of their conformal

descendants (3.24) and (3.27)

〈D(z1)D(z2)O(z3)〉 =
λDDO

|x12|2−∆|x13|∆|x23|∆
− θa1,Aθb2,B

1
2(∆− 2)λDDOεabε

AB

|x12|3−∆|x13|∆|x23|∆
+ . . .

= 〈A(x1)A(x2)A(x3)〉 − θa1,Aθb2,B〈BA
a (x1)BB

b (x2)A(x3)〉+ . . .

(4.16)

Mapping the two sides one can obtain all the OPE coefficients of the descendant fields.

The relevant ones for us will be

λAAA = λDDO, λAAG = −(∆− 1)∆(∆ + 1)λDDO
24(2∆ + 1)

,

λBBA =
1

2
(∆− 2)λDDO, λBBG =

(∆− 1)∆(∆ + 1)(∆ + 3)λDDO
48(2∆ + 1)

,

λCCA = − 1

16
(∆− 3)(∆− 2)λDDO, λCCG =

(∆− 1)∆(∆ + 1)(∆ + 3)(∆ + 4)λDDO
384(2∆ + 1)

.

(4.17)
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Notice how λAAG, λBBG, λCCG vanish for ∆ = 1, as expected from the shortening O → D
and the fact that G /∈ D. We can do a similar analysis for the two-point function (3.39) of

scalar longs of dimension ∆. In this case we obtain the norms of the descendants

〈A|A〉 = 1, 〈E|E〉 =
1

8
(∆− 1)∆,

〈B|B〉 = ∆, 〈F |F 〉 =
2(∆− 1)∆(∆ + 1)(∆ + 2)

9(2∆ + 1)
,

〈C|C〉 =
1

8
∆(∆ + 2), 〈G|G〉 =

(∆− 1)∆(∆ + 1)(∆ + 2)(2∆ + 3)

144(2∆ + 1)
.

(4.18)

It is a simple exercise to check that inserting (4.17) and (4.18) in (4.15) leads to the

superconformal blocks (4.12). One could do a similar analysis to compute the blocks in the

[∆, 1, 0] channel, but it would be more involved, since then an expression for the three-point

functions of external operators with transverse spin would be needed.

4.3 Crossing equations

In the previous sections we have studied the four-point function of displacement operators

in the (12) → (34) channel. Demanding that it is equivalent to the four-point function in

the (14)→ (23) channel leads to the crossing equation

1

Z2
12Z

2
34

(
f0(z) +

9∑
i=1

Iifi(z)

)
=

1

Z2
14Z

2
23

(
f0(z̃) +

9∑
i=1

Ĩifi(z̃)

)
, (4.19)

where the Ĩi invariants appear in equation (3.36), and are obtained from the Ii by the

replacement z1 ↔ z3. Since z̃ = 1 − z + 1
2I1, we can Taylor expand the fi’s in the right-

hand side around z̃ = 1−z, and insert the expressions for the Ĩi. By looking at independent

terms, one can see that the crossing equation reduces to

(1− z)2H(z)− z2H(1− z) = 0, (4.20)

where H(z) is a two-dimensional vector with components

H0(z) = G0(z),

H1(z) = −2zG0(z) + z(z − 1)G′0(z)− 4(z − 1)G1(z).
(4.21)

Notice that from the first component we obtain the usual 1d bosonic crossing equation,

but the second mixes G0(z) and G1(z) in a non-trivial way.

4.4 An exact solution

In this section we present a family of exact solutions to the crossing equations in terms

of free fields. We will argue in section 6 that one solution in this family describes the

strong coupling limit of line defects that admit a holographic description. Furthermore,

these solutions will play a prominent role in the next two sections, where we will apply

numerical and analytical bootstrap techniques to this correlator.
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The most general solution of crossing that we have found built from Wick contractions

contains one free parameter ξ. Since it is a valid correlator, it can be expanded in terms

of superconformal blocks as in equation (4.4)

〈D(z1)D(z2)D(z3)D(z4)〉 =
1

Z2
12Z

2
34

[
1 + ξ

Z2
12Z

2
34

Z2
13Z

2
24

+
Z2

12Z
2
34

Z2
14Z

2
23

]
=

1

Z2
12Z

2
34

[
1 + cGA1 +

∑
∆≥2

a∆GL[0,0]
∆

+
∑
∆≥3

b∆GL[1,0]
∆

]
.

(4.22)

Notice how the block GA2 , which a priori could appear in the expansion, has vanishing

OPE coefficient λ2
A2

= 0 for any value of ξ. The other OPE coefficients are given by

a∆ =

(
1 + (−1)∆ξ

)√
π Γ(∆ + 3)

22∆+1Γ
(
∆ + 1

2

) , b∆ =
3(∆− 1)

2(∆ + 1)

(
1 + (−1)∆+1ξ

)√
π Γ(∆ + 3)

22∆+1Γ
(
∆ + 1

2

) , (4.23)

and c = b∆=2 = (1 − ξ)/2. Positivity of the OPE coefficients requires −1 ≤ ξ ≤ 1. The

theory with ξ = 1 corresponds to free bosons, ξ = −1 corresponds to free fermions, and

certain values −1 < ξ < 1 correspond to free gauge theories, as discussed in [17]. We will

argue in section 6 that the bosonic theory with ξ = 1 corresponds to the displacement

operator at leading order in the strong-coupling limit. The physical interpretation of the

fermionic ξ = −1 theory is less clear, since we know that the displacement must be a

bosonic operator. Nevertheless, it will be important as a valid solution of crossing that will

sit in interesting corners of the allowed regions of the numerical results in next section.

5 Numerical results

In this section we use numerical boostrap techniques [8, 55, 56] to bound conformal dimen-

sions and OPE coefficients of operators that appear in the four-point function of displace-

ment operators. We start each subsection with a short review of the numerical algorithm,

and then we proceed to discuss the results. We have generated tables of derivatives of su-

perconformal blocks with Mathematica, which are then used by the semidefinite program

solver SDPB [57].8 The results are analyzed using python, and the plots are generated with

matplotlib [60].

In section 4.3 we derived the crossing equations (4.20), which take the simple form

F (z) = 0 in terms of the two-dimensional vector

F (z) ≡ (1− z)2H(z)− z2H(1− z) . (5.1)

We can expand F (z) summing the contributions of the operators that appear in the OPE

of two displacements (4.14)

F (z) = F1(z) + λ2
A1
FA1(z) + λ2

A2
FA2(z) +

∑
∆>1

λ2

L
[0,0]
∆

F
[0,0]
∆ (z) +

∑
∆>2

λ2

L
[1,0]
∆

F
[1,0]
∆ (z) = 0 ,

(5.2)

8An alternative to Mathematica to compute the tables is PyCFTBoot [58], which then relies on SDPB to

carry out the optimizations. On the other hand, one can generate the tables in Mathematica, but then

perform the numerics in JuliBoots [59].

– 22 –



J
H
E
P
0
3
(
2
0
2
0
)
1
2
1

where by unitarity the OPE coefficients are real, hence λ2
O ≥ 0. Here and in what follows

we are using a shorthand notation where it is implicitly understood that λ2
O = λ2

DDO.

In order to explore the numerical constraints implied by crossing we will make some

structural assumptions about the CFT data. In some of our plots we will assume that

λ2
A2

= 0, or equivalently, that the displacement multiplet does not appear in the OPE of

two displacements. Notice that this is the case for the mean-field solutions of the previous

section, as well as for N = 4 theories that are interpreted as N = 2 SCFT [15]. This is

also true whenever the displacement is odd under a Z2 symmetry. One could relax this

condition, however we found that the numerical results become significantly weaker. It

will be interesting to explore this further in the future. The second assumption is that

the low-lying spectrum is somehow sparse, with gaps in between the local operators. More

precisely, we will assume an isolated long operator with dimension ∆[0,0] separated by a

finite gap from the unitarity bound, and a second gap between ∆[0,0] and a continuum of

long operators with dimensions ∆ ≥ ∆′[0,0]. Similar assumptions will also be made for the

longs in the [1, 0] channel.

The most general case we will be studying is then

F1(z) + λ2
A1
FA1(z) + λ2

A2
FA2(z) + λ2

L∆[0,0]
F

[0,0]
∆[0,0]

(z) + λ2
L∆[1,0]

F
[1,0]
∆[1,0]

(z)

+
∑

∆≥∆′
[0,0]

λ2

L
[0,0]
∆

F
[0,0]
∆ (z) +

∑
∆≥∆′

[1,0]

λ2

L
[1,0]
∆

F
[1,0]
∆ (z) = 0 .

(5.3)

When we discuss the results, it will be instructive to compare with the free-field solu-

tions (4.22). In the plots we will represent these solutions with a solid bullet • or dashed

line , accompanied by a letter representing the type of solution

• B : Free boson, ξ = 1,

• F : Free fermion, ξ = −1,

• G : Free gauge theory, −1 < ξ < 1.

(5.4)

Currently, the only N = 2 line defect with insertions that has been studied in the literature

is the one in N = 4 SYM. The leading-order correlation function of D’s at strong coupling

was computed in [15], and it is given by the free bosonic solution. In that work, the

first-order correction in 1√
λ

to the correlator was also obtained. It would be an interesting

problem for the future to study an N = 2 line defect with insertions either using holography

or perturbation theory and compare with our numerical bounds.

5.1 Dimension bounds

The algorithm for bounding operator dimensions works in the following way. First, one

assumes a spectrum of operator dimensions. In the case of interest to us (5.3), this boils

down to fixing the dimension of the isolated longs ∆[0,0] and ∆[1,0], and also the dimension

of the first longs in the continuum ∆′[0,0] and ∆′[1,0]. Then one tries to find a functional α
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such that

α(F1) = 1 , α(FI) ≥ 0 , α
(
F

[0,0]
∆

)
≥ 0 for ∆ ≥ ∆′[0,0] , α

(
F

[1,0]
∆

)
≥ 0 for ∆ ≥ ∆′[1,0] ,

(5.5)

where I = A1, A2, L
[0,0]
∆[0,0]

, L
[1,0]
∆[1,0]

runs over all the operators with fixed conformal dimen-

sions. If such functional α exists, then it is not possible to satisfy equation (5.3), and the

spectrum is ruled out.

As is customary we consider functionals of the form

α(F∆) =
1∑
i=0

Λ∑
m=0

ai,m
∂mFi,∆(z)

∂zm

∣∣∣∣
z=1/2

≈ χ(∆)P (∆) , (5.6)

where i = 0, 1 runs over the two components of F∆(z), and the number of derivatives

Λ needs to be increased in order to obtain stronger bounds. In the last step we have

approximated the conformal blocks by a positive function χ(∆) ≥ 0 multiplying a linear

combination of polynomials in ∆

P (∆) =
1∑
i=0

Λ∑
m=0

ai,mPi,m(∆) . (5.7)

This approximation can be obtained as described in [56, 61]. Thanks to (5.6) and (5.7), we

can reformulate the optimization problem (5.5) as finding a set of coefficients ai,m such that

α(F1) = 1 , α(FI) ≥ 0 , P [0,0]
(

∆′[0,0] + x
)
≥ 0 , P [1,0]

(
∆′[1,0] + x

)
≥ 0 , (5.8)

for all x ≥ 0. This is a semidefinite programming problem which can be solved using

SDPB [57].

In figure 2 we present upper bounds on the dimension ∆′[0,0] of the first long in the

continuum, as a function of the dimension of the isolated long ∆[0,0], while keeping all the

operators in the [1, 0] channel slightly above their unitarity bound. In an exactly analogous

way, we also present the upper bound of ∆′[1,0] as a function of ∆[1,0] without imposing gaps

in the [0, 0] channel. The first interesting feature is that regardless of where the continuum

sits, there is an upper bound on the dimension ∆[a,b] of the first long. The plots suggest

that in the limit Λ→∞ the maximum dimension is approximately9

∆[0,0] . 3.0 , ∆[1,0] . 4.0 . (5.9)

These bounds are almost saturated by the fermionic free theory of equation (4.22) with

ξ = −1. Moreover, the fermionic theory sits very close to the upper bound for ∆′[0,0] and

∆′[1,0] when (5.9) is saturated. Similarly, we also see that when ∆[0,0] = 2.0 or ∆[1,0] = 3.0,

the free bosonic theory almost saturates the upper bounds for ∆′[0,0] and ∆′[1,0] respectively.

Finally, the free gauge theories (4.22) with −1 < ξ < 1 are far from the boundary of the

allowed region.

9It would be interesting to confirm that for larger values of Λ the bounds indeed converge to ∆[0,0] = 3

and ∆[1,0] = 4, but at this stage the assumption is very plausible.
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∆[1,0]

4

5

6

7

∆′
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Λ = 21
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Figure 2. Left: upper bounds on the dimension ∆′
[0,0] of the first long in the continuum as a

function of the dimension ∆[0,0] of the isolated long. Only the allowed region for Λ = 61 is shaded.

There is a sudden jump in the upper bound for ∆[0,0] ' 1.31. We are not imposing any gaps in the

channel [1, 0], and we keep the operators slightly above the unitarity bound, i.e. ∆[1,0] = ∆′
[1,0] & 2.

Right: upper bounds on ∆′
[1,0] as a function of the dimension ∆[1,0] keeping ∆[0,0] = ∆′

[0,0] & 1.

The free theory solutions are represented by bullets •, as explained in (5.4).

Another feature is the sudden jump in the upper bound for ∆′[0,0] starting at

∆[0,0],jump ' 1.31 . (5.10)

As we will discuss in more detail in the following section, this seems to be related to certain

OPE coefficients becoming unbounded for ∆[0,0] < ∆[0,0],jump.

5.2 OPE bounds

One can find upper and lower bounds for the OPE coefficient λ2
O using a very similar

algorithm as the one described above. We use a functional α of the form (5.6), and

maximize α(F1) such that α(FO) = 1 and

α(FI) ≥ 0, P [0,0]
(

∆′[0,0] + x
)
≥ 0 for x ≥ 0 , P [1,0]

(
∆′[1,0] + x

)
≥ 0 for x ≥ 0 .

(5.11)

Then we obtain the upper bound λ2
O ≤ −α(F1). Similarly, if we find α that maximizes

α(F1) such that α(FO) = −1 and (5.11) holds, we obtain the lower bound λ2
O ≥ α(F1).

As before, such optimization problems can be solved using SDPB.

First, we would like to understand the nature of the jump observed in figure 2 and

discussed around equation (5.10). In figure 3 we obtain upper and lower bounds on the

OPE coefficients λ2
L∆[0,0]

and λ2
A1

as a function of the dimension of the first long ∆[0,0].

Here, we are not assuming a double gap in any of the two long channels, i.e. we take

∆[a,b] = ∆′[a,b], but we do assume λ2
A2

= 0. Somehow unexpectedly, both OPE coefficients

become unbounded for ∆[0,0] less than

∆[0,0],jump ' 1.33 . (5.12)
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Figure 3. Left: upper bound on the OPE coefficient of the isolated long as a function of its

dimension ∆[0,0]. Right: upper bound on the OPE coefficient of the [A1]
j=1/2
R=1/2 multiplet, as a

function of the dimension of the first long ∆[0,0]. In both plots, we keep ∆′
[0,0] & ∆[0,0] and

∆[1,0] = ∆′
[1,0] & 2. The upper bound of both OPE coefficients diverges for ∆[0,0] ' 1.33, which is

represented with a vertical dashed line.

Even though there is a slight mismatch between the values of ∆[0,0],jump in (5.10) and (5.12),

we believe it is only due to the numerical nature of the calculation, and that the two values

would be the same for large enough Λ. A very similar situation was observed in [17], where

a sudden drop in the upper bound of a conformal dimension was related to the appearence

of an upper bound of a related OPE coefficient. For the 3d Ising model it is known that

the dimensions and OPE coefficients of certain operators suffered a sudden jump around

the Ising model point [62]. It would be interesting to see if the region ∆[0,0] ∼ ∆[0,0],jump

corresponds to a line defect of an interesting N = 2 superconformal theory.

In order to obtain further constraints on OPE coefficients we will assume the existence

of gaps, in particular, ∆[0,0] ≥ ∆[0,0],jump, because otherwise the optimization problems

are unbounded. As an important example, we study in more detail the exact bosonic and

fermionic solutions of crossing. We fix the dimension of the first long to ∆[0,0] = 2.0/3.0

for the bosonic/fermionic theories, and then bound the OPE coefficients as we increase the

second gap ∆′[0,0]. The results are plotted in figure 4. In the first row we observe that the

OPE coefficient of the long at ∆[0,0] has upper bounds which are essentially constant, and

lower bounds appear only when the second gap is ∆′[0,0] & 3. The lower bounds grow as we

increase ∆′[0,0], until they meet the upper bound precisely where the bosonic and fermionic

theories sit. For this reason, we expect that the bosonic and fermionic theories are unique

provided that the second gap is large enough. Indeed, our plots are almost identical to the

ones obtained for the N = 4 analogous case [17]. In order to map results, one simply needs

to note that their B2 multiplet is identified with our isolated long of dimension ∆[0,0] = 2

(see the discussion around equation (2.12)). A mixed-correlator bootstrap study for N = 4

revealed the appearence of an island around the bosonic free theory. We are confident that

a similar analysis can be done in our setup, which would give evidence that our free-field

solutions of crossing are unique if one assumes appropriate gaps.
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Figure 4. Upper and lower bounds for λ2
L

[0,0]
∆

(first row) and λ2A1
(second row) as a function of

∆′
[0,0] when λ2A2

= 0. In the first column, ∆[0,0] = 2.0 and by increasing ∆′
[0,0] the bosonic free

theory sits at the boundary of the allowed region. In the second column, ∆[0,0] = 3.0 and by

increasing ∆′
[0,0] the fermionic free theory sits at the boundary.

In the second row of figure 4 we show bounds on the OPE coefficient of the [A1]
j=1/2
R=1/2

multiplet. There is no analogous of this multiplet for line defects in N = 4 theories, so we

will not be able to borrow any intuition from the results of [17]. The primary of A1 has

dimension ∆ = 5/2, so it sits inside the continuum of [1, 0] long operators. Intuitively, in

order for lower bounds to appear, there needs to be enough distance between the dimension

of the operator and the dimension of the first operator in the continuum, and that explains

why we do not obtain any lower bounds for λ2
A1

. In any case, when ∆[0,0] = 2 the upper

bound keeps decreasing until it crosses zero, exactly at the position where the bosonic free

theory sits. When ∆[0,0] = 3, the bounds seems to converge to the rectangular region

λ2
A1
≤ 1 and ∆′[0,0] ≤ 5, and the fermionic theory sits exactly at the upper right corner of

this region.

Summarizing, figure 4 provides ample evidence that the numerical bootstrap is isolating

the bosonic and fermionic free theories when we assume large gaps in the spectrum of long
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Figure 5. Comparison of the upper and lower bounds of λ2L (left) and λ2A1
(right) as a function

of ∆′
[0,0] and for different values of ∆[0,0]. All the optimizations have been run for Λ = 61 and

assuming λ2A2
= 0.

operators. Interestingly, one can allow the dimension for the first long to be in the range

∆jump,[0,0] ≤ ∆[0,0] ≤ 3, (5.13)

and compute bounds on OPE coefficients as a function of ∆′[0,0]. The results are plotted

in figure 5. There is an entire family of plots that share similar qualitative features to

the ones we just discussed. This can be thought of as an one-parameter family of theories

interpolating between the fermionic and bosonic free-field theories, and which would extend

all the way up to the critical theory where the OPE coefficients are diverging.

6 Analytical results

6.1 Introduction

In this section we study perturbations around the bosonic mean-field solution (4.22), similar

to the analysis of section 6 in [17]. We will interpret the bosonic solution as the strong-

coupling limit of line defects in N = 2 theories which admit a holographic description.

From the holographic perspective, the leading contribution to a four-point function at

strong coupling is a disconnected Witten diagram in AdS2, while the first-order correction

is given by a four-point connected Witten diagram, see figure 6. The disconnected piece can

be obtained by Wick contractions, and leads to our solution (4.22) with ξ = 1. Our goal

is to use superconformal blocks and crossing symmetry to bootstrap the contribution from

the connected Witten diagram. We will see that under mild assumptions, the correlator

is uniquely determined in terms of two normalization constants c1, c2, which cannot be

fixed by our symmetry arguments. From the correlator it is then possible to extract the

first-order corrections to the anomalous dimensions and OPE coefficients of the operators

in the spectrum. In the analogous N = 4 case, perfect agreement was found between the

explicit holographic calculation [15] and the bootstrap result [17].
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Figure 6. Disconnected and connected Witten diagrams in the dual AdS2 description. The discon-

nected piece corresponds to a mean-field theory correlator, while the connected piece is bootstrapped

in the current section.

Let us remind the reader that in section 4.3 we wrote the crossing equation (4.20) in

terms of the two-dimensional vector H(z). This function can be expressed in a superblock-

like expansion

H(z) =
∑

∆∈S[0,0]

a∆H
[0,0]
∆ (z) +

∑
∆∈S[1,0]

b∆H
[1,0]
∆ (z), (6.1)

where H
[a,b]
∆ are also two-dimensional vectors that can be computed from the definition of

H(z) in (4.21) and the superconformal blocks in the two channels (4.12) and (4.13). One

can think of H
[a,b]
∆ as a superblock expressed in a new basis, such that the crossing equation

takes a particularly simple form.

The solution to crossing we want to perturb around has OPE coefficients given in

equation (4.23) with ξ = 1, and the spectrum of dimensions is

S[0,0] = {2, 4, 6, . . . } and S[1,0] = {3, 5, 7, . . . }. (6.2)

The idea is to start with this free theory and consider a perturbation of the CFT data to

leading order in the perturbation parameter ε. On the one hand, the correlator will receive

a correction

H(z) = H(0)(z) + εH(1)(z) , (6.3)

which by equation (6.1) will translate into the operators acquiring anomalous dimensions

S
(1)
[0,0] = {∆ + εγ

[0,0]
∆ }∆∈S[0,0]

, S
(1)
[1,0] = {∆ + εγ

[1,0]
∆ }∆∈S[1,0]

, (6.4)

and the OPE coefficients receiving first-order corrections

a∆ = a
(0)
∆ + εa

(1)
∆ , b∆ = b

(0)
∆ + εb

(1)
∆ . (6.5)

Schematically, we have that H
[a,b]
∆ ∼ z∆f(∆, z), so if we give an anomalous dimension to

∆ the first-order correlator H(1)(z) must contain a log term. As a result, we take it to be

of the form

H(1)(z) = R(z) log(z) + P (z) , (6.6)
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where R(z) and P (z) are a priory completly arbitrary functions. Comparing this with the

block expansion we obtain

R(z) =
∑

∆∈S[0,0]

a
(0)
∆ γ

[0,0]
∆ H

[0,0]
∆ (z) +

∑
∆∈S[1,0]

b
(0)
∆ γ

[1,0]
∆ H

[1,0]
∆ (z), (6.7a)

P (z) =
∑

∆∈S[0,0]

a
(1)
∆ H

[0,0]
∆ (z) +

∑
∆∈S[0,0]

a
(0)
∆ γ

[0,0]
∆ z∆∂∆

(
z−∆H [0,0](z)

)
+

∑
∆∈S[1,0]

b
(1)
∆ H

[1,0]
∆ (z) +

∑
∆∈S[1,0]

b
(0)
∆ γ

[1,0]
∆ z∆∂∆

(
z−∆H [1,0](z)

)
,

(6.7b)

In the analysis below, the “brading” transformation

z → z

z − 1
(6.8)

will play a crucial role to provide extra constraints for the functions R(z) and P (z). The

one-dimensional bosonic blocks g∆ = g0,0
∆ of equation (4.1) have clean transformation

properties under braiding. In our analysis, only chiral blocks with even ∆ will appear, for

which we have10

g∆

(
z

z − 1

)
= g∆(z), g′∆

(
z

z − 1

)
= −(1− z)2g′∆(z), etc. (6.9)

From the form of the superconformal blocks Gi(z), it is clear that they inherit these nice

transformation properties under braiding. However, when we work in the H-basis, the

transformations become more complicated and instead of writing them here we will only

present their consequences. Using the transformation (6.9) combined with the expan-

sions (6.7), we obtain non-trivial constraints for the two components of R(z)

R0

(
z

z − 1

)
−R0(z) = 0, R1

(
z

z − 1

)
− B[R](z) = 0, (6.10)

and for the two components of P (z)

P0

(
z

z − 1

)
− P0(z)− log(1− z)R0(z) = 0, (6.11a)

P1

(
z

z − 1

)
− B[P ](z)− log(1− z)B[R](z) +

z

z − 1
R0(z) = 0. (6.11b)

Here we have defined a functional B, which takes as argument a two-component function

F (z) and mixes its two components as follows:

B[F ](z) = −2z(z − 2)

(z − 1)2
F0(z)− z2

z − 1
∂zF0(z) +

1

(z − 1)2
F1(z) . (6.12)

In the next section we will study how these constraints fix the functions R(z) and P (z) up

to overall coefficients.
10For generic values of ∆, the chiral block will have an extra branch cut due to the prefactor z∆, and

one has to be careful on how to analytically continue the block under (6.8). See [29] for a careful analysis

in the BCFT setup.
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6.2 Corrections to the anomalous dimension

We are now ready to find solutions to crossing which are consistent with the relations just

presented. In order to do so, we take the function P (z) to be of the form

P (z) =
z2

(1− z)2
R(1− z) log(1− z) +Q(z), (6.13)

and we assume that R(z) and Q(z) are rational functions. This assumption is inspired

by the holographic calculation of [15], and can also be justified a posteriori if a solution

is actually found. The idea is that the contribution from the connected Witten diagram

in figure 6 is given by an integral of four bulk-to-boundary propagators living in AdS2,

which is denoted by D∆1∆2∆3∆4 in [15]. For the case of interest to us, the conformal

dimensions of the external operators are all identical and take integer values, in which case

the only transcendental functions appearing in D are log(z) and log(1− z). Therefore, our

ansatz (6.6) and (6.13) is the most general one representing a first order correction in the

holographic dual.

Due to the form of our ansatz, crossing symmetry does not impose conditions on the

function R(z), however the braiding property does impose non-trivial relations on both R(z)

and Q(z). It turns out that it is sufficient to solve (6.11) and that (6.10) does not impose

extra constraints. Also, recall that under the assumption of rationality the coefficients of

possible log terms have to cancel separately. Now we insert our ansatz (6.13) in (6.11a),

and by extracting the coefficient of the log term, we obtain the following relation for the

function R0(z):

− z2R0

(
1

1− z

)
− z2R0(1− z)

(z − 1)2
−R0(z) = 0. (6.14)

Similarly, by looking at (6.11b) we obtain an equation that mixes the two compo-

nents of R(z)

− (z − 1)z4R′0(1− z) + 2(z − 3)z3R0(1− z) + (z − 1)3z2R′0(z)

+ 2(z − 2)(z − 1)2zR0(z)− z2(z − 1)4R1

(
1

1− z

)
− z2R1(1− z) +

(
−z2 + 2z − 1

)
R1(z) = 0.

(6.15)

In addition to these relations, the function R(z) is constrained by the block expansion (6.7).

In particular, in the limit z ∼ 0 it should satisfy

(R0(z), R1(z)) ∼ (z2,−2z2), (6.16)

where the relative factor of −2 comes from the explicit normalization of the conformal

blocks in the basis we employ. As discussed in [17], these conditions are not enough to

fix the function R(z), and we need to look at the behavior of the function around z ∼ 1,

which is correlated with the behavior of anomalous dimensions at large ∆. Because we are

looking for a solution that can be interpreted as a holographic correlator, we will borrow

some intuition from [63, 64]. The idea is that the growth of anomalous dimensions is
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governed by how irrelevant the interaction is in the putative AdS dual. Because we are

trying to bootstrap a leading correction to the holographic correlator, we should keep the

solution with the weakest growth. Therefore, we impose that anomalous dimensions grow

no faster than γ
[a,b]
∆ ∼ ∆2 for large values of ∆. This last condition fixes the function R(z)

up to two normalization constants. The explicit answer reads

R0(z) = − z2

z − 1
c1 −

(
2z2 − 7z + 7

)
z4

2(z − 1)3
c2 , (6.17)

R1(z) = −
z2
(
2z2 − 3z − 6

)
3(z − 1)

c1 +
z4
(
8z2 − 28z + 35

)
3(z − 1)3

c2 . (6.18)

It is instructive to compare this result with the analysis of [17] for line defects in N = 4

theories. In the N = 4 case, there is only one function and the solution could be fixed up

to an overall coefficient. Moreover, this coefficient is associated to a three-point function

of half-BPS operators and can be fixed using localization [18]. In our case of line defects

in N = 2 theories, we have two overall constants associated to each independent channel.

Unlike N = 4 SYM, which seems to be unique, we know that there is an extensive catalog

of N = 2 theories, and it is then no surprise that our solution has more freedom.

From the explicit solution for R(z), the anomalous dimensions can be read off from

the block expansion in (6.7a):

γ
[0,0]
∆ =

∆(∆ + 1)

3(∆− 1)(∆ + 2)
c1 +

(∆− 2)(∆ + 3)
(
3∆(∆ + 1)− 4

)
12(∆− 1)(∆ + 2)

c2 , (6.19)

γ
[1,0]
∆ = −(∆− 1)(∆ + 2)

9∆(∆ + 1)
c1 +

(∆− 1)(∆ + 2)
(
9∆(∆ + 1) + 4

)
36∆(∆ + 1)

c2 . (6.20)

From this expression is clear that they scale as ∆2 for large ∆.

6.3 Corrections to the OPE coefficients

With the explicit solution for R(z) at hand, we can proceed to compute Q(z), which will

allow us to extract the first-order correction to the OPE coefficients. The crossing equation

gives non-trivial constraints for both components of Q(z), namely

Q(z)− z2

(1− z)2
Q(1− z) = 0. (6.21)

The equations coming from braiding will provide extra conditions, in particular if we insert

the ansatz (6.13) in (6.11b) and now extract the term with no logs, we get

(z − 1)4Q1

(
z

z − 1

)
− 2(2− z)z(z − 1)2Q0(z)− (z − 1)2Q1(z)

+z(z − 1)3R0(z) + z2
(
(z − 1)3Q′0(z) + z2R0(1− z)

)
= 0.

(6.22)

As before, the other braiding equations do not provide extra conditions. It only remains

to impose the boundary conditions for z ∼ 0 similarly to what we did for R(z). Our final
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solution for Q(z) is given by

Q0(z) =

(
z2 − z + 1

)2
(z − 1)2

c2, (6.23)

Q1(z) =
2z2

3
c1 −

(
16z4 − 32z3 + 97z2 − 81z + 30

)
6(z − 1)2

c2. (6.24)

Having both R(z) and Q(z), we can now use the block expansion (6.7b) to extract cor-

rections to the OPE coefficients, similarly to what we did for the anomalous dimension.

It turns out that the corrections a
(1)
∆ and b

(1)
∆ can be elegantly written in terms of the

derivatives of the anomalous dimensions times the zeroth-order values for a
(0)
∆ and b

(0)
∆ :

a
(1)
∆ =

∂

∂∆
(a

(0)
∆ γ

[0,0]
∆ ) , b

(1)
∆ =

∂

∂∆
(b

(0)
∆ γ

[1,0]
∆ ) . (6.25)

Similar relations were originally observed in [63, 65]. It is not clear to us which of our

assumptions implies these relations, but in any case it is reassuring to see that they are

satisfied.

Let us finish with some comments. From the start we are assuming that the spectrum

of the perturbed solution is the same as the spectrum of the zeroth-order starting point. In

principle, there could be degenerate families that are lifted at first order. However, because

we are looking at a single correlator, possible degeneracies are invisible at this stage of the

calculation. The more correct way to interpret our results is as weighted averages [66, 67].

In order to resolve possible degeneracies it is necessary to study a mixed correlator system.

For example, one could use the correlators involving long multiplets that we present in

appendix B, although perhaps more general correlators are needed in which the external

operators carry non-zero quantum numbers under su(2)j×su(2)R. We leave this interesting

problem for future work.

Let us also point out that this solution to crossing is interesting in its own right.

It would be ideal to compare our result with other approaches and explicit holographic

calculations in some selected N = 2 model, as it would allow us to understand the origin of

the coefficients c1 and c2. Finally, a similar calculation to ours was done in [26] using the

exact functional method, where possible deformations of a free theory were bootstrapped

by explicitly constructing the exact functionals that give the optimal bound. It would be

interesting to adapat the approach of [26] to our crossing constraints (4.20).

7 Conclusions

In this work we have initiated the bootstrap program for line defects in N = 2 theories. We

studied the 1d CFT that lives in a line defect using a collection of bootstrap techniques.

Our results are for the most part very general, as they rely on basic symmetry principles

and consistency requirements, and are therefore valid for standard Wilson and ’t Hooft lines

in gauge theories, but also for more exotic constructions like line defects in non-Lagrangian

models [68–70].
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We concentrated mostly on correlators of the displacemente operator, but one can

also consider more general external multiplets and study a mixed correlator bootstrap.

Partial progress towards this goal is already presented in appendix B, where conformal

blocks for correlators that include scalar long multiplets as external operators are shown.

The analysis of this paper shows that not only scalar long multiplets, but also multiplets

charged under transverse spin, are generated in the OPE of two displacements. Therefore,

it would be interesting to consider crossing involving long operators that sit in non-trivial

representations of the bosonic subalgebra.

As a longer term goal, one could include local operators outside the defect. This is

particularly interesting when considering that theories with the same local spectrum can

support different line defects [1]. Basic kinematics constraints on two-point functions in

the presence of an N = 2 line have not been calculated yet. A project for the not so

distant future would be to consider a mixed system between the bulk stress tensor and

the displacement operator, generalizing the analysis of [7] where the coupling between the

displacement and the stress tensor was studied. It would also be interesting to see bootstrap

constraints on possible line defects when assuming a given bulk CFT.

Another interesting follow-up would be to perform holographic calculations in some

specific N = 2 model, in order to compare with our analytic correlator from section 6.

There seems to be no calculation of this sort in the N = 2 literature. In N = 4 SYM the

holographic calculation of [15] and the bootstrap analysis of [17] are in perfect agreement.

We are confident that there will be a similar match in the N = 2 case.

One more possible avenue is to push the analytic analysis to higher orders in the

perturbative expansion. This was done in [17] for N = 4, but in order to resolve the

important issue of degeneracies a bigger collection of correlators has to be considered. In

addition, one could also try to adapt the exact functional machinery developed in [24–26].

The systems studied in this work have interesting simplifying features, i.e. 1d CFTs with a

high amount of supersymmetry, and perhaps exact solutions to the crossing equations are

within reach.
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A Conventions

In this appendix, we define an index-free notation to contract the fermionic coordinates

θaA of our superspace. These objects have one transverse-spin and one R-symmetry index,

and since both groups are su(2), we will need to use the totally antisymmetric symbol

ε12 = −ε21 = −ε12 = ε21 = 1, ε12 = −ε21 = −ε12 = ε21 = 1. (A.1)

As usual, the conventions to raise or lower indices are as follows

θA,a = εabθ
b
A, θA,a = εABθaB, etc. (A.2)
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There is only one meaningful way to contract two coordinates and form a scalar

θξ ≡ εabεABθaAξ
b
B. (A.3)

Note that θξ = −ξθ and therefore θθ = 0. Given three coordinates θ, ξ and ζ, they can be

contracted as

(θξζ)aA = εbcε
BCθbAξ

a
Bζ

c
C. (A.4)

This contraction is interesting because it is inequivalent to contracting two coordinates as

in (A.3) and then multiplying by the third one. As a result, it does not vanish even if two

or three coordinates are the same: (θθθ)aA ≡ (θ3)aA 6= 0. Finally, given four Grassmann

variables there is one contraction such that it cannot be decomposed as a product of terms

of the form (A.3)

θξζη = εacεbdε
ABεCDθaAξ

b
Bζ

c
Cη

d
D. (A.5)

As before, this does not vanish even in the case of four identical coordinates θθθθ ≡ θ4 6= 0.

Note also that we could have defined it as θξζη ≡ θaA(ξζη)Aa .

When we classify all possible fermionic invariants, the following relations will be useful

θξθξ = ξθξθ,

θθξξ = ξξθθ,

θξξθ = ξθθξ =
1

2
(θξθξ + θθξξ),

ξθθθ = θξθθ = θθξθ = θθθξ,

(A.6)

and also

(θξ)2 =
1

2
(θξθξ − θθξξ), (θξ)3 = −2

3
θ3ξ3. (A.7)

B Long blocks

In this appendix, we compute superconformal blocks involving unprotected operators. We

start by obtaining the blocks of two displacements and two longs in the (12) → (34)

channel, and then proceed to compute the same blocks involving four long operators. In

order to study crossing for the full mixed system, one would still need to compute the

blocks 〈DDOO〉 in the (14) → (23) channel, but we expect this not to be hard using the

techniques presented in the paper.

B.1 Two displacements and two longs

We will start by computing the superconformal blocks of two displacements D(z) with two

identical long scalar operators O(z) of dimension ∆O in the (12)→ (34) channel

〈D(z1)D(z2)O(z3)O(z4)〉 =
1

Z2
12Z

2∆O
34

∑
O′

λDDO′λOOO′ GO′(Ia). (B.1)
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The steps of the calculation are analogous to section 4.1, with the exception that now the

shortening conditions are given by (3.48) only. Therefore, there are three free functions

f0(z), f1(z) and f9(z), and there must be an extra independent Casimir equation. As

before, we apply the Casimir operator C2
12 to the four-point function in the frame F1 to

simplify the computations. We get one of the original Casimir equations (4.6a), together

with two new constraints:

− z2
[
(z − 1)f ′′0 (z) + f ′0(z)

]
− 4zf1(z) = c f0(z), (B.2a)

+ 2304z3f9(z)− 16(2c + 3z − 10)f1(z) + 48(2− 3z)zf ′1(z)− 48(z − 1)z2f ′′1 (z)

+ 8
[
(z − 1)z + 6

]
f ′0(z) + 2

[
z(5z − 4)− 8

]
zf ′′0 (z)

− 2(z − 1)(z + 4)z2f
(3)
0 (z)− (z − 1)2z3f

(4)
0 (z) = 0,

(B.2b)

(c− 2)2cf0(z) + z2
[
3c2 + 2c(6z − 5) + 4z(9z − 8)

]
f ′0(z)

+ z2
[
3c2(z − 1) + 2c(z(21z − 23) + 5) + 4z(7z − 6)(9z − 4)

]
f ′′0 (z)

+ 2z3
[
6c(z − 1)(2z − 1) + z(z(165z − 284) + 138)− 16

]
f

(3)
0 (z)

+ (z − 1)z4
[
3c(z − 1) + 2z(69z − 79) + 38

]
f

(4)
0 (z)

+ 3(z − 1)2(7z − 4)z5f
(5)
0 (z) + (z − 1)3z6f

(6)
0 (z) = 0.

(B.2c)

As discussed in the main text, we need to first “change basis” from the functions fi(z)

to the Gi(z), and then make an ansatz as a sum of bosonic blocks in order to solve the

Casimir equations. We start by expanding the external fields in terms of their conformal

descendants, and we obtain the same expansion as in the right-hand side of (4.7). Even

though the operators at points z3 and z4 are longs, there are no new terms is the expansion

because we work in the frame F1, where θ3 = θ4 = 0, and therefore we can only get

contributions from the superconformal primary field A. As a result, the mapping (4.8) is

still valid, and we find that the change of basis must be given by (4.9) together with

f9(z) =
G0(z)

48z4
−
(
z2 + 6

)
G′0(z)

288z3
−
(
5z2 − 12

)
G′′0(z)

1152z2
+

(z + 4)(z − 1)G
(3)
0 (z)

1152z

+
(z − 1)2G

(4)
0 (z)

2304
− G1(z)

24z4
− G′1(z)

144z2
− (z − 1)G′′1(z)

144z2
+
G2(z)

6z4
.

(B.3)

The final step is to insert the change of basis (4.9) and (B.3) in the Casimir equa-

tions (4.6) and (B.2a), and use the resulting equations to fix the coefficients that apear

in the ansatz (4.11). If we consider the block for an exchanged operator with quantum

numbers [∆, 0, 0], the solution to the equations is

a1 =
1

2
a0 (∆− 2) ,

a2 = − 1

16
a0 (∆− 3) (∆− 2) ,

e1 = −1

2
e0 (∆ + 3) ,

e2 = − 1

16
e0 (∆ + 3) (∆ + 4) ,

(B.4)

and bi = ci = di = 0. Note that one of the free parameters, say a0, can be fixed by

choosing an overall normalization of the conformal block, as we did in (4.12). However,
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the new feature is that there is still a free parameter e0 that cannot be fixed by supercon-

formal symmetry.

As a consistency check, we can take the OPE coefficients and norms of section 4.2 to

rederive this result. The superblocks are given by

G0(z) =
λAAAλ̃AAA
〈A|A〉

g0,0
∆ (z) +

λAAGλ̃AAG
〈G|G〉

g0,0
∆+2(z),

G1(z) =
λBBAλ̃AAA
〈A|A〉

g0,0
∆ (z) +

λBBGλ̃AAG
〈G|G〉

g0,0
∆+2(z),

G2(z) =
λCCAλ̃AAA
〈A|A〉

g0,0
∆ (z) +

λCCGλ̃AAG
〈G|G〉

g0,0
∆+2(z),

(B.5)

As in section 4.2, λO1O2O3 denotes the OPE coefficient of two fields from the displacement

multiplet with one operator from a long scalar multiplet, namely O1, O2 ∈ D and O3 ∈ O′.
However, now one needs to consider also λ̃O1O2O3 , where O1 and O2 are descendents of the

external long O, but O3 is a descendant of the exchanged long O′. To recover equation (B.4)

we fix

a0 =
λAAAλ̃AAA
〈A|A〉

, e0 =
λAAGλ̃AAG
〈G|G〉

. (B.6)

Then, for example, a1 = a0λBBA/λAAA, and using (4.17) we recover the blocks (B.4). This

works in an identical way for the other ai and ei.

As in the case of four displacements, we can also have an exchange [∆, 1, 0], with

solution given by

c1 = −1

2
c0, c2 =

1

48
c0 (∆− 2) (∆ + 3) , (B.7)

where ai = bi = di = ei = 0 and we could fix the normalization of the block by c0 = 1.

B.2 Four longs

Finally, we compute the superconformal blocks that appear in the four-point function of

long scalar operators in the (12)→ (34) channel

〈O(z1)O(z2)O′(z3)O′(z4)〉 =
1

Z2∆O
12 Z

2∆′
O

34

∑
O′′

λOOO′′λO′O′O′′ GO′′(Ia), (B.8)

where for simplicity we assume that ∆1 = ∆2 = ∆O and ∆3 = ∆4 = ∆′O. The steps in

the calculation are very similar to the other studied cases, but the equations soon become

quite long. For this reason, we will skip some intermediate results in our presentation, but

the interested reader can find the details in the supplementary material. The authors are

also happy to provide further details on request.

First, we consider the four-point function of interest, which is given by (3.41), and act

on it with the Casimir operator C2
12. Since we do not impose any shortening conditions

to the four-point function, the full system of Casimir equations involves ten independent
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functions f0(z), . . . , f9(z). The explicit differential equations, which are not particularly

illuminating, can be found in the supplementary material.

In order to solve these equations, we need to first “change basis” to functions Gi
that capture the contribution of the conformal descendants in our multiplets. In addition

to (4.8), we need to make the following identifications:

〈EAB
ab (x1)ECD

cd (x2)A(0)A(∞)〉 → εabεcd(ε
ACεBD + εADεBC)

|x12|2∆O+2
G3(z),

〈A(x1)Gp(x2)A(0)A(∞)〉 → 1

|x12|2∆O+2
G4(z),

〈Gp(x1)A(x2)A(0)A(∞)〉 → 1

|x12|2∆O+2
G5(z),

〈BA
a (x1)F pB

b (x2)A(0)A(∞)〉 → εABεab
|x12|2∆O+2

G6(z),

〈F pA
a (x1)BB

b (x2)A(0)A(∞)〉 → εABεab
|x12|2∆O+2

G7(z),

〈F pA
a (x1)F pB

b (x2)A(0)A(∞)〉 → εABεab
|x12|2∆O+3

G8(z),

〈Gp(x1)Gp(x2)A(0)A(∞)〉 → 1

|x12|2∆O+4
G9(z).

(B.9)

Here one needs to be careful to map the Gi(z) with the true conformal descendants in the

O(z) superfield, namely one needs to use F p and Gp defined in (3.26). With the above

identifications, and following the obvious generalization of the steps in the main text, one

can find the explicit change of basis fi(z) → Gi(z). Again, this transformation is a bit

involved, and the interested reader can find it in the supplementary material.

Finally, we make an ansatz for the functions Gi(z) as a finite sum of sl(2;R) blocks, as

in equation (4.11). Unlike the cases described so far, some of the Gi represent four-point

functions of descendants where the operators at x1 and x2 have different dimensions. In

these cases, the sum of bosonic blocks must be given by the blocks (4.1) with ∆12 6= 0.

More specifically, we use the ansatz

Gi(z) = ai g
∆12,0
∆ (z) + bi g

∆12,0

∆+ 1
2

(z) + ci g
∆12,0
∆+1 (z) + di g

∆12,0

∆+ 3
2

(z) + ei g
∆12,0
∆+2 (z), (B.10)

where

∆12 =



−2 for G4(z)

+2 for G5(z)

−1 for G6(z)

+1 for G7(z)

0 otherwise

. (B.11)

With these ingredients, one can fix the coefficients ai, . . . , ei by solving the Casimir

equations as we previously did. Before we present the solutions, let us make some com-

ments. First, compared to the cases studied before, there is a new solution corresponding
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to an exchanged operator with quantum numbers [∆, 0, 1], namely without transverse spin

but with R-symmetry. Similarly to the discussion of the 〈DDOO〉 blocks, there are free

parameters left in the solution. Some of them can be fixed by choosing an appropriate

normalization, but superconformal symmetry is not powerful enough to fix the rest.

Scalar exchange. For an exchanged operator with quantum numbers [∆, 0, 0], the

Casimir eigenvalue is c = ∆(∆ + 1) and the blocks are given by

a1 =
1

2
a0 (∆− 2∆O) ,

a3 = − 1

16
a0 (∆− 2∆O − 1) (∆− 2∆O)− a2,

a4 = +a5 =
a0 (∆O + 2) (2∆O −∆) (−∆ + 2∆O + 1)

24 (2∆O + 1)
+

2a2

3
,

a6 = −a7 =
a0 (∆O + 2) (2∆O −∆) (−∆ + 2∆O + 1)

6 (2∆O + 1)
+

8a2

3
,

a8 =
a0 (2∆O −∆) (−∆ + 2∆O + 1) (−∆ + 2∆O + 2) (∆O + 2) 2

18 (2∆O + 1) 2

+
8a2 (−∆ + 2∆O + 2)

3 (2∆O + 1)
,

a9 =
a0 (2∆O −∆) (−∆ + 2∆O + 1) (−∆ + 2∆O + 2) (−∆ + 2∆O + 3) (∆O + 2) 2

576 (2∆O + 1) 2

+
a2 (−∆ + 2∆O + 2) (−∆ + 2∆O + 3)

12 (2∆O + 1)
, (B.12)

and

e1 =
1

2
e0 (−∆− 2∆O − 1) ,

e3 = − 1

16
e0 (∆ + 2∆O + 1) (∆ + 2∆O + 2)− e2,

e4 = +e5 =
e0(∆ + 2)(∆ + 3) (∆O + 2) (∆ + 2∆O + 1) (∆ + 2∆O + 2)

24∆(∆ + 1) (2∆O + 1)

+
2(∆ + 2)(∆ + 3)e2

3∆(∆ + 1)
,

e6 = −e7 = −e0(∆ + 2) (∆O + 2) (∆ + 2∆O + 1) (∆ + 2∆O + 2)

6(∆ + 1) (2∆O + 1)
− 8(∆ + 2)e2

3(∆ + 1)
,

e8 =
e0 (∆ + 2∆O + 1) (∆ + 2∆O + 2) (∆ + 2∆O + 3) (∆O + 2) 2

18 (2∆O + 1) 2

+
8e2 (∆ + 2∆O + 3)

3 (2∆O + 1)
,

e9 =
e0 (∆ + 2∆O + 1) (∆ + 2∆O + 2) (∆ + 2∆O + 3) (∆ + 2∆O + 4) (∆O + 2) 2

576 (2∆O + 1) 2

+
e2 (∆ + 2∆O + 3) (∆ + 2∆O + 4)

12 (2∆O + 1)
, (B.13)

with all other coefficients vanishing: bi = ci = di = 0.
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Transverse-spin charged exchange. For an exchanged operator with quantum num-

bers [∆, 1, 0], the Casimir eigenvalue is c = ∆(∆ + 1) + 2 and the blocks are given by

c1 =
1

2
c0 (1− 2∆O) ,

c2 =
1

48
c0

(
∆(∆ + 1)− 6∆O(∆O + 1) + 6

)
,

c3 = −1

8
c0 (∆O − 1) 2,

c4 = +c5 = −c0(∆ + 1)(∆ + 2) (∆O − 1)

24 (2∆O + 1)
,

c6 = −c7 = −c0(∆ + 1) (∆O − 1)

3 (2∆O + 1)
,

c8 =
c0 (∆O − 1) 2 (2∆O + 3) (2∆O −∆ + 1) (2∆O + ∆ + 2)

18 (2∆O + 1) 2
, (B.14)

c9 =
c0 (∆O − 1) 2 (2∆O −∆ + 1) (2∆O −∆ + 2) (2∆O + ∆ + 2) (2∆O + ∆ + 3)

576 (2∆O + 1) 2
,

with all other coefficients vanishing: ai = bi = di = ei = 0.

R-symmetry charged exchange. Finally, when the exchanged operator has quantum

numbers [∆, 0, 1], the Casimir eigenvalue is c = ∆(∆ + 1)− 4 and the solution is

c1 = −c0 (∆O + 1) ,

c2 = −1

8
c0 (∆O + 2) 2,

c3 =
1

48
c0

(
∆(∆ + 1)− 6∆O(∆O + 1)

)
,

c4 = c5 =
c0(∆ + 1)(∆ + 2) (∆O + 2)

24 (2∆O + 1)
,

c6 = −c7 = −c0(∆ + 1) (∆O + 2)

6 (2∆O + 1)
,

c8 =
c0∆O (∆O + 2) 2 (2∆O −∆ + 1) (2∆O + ∆ + 2)

9 (2∆O + 1) 2
, (B.15)

c9 =
c0 (∆O + 2) 2 (2∆O −∆ + 1) (2∆O −∆ + 2) (2∆O + ∆ + 2) (2∆O + ∆ + 3)

576 (2∆O + 1) 2
,

with ai = bi = di = ei = 0.
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