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1 Introduction

For a large class of dark matter (DM) models, the physics of direct detection experiments

can be described using Effective Field Theory (EFT) [1–27]. There are several scales that

enter the problem: the DM mass, mχ, the scale of the mediators, Λ, through which the DM

interacts with the visible sector, and, finally, the standard model (SM) scales — the masses

of the SM particles and the scale of strong interactions, ΛQCD. The EFT description of DM

direct detection is appropriate as long as the mediators are heavier than a few hundred MeV,

i.e., above the typical momentum exchange in direct detection experiments. Furthermore,

the EFT description is necessary in order to consistently treat the hadronic physics in the

scattering of DM on nuclei.

The EFT approach is especially appealing if one does not want to commit to a partic-

ular DM model when interpreting the results of direct detection experiments. The direct

detection bounds can be expressed as the bounds on the coefficients of local operators,

which can then be compared between different direct detection experiments in a model-

independent manner [16, 20, 21, 23, 27]. If the mediator scale is above the DM mass,

Λ & mχ, they can also be compared to indirect detection bounds [28–34], and to colliders

searches if Λ is above the typical partonic momentum exchange in the collision [35–43]. At

the LHC the typical partonic momentum often does exceed the mediator scale, Λ, in which

case one needs to resort to simplified models [44–57].

In the present manuscript we are interested in the connection between the DM theory

at the mediator scale, Λ, and the EFT describing DM direct detection. To do so one needs

to run through a tower of EFTs that connects the UV scale Λ with the nuclear scale. We

assume that1

Λ� mχ ∼ mZ , (1.1)

where mZ = 91.1876 GeV is the Z-boson mass. Figure 1 depicts the resulting tower

of EFTs. At a particular scale µ the appropriate EFT is constructed from the relevant

propagating degrees of freedom.

At µ ∼ Λ the propagating degrees of freedom are either the full theory of DM inter-

actions, presumably renormalizable, or a simplified model of DM interactions, including

the mediators. For µ < Λ the mediators are integrated out, leading to an EFT with

nonrenormalizable interactions between DM and the visible sector. At µ ∼ mZ the top

quark, the Higgs, and the W,Z bosons are integrated out. For µ < mZ the DM interac-

tions are therefore described by nonrenormalizable operators in an EFT that contains only

1For Λ ∼ mχ one needs to match onto an EFT with non-relativistic DM, the Heavy Dark Matter EFT

(HDMET), already at the scale Λ.
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Figure 1. The tower of EFTs linking the UV scale Λ to the scale of interactions between the

nucleons and the DM.

DM (which, for mχ ∼ mZ , is now described by a nonrelativistic field), and the bottom-,

charm-, strange-, down-, and up-quark, as well as the leptons, gluons and photons. At

µ ∼ mb one integrates out the bottom quark, and at µ ∼ mc the charm quark. Finally,

at µ ∼ O(1 GeV) a nonperturbative matching to an EFT with pions and nucleons, i.e., a

chiral effective theory, is performed [18–21]. This is then used in a chiral EFT approach to

nuclear forces together with the nuclear response functions to obtain the hadronic matrix

element for each of the DM-nucleon interaction operators [9–13, 23, 34, 58, 59].

The EFT operators mix under the renormalization-group (RG) evolution when going

from Λ to mZ , from mZ to mb, etc. The primary purpose of this paper is to calculate the

anomalous dimensions for the RG running from Λ to mZ for the case of Dirac fermion

DM in an arbitrary electroweak multiplet. This RG running can be phenomenologically

important since it can mix operators that are velocity suppressed in the nonrelativistic limit

with operators that are not velocity suppressed (see refs. [22, 60–67] for further examples

of relevant loop corrections in DM interactions). In addition, we also perform the rest of

the running and matching down to the nuclear level and give several numerical examples.

The possibility that DM is part of an electroweak multiplet is allowed by direct detec-

tion constraints as long as DM does not couple to the Z boson at tree level (for instance, this

is the case if the DM multiplet has odd dimensionality and does not carry hypercharge).

The exchanges of W,Z, h bosons with a quark current then generate a contribution to

DM-nucleon scattering at one-loop and two-loop level, see figure 2 and refs. [68, 69]. Since

these contributions are loop-suppressed and result in either a chirality flip or spin-dependent

scattering, it is quite possible that the leading contribution is due to exchanges of heavy

mediators. This is illustrated in figure 3 where we show for several non-renormalizable

interactions at which values of the mediator mass, Λequal, the non-renormalizable and
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Figure 2. Representative one-loop (left and middle) and two-loop (right) diagrams contributing

to the direct detection scattering of DM that is part of an electroweak multiplet.

renormalizable contributions to scattering on Xenon are equal. For mediators lighter than

Λequal the scattering rates are dominated by the non-renormalizable interactions. Even if

the mediators are very heavy, many orders of magnitude heavier than the weak scale, they

can still give the leading effect in spin-independent scattering. Furthermore, the operators

that lead to velocity-suppressed contributions, such as vector-axial interactions, are only

poorly constrained. A mixing into velocity unsuppressed, coherently enhanced operators

at one-loop, two-loop, or potentially even three-loop can therefore still be the leading con-

tribution to the scattering rate. This motivates both the use of the complete tower of EFTs

and the calculation of the leading-logarithmic effects captured by RG running.

In our analysis we cover both the case of DM with electroweak-scale mass, mχ ∼ mZ ,

and light DM, mχ � mZ . Note that we do not require DM to be a thermal relic, and

therefore allow for a large range of DM masses and interactions. Above the electroweak scale

we limit our analysis to a basis of operators with mass dimension five and six, and work to

one-loop order for the anomalous dimensions. The matching corrections are calculated at

tree level, except for the cases where one-loop contributions can be numerically important,

for instance, if the matching generates gluonic operators. The subsequent RG evolution

below the electroweak scale has been described in detail in refs. [16, 21]; see also ref. [23]

for a computer code that implements the running numerically. Several interesting cases are

left for future work, such as the case of several DM multiplets, the case of scalar DM, the

case of very heavy DM, mχ � mZ , as well as the analysis of higher dimension operators.

The paper is organized as follows. In section 2 we give the complete basis of dimension-

five and dimension-six operators for DM interacting with the SM, valid above the elec-

troweak scale. The anomalous dimensions describing the mixing of these operators are

presented in section 3, while in section 4 we give the matchings to the tower of EFTs below

the electroweak symmetry breaking scale, and collect the results on the running down to

the hadronic scale, along with the subsequent nonperturbative matching to the chiral EFT

and the nuclear responses. Section 5 contains illustrative examples showcasing the effects

of operator mixing on DM direct detection phenomenology. The conclusions are given in

section 6. Appendix A contains our notation and conventions, appendix C the mixing with

the pure SM operators, appendix D the mixing with the pure dark sector, and appendix E

a list of unphysical operators used in the calculation.
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Figure 3. The contribution from the non-renormalizable operator Q
(d)
i dominates in direct de-

tection scattering over the renormalizable contributions, if the suppression scale Λ is below the

corresponding solid line (i.e., for Λ = Λequal the non-renormalizable and the renormalizable con-

tributions are of the same size). Examples shown are for triplet Dirac fermion DM with Yχ = 0

scattering on a Xenon target, so that the contributions from renormalizable interactions start at

one-loop. The dashed gray lines denote the electroweak scale, mZ , and the scales roughly n loop

factors above it, (4π)2nmZ on the left and (4π)nmZ on the right. Dimension-five operators are

shown in the left panel, dimension-six operators in the right panel.

2 Effective Lagrangian above the electroweak scale

We extend the SM by a single Dirac fermion, a Z2-odd electroweak multiplet of dimension

dχ = 2Iχ + 1, hypercharge Yχ, and mass mχ, whose electrically neutral component is the

DM. Here Iχ is the weak isospin of the DM multiplet (see appendix A for our conventions).

One-loop electroweak corrections split the multiplet components, so that the charged parti-

cles are heavier than DM and decay in the early universe (see refs. [7, 70]). In the numerical

examples in section 5 we set Yχ = 0, so that the phenomenologically dangerous tree-level

vectorial Z couplings are absent. In the calculation of anomalous dimension in this section

we do, however, keep the Yχ dependence, so that the results can be more generally applied.2

Within our set-up there are two types of DM interactions with the visible sector: either

through the exchanges of SM particles, or through new states — the mediators. In general

both of these contributions are present. Our default assumption is that DM has electroweak

scale mass, while the mediators are much heavier, with masses of order Λ � mZ . We thus

2This added generality is needed in the case of light DM. Collider experiments require that the charged

components of the multiplet that contains the DM have electroweak scale masses. The required large

splitting of the spectrum arises from mixing with additional multiplets that have to be properly accounted

for in the running of Wilson coefficients below the NP scale, Λ. In our sample applications below, the

light DM case is unrealistic — and given for illustration purposes only — because the effect of the required

additional multiplets is ignored. Analysis of realistic examples is left for future work.
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have the following hierarchy of scales,

Λ� mχ ∼ mZ � ΛQCD & q , (2.1)

where q ∼ O(100 MeV) is the typical momentum transfer in DM scattering on nuclei. We

will also discuss the case of light DM, mχ � mZ .

When one considers processes at energy scales below the mass of the mediators, µ < Λ,

the mediators can be integrated out. The effective DM Lagrangian, valid for Λ > µ > mZ ,

is given by

Lχ = L(4)
χ + L(5)

χ + L(6)
χ + · · · , (2.2)

where the superscripts denote the dimensionality of the operators in the Lagrangian. The

renormalizable part of the effective Lagrangian is, for a Dirac-fermion DM multiplet,

L(4)
χ = χiγµDµχ−mχχ̄χ . (2.3)

The covariant derivative comprises the interactions with the electroweak gauge bosons W a
µ

and Bµ; see appendix A for further details on our notation. For µ � mZ ∼ mχ the mass

parameter mχ can effectively be set to zero.

The non-renormalizable terms in the effective Lagrangian (2.2),

L(5)
χ =

∑
a

C
(5)
a

Λ
Q(5)
a , L(6)

χ =
∑
a

C
(6)
a

Λ2
Q(6)
a , . . . (2.4)

arise from integrating out the mediators. Depending on the mediator model it is possible

that only L(5)
χ or only L(6)

χ are generated, but in general both will be present. We trun-

cate the expansion at dimension six since most mediator models generate nonzero Wilson

coefficients, C
(d)
a , in at least one of the two effective Lagrangians, L(5)

χ ,L(6)
χ (for exceptions

where the first contributions arise only at dimension seven, see, e.g., refs. [71, 72]; the

complete basis at dimension seven has been presented in ref. [26]). When writing the basis

we assume that there is a conserved global dark U(1)D quantum number, which forbids

currents of the form χ̄cΓχ, where χc is the charge-conjugated DM field, and Γ denotes a

generic string of Dirac matrices. (This assumption is to be relaxed in a follow-up work,

where we plan to extend our analysis to the case of Majorana fermions and more than

one multiplet.)

2.1 Dimension-five operator basis

The CP-conserving dimension-five operators are

Q
(5)
1 =

g1

8π2
(χ̄σµνχ)Bµν , Q

(5)
2 =

g2

8π2
(χ̄σµν τ̃aχ)W a

µν , (2.5)

Q
(5)
3 = (χ̄χ)(H†H) , Q

(5)
4 = (χ̄τ̃aχ)(H†τaH) , (2.6)

while the CP-odd operators have an extra insertion of γ5,

Q
(5)
5 =

g1

8π2
(χ̄σµνiγ5χ)Bµν , Q

(5)
6 =

g2

8π2
(χ̄σµν τ̃aiγ5χ)W a

µν , (2.7)

Q
(5)
7 = (χ̄iγ5χ)(H†H) , Q

(5)
8 = (χ̄τ̃aiγ5χ)(H†τaH) . (2.8)

– 5 –
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Here and below, H is the SM Higgs doublet, and the SU(2) generators τ̃a, τa are defined

in appendix A. All non-displayed SU(2) (and, below, also color) indices are assumed to be

contracted within the brackets. Note that if χ is a SU(2) singlet, the operators Q
(5)
2 , Q

(5)
4 ,

Q
(5)
6 , and Q

(5)
8 are absent. In a perturbative UV theory the operators Q

(5)
1,2 and Q

(5)
5,6 are

generated at one loop, while the operators Q
(5)
3,4 and Q

(5)
7,8 are typically generated at tree

level. This expectation is reflected in our normalization of the operators.

2.2 Dimension-six operator basis

At dimension six there are many more operators. We do not consider flavor-violating

operators, keeping our discussion minimal. For each SM fermion generation, i = 1, 2, 3,

there are then eight operators that are products of DM currents and quark currents,

Q
(6)
1,i = (χ̄γµτ̃

aχ)(Q̄iLγ
µτaQiL) , Q

(6)
5,i = (χ̄γµγ5τ̃

aχ)(Q̄iLγ
µτaQiL) , (2.9)

Q
(6)
2,i = (χ̄γµχ)(Q̄iLγ

µQiL) , Q
(6)
6,i = (χ̄γµγ5χ)(Q̄iLγ

µQiL) , (2.10)

Q
(6)
3,i = (χ̄γµχ)(ūiRγ

µuiR) , Q
(6)
7,i = (χ̄γµγ5χ)(ūiRγ

µuiR) , (2.11)

Q
(6)
4,i = (χ̄γµχ)(d̄iRγ

µdiR) , Q
(6)
8,i = (χ̄γµγ5χ)(d̄iRγ

µdiR) . (2.12)

Here QL denotes the left-handed quark doublet, and uR, dR the right-handed up- and down-

type quark singlets, respectively. The analogous operators involving lepton currents are

Q
(6)
9,i = (χ̄γµτ̃

aχ)(L̄iLγ
µτaLiL) , Q

(6)
12,i = (χ̄γµγ5τ̃

aχ)(L̄iLγ
µτaLiL) , (2.13)

Q
(6)
10,i = (χ̄γµχ)(L̄iLγ

µLiL) , Q
(6)
13,i = (χ̄γµγ5χ)(L̄iLγ

µLiL) , (2.14)

Q
(6)
11,i = (χ̄γµχ)(¯̀i

Rγ
µ`iR) , Q

(6)
14,i = (χ̄γµγ5χ)(¯̀i

Rγ
µ`iR) , (2.15)

where LL denotes the left-handed lepton doublet, and `R the right-handed down-type

lepton singlet. Finally, there are four dimension-six operators involving Higgs currents,

Q
(6)
15 = (χ̄γµτ̃aχ)(H†i

↔
Da

µ H) , Q
(6)
17 = (χ̄γµγ5τ̃

aχ)(H†i
↔
Da

µ H) , (2.16)

Q
(6)
16 = (χ̄γµχ)(H†i

↔
Dµ H) , Q

(6)
18 = (χ̄γµγ5χ)(H†i

↔
Dµ H) . (2.17)

The Higgs currents are defined in terms of hermitian combinations of the covariant deriva-

tives,
↔
Dµ≡ Dµ−

←
D
†
µ and

↔
Da

µ≡ τaDµ−
←
D
†
µ τa. Additional operators with covariant

derivatives acting on the DM fields vanish via the DM equations of motion, up to total

derivatives. As in the case of dimension-five operators, the basis simplifies if DM is a SU(2)

singlet. In this case, the operators Q
(6)
1,i , Q

(6)
5,i , Q

(6)
9,i , Q

(6)
12,i, Q

(6)
15 , and Q

(6)
17 vanish and should

be dropped from the basis.

While the operators (2.5)–(2.8) and (2.9)–(2.17) mix under RG running, they do not

yet form a closed set under renormalization; for this we also need to include the pure SM

operators (see appendix C) and the operators with only DM fields. To the extent that

we neglect the mixing of the pure DM operators among themselves, we need only four

operators for our purposes, which we can choose as

D
(6)
1 = (χ̄γµχ)(χ̄γµχ) , D

(6)
2 = (χ̄γµγ5χ)(χ̄γµχ) , (2.18)

D
(6)
3 = (χ̄γµτ̃

aχ)(χ̄γµτ̃aχ) , D
(6)
4 = (χ̄γµγ5τ̃

aχ)(χ̄γµτ̃aχ) . (2.19)

– 6 –
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3 Renormalization group running

The RG running proceeds through several sequential steps, Λ → µEW → µb → µc, with

matching thresholds at the electroweak scale, µEW, the bottom-quark mass scale, µb, and

the charm-quark mass scale, µc. We first review briefly each of the steps, and then give

the details in this and the subsequent section.

Running from the mediator scale, Λ, to the EW scale, µEW ∼ mZ ∼ mχ, results in

the mixing of the operators in the effective DM Lagrangian, eq. (2.2). We perform the

calculation of the RG running using dimensional regularization in d = 4 − 2ε dimensions.

Following the conventions in ref. [73], we define the anomalous dimension matrix γ by

µ
d

dµ
~C(µ) = γT ~C(µ) , (3.1)

where ~C is a vector of Wilson coefficients,3 and the superscript T denotes matrix transpo-

sition. The anomalous dimension matrix receives a number of different contributions that

we treat separately, so that

γ =
αs
4π
γ(0)
s +

(
αs
4π

)2

γ(1)
s +

α1

4π
γ

(0)
1 +

α2

4π
γ

(0)
2 +

∑
f=t,b,c,τ

αf
4π
γ(0)
yf

+
αλ
4π
γ

(0)
λ + · · · . (3.2)

Here, we defined αf ≡ y2
f/4π and αλ ≡ λ/4π, where yf is the Yukawa coupling of the

fermion f and λ the Higgs quartic coupling (for normalizations see appendix A), while the

other parameters are defined in terms of the gauge couplings in the usual way, αi ≡ g2
i /4π.

The ellipsis denotes higher-order contributions. Note that the anomalous dimension above

the EW scale does not depend on the QCD coupling constant, since DM does not carry

color, while all the DM-quark operators in (2.9)–(2.12) contain conserved quark currents

in the limit of zero quark masses. The situation is different below the EW scale.

The solution to the RG evolution equation (3.1) gives the Wilson coefficients at any

scale µEW < µ < Λ,
~C(µ) = U(µ,Λ) ~C(Λ), (3.3)

where U(µ,Λ) is the evolution operator from Λ to µ, obtained by solving (3.1),

or equivalently
d

d lnµ
U(µ,Λ) = γTU(µ,Λ), (3.4)

with the initial condition U(Λ,Λ) = 1. The leading-order RG evolution effectively sums the

terms of the form αni logn(Λ/µEW) to all orders. Since some of the anomalous dimensions

are large, we count αi log(Λ/µEW) ∼ O(1). We work to leading-logarithmic order and thus

include all terms that are O(1). This means that the matching conditions are calculated

to the same order, i.e., are obtained at tree level. Matching is done at one-loop, if the

tree level contribution vanishes and the one-loop contribution is numerically important,

for details see below.

3For dimension-five operators some Wilson coefficients need to be redefined to have simple forms of

anomalous dimensions, see eq. (3.8).
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The first matching arises at the EW scale, µEW ∼ mZ , where one integrates out the

top quark, Higgs, W and Z. For µ < µEW the propagating degrees of freedom are then

the photon, the gluons, nf = 5 quark flavors, and the leptons. The RG running in the

five-flavor theory is given by the anomalous dimension matrix γ[5]. It receives QCD and

electromagnetic contributions, so that at one loop order,

γ[nf ] =
αs
4π
γ

(0)
[nf ],s +

α

4π
γ

(0)
[nf ],e + · · · , (3.5)

where αs and α are the strong and electromagnetic coupling constants. At µb ∼ mb the

bottom quark is integrated out. The resulting four flavor EFT has as the propagating

degrees of freedom the photon, gluons, leptons, and nf = 4 flavors of quarks. It is valid for

µc < µ < µb, where µc ∼ mc is the scale at which the charm quark and the τ lepton are

integrated out. The running from Λ down to the scale µhad ∼ 2 GeV, where the hadronic

matrix elements are evaluated, can thus formally be written as

~C(µhad)|nf=3 = U[3](µhad, µc)M[4→3](µc)U[4](µc, µb)M[5→4](µb)

× U[5](µb, µEW)M[EW→5](µEW)U(µEW,Λ) ~C(Λ) .
(3.6)

Here U[nf ](µ, µ
′) are the evolution operators from µ′ to µ in a theory with nf quark flavors

that satisfy an evolution equation similar to (3.4),

d

d lnµ
U[nf ](µ, µ

′) = γT[nf ]U[nf ](µ, µ
′) . (3.7)

In the numerics we take µhad ∼ µc ∼ 2 GeV, and thus set U[3](µhad, µc) = 1. The

M[nf→nf−1] in eq. (3.6) are the matching matrices when going from a theory with nf
quark to a theory with nf − 1 quarks, while M[EW→5](µEW) symbolises the matching to

the five-flavor theory at the EW scale. On the left side of eq. (3.6) we have denoted explic-

itly that the final Wilson coefficients are in the theory with only three flavors of quarks,

i.e., with just u, d, and s quarks, along with gluons, photons and the light leptons.

In the remaining part of this section we present the explicit form of the anomalous

dimension matrix, eq. (3.2), that describes the mixing of the operators due to the RG

evolution from the mediator scale Λ to µEW. The subsequent matching and RG evolutions

below the weak scale is given in section 4. We work in the limit of flavor conservation,

setting the Cabibbo-Kobayashi-Maskawa (CKM) matrix to unity. Furthermore, in this

section we keep only the top, bottom, charm, and tau Yukawa couplings nonzero.

For the computation of the anomalous dimensions we used two independent automated

setups. In the first, the amplitudes were generated using qgraf [74] and the anomalous

dimensions were computed using the computer algebra system form [75]. The second setup

relied on Mathematica packages: the Feynman rules were generated using FeynRules [76],

the amplitudes with FeynArts [77], and the anomalous dimensions were computed using

FormCalc [78]. A large part of the calculations were also checked using pen and paper.

3.1 Mixing of dimension five operators

We start by providing the anomalous dimension matrices for mixing of the CP conserving

dimension-five operators Q
(5)
1 , . . . , Q

(5)
8 , defined in eqs. (2.5)–(2.8). For the column of the
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dimension-five Wilson coefficients entering the RG evolution equation (3.3) we use the

rescaled Wilson coefficients

~C ′ =

(
α1

2π
C

(5)
1 ,

α2

2π
C

(5)
2 , C

(5)
3 , C

(5)
4 ,

α1

2π
C

(5)
5 ,

α2

2π
C

(5)
6 , C

(5)
7 , C

(5)
8

)
. (3.8)

The explicit factors of α1,2/2π = g2
1,2/8π

2 in ~C ′ ensure that the anomalous dimension

matrices γ
(0)
i , still defined by (3.2), do not depend on coupling constants. The evolution

of the primed Wilson coefficients is given by the analogue of eq. (3.1), namely,

µ
d

dµ
~C ′(µ) = γT ~C ′(µ) , (3.9)

The corresponding rescaled operators are also denoted by a prime and read

Q
′(5)
1 =

1

g1
(χ̄σµνχ)Bµν , Q

′(5)
2 =

1

g2
(χ̄σµν τ̃aχ)W a

µν , (3.10)

Q
′(5)
5 =

1

g1
(χ̄σµνiγ5χ)Bµν , Q

′(5)
6 =

1

g2
(χ̄σµνiγ5τ̃

aχ)W a
µν , (3.11)

while Q
′(5)
i ≡ Q(5)

i for i = 3, 4, 7, 8.

The anomalous dimension for Q
′(5)
1 , . . . , Q

′(5)
8 splits into two blocks, for the CP even

operators, Q
′(5)
1 , . . . , Q

′(5)
4 , and the CP odd operators, Q

′(5)
5 , . . . , Q

′(5)
8 , while there is no

mixing between the two blocks. The QCD anomalous dimensions vanish, since all fields

are color neutral. The remaining one-loop anomalous dimensions for the Q
′(5)
1 , . . . , Q

′(5)
4

block are

[
γ

(0)
1

]
Q
′(5)
1...4×Q

′(5)
1···4

=


5
2Y

2
χ − 2β

(0)
1 0 −6Yχ 0

−4YχJχ 1
2Y

2
χ 0 12Yχ

0 0 −3
2 − 3

2Y
2
χ 0

0 0 0 −3
2 − 3

2Y
2
χ

 , (3.12)

[
γ

(0)
2

]
Q
′(5)
1···4×Q

′(5)
1···4

=


2Jχ −4Yχ 0 −24

0 10Jχ − 8− 2β
(0)
2 12Jχ 0

0 0 −6Jχ − 9
2 0

0 0 0 −6Jχ + 3
2

 . (3.13)

Here Jχ = Iχ(Iχ+1), with dχ = 2Iχ+1 the dimensionality of the DM electroweak multiplet,

and Yχ its hypercharge. The β functions for the gauge couplings g1 and g2 are given by

β
(0)
1 = −41

6
−
Y 2
χ

3
dχNχ , β

(0)
2 =

19

6
− 4

9
JχdχNχ , (3.14)

respectively, where Nχ is the number of DM multiplets in the representation Iχ (we will

mostly take Nχ = 1). The anomalous dimension matrices for the CP-odd operators

Q
′(5)
5 , . . . , Q

′(5)
8 are also given by the same matrices, [γ

(0)
i ]

Q
′(5)
5···8×Q

′(5)
5···8

= [γ
(0)
i ]

Q
′(5)
1···4×Q

′(5)
1···4

,

i = 1, 2, y, λ, as required by the fact that CP breaking is not probed by the relevant

one-loop diagrams.
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B,W

χ χ

B,W

B,W

χ χ

B,W

B,W

χ χ

B,W

Figure 4. Sample diagrams for renormalization of Q
′(5)
1 , Q

′(5)
2 operators due to Bµ,W

a
µ exchanges

at one loop.

B,W

χ χ

H H

B,W

χ χ

H H

B,W

χ χ

H H

HH

χ χ

H H

Figure 5. The renormalization of the Q
′(5)
3 , Q

′(5)
4 operators at one loop, with only one representative

of each class of diagrams shown.

The anomalous dimensions γ
(0)
1 in eq. (3.12) and γ

(0)
2 in eq. (3.13) come from the

exchanges of the Bµ and W a
µ gauge bosons in figures 4, 5, and 6, respectively. They are

almost diagonal, with only six nonzero off-diagonal entries. The Q
′(5)
1 mixing into Q

′(5)
2

in γ
(0)
1 is due to a loop exchange of Bµ with an emission of W a

µ , shown in the left two

diagrams in figure 4, while the Q
′(5)
2 mixing into Q

′(5)
1 is due to a similar diagram with Bµ

and W a
µ exchanged. The Q

′(5)
1 mixing into Q

′(5)
2 in γ

(0)
2 is due to a loop exchange of Bµ in

the last diagram in figure 4. The mixings of dipole operators, Q
′(5)
1,2 , into the Higgs current

operators, Q
′(5)
3,4 , arise from the diagrams in figure 6. These mixing contributions vanish

for singlet DM (Yχ = Jχ = 0). This is true also for the mixing of Q
′(5)
1 into Q

′(5)
4 in γ

(0)
2

(recall that the operators Q
′(5)
2 and Q

′(5)
4 are absent for singlet DM). The contributions

proportional to Yukawa couplings and the Higgs self coupling to the anomalous dimension

lead only to multiplicative renormalization of Q
′(5)
3 and Q

′(5)
4 :

[
γ(0)
yt

]
Q
′(5)
1···4×Q

′(5)
1···4

=
[
γ(0)
yb

]
Q
′(5)
1···4×Q

′(5)
1···4

=
[
γ(0)
yc

]
Q
′(5)
1···4×Q

′(5)
1···4

= diag
(
0, 0, 6, 6

)
, (3.15)[

γ(0)
yτ

]
Q
′(5)
1···4×Q

′(5)
1···4

= diag
(
0, 0, 2, 2

)
, (3.16)[

γ
(0)
λ

]
Q
′(5)
1···4×Q

′(5)
1···4

= diag
(
0, 0, 3, 1

)
. (3.17)

They arise from the Higgs wave function renormalization, and in the case of γ
(0)
λ , from the

last diagram in figure 5.
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W,B W,B

χ χ

H H

W,B W,B

χ χ

H H

Figure 6. Sample diagrams for mixing of the dipole operators Q
′(5)
1 and Q

′(5)
2 into the Higgs

operators Q
′(5)
3 and Q

′(5)
4 .

After running from µ ∼ Λ to µ ∼ mZ , we revert the rescaling of the Wilson coeffi-

cients, i.e.,

~C =

(
2π

α1
C
′(5)
1 ,

2π

α2
C
′(5)
2 , C

′(5)
3 , C

′(5)
4 ,

2π

α1
C
′(5)
5 ,

2π

α2
C
′(5)
6 , C

′(5)
7 , C

′(5)
8

)
, (3.18)

corresponding to our original definition of operators in eqs. (2.5)–(2.8). We use the un-

primed Wilson coefficients for determining the matching conditions in section 4.

3.2 Mixing of dimension six operators

We turn next to the anomalous dimensions for the dimension-six operators. Counting

the three SM fermion generations and keeping only flavor-diagonal fermion currents, there

are 46 operators in total that couple DM with the SM. We work in the limit of flavor

conservation which simplifies the structure of the anomalous dimensions.

We split the 46 × 46 matrix of anomalous dimensions into several sub-blocks. They

correspond to three groups of operators: the operators with quark currents, Q
(6)
1,i , . . . , Q

(6)
8,i ;

the operators with lepton current, Q
(6)
9,i , . . . , Q

(6)
14,i; and the operators with Higgs currents,

Q
(6)
15 , . . . , Q

(6)
18 (see eqs. (2.9)–(2.17) for definitions). Moreover, we will distinguish between

mixing within one fermion generation, and mixing between different generations.

A technical remark is in order. To project the one-loop matrix elements onto our

operator basis within the context of dimensional regularization, we have to manipulate

Dirac γ matrices in d 6= 4 dimensions. Strictly speaking, this requires the extension of

the operator basis by evanescent operators. However, the one-loop anomalous dimensions

are not affected by the choice of the evanescent operator basis, and we can effectively use

four-dimensional Dirac algebra [79].

We start with the mixing among the operators that are products of DM and quark

currents, Q
(6)
1,i , . . . , Q

(6)
8,i , eqs. (2.9)–(2.12), within the same quark generation. The corre-

sponding 8× 8 block of the anomalous dimension matrix is given by

[
γ

(0)
1

]
Q

(6)
1,i···8,i×Q

(6)
1,i···8,i

=



0 0 0 0 −Yχ 0 0 0

0 2
3dχY

2
χ + 2

9
8
9 −4

9 0 −Yχ 0 0

0 4
9

2
3dχY

2
χ + 16

9 −8
9 0 0 4Yχ 0

0 −2
9 −8

9
2
3dχY

2
χ + 4

9 0 0 0 −2Yχ
−Yχ 0 0 0 0 0 0 0

0 −Yχ 0 0 0 2
9

8
9 −4

9

0 0 4Yχ 0 0 4
9

16
9 −8

9

0 0 0 −2Yχ 0 −2
9 −8

9
4
9


, (3.19)
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χ
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χ
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χ
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χ
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χ
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B,W

Figure 7. Sample diagrams for the renormalization of Q
(6)
1,i , . . . , Q

(6)
14,i operators due to the exchange

of Bµ,W
a
µ at one loop (right-handed quarks and leptons can also be on the external lines).

B,W

Q,L

Q,L

χ

Q,L

χ

B,W

H

Q,L

χ

Q,L

χ

B,W

Q,L

H

χ

H

χ

Figure 8. The renormalization of the operators Q
(6)
1,i , . . . , Q

(6)
14,i and Q

(6)
15 , . . . , Q

(6)
18 due to the

Bµ,W
a
µ penguin insertion (right-handed quarks and leptons can also be on the external lines).

for the part of the anomalous dimension matrix proportional to g2
1, while the part of the

anomalous dimension proportional to g2
2 is

[
γ

(0)
2

]
Q

(6)
1,i···8,i×Q

(6)
1,i···8,i

=



8
9Jχdχ − 4 0 0 0 0 −3Jχ 0 0

0 0 0 0 −12 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 −3Jχ 0 0 −4 0 0 0

−12 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


. (3.20)

Both of the anomalous dimension matrices are diagonal in flavor indices. As far as the

U(1) gauge interaction is concerned, for Yχ = 0 the operators Q
(6)
i , i = 2, 3, 4, 6, 7, 8, are

partially conserved currents, and one would naively expect their anomalous dimensions to

vanish. That this is not the case can be understood as the result of a non-multiplicative

renormalization, allowed for U(1) gauge groups; see ref. [80]. Similar arguments apply for

the QED anomalous dimensions discussed in section 4.3.

The Feynman diagrams that lead to nonzero entries in the two matrices are given in

figures 7 and 8, with contributions from gauge boson exchanges between fermion lines,

and penguin diagrams, respectively. We see that an exchange of the hypercharge boson B

between the DM and quark lines, shown in figure 7 (middle and right panel), mixes Q
(6)
1,i

and Q
(6)
5,i , while these operators do not mix with any of the remaining operators. The same

contributions also mix Q
(6)
2,i and Q

(6)
6,i , Q

(6)
3,i and Q

(6)
7,i , and Q

(6)
4,i and Q

(6)
8,i , respectively. These
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diagrams are nonzero only for DM with EW charges. If DM is EW neutral, the 8× 8 part

of γ
(0)
1 splits into two remaining 3×3 nonzero blocks formed by operators Q

(6)
2,3,4 and Q

(6)
6,7,8.

In contrast to γ
(0)
1 there are only a few nonzero entries in γ

(0)
2 in this 8 × 8 block.

The operator Q
(6)
1,i gets renormalized through diagrams in figure 7, and mixes into Q

(6)
6,i

through the middle and rightmost diagrams in figure 7. Equivalent diagrams mix Q
(6)
2,i and

Q
(6)
5,i . Note that these contributions to the mixing vanish, if DM is EW neutral, while the

operators Q
(6)
1,i and Q

(6)
4,i would be absent.

The penguin insertions, figure 8, also lead to mixing between operators involving quark

currents of different generations. The corresponding anomalous dimensions are given, for

i 6= j, by

[
γ

(0)
1

]
Q

(6)
2,i...4,i×Q

(6)
2,j···4,j

=
[
γ

(0)
1

]
Q

(6)
6,i···8,i×Q

(6)
6,j···8,j

=

 2
9

8
9 −4

9
4
9

16
9 −8

9

−2
9 −8

9
4
9

 , (3.21)

for the part of the anomalous dimension matrix proportional to g2
1, while the part of the

anomalous dimension proportional to g2
2 has the following non-zero entries for i 6= j[

γ
(0)
2

]
Q

(6)
1,iQ

(6)
1,j

=
[
γ

(0)
2

]
Q

(6)
5,iQ

(6)
5,j

= 2 . (3.22)

All the other entries vanish.

We turn next to the 6× 6 block of the anomalous dimension matrix that describes the

mixing of the lepton operators Q
(6)
9,i , . . . , Q

(6)
14,i, eqs. (2.13)–(2.15), among themselves, giving

[
γ

(0)
1

]
Q

(6)
9,i···14,i×Q

(6)
9,i···14,i

=



0 0 0 3Yχ 0 0

0 2
3dχY

2
χ + 2

3
4
3 0 3Yχ 0

0 2
3

2
3dχY

2
χ

4
3 0 0 −6Yχ

3Yχ 0 0 0 0 0

0 3Yχ 0 0 2
3

4
3

0 0 −6Yχ 0 2
3

4
3


, (3.23)

and

[
γ

(0)
2

]
Q

(6)
9,i···14,i×Q

(6)
9,i···14,i

=



8
9Jχdχ − 16

3 0 0 0 −3Jχ 0

0 0 0 −12 0 0

0 0 0 0 0 0

0 −3Jχ 0 −16
3 0 0

−12 0 0 0 0 0

0 0 0 0 0 0


. (3.24)

The latter two anomalous dimension matrices are straightforward modifications of the ones

for the DM-quark operators in (3.19), (3.20), taking into account different EW charges of

the leptons, compared to the quarks, and the fact that there is no right-handed neutrino

in the SM. (The operators containing the right-handed neutrino could be included, if

necessary, and would not mix with the operators in our basis.)
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Penguin-type insertions lead to mixing between different generations also for leptons,

giving (for i 6= j)

[
γ

(0)
1

]
(Q

(6)
10,i,Q

(6)
11,j)×(Q

(6)
10,i,Q

(6)
11,j)

=
[
γ

(0)
1

]
(Q

(6)
13,i,Q

(6)
14,j)×(Q

(6)
13,i,Q

(6)
14,j)

=

(
2
3

4
3

2
3

4
3

)
, (3.25)

and [
γ

(0)
2

]
Q

(6)
9,iQ

(6)
9,j

=
[
γ

(0)
2

]
Q

(6)
12,iQ

(6)
12,j

=
2

3
. (3.26)

All the other entries vanish.

A very interesting effect of the one-loop RG running is that the penguin diagrams mix

the operators with quark- and operators with lepton currents. This is shown in figure 8

(left), where the two quark lines coming from the EFT operator are contracted into a loop,

while the emission of a B converts this into a lepton current. Conversely, an operator with a

leptonic current can be converted to a DM-quark operator at one-loop. The corresponding

mixing of the quark operators Q
(6)
1 , . . . , Q

(6)
8 into the lepton operators Q

(6)
9 , . . . , Q

(6)
14 is given

by the following 8× 6 block of γ
(0)
1 , now for arbitrary generation indices i, j

[
γ

(0)
1

]
Q

(6)
1,i···8,i×Q

(6)
9,j···14,j

=



0 0 0 0 0 0

0 −2
3 −4

3 0 0 0

0 −4
3 −8

3 0 0 0

0 2
3

4
3 0 0 0

0 0 0 0 0 0

0 0 0 0 −2
3 −4

3

0 0 0 0 −4
3 −8

3

0 0 0 0 2
3

4
3


. (3.27)

The corresponding block of the γ
(0)
2 matrix has only two nonzero entries,[

γ
(0)
2

]
Q

(6)
1,iQ

(6)
9,j

=
[
γ

(0)
2

]
Q

(6)
5,iQ

(6)
12,j

= 2 , (3.28)

while the remaining entries in this 8 × 6 block of γ
(0)
2 are zero.

The mixing of the lepton operators, Q
(6)
9 , . . . , Q

(6)
14 , into the quark operators,

Q
(6)
1 , . . . , Q

(6)
8 , is given for arbitrary generation indices i, j by the following 6 × 8 block

of the γ
(0)
1 anomalous matrix

[
γ

(0)
1

]
Q

(6)
9,i···14,i×Q

(6)
1,j···8,j

=



0 0 0 0 0 0 0 0

0 −2
9 −8

9
4
9 0 0 0 0

0 −2
9 −8

9
4
9 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 −2
9 −8

9
4
9

0 0 0 0 0 −2
9 −8

9
4
9


. (3.29)

The corresponding 6× 8 block of the γ
(0)
2 anomalous matrix has only two nonzero entries,[

γ
(0)
2

]
Q

(6)
9,iQ

(6)
1,j

=
[
γ

(0)
2

]
Q

(6)
12,iQ

(6)
5,j

=
2

3
. (3.30)
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Figure 9. Additional diagrams for the renormalization of the Q
(6)
15 , . . . , Q

(6)
18 operators at one loop.

These diagrams are in addition to the set of diagrams in figure 5 which, at dimension six, include

an additional derivative w.r.t. to the dimension-five operators.

The mixing of DM-quark and DM-lepton operators, eqs. (3.27)–(3.30), has important

phenomenological consequences. One implication is that, in any theory where one intro-

duces DM-quark interactions, one-loop mixing will generate DM-lepton interactions. The

converse is also true: a theory of purely “leptophilic” DM is impossible. An interaction

between DM and leptons will lead to an interaction between DM and quarks via one-loop

mixing. Note that the mixing is nonzero irrespective of whether or not DM carries any

electroweak charge. Penguin insertions will also generate DM-quark and DM-lepton inter-

actions, when initially only the pure DM operators (eq. (2.18)) are present; see appendix D.

Finally, we move to the mixing of dimension-six operators with Higgs currents,

Q
(6)
15 , . . . , Q

(6)
18 , eqs. (2.16)–(2.17). We start with the 4 × 4 blocks of the anomalous di-

mension matrices that give the mixing of these operators among themselves,

[
γ

(0)
1

]
Q

(6)
15···18×Q

(6)
15···18

= diag

(
0,

1

3
+

2

3
dχY

2
χ , 0,

1

3

)
, (3.31)

[
γ

(0)
2

]
Q

(6)
15···18×Q

(6)
15···18

= diag

(
8

9
Jχdχ −

17

3
, 0,−17

3
, 0

)
. (3.32)

The relevant diagrams are shown in figures 5 and 9. The renormalization induced by these

contributions is multiplicative and does not lead to mixing of the DM-Higgs operators.

In addition there is mixing of the operators with quark and lepton currents into the

Higgs-current operators and vice versa (see figure 8). The resulting mixing of the DM-

quark operators, Q
(6)
1,i , . . . , Q

(6)
8,i , and the lepton operators Q

(6)
9,i , . . . , Q

(6)
14,i into the DM-Higgs

operators, Q
(6)
15 , . . . , Q

(6)
18 , are given by the following 8 × 4 and 6 × 4 blocks in the γ

(0)
1

anomalous dimension matrix (i = 1, 2, 3), respectively,

[
γ

(0)
1

]
Q

(6)
1,i...8,i×Q

(6)
15···18

=



0 0 0 0

0 2
3 0 0

0 4
3 0 0

0 −2
3 0 0

0 0 0 0

0 0 0 2
3

0 0 0 4
3

0 0 0 −2
3


,
[
γ

(0)
1

]
Q

(6)
9,i···14,i×Q

(6)
15···18

=



0 0 0 0

0 −2
3 0 0

0 −2
3 0 0

0 0 0 0

0 0 0 −2
3

0 0 0 −2
3


,

(3.33)
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and by the corresponding 8× 4 and 6× 4 blocks in the γ
(0)
2 anomalous dimension matrix,

which, however, only have two nonzero entries each,[
γ

(0)
2

]
Q

(6)
1,iQ

(6)
15

=
[
γ

(0)
2

]
Q

(6)
5,iQ

(6)
17

= 2 ,
[
γ

(0)
2

]
Q

(6)
9,iQ

(6)
15

=
[
γ

(0)
2

]
Q

(6)
12,iQ

(6)
17

=
2

3
. (3.34)

The mixing of the DM-Higgs operators, Q
(6)
15 , . . . , Q

(6)
18 , into the DM-quark operators,

Q
(6)
1 , . . . , Q

(6)
8 , and into the DM-lepton operators, Q

(6)
9 , . . . , Q

(6)
14 , is given by

[
γ

(0)
1

]
Q

(6)
15···18×Q

(6)
1,i···8,i

=


0 0 0 0 0 0 0 0

0 1
9

4
9 −2

9 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1
9

4
9 −2

9

 , (3.35)

and

[
γ

(0)
1

]
Q

(6)
15···18×Q

(6)
9,i···14,i

=


0 0 0 0 0 0

0 −1
3 −2

3 0 0 0

0 0 0 0 0 0

0 0 0 0 −1
3 −2

3

 , (3.36)

respectively, for the corresponding blocks of γ
(0)
1 , while the nonzero γ

(0)
2 entries are given by

[
γ

(0)
2

]
Q

(6)
15 Q

(6)
1,i

=
[
γ

(0)
2

]
Q

(6)
17 Q

(6)
5,i

=
[
γ

(0)
2

]
Q

(6)
15 Q

(6)
9,i

=
[
γ

(0)
2

]
Q

(6)
17 Q

(6)
12,i

=
1

3
. (3.37)

Note that both the mixing of DM-quark and DM-lepton operators into the DM-Higgs ones

and vice versa is present even if the DM does not carry any electroweak charge.

For the third-generation DM-quark operators, Q
(6)
1,3, . . . Q

(6)
8,3, there is also the renormal-

ization due to the Yukawa interaction with the Higgs (we neglect all the Yukawa interactions

except with the third fermion generation and the charm Yukawa), giving

[
γ(0)
yc

]
Q

(6)
1,2···8,2×Q

(6)
1,2···8,2

=
[
γ(0)
yt

]
Q

(6)
1,3···8,3×Q

(6)
1,3···8,3

=



1 0 0 0 0 0 0 0

0 1 −2 0 0 0 0 0

0 −1 2 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 −2 0

0 0 0 0 0 −1 2 0

0 0 0 0 0 0 0 0


, (3.38)

and

[
γ(0)
yb

]
Q

(6)
1,3···8,3×Q

(6)
1,3···8,3

=



1 0 0 0 0 0 0 0

0 1 0 −2 0 0 0 0

0 0 0 0 0 0 0 0

0 −1 0 2 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 −2

0 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 2


. (3.39)
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The off-diagonal entries in eq. (3.38) are generated by the left-most diagram in figure 10

while the diagonal entries result from the field renormalization constants. The Yukawa

interactions also lead to mixing of the DM-third-generation quark operators into the DM-

Higgs operators, Q
(6)
15 , . . . , Q

(6)
18 ,

[
γ(0)
yc

]
Q

(6)
1,2···8,2×Q

(6)
15···18

=
[
γ(0)
yt

]
Q

(6)
1,3···8,3×Q

(6)
15···18

=



−6 0 0 0

0 6 0 0

0 −6 0 0

0 0 0 0

0 0 −6 0

0 0 0 6

0 0 0 −6

0 0 0 0


, (3.40)

and

[
γ(0)
yb

]
Q

(6)
1,3···8,3×Q

(6)
15···18

=



−6 0 0 0
0 −6 0 0
0 0 0 0
0 6 0 0
0 0 −6 0
0 0 0 −6
0 0 0 0
0 0 0 6


, (3.41)

as well as to the mixing of the DM-Higgs operators into the DM-third-generation quark

operators,

[
γ(0)
yc

]
Q

(6)
15···18×Q

(6)
1,2···8,2

=
[
γ(0)
yt

]
Q

(6)
15···18×Q

(6)
1,3···8,3

=


−1 0 0 0 0 0 0 0
0 1 −2 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 1 −2 0

 , (3.42)

[
γ(0)
yb

]
Q

(6)
15···18×Q

(6)
1,3···8,3

=


−1 0 0 0 0 0 0 0
0 −1 0 2 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 2

 . (3.43)

The Yukawa interactions also renormalize the Higgs operators themselves due to the

renormalization of the Higgs fields, giving[
γ(0)
yt

]
Q

(6)
15···18×Q

(6)
15···18

=
[
γ(0)
yb

]
Q

(6)
15···18×Q

(6)
15···18

=
[
γ(0)
yc

]
Q

(6)
15···18×Q

(6)
15···18

= diag(6, 6, 6, 6) . (3.44)

Finally, we also present the anomalous dimensions due to the tau Yukawa coupling,

leading to mixing among the four-fermion operators,

[
γ(0)
yτ

]
Q

(6)
9,3···14,3×Q

(6)
9,3···14,3

=



1 0 0 0 0 0
0 1 −2 0 0 0
0 −1 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 −2
0 0 0 0 −1 2

 , (3.45)
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qR, QL

QL, qR qR, QL

χ χ

qR, QL

H

QL, qR qR, QL

χ χ

qR, QL

QL, qR

qR, QL

H H

χ χ

Figure 10. Mixing of the quark operators proportional to the quark yukawa coupling due to the

insertion of DM-quark and DM-Higgs operators. We consider only the top, bottom, charm Yukawas

here and so q ∈ {t, b, c}. The same diagrams with QL → LL and qR → τR mix DM-lepton and

DM-Higgs operators. These diagrams only contribute to off-diagonal mixing.

mixing of four-fermion into Higgs operators,

[
γ(0)
yτ

]
Q

(6)
9,3···14,3×Q

(6)
15···18

=



−2 0 0 0
0 −2 0 0
0 2 0 0
0 0 −2 0
0 0 0 −2
0 0 0 2

 , (3.46)

Higgs operators into four-fermion operators,

[
γ(0)
yτ

]
Q

(6)
15···18×Q

(6)
9,3···14,3

=


−1 0 0 0 0 0
0 −1 2 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 2

 , (3.47)

and diagonal self mixing of the Higgs operators due to Higgs field renormalization,[
γ(0)
yτ

]
Q

(6)
15···18×Q

(6)
15···18

= diag(2, 2, 2, 2) . (3.48)

The results given in this section are sufficient if one works to leading-log accuracy

without resummation of the logarithms. However, the set of operators Q
(6)
1,i , . . . , Q

(6)
18 ,

eqs. (2.9)–(2.17), does not close under renormalization, unless the DM self-interaction

operators, eq. (2.18), and the SM EFT operators are included. We provide the anomalous

dimension that give the mixing with the SM effective operators in appendix C, and with

the DM self-interaction operators in appendix D.

4 Matching to EFT below the weak scale

The running from the mediator scale, µ ∼ Λ, down to the weak scale, µ ∼ mZ , is described

by the evolution operator U(µEW,Λ) in eq. (3.6). The relevant anomalous dimension

matrix γ, appearing in eq. (3.4), was presented in sections 3.1 and 3.2. The next step is

to calculate the matching onto a five-flavor theory at µ ∼ vEW by integrating out the top

quark, the Higgs and W,Z gauge bosons. This gives the matrix MEW→(5) in the evolution

equation (3.6). Since we are interested in the elastic direct detection scattering we can,
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below the electroweak scale, ignore all the charged components of the χ multiplet. From

now on χ will thus denote only the neutral component of the DM electroweak multiplet.

After the matching at µ ∼ mZ we arrive at the nf = 5 effective Lagrangian which we

organize in terms of the dimensionality of the operators,

Lχ|nf=5 = L(4)
χ |nf=5 + L(5)

χ |nf=5 + L(6)
χ |nf=5 + L(7)

χ |nf=5 + · · · . (4.1)

In the matching we keep all the numerically leading terms. The leading contributions

from dimension-five (∝ 1/Λ) and dimension-six operators (∝ 1/Λ2), eq. (2.2), generically

arise already at tree level, with the exception of phenomenologically important one-loop

matchings onto the dimension-seven gluonic operators. In these matching calculations we

allow for DM to carry arbitrary SU(2)×U(1) gauge quantum numbers. In addition, there

are contributions from renormalizable interactions. We include these in our numerical

examples in section 5, taking Yχ = 0, so that there is no tree-level Z coupling to DM. The

first nonzero contributions from gauge interactions are then due to the one- and two-loop

electroweak threshold corrections, shown in figure 2, for which we use the results of ref. [68].

We consider two discrete options for the DM mass: i) light DM, mχ � mZ , and

ii) DM with the EW scale mass, mχ ∼ O(mZ). The case of heavy DM, mχ � mZ , is

relegated to future work (dimension-four interactions are discussed in refs. [7, 81]). In

section 4.1 we perform the matching for light DM. In this case the time component and

the spatial components of the DM current are of the same size at the matching scale.

The situation is different for weak scale DM. For µ . mχ ∼ O(mZ) DM becomes non-

relativistic, and thus the time component is parametrically larger than the spatial ones. In

the matching we therefore need to simultaneously perform an expansion in 1/mχ, which is

done in section 4.2.

Before proceeding we remark that both the DM mass, mχ, and the DM field, χ, get

shifted by the Higgs vacuum expectation value due to the contributions from the Q
(5)
3,4

operators, eq. (2.6), and from the Q
(5)
7,8 operators, eq. (2.8). The dimension-four part of the

effective Lagrangian (4.1) in terms of the shifted fields, χ′, is

L(4)
χ |nf=5 = iχ̄′/∂χ′ −m′χχ̄′χ′ . (4.2)

The redefinition of the χ field is a simple chiral rotation, χ′ = exp
(
i
2γ5φ

)
χ, with (see also

ref. [82])

tanφ =

(
C

(5)
7 +

Yχ
4
C

(5)
8

)/[
2πα2mχΛ/(c2

wm
2
Z)−

(
C

(5)
3 +

Yχ
4
C

(5)
4

)]
, (4.3)

while the new mass term is

m′χ = mχ cosφ+
c2
wm

2
Z

2πα2Λ

[(
C

(5)
7 +

Yχ
4
C

(5)
8

)
sinφ−

(
C

(5)
3 +

Yχ
4
C

(5)
4

)
cosφ

]
. (4.4)

The field redefinition also changes the operators Q
(5)
1 , . . . , Q

(5)
8 in eqs. (2.5)–(2.8) and the

corresponding Wilson coefficients, C
(5)
i
′ = C

(5)
i cosφ + C

(5)
i+4 sinφ , C

(5)
i+4
′ = C

(5)
i+4 cosφ −
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C
(5)
i sinφ , for i = 1, . . . , 4, while there is no change in the dimension-six Wilson coefficients.

In the case mχ ∼ O(mZ) we expand in mZ/Λ which gives

C
(5)
i
′ = C

(5)
i +

c2
wm

2
Z

2πα2Λmχ

(
C

(5)
7 +

Yχ
4 C

(5)
8

)
C

(5)
i+4,

C
(5)
i+4
′ = C

(5)
i+4 −

c2
wm

2
Z

2πα2Λmχ

(
C

(5)
7 +

Yχ
4 C

(5)
8

)
C

(5)
i .

(4.5)

From now on we will assume that the above field and mass redefinitions have been per-

formed and drop the primes on the Wilson coefficients, the DM fields, and the DM mass.

4.1 Light dark matter

In the case of light DM, mχ � mZ , we can use relativistic DM fields to construct the

effective theory below the weak scale. The effective Lagrangians containing operators of

dimensionality d in eq. (4.1) are given by

L(d)
χ |nf=5 =

∑
a

Ĉ(d)
a |nf=5Q(d)

a , (4.6)

where we introduced the dimensionful Wilson coefficients Ĉ(d)
a |nf=5 in order to simplify the

notation. They are suppressed by inverse powers of the NP scale Λ and/or the top, W ,

Z and Higgs masses. The DM mass, mχ, can be set to zero in the matching except when

calculating the electroweak threshold corrections from the gauge interactions, where one

needs to expand to first order in mχ.

The electroweak EFT Lagrangian (2.2) with operators up to dimension six matches

onto the “five-flavor” EFT in the broken electroweak phase, eq. (4.1). This gives rise to

operators up to dimension seven, if one keeps only the leading contributions. We first give

the basis of the operators Q(d)
a in the five-flavor EFT, required for the matching, and then

present their respective Wilson coefficients Ĉ(d)
a .

At dimension five there are only two operators,

Q(5)
1 =

e

8π2
(χ̄σµνχ)Fµν , Q(5)

2 =
e

8π2
(χ̄σµνiγ5χ)Fµν , (4.7)

where Fµν is the electromagnetic field strength tensor. The operator Q(5)
1 is CP even, while

Q(5)
2 is CP odd. The dimension-six operators are

Q(6)
1,f = (χ̄γµχ)(f̄γµf) , Q(6)

2,f = (χ̄γµγ5χ)(f̄γµf) , (4.8)

Q(6)
3,f = (χ̄γµχ)(f̄γµγ5f) , Q(6)

4,f = (χ̄γµγ5χ)(f̄γµγ5f) . (4.9)

Here f denotes any quark, f = u, d, s, c, b, or charged lepton flavor, f = e, µ, τ . We find it

convenient to express the operators in terms of (axial-)vector and (pseudo-)scalar currents,

which have definite non-relativistic limits. Operators with neutrinos are not needed for our

purposes as they do not run below the EW scale.

In the effective Lagrangian eq. (4.1) we need to include a subset of dimension-seven

operators. These are generated from dimension-five and -six operators in the effective
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Lagrangian (2.2) when integrating out the Higgs and the Z boson at µEW ∼ mZ . They

are thus suppressed by O(1/Λ2mh,Z) or O(1/Λm2
h,Z), instead of O(1/Λ3), and can lead

to contributions in direct detection comparable to those of the dimension-six operators,

eqs. (4.8)–(4.9).

The relevant dimension-seven operators involving the DM and gluon fields are given by

Q(7)
1 =

αs
12π

(χ̄χ)GaµνGaµν , Q(7)
2 =

αs
12π

(χ̄iγ5χ)GaµνGaµν , (4.10)

Q(7)
3 =

αs
8π

(χ̄χ)GaµνG̃aµν , Q(7)
4 =

αs
8π

(χ̄iγ5χ)GaµνG̃aµν , (4.11)

where G̃µν = 1
2εµνρσG

ρσ and a = 1, . . . , 8 are the color indices. The strong coupling

constant αs is defined in the five-flavor scheme. The normalization reflects the fact that

these operators are typically generated at one-loop level. Note that Q(7)
2 and Q(7)

3 are

CP odd.

There are also four scalar operators

Q(7)
5,f = mf (χ̄χ)(f̄f) , Q(7)

6,f = mf (χ̄iγ5χ)(f̄f) , (4.12)

Q(7)
7,f = mf (χ̄χ)(f̄ iγ5f) , Q(7)

8,f = mf (χ̄iγ5χ)(f̄ iγ5f) , (4.13)

with f denoting any quark (f = u, d, s, c, b) or charged lepton flavor (f = e, µ, τ ). The

definitions of Q(7)
5,f , . . . ,Q

(7)
8,f include an explicit power of the corresponding quark or lepton

mass. This reflects the leading contributions to their Wilson coefficients, see below.

In the remainder of the subsection we give the results of the matching at µEW ∼
mZ . We start with the dimension-five operators where the contributions come from W

and B dipole operators above mZ after rotating the EW gauge eigenstates into the mass

eigenstates after EWSB:4

Ĉ(5)
1 |nf=5 =

1

Λ

(
C

(5)
1 +

Yχ
2
C

(5)
2

)
+ . . . , (4.14)

Ĉ(5)
2 |nf=5 =

1

Λ

(
C

(5)
5 +

Yχ
2
C

(5)
6

)
. (4.15)

Equation (4.14) also receives a one-loop contribution from dimension-four gauge interac-

tions, denoted by the ellipsis, proportional to the hypercharge of the DM multiplet. We

omit this contribution here since a non-zero hypercharge leads to a tree-level Z exchange

with nuclei which is excluded by direct detection experiments.

For the dimension-six operators we start with the operators with external quark legs.

The contributions from dimension-six UV operators with external quark legs are

Ĉ(6)
1,ui(di)

|nf=5 =
1

Λ2

[
∓ Yχ

8
C

(6)
1,i +

C
(6)
2,i

2
+
C

(6)
3(4),i

2
± 3− 8(4)s2

w

6

(
Yχ
4
C

(6)
15 + C

(6)
16

)]
, (4.16)

Ĉ(6)
2,ui(di)

|nf=5 =
1

Λ2

[
∓ Yχ

8
C

(6)
5,i +

C
(6)
6,i

2
+
C

(6)
7(8),i

2
± 3− 8(4)s2

w

6

(
Yχ
4
C

(6)
17 + C

(6)
18

)]
, (4.17)

4Note that in eqs. (4.14) and (4.15) we use the original definition of operators, eqs. (2.5) and (2.7).
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Figure 11. Matching contributions to the effective operators at µ ∼ mZ . The left diagram shows

the contribution of the high-energy operators, the middle one the contribution from the dimension-

four gauge interactions onto the dimension-six operators, respectively; the right diagram shows the

contribution to the matching onto the dimension-seven operators.

Ĉ(6)
3,ui(di)

|nf=5 =
1

Λ2

[
± Yχ

8
C

(6)
1,i −

C
(6)
2,i

2
+
C

(6)
3(4),i

2
∓ 1

2

(
Yχ
4
C

(6)
15 + C

(6)
16

)]
, (4.18)

Ĉ(6)
4,ui(di)

|nf=5 =
1

Λ2

[
± Yχ

8
C

(6)
5,i −

C
(6)
6,i

2
+
C

(6)
7(8),i

2
∓ 1

2

(
Yχ
4
C

(6)
17 + C

(6)
18

)]
+ . . . , (4.19)

where i is a generation index (u1 ≡ u, u2 ≡ c and d1 ≡ d, d2 ≡ s, d3 ≡ b) and the

upper(lower) signs apply for up(down) quarks. For each of the Wilson coefficients the

last 1/Λ2-suppressed term is due to Z exchange, shown in figure 11 (left). For a DM

multiplet with nonzero hypercharge Yχ, Z exchange due to the renormalizable gauge

coupling (2.3), see figure 11 (right), gives the additional contributions Ĉ(6)
1,ui(di)

|nf=5 =

± πα2

6c2wm
2
Z

(3 − 8(4)s2
w)Yχ and Ĉ(6)

3,ui(di)
|nf=5 = ∓ πα2

2c2wm
2
Z
Yχ. Ĉ(6)

4,ui(di)
|nf=5 receives a contribu-

tion, denoted by the ellipsis, from gauge interactions at one-loop (see figure 2) that does

not vanish for Yχ = 0. This requires a two-loop matching calculation with mχ kept para-

metrically small, which is beyond the scope of present paper. In the numerical evaluations

we thus use the results from ref. [68], that were obtained assuming that mχ is not much

smaller than mZ .

Similarly we find for the dimension-six operators with leptons (`1 ≡ e, `2 ≡ µ, `3 ≡ τ)

on the external legs

Ĉ(6)
1,`i
|nf=5 =

1

Λ2

[
Yχ
8
C

(6)
9,i +

C
(6)
10,i

2
+
C

(6)
11,i

2
− 1− 4s2

w

2

(
Yχ
4
C

(6)
15 + C

(6)
16

)]
, (4.20)

Ĉ(6)
2,`i
|nf=5 =

1

Λ2

[
Yχ
8
C

(6)
12,i +

C
(6)
13,i

2
+
C

(6)
14,i

2
− 1− 4s2

w

2

(
Yχ
4
C

(6)
17 + C

(6)
18

)]
, (4.21)

Ĉ(6)
3,`i
|nf=5 =

1

Λ2

[
− Yχ

8
C

(6)
9,i −

C
(6)
10,i

2
+
C

(6)
11,i

2
+

1

2

(
Yχ
4
C

(6)
15 + C

(6)
16

)]
, (4.22)

Ĉ(6)
4,`i
|nf=5 =

1

Λ2

[
− Yχ

8
C

(6)
12,i −

C
(6)
13,i

2
+
C

(6)
14,i

2
+

1

2

(
Yχ
4
C

(6)
17 + C

(6)
18

)]
+ . . . . (4.23)

As before, Z-boson exchange due to the renormalizable gauge coupling (2.3) leads to the

additional contributions Ĉ(6)
1,`i
|nf=5 = − πα2

2c2wm
2
Z

(1 − 4s2
w)Yχ and Ĉ(6)

3,`i
|nf=5 = πα2

2c2wm
2
Z
Yχ. Also
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Figure 12. Matching contributions to dimension-seven effective operators involving gluons for

µ < mZ that arise from integrating out the top quark.

for leptons, Ĉ(6)
4,`i
|nf=5 receives a one-loop contribution from gauge interaction that does not

vanish for Yχ = 0, see ref. [68].

The dimension-seven operators receive contributions from both the renormalizable

electroweak interactions of the DM multiplet as well as from the higher dimension operators.

For the gluonic operators Q(7)
1,2 the higher dimension UV operators give a contribution after

integrating out the top quark at one loop, see figure 12. We then have

Ĉ(7)
1(2)|nf=5 =

1

Λm2
h

(
C

(5)
3(7) +

Yχ
4
C

(5)
4(8)

)
+ . . . , (4.24)

and Ĉ(7)
3(4)|nf=5 = 0. Note that the loop factor is already included in the definition of the

operators Q(7)
i . The explicit top-quark mass dependence drops out because we expand

to leading (quadratic) order in the small external momenta. This limit is equivalent to

the limit of heavy top mass in on-shell Higgs decays to two photons or gluons, where the

non-decoupling of chiral fermions is a familiar result. The ellipsis denotes the two-loop

contributions from renormalizable electroweak interactions, see ref. [68].

For scalar operators we have

Ĉ(7)
5,f |nf=5 = − 1

Λm2
h

(
C

(5)
3 +

Yχ
4
C

(5)
4

)
+ . . . , (4.25)

Ĉ(7)
6,f |nf=5 = − 1

Λm2
h

(
C

(5)
7 +

Yχ
4
C

(5)
8

)
, (4.26)

and Ĉ(7)
7,f |nf=5 = Ĉ(7)

8,f |nf=5 = 0. The right diagram in figure 11 shows the tree-level contri-

butions from higher dimension operators. Here, the ellipsis denotes the one-loop “Higgs

penguin” contribution from gauge interactions (see figure 2 and ref. [68]).

4.2 Electroweak scale dark matter

The case that the DM mass is comparable to the electroweak scale, mχ ∼ O(mZ), needs to

be treated separately. In this case we integrate out at the electroweak scale, in addition to

the top quark, the Higgs and the W,Z bosons, also the high-momentum fluctuations of the

DM field. In this way we arrive at the Heavy Dark Matter Effective Theory (HDMET).

The HDMET is an effective theory the describes the scattering of a heavy DM, where the

momenta exchanges are much smaller than the DM mass, q � mχ. The HDMET uses the
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HQET (Heavy Quark Effective Theory) formalism [83–85] applied to DM direct detection

physics [8]. The result is an effective theory where terms are organized as an expansion

in 1/mχ. In practice the HDMET description is not necessary if one performs electroweak

matching only at tree level. However, some of the one-loop matching corrections are

important phenomenologically and need to be kept, requiring the use of HDMET.

The construction of the requisite terms in HDMET has been presented in ref. [20].

Here, we just collect the main results and refer the interested reader to the literature

for details.

The HDMET Lagrangian is given by5

LHDMET = χ̄v(iv · ∂)χv +
1

2mχ
χ̄v(i∂⊥)2χv + . . .+

∑
d

L(d)
χv |nf=5. (4.28)

Here, χv denotes only the neutral component of the DM electroweak multiplet, i.e., only

the DM state. The first term is the LO HDMET Lagrangian and describes an infinitely

heavy DM particle, and contains no explicit dependence on mχ. The O(1/mχ) term is

fixed by reparametrization invariance [87], with ellipsis denoting terms of higher order in

the 1/mχ expansion.

The effective Lagrangians L(d)
χv |nf=5 comprise the interactions of DM with the SM.

They are expanded in powers of 1/mχ, 1/Λ and 1/mZ , mirroring the case of light DM in

eq. (4.6). The only difference is that we now denote explicitly at which order in 1/mχ the

operators enter,

L(d)
χv |nf=5 =

∑
a,m

Ĉ(d,m)
a |nf=5Q(d,m)

a , (4.29)

such that Ĉ(d,m)
a |nf=5 ∝ (Λ,mZ)4+m−dm−mχ , where (Λ,mZ)4+m−d symbolizes a product of

powers of Λ and mZ with total power 4 + m − d. The double superscripts on Ĉ(d,m)
a and

Q(d,m)
a thus signal that they are defined in the HDMET, while a single superscript on Ĉ(d)

a

or on Q(d)
a means that we are considering light DM.

The difference d−m gives the “mediator dimensionality”. This is the dimension of the

relativistic operator Q(d−m)
a that gives the HDMET operator Q(d,m)

a upon expanding the

DM currents to order 1/mm
χ (see refs. [20, 21] for the explicit expressions).6 We group the

operators in terms of their mediator dimensionality, d−m. The operators that arise at LO

5For very heavy DM, mχ � mZ , the DM mass is integrated out before the weak gauge bosons [8, 16,

81, 86], giving

LHDMET = χ̄v(iv ·D)χv +
1

2mχ
χ̄v(iD⊥)2χv +

g2cW
4mχ

χ̄vσµν τ̃ ·Wµνχv +
g1cB
4mχ

χ̄vσµνB
µνχv + · · · , (4.27)

where at tree level cW = cB = 1, and the ellipsis denotes terms of higher order in 1/mχ, as well as the

1/Λ suppressed interactions. The covariant derivative contains the W a
µ and Bµ gauge fields, so that in the

infinite mass limit the DM multiplet, χv, acts as a static source of the electroweak gauge fields.
6Note that the Λ � mZ ∼ mχ limit reduces the set of HDMET operators that are generated. For

instance, at dimension seven the operator (χ̄vχv)GaµνGaµν arises in the matching, but not the operator

(χ̄vχv)vµvνGaµρG
aρ
ν . The latter would arise from the dimension-nine UV operator (χ̄∂µ∂νχ)GaµρG

aρ
ν and is

thus m2
χ/Λ

2 suppressed. In contrast, for mχ ∼ Λ the two operators are of the same size, and thus both

arise in the matching to HDMET at scale µ ∼ Λ (see, e.g., the discussion of twist-two operators in ref. [88]).
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in 1/mχ, i.e., for which the Wilson coefficients start at order O(1/m0
χ), are the HDMET

counterparts of the operators in eqs. (4.7)–(4.13). The two dimension-five operators in

eq. (4.7) get replaced by the HDMET operators

Q(5,0)
1 =

e

4π2
εµναβ(χ̄vS

α
χv

βχv)F
µν , Q(5,0)

2 =
e

2π2
(χ̄vS

µ
χv

νχv)Fµν . (4.30)

We also need the following two subleading operators

Q(6,1)
1 =

ie

8π2

(
χ̄vv

µσνρ⊥
↔
∂ ρχv

)
Fµν , Q(6,1)

2 = − e

8π2

(
vµ∂νχ̄vχv

)
Fµν , (4.31)

since the presence of the photon pole in the interaction of the magnetic dipole with the

nuclear current requires that we go to the second order in the expansion of the DM tensor

current. We defined σµν⊥ = i[γµ⊥, γ
ν
⊥]/2, γµ⊥ = γµ − vµ/v, χ̄v

↔
∂ µχv = χ̄v(∂

µχv) − (∂µχ̄v)χv,

and Sµ = γµ⊥γ5/2 is the spin operator, while vµ = (1,~0 ) is the velocity label of the

nonrelativistic DM field (cf. ref. [20]).

At tree-level we have

Ĉ(5,0)
1 |nf=5

tree
= Ĉ(5)

1 |nf=5 + · · · , Ĉ(5,0)
2 |nf=5

tree
= Ĉ(5)

2 |nf=5 , (4.32)

Ĉ(6,1)
1 |nf=5

tree
=

1

mχ
Ĉ(5,0)

1 |nf=5 , Ĉ(6,1)
2 |nf=5

tree
=

1

mχ
Ĉ(5,0)

1 |nf=5 , (4.33)

where the equalities get corrections at loop level. Again, Ĉ(5,0)
1 |nf=5 receives a photon pen-

guin contribution proportional to Yχ, denoted by the ellipsis and omitted in the following.

The Wilson coefficients for the dipole operator in the case of light DM, Ĉ(5)
1,2 , are given in

eqs. (4.14), (4.15).

The dimension-six operators of LO in 1/mχ are

Q(6,0)
1,f = (χ̄vχv)(f̄ /vf) , Q(6,0)

2,f = 2(χ̄vSχ,µχv)(f̄γ
µf) , (4.34)

Q(6,0)
3,f = (χ̄vχv)(f̄ /vγ5f) , Q(6,0)

4,f = 2(χ̄vSχ,µχv)(f̄γ
µγ5f) . (4.35)

In addition, we need the following d−m = 6 operators that are 1/mχ suppressed

Q(7,1)
1,f =

1

2
(χ̄vi

↔
∂
µ
⊥χv)(f̄γµf) , Q(7,1)

2,f = −i(χ̄vSχ·
↔
∂χv)(f̄ /vf) , (4.36)

Q(7,1)
3,f =

1

2
(χ̄vi

↔
∂
µ
⊥χv)(f̄γµγ5f) , Q(7,1)

4,f = −i(χ̄vSχ·
↔
∂χv)(f̄ /vγ5f) , (4.37)

Q(7,1)
5,f =

1

2
∂ν(χ̄vσ

µν
⊥ χv)(f̄γµf) , Q(7,1)

6,f =
1

2
∂ν(χ̄vσ

µν
⊥ χv)(f̄γµγ5f) , (4.38)

where our convention is that the derivatives act only within the brackets or on the nearest

bracket. The Q(7,1)
1,f ,Q(7,1)

2,f operators do not enter the phenomenological analysis, but we

keep them for completeness and transparency of notation. For the matching conditions

we have

Ĉ(6,0)
i,f |nf=5 = mχĈ(7,1)

i,f |nf=5
tree
= Ĉ(6)

i,f |nf=5 , i = 1, . . . , 4 ; (4.39)

and in addition

C(7,1)
5,f |nf=5

tree
=

1

mχ
Ĉ(6)

1,f |nf=5 , C(7,1)
6,f |nf=5

tree
=

1

mχ
Ĉ(6)

3,f |nf=5 . (4.40)
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Note that the equalities denoted by “tree” are only valid for tree-level matching, while the

remaining relations are valid to all orders due to reparametrization invariance. The light

DM Wilson coefficients C
(6)
i,f are given in eqs. (4.16)–(4.23) .

The relevant dimension-seven operators in eqs. (4.10)–(4.13) involve scalar and pseu-

doscalar DM currents. The HDMET scalar current operator starts at O(1/m0
χ), while pseu-

doscalar current starts at O(1/mχ), see ref. [20]. We thus define the following d −m = 7

HDMET operators

Q(7,0)
1 =

αs
12π

(χ̄vχv)G
aµνGaµν , Q(8,1)

2 =
αs

12π
∂µ
(
χ̄vS

µ
χχv

)
GaµνGaµν , (4.41)

Q(7,0)
3 =

αs
8π

(χ̄vχv)G
aµνG̃aµν , Q(8,1)

4 =
αs
8π
∂µ
(
χ̄vS

µ
χχv

)
GaµνG̃aµν , (4.42)

Q(7,0)
5,f = mf (χ̄vχv)(f̄f) , Q(8,1)

6,f = mf∂µ
(
χ̄vS

µ
χχv

)
(f̄f) , (4.43)

Q(7,0)
7,f = mf (χ̄vχv)(f̄ iγ5f) , Q(8,1)

8,f = −mf∂µ
(
χ̄vS

µ
χχv

)
(f̄ iγ5f) . (4.44)

The top-quark loop contributions to the gluonic operators, eq. (4.41) and (4.42), are the

same as in eq. (4.24), so that

Ĉ(7,0)
1 |nf=5 = Ĉ(7)

1 |nf=5 , Ĉ(8,1)
2 |nf=5 = Ĉ(7,0)

2 |nf=5 . (4.45)

The Wilson coefficients Ĉ(7,0)
3 |nf=5 and Ĉ(8,1)

4 |nf=5 vanish.

The Wilson coefficients for the scalar operators are

Ĉ(7,0)
5,f |nf=5 = Ĉ(7)

5,f |nf=5 , Ĉ(8,1)
6,f |nf=5 =

1

mχ
Ĉ(7)

6,f |nf=5 , (4.46)

while Ĉ(7,0)
7,f |nf=5 = Ĉ(8,1)

8,f |nf=5 = 0. The dimension-five UV operators Q
(5)
3,4 in eq. (2.6) and

Q
(5)
7,8 in eq. (2.8) contribute through a Higgs exchange at tree level, see figure 11 (right

panel), and give the same matching conditions as in the case of light DM, eqs. (4.25)

and (4.26). Note that within this subsection, the full (unexpanded) results of ref. [68]

should be used.

The following twist-two operators are needed for the two-loop electroweak matching

contributions (the numbering is chosen such that we avoid inconsistencies with the num-

bering in ref. [26]):

Q(7,0)
23,q =

1

2
(χ̄vχv)

[
q̄

(
/v i
↔
D · v − 1

4
i
↔
/D

)
q

]
, (4.47)

Q(7,0)
25 = (χ̄vχv)

[
1

4
GaαβG

a,αβ − vµvνGa,µλGa,νλ
]
. (4.48)

The first operator, Q(7,0)
23,q , receives a non-vanishing matching contribution at the electroweak

scale. It can be extracted from ref. [68] if in their results one takes the leading HDMET

limit of the DM bilinears χ̄i∂µχ → mχ χ̄vv
µχv and χ̄γµχ → χ̄vv

µχv. It is then given by

C(7,0)
23,q = g

(1)
q + g

(2)
q , with the loop functions given in ref. [68]. The operator Q(7,0)

25 does not

receive an initial condition at the weak scale, but is generated by QCD RG evolution below

the weak scale, to be discussed in the following section.
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Figure 13. Left panel: the mixing of the gluonic operators into operators with scalar and pseu-

doscalar quark currents. Right panel: the mixing of dimension-six four-fermion operators into each

other via the photon penguin insertion.

4.3 RG running below the electroweak scale

The matching at µ ∼ µEW is followed by the QCD and QED RG running from µEW to

µc ∼ µhad ∼ 2 GeV. The five-flavor theory below µEW is matched onto the four-flavor

theory at the bottom quark threshold, µb, and then onto the three-flavor theory at the

charm quark threshold, µc; see eq. (3.6). There is no running in the three flavor basis

because of our choice of scales, µc = µhad. This RG evolution was discussed in detail

in ref. [16]. For completeness and convenience we convert the results of ref. [16] to our

notation. (See also ref. [23] for a computer implementation of the RG evolution, as well as

ref. [22] for the case of vector mediators.)

QCD running. Since the vector currents are conserved, Ĉ
(6)
1,q and Ĉ

(6)
3,q in eqs. (4.8)

and (4.9) do not run. Moreover, the axial currents have vanishing anomalous dimensions

at O(αs) and so the Wilson coefficients Ĉ
(6)
2,q and Ĉ

(6)
4,q in eqs. (4.8) and (4.9) do not run at

one-loop order. At dimension seven, the only non-zero effect is the mixing of the gluonic

operators, eqs. (4.10)–(4.11), into the scalar operators eq. (4.12) — see left panel in figure 13

— with anomalous dimension (cf. ref. [16])[
γ(1)
s

]
Q(7)

1···4×Q
(7)
5,q···8,q

= 8 diag(CF , CF ,−1,−1) , (4.49)

where q runs over active quark flavors and CF = 4/3. This anomalous dimension arises at

O(α2
s) since the GG operators are defined with an additional factor of αs to reflect the fact

that they are loop generated, and thus,[
γ(0)
s

]
Q(7)

1···4×Q
(7)
5,q···8,q

= 0 . (4.50)

The mixing of the two operators Q(7,0)
23,q and Q(7,0)

25 in eq. (4.47) is given by the anomalous

dimension matrix [
γ(0)
s

]
Q(7,0)

23,q Q
(7,0)
25 ×Q(7,0)

23,q Q
(7,0)
25

=

(
64
9 −4

3

−64
9

4
3Nf

)
. (4.51)

QED running. In general, the QED contribution to the RG evolution can be neglected

due to the smallness of the electromagnetic coupling constant. The one exception are the

off-diagonal mixings of the operators Q(6)
1,f for different fermion flavors f (and similarly
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for Q(6)
2,f ), induced by the photon penguin diagrams, see figure 13. These mixings lead to

nonzero scattering on nuclei even if DM couples only to leptons at leading order [24, 89].

The conservation of parity forbids the mixing of Q(6)
1,f into Q(6)

2,f and vice versa. The required

anomalous dimensions can be found in ref. [61], and are[
γ(0)
e

]
Q(6)

1,f ,Q
(6)

1,f ′
=
[
γ(0)
e

]
Q(6)

2,f ,Q
(6)

2;f ′
=

8

3
Qf Qf ′ N

f
c , (4.52)

where Qf is the electric charges of the SM fermion f , while Nf
c = 1(3), if f is a lepton

(quark). In analogy with eq. (3.2), we use the notation

γe =
α

4π
γ(0)
e + . . . , (4.53)

where the ellipsis denotes higher orders.

Finite corrections arise at each heavy flavor threshold. Beside the usual threshold

corrections to αs (see, e.g., ref. [90]), there are also finite threshold corrections for the

operators in eqs. (4.10)–(4.11), where at µ = µb,

Ĉ(7)
1(2)|nf=4(µb) = Ĉ(7)

1(2)|nf=5(µb)− Ĉ(7)
5,b(6,b)|nf=5(µb) ,

Ĉ(7)
3(4)|nf=4(µb) = Ĉ(7)

3(4)|nf=5(µb) + Ĉ(7)
7,b(8,b)|nf=5(µb) ,

(4.54)

while at µ = µc,

Ĉ(7)
1(2)|nf=3(µc) = Ĉ(7)

1(2)|nf=4(µc)− Ĉ(7)
5,c(6,c)|nf=4(µc) ,

Ĉ(7)
3(4)|nf=3(µc) = Ĉ(7)

3(4)|nf=4(µc) + Ĉ(7)
7,c(8,c)|nf=4(µc) ,

(4.55)

such that the effects of the heavy quarks appear, at low energies, as additional contributions

to the gluonic operators, eqs. (4.10)–(4.11). All the other Wilson coefficients cross the

thresholds continuously, Ĉ(d)
i |nf−1 = Ĉ(d)

i |nf .

4.4 DM interactions with nucleons and nuclei

The final step in the RG evolution is the matching at µ ∼ µhad onto an effective theory

describing interactions of DM with nonrelativistic protons and neutrons. The momenta

exchanged in direct detection experiments are q . 200 MeV, with a typical value of 20 −
60 MeV, which is well below the chiral symmetry breaking scale 4πfπ ∼ mN . One can

thus use chiral perturbation theory (ChPT) to organize different contributions in terms

of an expansion in (q/4πfπ)n, see refs. [6, 11, 13, 18, 20, 21, 34, 91]. The leading-order

contributions come from the interactions involving a DM field and a single nucleon inside

the nucleus (these can still be coherently summed over all the neutrons and protons in

the nucleus).

The effective Lagrangian for DM scattering on nonrelativistic nucleons (see refs. [9, 10,

12, 21]),

LNR =
∑
i,N

cNi (q2)ONi , (4.56)

– 28 –



J
H
E
P
0
3
(
2
0
2
0
)
0
8
9

contains 14 operators with up to two derivatives which are needed to describe the chirally

leading interactions. The momentum-independent nonrelativistic operators are

ON1 = 1χ1N , ON4 = ~Sχ · ~SN , (4.57)

while the relevant subset of momentum-dependent operators consists of

ON5 = ~Sχ ·
(
~v⊥ ×

i~q

mN

)
1N , ON6 =

(
~Sχ ·

~q

mN

)(
~SN ·

~q

mN

)
, (4.58)

ON7 = 1χ

(
~SN · ~v⊥

)
, ON8 =

(
~Sχ · ~v⊥

)
1N , (4.59)

ON9 = ~Sχ ·
(
i~q

mN
× ~SN

)
, ON11 = −

(
~Sχ ·

i~q

mN

)
1N , (4.60)

with N = p, n. We use the conventions of [21, 23], so that

~q = ~k2 − ~k1 = ~p1 − ~p2 , ~v⊥ =
~p1 + ~p2

2mχ
−
~k1 + ~k2

2mN
, (4.61)

where ~p1(2) and ~k1(2) are the incoming (outgoing) nucleon and DM three-momenta, respec-

tively.

The coefficients of the two momentum-independent operators (4.57) are, schematically,

cN1 ∼
C

(6)
1,...,4,f ;15,16

Λ2
+

2

27

mN

Λm2
h

C
(5)
3,4 +

σq
Λm2

h

C
(5)
3,4 +

α

Λmχ
C

(5)
1,2 , (4.62)

cN4 ∼
C

(6)
5,...,8,f ;17,18

Λ2
+

α

ΛmN
C

(5)
1,2 . (4.63)

At leading chiral order one also has the contributions from the operators with two deriva-

tives, ON5,6, whose coefficients are

cN5 ∼ δN,p
αmN

Λq2
C

(5)
1,2 , cN6 ∼

m2
N

m2
π

C
(6)
5,...,8,f ;17,18

Λ2
+
αmN

Λq2
C

(5)
1,2 . (4.64)

The sums in eqs. (4.62)–(4.64) are to be understood in the scaling sense, i.e., we only indi-

cate a rough order of magnitude for the contribution of each of the UV Wilson coefficients,

C
(d)
a . Above we equated the weak scale with µEW ∼ mh ∼ mZ . The complete expressions

can be obtained, for instance, from refs. [21, 23], using the matching results given in sec-

tions 4.1 and 4.2. The additional contributions arising from the twist-two operators are

collected in appendix B.

The ON1 operator receives contributions from the vector×vector parts of the oper-

ators Q
(6)
1,f , . . . Q

(6)
4,f , eqs. (2.9)–(2.12), and from tree-level Z exchange due to the Q

(6)
15,16

operators, eqs. (2.16) and (2.17). The analogous operators with an axial-vector DM cur-

rent, Q
(6)
5,f , . . . Q

(6)
8,f and Q

(6)
17,18, lead to spin-spin coupling in the nonrelativistic limit, and

contribute to both ON4 and ON6 . The two contributions are parametrically of the same

order, since the coefficient cN6 is enhanced by the pion pole, which compensates the O(q2)
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suppression of ON6 for q2/m2
π ∼ O(1) (numerically, the compensation is still only partial

for electroweak scale DM [21]). The dipole operators Q
(5)
1,2 give contributions to all four

nonrelativistic operators, while the scalar operators Q
(5)
3,4 give leading contributions only to

QN1 , through tree-level Higgs exchange. The parameters σq in eq. (4.62) are related to the

matrix elements of q̄q quark scalar currents and are of order O(20− 40) MeV.

The coefficients of the single-derivative operators, eqs. (4.59) and (4.60), are

schematically

cN7 ∼
C

(6)
1,...,4,f

Λ2
, (4.65)

cN8 ∼
C

(6)
5,...,8,f

Λ2
, (4.66)

cN9 ∼
C

(6)
5,...,8,f

Λ2
+
mN

mχ

C
(6)
1,...,4,f

Λ2
, (4.67)

cN11 ∼
2

27

m2
N

Λm2
hmχ

C
(5)
7,8 +

σqmN

Λm2
hmχ

C
(5)
7,8 +

αmN

Λ q2
δN,pC

(5)
5,6 . (4.68)

The coefficients cN7 and cN8 arise from vector×axial and axial×vector parts of the operators

Q
(6)
1,f , . . . Q

(6)
4,f and Q

(6)
5,f , . . . Q

(6)
8,f , respectively, while all of these contribute to cN9 . Since these

operators are momentum (velocity) suppressed, they will give subleading contributions to

the scattering rates, unless the leading contributions (to cN1 from the vector×vector parts,

and to cN4,6 from axial×axial parts) cancel. In the next section we will discuss in more

detail how realistic this is. The operators ON7 , . . . ,ON9 , also receive contributions from

Q
(6)
15 , . . . Q

(6)
18 due to Z exchange, where no such cancellation can occur. These contributions

are thus always subleading and were neglected in eqs. (4.65)–(4.67). The operators Q
(5)
7,8

lead to q2-suppressed contributions to the scattering rate in the nonrelativistic limit, while

Q
(5)
5,6 induce an electric dipole moment for DM, giving a 1/q2-enhanced direct detection

scattering rate [92].

If the EFT above the weak scale is extended to mass dimension seven, then also

the nonrelativistic operators, ON10 = −1χ
(
~SN · i~q/mN

)
, ON12 = ~Sχ ·

(
~SN × ~v⊥

)
, ON14 =

−
(
~Sχ · i~q/mN

) (
~SN · ~v⊥

)
become phenomenologically important [26]. They arise from

dimension-seven operators with tensor DM currents and from interactions of DM with the

GG̃ current. The scaling estimates for the corresponding coefficients are cN10 ∼ O
(
mN/Λ

3
)
,

cN12 ∼ O
(
mq/Λ

3
)
, cN14 ∼ O

(
mN/Λ

3
)
, setting the dimensionless Wilson coefficients to unity.

Having obtained the coefficients in the effective Lagrangian for DM scattering on non-

relativistic nucleons, eq. (4.56), the final step is to calculate the DM-nucleus scattering

cross section [9, 10, 12],

dσ

dER
=

2mA

(2jA + 1)v2

∑
τ,τ ′

[
Rττ

′
M W ττ ′

M +Rττ
′

Σ′′W
ττ ′
Σ′′ +Rττ

′
Σ′ W

ττ ′
Σ′

+
~q 2

m2
N

(
Rττ

′
∆ W ττ ′

∆ +Rττ
′

∆Σ′W
ττ ′
∆Σ′′

)]
.

(4.69)
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Here, ER is the recoil energy of the nucleus, mA the mass of the nucleus, jA its spin, and v

the initial DM velocity in the lab frame. The kinematic factors contain the cNi coefficients,

Rττ
′

M = cτ1c
τ ′
1 +

1

4

(
~q 2

m2
N

~v⊥2
T cτ5c

τ ′
5 + ~v⊥2

T cτ8c
τ ′
8 +

~q 2

m2
N

cτ11c
τ ′
11

)
, (4.70)

Rττ
′

Σ′′ =
1

16

(
cτ4c

τ ′
4 +

~q 2

m2
N

(
cτ4c

τ ′
6 + cτ6c

τ ′
4

)
+

~q 4

m4
N

cτ6c
τ ′
6

)
, (4.71)

Rττ
′

Σ′ =
1

8
~v 2
T c

τ
7c
τ ′
7 +

1

16

(
cτ4c

τ ′
4 +

~q 2

m2
N

cτ9c
τ ′
9

)
, (4.72)

Rττ
′

∆ =
1

4

(
~q 2

m2
N

cτ5c
τ ′
5 + cτ8c

τ ′
8

)
, (4.73)

Rττ
′

∆Σ′ =
1

4

(
cτ5c

τ ′
4 − cτ8cτ

′
9

)
, (4.74)

where ~v⊥T is defined as in eq. (4.61), but with the nucleus replacing the nucleon. The sum

in (4.69) is over isospin, τ, τ ′ = 0, 1, so that

c
0(1)
i =

1

2

(
cpi ± cni

)
. (4.75)

The nuclear response functions depend on |~q | and have the approximate scaling (see,

e.g., figure 2 in [93])

WM ∼ O(A2) , WΣ′ ,WΣ′′ ,W∆,W∆Σ′ ∼ O(10−2)−O(1) . (4.76)

The WΣ′ ,WΣ′′ ,W∆, and W∆Σ′ response functions depend strongly on the detailed proper-

ties of nuclei, for instance, whether or not they have an un-paired nucleon in the outer shell.

Here WΣ′,Σ′′ measure the spin content of the nucleus, W∆ the average angular momentum

in the nucleus, and W∆Σ′ the interference of the two. Their sizes can thus differ drastically

between different isotopes of the same element.

The WM response function encodes the coherent scattering enhancement, O(A2),

where A is the atomic mass number. This is achieved in the long-wavelength limit, q → 0,

where DM scatters coherently on the whole nucleus, for instance, due to the ON1 contact

interaction. The coherent scattering due to ON5 is O(q2v2
T ) suppressed. However, since

its coefficient is 1/q2 enhanced, the corresponding contribution is of leading order [21].

The contributions due to ON8,11, though coherently enhanced, are at the same time velocity

suppressed.

5 The effects of RG running

The impact of the mixing of electroweak operators on the scattering cross section depends

on two factors: i) the structure of the anomalous dimension and thus the sizes of the

induced Wilson coefficients in eqs. (2.5)–(2.17), and ii) on the sizes of the nuclear response

functions, eq. (4.76), for each of the operators involved in the mixing. In section 5.1 we

first give the scalings of the scattering cross sections without mixing effects, for several

benchmark choices of UV Wilson coefficients. In section 5.2 we then include the mixing

and perform the actual numerical analysis using the full expressions for the DM-nucleus

scattering cross sections derived in the sections above.

– 31 –



J
H
E
P
0
3
(
2
0
2
0
)
0
8
9

5.1 Low energy phenomenology ignoring RG running

We first estimate the size of the DM-nucleus scattering cross section induced by each of

the UV operators, eqs. (2.5)–(2.8) and (2.9)–(2.17), neglecting the RG running. In the

estimates we use the scaling for nonrelativistic Wilson coefficients in eqs. (4.62)–(4.68),

and the rough scalings of nuclear response functions in eq. (4.76), but setting for simplicity

WΣ′ ,WΣ′′ ,W∆,W∆Σ′ ∼ O(1), with the knowledge that the sizes of the latter contributions

have high variations between different target materials.

5.1.1 Magnetic or electric dipole operators

The DM magnetic dipole operators, Q
(5)
1,2 ∼ (χ̄σµνχ){Bµν ,Wµν}, eq. (2.5), induce both

spin-dependent and spin-independent interactions. These give parametrically similar con-

tributions to the DM-nucleus scattering cross section. Schematically,

dσ

dER
∼
(
c2

1 + ~v⊥2
T

~q 2

m2
N

c2
5

)
WM +

{
c4,

~q 2

m2
N

c6

}2

WΣ′,Σ′′ +

{
~q 2

m2
N

c5, c4

}2

W∆,∆Σ′

∼
(
αC

(5)
1,2

Λ

)2[( 1

m2
χ

+
~v⊥

2

T

~q 2

)
A2 +

1

m2
N

+
1

m2
N

]
,

(5.1)

where we shortened the notation, cNi → ci, and dropped common factors. The scaling

estimates for each of the three terms are given in the second line. The spin-independent

scattering has two contributions, both O(A2) coherently enhanced: the contribution from

ON1 is suppressed by O(1/m2
χ), while the contribution from Op5 contains a photon pole,

leading to a net suppression of O(~v⊥T
2/~q 2). Using |~v⊥T | ∼ 10−3, |~q | ∼ 0.1mN , the two

contributions are comparable for mχ ∼ O(100 GeV). The two spin-dependent terms carry

a much smaller mass suppression of O(1/m2
N ), but no coherent enhancement. Which

term dominates then depends on the details of the nuclear structure for the nuclei in the

target [21].

The DM electric dipole operators, Q
(5)
5,6 ∼ (χ̄σµνγ5χ){Bµν ,Wµν}, eq. (2.7), match

onto the nuclear operator Op11 ∼ i~q · ~Sχ. This leads to coherently enhanced scattering

independent of the nuclear spin, with the 1/|~q |2 pole only partially cancelled,

dσ

dER
∼ ~q 2

m2
N

(cp11)2WM ∼
(
α

Λ

1

|~q |C
(5)
5,6

)2

A2 . (5.2)

Compared to the magnetic dipole operators, the bounds on the NP scale Λ for electric

dipole interactions of DM are thus more stringent by a factor of order mχ/|~q |.

5.1.2 Operators with DM scalar currents

The operators Q
(5)
3,4 ∼ (χ̄χ)(H†H), eq. (2.6), generate DM interactions with a scalar quark

current once the Higgs is integrated out at µ ∼ mZ . Integrating out the top, bottom,

and charm quarks at the respective thresholds generates an effective coupling of DM to

gluons. At µ ∼ µhad DM thus couples to both the gluonic and light-quark scalar currents.
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Both of these match onto the nuclear operator ON1 ∼ 1χ 1N , giving a coherently enhanced

spin-independent cross section,

dσ

dER
∼ c2

1WM ∼
(

2

27

mN

Λm2
h

C
(5)
3,4

)2

A2 , (5.3)

where in the last term we kept the numerically important factor 2/27.

The operators with pseudoscalar DM current, Q
(5)
7,8 ∼ (χ̄γ5χ)(H†H), eq. (2.8), follow a

similar series of matchings. The only significant difference arises in the nonrelativistic limit,

where the DM pseudoscalar current gives an O(q) suppressed operator, ON11 ∼~iq · ~Sχ. The

resulting DM-nucleus scattering cross section is still coherently enhanced, but suppressed

by O(~q 2/m2
χ) compared to (5.3),

dσ

dER
∼ ~q 2

m2
N

c2
11WM ∼

~q 2

m2
χ

(
2

27

mN

Λm2
h

C
(5)
7,8

)2

A2 . (5.4)

5.1.3 Operators with DM vector current and with quark vector or axial-vector

currents

We focus next on the operators Q
(6)
1,i , . . . , Q

(6)
4,i ∼ (χ̄γµχ){q̄LγµqL, qRγµqR}, eqs. (2.9)–(2.12).

Barring cancellations, the leading contribution is due to the vector×vector part of the op-

erators, (χ̄γµχ)(q̄γµq). For couplings to the first generation quarks this leads to coherently

enhanced spin-independent scattering,

dσ

dER
∼ c2

1WM ∼
(

1

Λ2
C

(6)
1q,...,4q

)2

A2 (1st generation quarks) . (5.5)

The estimate is different, if DM only couples to quarks of the second or third genera-

tion. For these the nuclear matrix element of the vector current vanishes, and the leading

contribution comes from closing the quarks in a loop, exchanging a photon with the up-

or down-quark vector currents. This also results in a spin-independent scattering, with a

cross section

dσ

dER
∼
(
α

4π

1

Λ2
C

(6)
1q,...,4q

)2

A2 (2nd and 3rd generation quarks) . (5.6)

In addition there are subleading contributions from matching onto higher dimension op-

erators with gluons, as well as spin-dependent, velocity-suppressed scattering from the

axial currents.

The situation is qualitatively different if the UV physics is such that at µ ∼ Λ it projects

the Q
(6)
1,i , . . . , Q

(6)
4,i operators only on the vector×axial-vector structure. For instance, if

the Wilson coefficients obey C
(6)
1,i (Λ) = 0, while C

(6)
2,i (Λ) = −C(6)

3,i (Λ) = −C(6)
4,i (Λ), then,

neglecting RG effects, only operators of the form (χ̄γµχ)(q̄γµγ5q) are generated. If the

operators involve light quarks, this gives a spin-dependent cross section that scales as (for

q = u, d, s)

dσ

dER
∼
(
~v⊥2
T c2

7 +
~q 2

m2
N

c2
9

)
WΣ′ ∼

(
~v 2
T +

~q 2

m2
χ

)(C(6)
1i,...,4i

Λ2

)2

, (axial vector). (5.7)
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The two contributions are comparable for |~q | ∼ 0.1mN and mχ ∼ O(100 GeV). If the

vector×axial-vector operators involve only the heavy quarks, q = c, b, t, the scattering

cross section is further severely suppressed by the small contributions of the heavy quarks

to the nucleon spin (see section 5.1.4 below and ref. [25] for a more detailed discussion).

Note that the spin-dependent scattering in eq. (5.7) is suppressed by ~v 2
T ∼ ~q 2/m2

χ ∼
10−6. There is no such suppression for the spin-independent cross section, eq. (5.5), which

is, in addition, enhanced by the coherence factor A2. This means that the Wilson coef-

ficients contributing to the quark vector currents at the scale µ & mZ need to cancel to

the level ∼ |~q |/(mχA) ∼ O(10−6) if the spin-dependent scattering is to be the dominant

DM-nucleus interaction. Perfect cancellation at all scales is impossible to arrange, since

the contributions come from operators in different representations of the SM gauge group,(
χ̄γµχ

)(
Q̄Lγ

µQL),
(
χ̄γµχ

)(
ūRγ

µuR),
(
χ̄γµχ

)(
d̄Rγ

µdR). Even if one engineers the Wilson

coefficients of these operators such that the vector currents are zero at one scale, a small

amount of running will make them nonzero at a different scale. The required cancellation

is numerically of three-loop order, so that even the radiative corrections may need to be

canceled by fine tuning in order for the spin-dependent scattering to be the leading effect.

5.1.4 Operators with DM axial-vector and with quark vector or axial-vector

currents

A qualitatively different situation is encountered for the operators that involve DM

axial-vector currents, Q
(6)
5,i , . . . , Q

(6)
8,i ∼ (χ̄γµγ5χ){q̄LγµqL, q̄RγµqR}, eqs. (2.9)–(2.12). In

this case the (χ̄γµγ5χ)(q̄γµγ5q) operators lead to spin-dependent scattering, while the

(χ̄γµγ5χ)(q̄γµq) operators lead to coherently enhanced, but momentum-suppressed scat-

tering. We discuss each of the two limiting cases separately.

If the operator (χ̄γµγ5χ)(q̄γµγ5q) involves light quarks, q = u, d, s, this results in a

spin-dependent cross section (not displaying explicitly the suppression for strange quark

due to its small axial charge, ∆s = −0.031(5) [21, 94–97]),

dσ

dER
∼
{
c4,

~q 2

m2
N

c6

}2

WΣ′,Σ′′ ∼
(
C

(6)
5i,...,8i

Λ2

)2

(light quarks) . (5.8)

If the operator (χ̄γµγ5χ)(q̄γµγ5q) involves only the heavy quarks, q = t, b, c, the scattering

cross section is generally very small. The axial charges of charm and bottom quarks are

tiny and poorly determined. Ref. [98] obtained ∆c ≈ −5 · 10−4, ∆b ≈ −5 · 10−5, with

probably at least a factor of two uncertainty on these estimates. Despite this, for heavy

quark axial-axial interactions the heavy quark axial charges still dominate the cross section

over the contributions from mixing induced couplings to light quarks, discussed in the next

section (see also ref. [25]).

We focus next on the limiting case where at µ ∼ mZ only the axial-vector×vector op-

erators, (χ̄γµγ5χ)(q̄γµq), are generated. For q = u, d, s these match on two nonrelativistic

operators with one derivative, ON8 , ON9 . Both lead to momentum suppressed incoherent

scattering, with ON8 giving rise, in addition, to spin-independent scattering that is coher-
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ently enhanced, but velocity suppressed,

dσ

dER
∼~v⊥2

T c2
8WM +

~q 2

m2
N

{
c8, c9

}2
W∆,∆Σ′,Σ′

∼
{
~v⊥2
T A2,

~q 2

m2
N

}(
C

(6)
5i,...,8i

Λ2

)2

(light quarks) . (5.9)

The two contributions are of parametrically similar size for heavy nuclei, A ∼ O(100), in

which case |~vT |A ∼ |~q|/mN . Which of the two contributions dominates then depends on

the details of the nuclear structure for the particular isotope.

For (χ̄γµγ5χ)(q̄γµq) with q = t, b, c, the leading contribution comes from closing the

heavy quark loop, exchanging a photon with the up- or down-quark vector current. The

cross section is suppressed with respect to eq. (5.9) by an additional factor of (α/4π)2,

dσ

dER
∼
(
α

4π

)2{
~v⊥2
T A2,

~q 2

m2
N

}(
C

(6)
5i,...,8i

Λ2

)2

(heavy quarks) . (5.10)

There is also a contribution from matching onto higher dimension operators with gluons,

which is expected to be at most of similar size.

In general the sum of Q
(6)
5,i , . . . , Q

(6)
8,i operators matches onto both (χ̄γµγ5χ)(q̄γµγ5q) and

(χ̄γµγ5χ)(q̄γµq) operators at µ = µEW, giving a cross section that is a sum of eqs. (5.8)

and (5.9). The spin-dependent scattering in eq. (5.8) is parametrically the largest. Since

the parametric enhancement is not large, however, this expectation does depend on the

target material, and spin-independent scattering could be equally important.

5.1.5 Operators with Higgs vector currents

The operators Q
(6)
15,16 ∼ (χ̄γµχ)(H†DµH) and Q

(6)
17,18 ∼ (χ̄γµγ5χ)(H†DµH), eqs. (2.16)

and (2.17), give rise to a DM-DM-Z boson vertices after the Higgs obtains its vacuum

expectation value. Integrating out the Z at µ ∼ mZ leads to a coupling of DM to vector

and axial-vector quark currents. The relative strength of the two is fixed by the Z couplings

to the left- and right-handed quarks. This is different from the case of the operators

Q
(6)
1,i , . . . , Q

(6)
8,i that we discussed before, where a more general structure of DM couplings

to quarks was allowed.

For the operators Q
(6)
15,16 ∼ (χ̄γµχ)(H†DµH), the dominant contribution comes

from a quark vector current, giving a coherently enhanced, spin-independent scattering

cross section
dσ

dER
∝ c2

1WM ∼
(

1

Λ2
C

(6)
15,16

)2

A2 . (5.11)

The Z-boson exchange at µ ∼ mZ also generates the
(
χ̄γµχ

)(
q̄γµγ5q

)
operator. This leads

to momentum-suppressed, spin-dependent scattering that is always subleading.

On the other hand, for the operators with DM axial-vector currents, Q
(6)
17,18 ∼

(χ̄γµγ5χ)(H†DµH), one needs to keep both the spin-dependent and spin-independent scat-

tering contributions. The induced axial-vector×vector and axial-vector×axial-vector inter-
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actions lead to a cross section that scales as the sum of eqs. (5.8) and (5.9),

dσ

dER
∼
{
c4,

~q 2

m2
N

c6

}2

WΣ′,Σ′′ + ~v⊥2
T c2

8WM +
~q 2

m2
N

{
c8, c9

}2
W∆,∆Σ′,Σ′

∼
(

1 + ~v⊥2
T A2 +

~q 2

m2
N

)(
C

(6)
17,18

Λ2

)2

.

(5.12)

From scaling considerations, spin-dependent scattering is expected to be dominant in nuclei

with an unpaired nucleon that is not in an s-shell. But even then the spin-independent

scattering contributions may need to be included, depending on the nucleus. An example

is dicsussed in section 5.2.1.

5.2 Inclusion of RG running

The modifications due to RG running can significantly impact the cross section predictions.

We will show several examples where the RG running effects are particularly large. While

the sizes and patterns of the induced corrections does depend on the electroweak charges of

DM, the effects themselves are not “optional”. They are due to SM particles in the loops,

and are thus always present.

Consider, for instance, SU(2)L-singlet DM, where all mixing proportional to g2 van-

ishes, as can be seen by inspecting γ
(0)
2 . Another example is DM that is hypercharge

neutral, Yχ = 0, for which all the mixings due to Bµ exchanges with the DM line vanish.

However, in both cases there is still mixing due to the running of the non-conserved SM

currents. For instance, for DM that is a complete SM singlet the main mixing is induced

by the top-quark Yukawa interaction. This case has been discussed in detail in the lit-

erature [22, 60, 61] (see also ref. [25] for the discussion of weak-mixing effects below the

weak scale).

Here, we will use our general results from section 3 and apply them to the simplest

nontrivial example of DM with electroweak charges — a Dirac fermion multiplet that is

hypercharge neutral, Yχ = 0, and an electroweak triplet, Iχ = 1. The choice Yχ = 0 is

imposed on us by the phenomelogical requirement that DM (the neutral component of the

multiplet) should not couple to the Z boson at tree level, in order to avoid a too large

direct detection scattering scattering cross section.

We will illustrate the effects of RG running for several different choices of non-

renormalizable DM interactions, taking Iχ = 1 as an example. The scattering rates then

receive two types of contributions. First, there are contributions from higher dimension

operators. These vanish in the limit Λ→∞. However, for Iχ 6= 0 there are also contribu-

tions from renormalizable electroweak interactions that are independent of Λ. The leading

contributions of this type are due to the small “Higgs penguin”, the one-loop and two-loop

contributions shown in figure 2. They lead to coherently enhanced scattering of parametric

size (for Iχ = 1, using the right diagram in figure 2)

dσ

dER

∣∣∣∣
“Higgs penguin”

∝ A2

(
α2

4π

)4 g4
s

M4
W

∼ 10−19A2

GeV4 , (5.13)
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where A2 = O(104) for scattering on Xenon, and A2 = O(102) for scattering on Fluorine.

If the target nucleus has non-zero spin, the W box shown in figure 2 gives an additional

contribution scaling as

dσ

dER

∣∣∣∣
“W box”

∝
(
α2

4π

)4 1

M4
W

∼ 10−16

GeV4 . (5.14)

These scalings omit a proportionality factor that depends on the DM mass and velocity,

the recoil energy, and the detailed structure of the nucleus. For a typical scattering event

with mχ = 100 GeV and ER = 20 keV, this factor is roughly of the order of 108 GeV.

In our numerical evaluations we use the exact results from ref. [68] (for heavy DM see

also [7, 27, 81]). The ratio of scaling estimates in eqs. (5.13) and (5.14) agrees with the

ratio of full results within an order of magnitude. Note that for DM that is a complete

electroweak singlet the gauge contribution is absent.

In figures 14 to 16 we show numerical examples for DM scattering rates in two ficti-

tious, yet realistic detectors. For a Xenon target we integrate the differential rates over

ER ∈ [5 keV, 40 keV], and for Fluorine over ER ∈ [3.3 keV, 200 keV]. We average over the

natural abundances of the xenon isotopes and assume a standard Maxwell-Boltzmann ve-

locity distribution with mean velocity 240 km/s. For nuclear response functions we use the

predictions of refs. [9, 12], while for nuclear form factors we use the inputs collected in

ref. [21]. In the figures the DM mass varies in the range mχ ∈ [30 GeV, 1 TeV]. While in

the lower part of the range the shown benchmarks are likely excluded by LEP constraints

and LHC searches, we keep them for illustration purposes.

In the three examples that we show below the effective interactions involve axial-vector

quark currents. The reason for this choice is easy to understand. In the case where we

have DM current coupling to either only LH or only RH quarks, the vector-vector part of

the interaction always dominates, and the RG effects are subdominant. In the case where

we have DM axial-vector current coupling to either only LH or only RH quarks, the mixing

effects are larger and are O(1). We instead show the cases where the RG running induces

the largest corrections, i.e., the case of DM interacting with axial-vector quark currents.

In all our examples DM couples to both up- and down-type quarks. Using the triplet

operators Q
(6)
1,i and Q

(6)
5,i it is possible to construct interactions of DM with only up- or

down-quark currents separately. This would, however, require a nonzero DM hypercharge,

Yχ 6= 0, which is phenomenologically not viable for Dirac fermion DM.

5.2.1 Operators with DM axial-vector current and 3rd generation quark axial-

vector current

For the first example we assume that at the high scale, Λ, the only nonzero Wilson coeffi-

cients are

C
(6)
6,3 (Λ) = −C(6)

7,3 (Λ) = −C(6)
8,3 (Λ) . (5.15)

That is, we assume that DM couples to the SM through renormalizable weak interactions

(Iχ = 1, Yχ = 0) and, in addition, through the dimension 6 effective operator

−Q(6)
6,3 +Q

(6)
7,3 +Q

(6)
8,3 = (χ̄γµγ5χ)(t̄γµγ5t+ b̄γµγ5b) . (5.16)
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At tree-level this operator has vanishingly small nuclear matrix element, see section 5.1.

Appreciable DM-nucleus scattering is generated only once we close the heavy quark loop.

The RG running captures the logarithmically enhanced part of this contribution. Start-

ing with

− C(6)
6,3 (Λ) = C

(6)
7,3 (Λ) = C

(6)
7,3 (Λ) = 1 , (5.17)

the RG running from Λ to µ ∼ MW generates the Wilson coefficients (keeping only the

linear logarithmic term)

C
(6)
1,3 (mW ) = − g2

2

16π2

[
γ

(0)
2

]
Q

(6)
6,3,Q

(6)
1,3

log
mW

Λ
=

g2
2

16π2
12 log

mW

Λ
, (5.18)

C
(6)
18 (mW ) =

y2
t

16π2

(
−
[
γ(0)
yt

]
Q

(6)
6,3,Q

(6)
18

+
[
γ(0)
yt

]
Q

(6)
7,3,Q

(6)
18

)
log

mW

Λ

= − y2
t

16π2
4Nc log

mW

Λ
.

(5.19)

In deriving eqs. (5.18) and (5.19) we took into account the cancelations of contributions that

arise due to the actual values of the anomalous dimensions. For instance, the mixing via

penguin insertions generically results in DM coupling to the first two generations of quarks

by generating the operators Q
(6)
6,i , . . . , Q

(6)
8,i . However, for the initial conditions in eq. (5.16)

this mixing vanishes at leading-logarithmic order. There are also mixings into higher

dimension operators coupling DM to photons or gluons instead of quark currents. These

involve at least two gauge field strengths and an additional derivative, so that the scattering

contributions are further power suppressed. The leading contributions to the scattering

rates therefore come from the mixing induced operators Q
(6)
1,3 and Q

(6)
18 . The mixing into

Q
(6)
18 is due to the top-quark Yukawa interaction of the Higgs. It is present whether or not

DM is part of an electroweak multiplet, i.e., even if DM is an electroweak singlet.

In figure 14 we compare the predicted rates for scattering on Xenon and Fluorine,

obtained with (blue lines) and without (red lines) RG evolution. In the case of no RG

evolution the scattering is almost entirely due to the contribution of renormalizable weak

interactions. For Λ = 1 TeV the RG induced contributions from dimension-six opera-

tors dominate over the renormalizable ones, in the case of Fluorine by up to two orders

of magnitude.

The sizes of the different contributions can be qualitatively understood from their

parametric scalings, given for the gauge contributions in eqs. (5.13) and (5.14). The mixing

induced Q
(6)
18 leads to a cross section that scales roughly as

dσ

dER
∝
[
1 +

q2

m2
N

+ (v⊥T )2A2

](
αt
4π

)2(
12 log

MW

Λ

)2 1

Λ4
∼ 10−14 + 10−18 + 10−20A2

GeV4 ,

(5.20)

while the cross section induced by the mixing into Q
(6)
1,3, scales roughly as

dσ

dER
∝ A2

(
α2

4π

)2(
12 log

MW

Λ

)2( α

4π

)2(16

9
log

mb

MW

)2 1

Λ4
∼ 10−19A2

GeV4 . (5.21)
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Figure 14. The inverse scattering rates on Xenon (left) and Fluorine (right) for Iχ = 1, Yχ = 0

Dirac fermion DM with additional dimension-six interactions coupling a DM axial-vector current to

the SM axial-vector third generation current, setting Λ = 1 TeV. The red lines show the predicted

rates without mixing; the blue lines after RG resummation. The plots extend in mχ below the

electroweak scale only for illustration purposes — realistic models require extended sets of non-

trivial electroweak multiplets that can modify the running (cf. section 2).

In the numerical estimates we assumed a typical momentum transfer of q = O(10) MeV

and set Λ = 1 TeV. The first two terms in the square bracket in eq. (5.20) are due to spin-

dependent scattering, with the parametric and numerical estimates shown for Fluorine and
129Xe, while they are much smaller for the other main Xenon isotopes. The last term

in eq. (5.20) is due to spin-independent scattering. The spin-dependent terms give the

dominant contribution to the scattering rates on Fluorine.

The scattering contribution in (5.21) involves QED mixing, converting the third gen-

eration quark current to the first generation one, see section 4.3. This contribution is

relevant only for scattering on Xenon, where it is, for Λ = 1TeV, comparable to the gauge

contribution as well as to the spin-dependent scattering in eq. (5.20). Indeed, the left panel

of figure 14 shows that the contributions are of the same size.

As already mentioned, the scattering on Fluorine is dominated by the Q
(6)
18 -induced

contributions, eq. (5.20), where the leading term comes from spin-dependent scattering.

Inspection of the Σ′, Σ′′ response functions, ref. [9], shows that spin-dependent scattering

on Fluorine is about ten times larger than for 129Xe, while the other Xenon isotopes give

negligible contributions. In figure 14 we weighted the contributions according to the natural

abundance of Xenon isotopes, giving an additional roughly five-fold suppression of the spin-

dependent rate for Xenon. Consequently, the effect of the RG evolution is large only for

scattering on fluorine (right panel of figure 14).

5.2.2 Vector — Axial-vector (first generation)

Next, we assume that at Λ = 1 TeV the only nonzero Wilson coefficients are

− C(6)
2,1 (Λ) = C

(6)
3,1 (Λ) = C

(6)
4,1 (Λ) , (5.22)

so that the non-renormalizable DM interactions are due to the operator

−Q(6)
2,1 +Q

(6)
3,1 +Q

(6)
4,1 = (χ̄γµχ)(ūγµγ5u+ d̄γµγ5d). (5.23)
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Figure 15. Same as figure 14, but for Iχ = 1, Yχ = 0 Dirac fermion DM with additional dimension-

six interactions coupling a DM vector current to the SM axial-vector first generation current, setting

Λ = 1 TeV.

This leads to spin-dependent scattering rate that scales roughly as

dσ

dER
∝ (v⊥T )2 1

Λ4
∼ 10−18

GeV4 , (5.24)

see section 5. The Higgs penguin contribution, eq. (5.13), dominates over this rate by

orders of magnitude. The dominant contribution, however, is mixing induced. The Wilson

coefficient C
(6)
2,1 (Λ) gets modified by the two-step mixing in the RG evolution to (we neglect

numerically subleading contributions)

C
(6)
2,1 (MW ) = −1−

(
g2

2

16π2

)2
[
γ

(0)
2

]
Q

(6)
2,1,Q

(6)
5,1

[
γ

(0)
2

]
Q

(6)
5,1,Q

(6)
2,1

2
log2 MW

Λ

= −1−
(

g2
2

16π2

)2

36 log2 MW

Λ
.

(5.25)

The mixing contributions for the other two Wilson coefficients, C
(6)
3,1 and C

(6)
4,1 , cancel. This

leads to the breaking of the original alignment, eq. (5.22), inducing a coupling to the SM

vector current. The product of the large anomalous dimensions and the square of the large

logarithm log(MW /Λ), together with the coherent enhancement factor, A2, leads to

dσ

dER
∝ (v⊥T )0A2

(
α2

2

(4π)2

)2(
36 log2 MW

Λ

)2 1

Λ4
∼ 10−18A2

GeV4 , (5.26)

resulting in the enhanced scattering rate, as shown in figure 15.

It is important to realize that it is not sufficient to use the first-order-expanded solution

to the RG equations, as the effect arises only at the second order in the mixing. While the

effect corresponds to a two-loop correction in the “full theory”, our method automatically

captures the leading-logarithmic part of it.

5.2.3 Vector — Axial-vector (third generation)

Finally, let us consider an initial condition

− C(6)
2,3 (Λ) = C

(6)
3,3 (Λ) = C

(6)
4,3 (Λ) , (5.27)
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Figure 16. Same as figure 14, but for Iχ = 1, Yχ = 0 Dirac fermion DM with additional

dimension-six interactions coupling a DM vector current to the SM axial-vector third-generation

current, setting Λ = 1 TeV.

so that DM couples to the third generation of quarks through the operator

−Q(6)
2,3 +Q

(6)
3,3 +Q

(6)
4,3 = (χ̄γµχ)(t̄γµγ5t+ b̄γµγ5b) . (5.28)

This axial-vector current has a vanishingly small nuclear matrix element, see section 5.1.

Without mixing, the leading contribution to the scattering rate is thus due to the renor-

malizable gauge interactions, eqs. (5.13) and (5.14).

The largest contribution comes, however, from the mixing. At one loop the top-quark

Yukawa interactions induce mixing of Q
(6)
2,3 and Q

(6)
3,3 into Q

(6)
16 with anomalous dimensions

6 and −6, respectively, see eq. (3.40). The contributions add up for the axial-vector quark

current, giving, for the initial condition (5.27),

C
(6)
16 (MW ) =

y2
t

16π2

(
−
[
γ

(0)
t

]
Q

(6)
2,3,Q

(6)
16

+
[
γ

(0)
t

]
Q

(6)
3,3,Q

(6)
16

)
log

MW

Λ

= −12
y2
t

16π2
log

MW

Λ
.

(5.29)

The above result takes into account the cancelations of contributions due to the actual

values of the anomalous dimensions, and neglects numerically subleading terms. (The two-

step mixing effect, described in the previous subsection, is still present, but subleading.)

The operator Q
(6)
16 leads to a vector-vector interaction after integrating out the Z boson,

cf. eq. (4.16), giving a coherently enhanced scattering cross section of parametric size

dσ

dER
∝ (v⊥T )0A2

(
αt
4π

)2(
12 log

MW

Λ

)2 1

Λ4
∼ 10−14A2

GeV4 . (5.30)

which is several orders of magnitude larger than the Higgs-penguin induced one. This is

illustrated in figure 15. Included in the numerics is the additional enhancement of the cross

section by the resummation of leading QCD logarithms below the weak scale (see ref. [25]

for details). Note that the mixing induced effect, eq. (5.30), is independent of the weak

isospin of DM and is present even for SM-singlet DM [60].
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6 Summary and conclusions

In this article we presented a Renormalization Group (RG) analysis of Dark Matter (DM)

interactions with the SM mediated by higher dimension operators, up to and including

dimension six. We calculated the one-loop RG evolution of these operators, for the case of

Dirac fermion DM, from the high scale Λ down to the weak scale, and the matching to the

tower of effective theories below the weak scale, distinguishing the two cases, mχ ∼ mZ

and mχ � mZ . We allow for DM to be part of an electroweak multiplet.

The loop corrections are important whenever both the renormalizable interactions and

the tree-level insertions of higher dimension operators give suppressed direct detection scat-

tering rates. For DM charged under the electroweak gauge group, the scattering due to

renormalizable interactions is either spin-dependent or effectively of two-loop size. This

means that the contributions from higher dimension interactions, even if loop suppressed,

can still give the leading contribution. This is true in particular if the tree-level contri-

butions from higher dimension operators have small nuclear matrix elements, while the

loop-induced ones do not. In section 5.2 we illustrated this for three examples of DM

coupling to axial-vector quark currents, where the loop-induced effects are especially large.

Since the anomalous dimensions are numerically large, the mixing induced effects can dom-

inate the scattering rate even if they are effectively of two-loop order. The RG evolution

automatically picks up the leading-logarithmic parts of such corrections to all orders.

The computed corrections are not optional, as they arise from SM particles running in

the loop. They thus need to be included when connecting the processes that occur at the

mass of the DM (such as the indirect detection and the LHC searches) with the processes

occurring at the low scale, e.g., direct detection scattering. The anomalous dimensions

are of two types: (i) the contributions due to Higgs exchanges, which are present even in

the case that DM is an electroweak singlet, and (ii) the contributions that are due to the

exchanges of gauge bosons. The latter are present only if DM is part of an electroweak

multiplet.

The resulting RG evolution is implemented in the public code DirectDM [23] and is

available at

https://directdm.github.io .

The code should make it relatively straightforward to use our results when comparing indi-

rect detection and LHC bounds with the results of direct detection experiments, including

the scattering on electrons, that is in many cases generated already at one-loop level.

There are several directions for future work. The remaining case for Dirac fermion

DM, mχ � mZ , requires the transition to Heavy DM EFT already above the weak scale.

This will result both in a different basis of EFT operators above the electroweak scale, as

well as changes to the anomalous dimensions. The calculations of anomalous dimensions

should also be extended to include dimension seven operators (the full basis was presented

in ref. [26]). Phenomenologically interesting is an extension of our work to several multi-

plets, which would cover, for instance, bino-wino-higgsino mixing in the MSSM. There are

also higher-loop contributions that the leading-logarithmic RG resummation misses. For

instance, at two-loop level there is mixing from dimension-six operators with quarks and
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leptons into dipole operators. Such contributions may be important when estimating the

dipole contributions to the dark matter scattering rates.
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A Conventions and input

A.1 Standard model in the unbroken and broken phases

Here we collect the conventions that we use in the paper. Our convention for the Lorentz

vectors is pµ = (p0, ~p ), pµ = (p0,−~p ), while for the completely antisymmetric Levi-Civita

tensor εµνρσ we use the convention ε0123 = +1. The field-strength tensors are

Gaµν = ∂µG
a
ν − ∂νGaµ − gs fabcGbµGcν , (A.1)

W a
µν = ∂µW

a
ν − ∂νW a

µ + g2 ε
abcW b

µW
c
ν , (A.2)

Bµν = ∂µBν − ∂νBµ . (A.3)

The SU(3), SU(2), and U(1) coupling constants are gs, g2, and g1, while fabc, εabc are the

completely antisymmetric SU(3) and SU(2) structure constants, respectively.

The covariant derivative acting on a fermion f is, in our convention,

Dµf =

(
∂µ − igsT aGaµ − ig2τ̃

aW a
µ + ig1

Yf
2
Bµ

)
f , (A.4)

with T a, τ̃a the generators of SU(3) and SU(2), respectively, and Yf the hypercharge of

fermion f . Specializing to the DM fields we thus have

Dµχ =

(
∂µ − ig2τ̃

aW a
µ + ig1

Yχ
2
Bµ

)
χ , (A.5)

with Yχ the DM hypercharge. The SU(2) generators τ̃a for a general representation of

weak isospin Iχ can be chosen as(
τ̃1 ± iτ̃2

)
kl

= δk,l±1

√
(Iχ ∓ l)(Iχ ± l + 1) ,

(
τ̃3
)
kl

= lδk,l , (A.6)

with k, l running over the values −Iχ,−Iχ + 1, . . . , Iχ − 1, Iχ.

The Higgs Lagrangian in terms of the complex Higgs doublet H reads

LH =
(
DµH

)†
DµH − λ

4

(
H†H

)2
+ µ2H†H . (A.7)
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In the calculation of the anomalous dimensions above the electroweak scale the Higgs mass

term can be neglected as it does not affect the UV divergences.

The Yukawa interactions are given by

LY = −
∑
k,l

Q̄kLY
u
klu

l
RH̃ −

∑
k,l

Q̄kLY
d
kld

l
RH −

∑
k,l

L̄kLY
`
kl`

l
RH + h.c. , (A.8)

with k, l the generation indices, while the charge-conjugated Higgs field is given by H̃ =

iσ2H∗. In the calculation of the electroweak mixing we neglect the up, down, strange,

electron, and muon Yukawa couplings.

We further complement the Lagrangian involving the matter fields with a gauge-fixing

term. It is most convenient to perform the calculation in a background-field gauge; the

gauge-fixing Lagrangian can be taken in analogy to the case of QCD [99, 100]. We use a

generalized Rξ gauge, with gauge fixing term [101]

Lgf = − 1

2ξW

[(
δac∂µ + g2ε

abcŴ b
µ

)
W c,µ

]2
− 1

2ξB
(
∂µB

µ
)2
, (A.9)

and checked explicitly the ξW and ξB gauge-parameter independence of our results.

After electroweak symmetry breaking we use the mass eigenbasis for the gauge bosons,

W±µ =
(
W 1
µ ∓ iW 2

µ

)
/
√

2 ,

(
Zµ
Aµ

)
=

(
cw sw
−sw cw

)(
W 3
µ

Bµ

)
, (A.10)

where cw ≡ cos θw = g2/
√
g2

1 + g2
2 , sw ≡ sin θw. The electric charge is given by

e =
g1g2√
g2

1 + g2
2

= g2sw = g1cw . (A.11)

The electric charge of the components of the DM multiplet is given by the Gell-Mann

Nishijima relation, Qχ = τ̃3 + Yχ/2. Defining τ̃± = τ̃1 ± iτ̃2, we can write the covariant

derivative (A.5) in terms of the broken fields as

Dµ = ∂µ + igsT
aGaµ −

i√
2

e

sw

(
τ̃−W+

µ + τ̃+W−µ
)

+ ieQχAµ −
ie

swcw

(
τ̃3 − s2

wQχ
)
Zµ .

(A.12)

The Higgs doublet field after EWSB is given by

H(x) =

(
G+(x)

1√
2

(
v + h(x) + iG0(x)

)) , (A.13)

where G+(x) and G0(x) are the pseudo-Goldstone fields.

A.2 Numerical inputs for the electroweak running

The parameters used in our numerics for the electroweak RG evolution are ĝ1, ĝ2, ĝ3, ŷc, ŷτ ,

ŷb, ŷt, where the hat denotes the values in the MS scheme at scale MZ . All the numerical

inputs are taken from ref. [102]. Our strategy to determine the initial values at scale
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µ = MZ is as follows. We use the values sin2 θw(MZ) = 0.23122(4), α−1(MZ) = 127.955(10)

to determine ĝ1 and ĝ2 directly via the relation

sin2 θw(µ) ≡ g2
1(µ)

g2
1(µ) + g2

2(µ)
. (A.14)

In this way we find ĝ1 = 0.36, ĝ2 = 0.65. The strong coupling ĝ3 = 1.22 is determined from

αs(MZ) = 0.1181(11).

To determine ŷτ we use mτ = 1.77686(12) GeV, and the relations

yτ =

√
2mτ

vEW
, GF =

1√
2v2

EW

. (A.15)

Note that GF = 1.1663787(6) × 10−5 GeV−2 is RG invariant, and we neglect the QED

running of mτ . We find ŷτ (MZ) = 0.010. We obtain mc(MZ) by QCD running from

mc(mc) = 1.275(3) GeV and then convert to find ŷc(MZ) = 0.0045. We obtain mb(MZ) by

QCD running from mb(mb) = 4.18+0.04
−0.03 GeV and then convert to find ŷb(MZ) = 0.018. We

obtain mt(MZ) by converting the top-quark pole mass Mt = 173.0(0.4) GeV to the QCD

and electroweak MS scheme at scale µ = Mt, and use subsequent QCD and electroweak

running from µ = Mt to µ = MZ . We find ŷt(MZ) = 1.05. For the Higgs self-coupling λ,

we take λ(MZ) ∼ λ(Mh) = 2
√

2M2
h GF ≈ 0.52 with Mh = 125.1 GeV.

B Nonrelativistic coefficients

The operators Q(7,0)
23,q and Q(7,0)

25 , defined in eq. (4.47), lead to the following additional

contributions to the nonrelativistic coefficients:

cp1 =
3

4
mp

(
Ĉ(7)

25 f (2)
g,p +

∑
q

Ĉ(7)
23,q f

(2)
q,p

)
, (B.1)

with f
(2)
u,p = 0.346(7), f

(2)
d,p = 0.192(6), f

(2)
s,p = 0.034(3), and f

(2)
g,p = 0.419(19), evaluated at

renormalizations scale µ = 2 GeV [16]. The coefficients for neutrons can be obtained by

the exchange p↔ n, u↔ d.

C SM EFT operators

In this appendix we provide the results for the mixing of the SM-DM operators into the pure

SM operators, restricting the discussion to the SM operators that enter the RG running

at one loop. Assuming conservation of lepton and baryon number, only dimension-six

operators are relevant. The dimension-six effective Lagrangian is (we use the basis in

ref. [103], but with renamed operators)

L =
∑
a

C
sm,(6)
a

Λ2
S(6)
a , (C.1)
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where the operators involving only quark fields are

S
(6)
1,ij = (Q̄iLγµτ

aQiL)(Q̄jLγ
µτaQjL) , S

(6)
2,ij = (Q̄iLγµQ

i
L)(Q̄jLγ

µQjL) , (C.2)

S
(6)
3,ij = (Q̄iLγµQ

i
L)(ūjRγ

µujR) , S
(6)
4,ij = (Q̄iLγµQ

i
L)(d̄jRγ

µdjR) , (C.3)

S
(6)
5,ij = (ūiRγµu

i
R)(ūjRγ

µujR) , S
(6)
6,ij = (ūiRγµu

i
R)(d̄jRγ

µdjR) , (C.4)

S
(6)
7,ij = (d̄iRγµd

i
R)(d̄jRγ

µdjR) . (C.5)

The operators involving only lepton fields can be chosen as

S
(6)
8,ij = (L̄iLγµL

i
L)(L̄jLγ

µLjL) , S
(6)
9,ij = (L̄iLγµL

i
L)(¯̀j

Rγ
µ`jR) , (C.6)

S
(6)
10,ij = (¯̀i

Rγµ`
i
R)(¯̀j

Rγ
µ`jR) . (C.7)

The mixed quark-lepton operators are

S
(6)
11,ij = (Q̄iLγµτ

aQiL)(L̄jLγ
µτaLjL) , S

(6)
12,ij = (Q̄iLγµQ

i
L)(L̄jLγ

µLjL) , (C.8)

S
(6)
13,ij = (Q̄iLγµQ

i
L)(¯̀j

Rγ
µ`jR) , S

(6)
14,ij = (ūiRγ

µuiR)(L̄jLγµL
j
L) , (C.9)

S
(6)
15,ij = (d̄iRγ

µdiR)(L̄jLγµL
j
L) , S

(6)
16,ij = (ūiRγ

µuiR)(¯̀j
Rγµ`

j
R) , (C.10)

S
(6)
17,ij = (d̄iRγ

µdiR)(¯̀j
Rγµ`

j
R) , (C.11)

while the Higgs-fermion operators can be taken as

S
(6)
18,i = (Q̄iLγ

µτaQiL)(H†i
↔
D
a
µH) , S

(6)
19,i = (Q̄iLγ

µQiL)(H†i
↔
DµH) , (C.12)

S
(6)
20,i = (ūiRγ

µuiR)(H†i
↔
DµH) , S

(6)
21,i = (d̄iRγ

µdiR)(H†i
↔
DµH) , (C.13)

S
(6)
22,i = (L̄iLγ

µτaLiL)(H†i
↔
D
a
µH) , S

(6)
23,i = (L̄iLγ

µLiL)(H†i
↔
DµH) , (C.14)

S
(6)
24,i = (¯̀i

Rγ
µ`iR)(H†i

↔
DµH) . (C.15)

The remaining operator, involving only Higgs fields, is

S
(6)
25 = (H†i

↔
DµH)(H†i

↔
DµH) . (C.16)

The mixing of the SM sector into the DM-SM sector proceeds via penguin insertions.

The nonzero results for the four-fermion operators are, for i = j,

[
γ

(0)
1

]
S
(6)
1...7,ii×Q

(6)
2...4,i

= Yχ



1
6 0 0
14
9 0 0
4
3

2
3 0

−2
3 0 2

3

0 32
9 0

0 −2
3

4
3

0 0 −16
9


,
[
γ

(0)
1

]
S
(6)
12...17,ii×Q

(6)
2...4,i

= Yχ



−2
3 0 0

−2
3 0 0

0 −2
3 0

0 0 −2
3

0 −2
3 0

0 0 −2
3


,

(C.17)
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for mixing into operators with quark currents, and

[
γ

(0)
1

]
S
(6)
8...10,ii×Q

(6)
10,11,i

= Yχ

−2 0

−2
3 −2

3

0 −8
3

 ,
[
γ

(0)
1

]
S
(6)
12...17,ii×Q

(6)
10,11,i

= Yχ



2
3 0

0 2
3

4
3 0

−2
3 0

0 4
3

0 −2
3


. (C.18)

for mixing into operators with lepton currents.

The mixing proportional to g2 has only a few non-vanishing entries, given by[
γ

(0)
2

]
S
(6)
1,iiQ

(6)
1,i

=
10

3
,

[
γ

(0)
2

]
S
(6)
2,iiQ

(6)
1,i

=
[
γ

(0)
2

]
S
(6)
8,iiQ

(6)
9,i

=
8

3
,[

γ
(0)
2

]
S
(6)
11,iiQ

(6)
1,i

=
2

3
,

[
γ

(0)
2

]
S
(6)
11,iiQ

(6)
9,i

= 2 .

(C.19)

All the other entries are zero.

The result for i 6= j are (note that the order of the flavor indices matters, except when

the operator is symmetric in i and j)[
γ

(0)
1

]
S
(6)
2...4,ij×Q

(6)
2,i

= Yχ

(
2

3
,

4

3
,−2

3

)
, (C.20)

[
γ

(0)
1

]
S
(6)
8...10,ij×Q

(6)
10...11,i

=
[
γ

(0)
1

]
S
(6)
12...14,ij×Q

(6)
2...3,i

= Yχ

−2
3 0

−2
3 0

0 −2
3

 , (C.21)

as well as

[
γ

(0)
1

]
S
(6)
5...7,ij×Q

(6)
3...4,i

= Yχ

 4
3 0

−2
3 0

0 −2
3

 ,
[
γ

(0)
1

]
S
(6)
15...17,ij×Q

(6)
3...4,i

= Yχ

 0 −2
3

−2
3 0

0 −2
3

 , (C.22)

[
γ

(0)
1

]
S
(6)
3...6,ji×Q

(6)
3...4,i

= Yχ


2
3 0

0 2
3

4
3 0

0 4
3

 ,
[
γ

(0)
1

]
S
(6)
14...17,ji×Q

(6)
10...11,i

= Yχ


4
3 0

−2
3 0

0 4
3

0 −2
3

 , (C.23)

and[
γ

(0)
1

]
S
(6)
9,ji×Q

(6)
11,i

= −2Yχ
3

,
[
γ

(0)
1

]
S
(6)
12...13,ji×Q

(6)
10...11,i

= Yχ diag

(
2

3
,

2

3

)
, (C.24)[

γ
(0)
2

]
S
(6)
1,ijQ

(6)
1,i

=
[
γ

(0)
2

]
S
(6)
11,jiQ

(6)
9,i

= 2 ,
[
γ

(0)
2

]
S
(6)
11,ijQ

(6)
1,i

=
2

3
. (C.25)

All the other entries are zero.

The nonzero mixings of the operators involving Higgs currents are given by[
γ

(0)
2

]
S
(6)
18,iQ

(6)
1,i

=
[
γ

(0)
2

]
S
(6)
22,iQ

(6)
9,i

=
1

3
,

[
γ

(0)
2

]
S
(6)
18,iQ

(6)
15

= 2 , (C.26)[
γ

(0)
2

]
S
(6)
22,iQ

(6)
15

=
2

3
,

[
γ

(0)
2

]
S
(6)
25 Q

(6)
15

=
2

3
, (C.27)
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as well as by [
γ

(0)
1

]
S
(6)
19,i···S

(6)
21,i×Q

(6)
2,i ···Q

(6)
4,i

=
1

3
Yχ diag

(
1, 1, 1

)
, (C.28)[

γ
(0)
1

]
S
(6)
23,i,S

(6)
24,i×Q

(6)
10,i,Q

(6)
11,i

=
1

3
Yχ diag

(
1, 1
)
, (C.29)[

γ
(0)
2

]
S
(6)
18,iQ

(6)
1,i

=
[
γ

(0)
2

]
S
(6)
22,iQ

(6)
9,i

=
1

3
, (C.30)

and [
γ

(0)
1

]
S
(6)
19,iQ

(6)
16

=
2

3
Yχ ,

[
γ

(0)
1

]
S
(6)
20,iQ

(6)
16

=
4

3
Yχ ,

[
γ

(0)
1

]
S
(6)
21,iQ

(6)
16

= −2

3
Yχ , (C.31)

[
γ

(0)
1

]
S
(6)
23,iQ

(6)
16

=
[
γ

(0)
1

]
S
(6)
24,iQ

(6)
16

= −2

3
Yχ ,

[
γ

(0)
1

]
S
(6)
25 Q

(6)
16

=
5

6
Yχ . (C.32)

All the other entries vanish.

The mixing of the DM-SM sector into the SM sector also proceeds only via penguin in-

sertions. The SM four fermion operators in eqs. (C.2)–(C.11) carry two generation indices,

where the order of the indices is important. First, we present the anomalous dimensions

proportional to g2
1. The mixing of Q

(6)
2,i -Q

(6)
4,i into S

(6)
2,ij-S

(6)
7,ij is given by

[
γ

(0)
1

]
Q

(6)
2,i ,S

(6)
2,ij

=
[
γ

(0)
1

]
Q

(6)
3,i ,S

(6)
3,ji

=
[
γ

(0)
1

]
Q

(6)
4,i ,S

(6)
4,ji

=
2

9
Yχdχ , (C.33)[

γ
(0)
1

]
Q

(6)
2,i ,S

(6)
3,ij

=
[
γ

(0)
1

]
Q

(6)
3,i ,S

(6)
5,ij

=
[
γ

(0)
1

]
Q

(6)
4,i ,S

(6)
6,ji

=
8

9
Yχdχ , (C.34)[

γ
(0)
1

]
Q

(6)
2,i ,S

(6)
4,ij

=
[
γ

(0)
1

]
Q

(6)
3,i ,S

(6)
6,ij

=
[
γ

(0)
1

]
Q

(6)
4,i ,S

(6)
7,ij

= −4

9
Yχdχ , (C.35)

while the remaining entries are zero. The mixing of Q
(6)
5,i -Q

(6)
18 into S

(6)
1,ij-S

(6)
7,ij vanishes. The

mixing of Q
(6)
2,i -Q

(6)
4,i into S

(6)
12,ij-S

(6)
17,ij is given by

[
γ

(0)
1

]
Q

(6)
2,i ,S

(6)
12,ij

=
[
γ

(0)
1

]
Q

(6)
3,i ,S

(6)
14,ij

=
[
γ

(0)
1

]
Q

(6)
4,i ,S

(6)
15,ij

= −2

3
Yχdχ , (C.36)[

γ
(0)
1

]
Q

(6)
2,i ,S

(6)
13,ij

=
[
γ

(0)
1

]
Q

(6)
3,i ,S

(6)
16,ij

=
[
γ

(0)
1

]
Q

(6)
4,i ,S

(6)
17,ij

= −4

3
Yχdχ . (C.37)

The mixing of Q
(6)
1,i -Q

(6)
4,i into S

(6)
12,ji-S

(6)
17,ji, with reversed indices, vanishes. The mixing of

Q
(6)
1,i -Q

(6)
4,i into S

(6)
19,i-S

(6)
21,i is given by

[
γ

(0)
1

]
Q

(6)
2,i ,S

(6)
19,i

=
[
γ

(0)
1

]
Q

(6)
3,i ,S

(6)
20,i

=
[
γ

(0)
1

]
Q

(6)
4,i ,S

(6)
21,i

=
2

3
Yχdχ . (C.38)

The mixing of Q
(6)
10,i, Q

(6)
11,i into the operators S

(6)
8,ij-S

(6)
10,ij is given by

[
γ

(0)
1

]
Q

(6)
10,i,S

(6)
8,ij

=
[
γ

(0)
1

]
Q

(6)
11,i,S

(6)
9,ji

= −2

3
Yχdχ , (C.39)[

γ
(0)
1

]
Q

(6)
10,i,S

(6)
9,ij

=
[
γ

(0)
1

]
Q

(6)
11,i,S

(6)
10,ij

= −4

3
Yχdχ . (C.40)
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The mixing of Q
(6)
10,i, Q

(6)
11,i into the operators S

(6)
12,ij-S

(6)
17,ij is given by

[
γ

(0)
1

]
Q

(6)
10,i,S

(6)
12,ji

=
[
γ

(0)
1

]
Q

(6)
11,i,S

(6)
13,ji

=
2

9
Yχdχ , (C.41)[

γ
(0)
1

]
Q

(6)
10,i,S

(6)
14,ji

=
[
γ

(0)
1

]
Q

(6)
11,i,S

(6)
16,ji

=
8

9
Yχdχ , (C.42)[

γ
(0)
1

]
Q

(6)
10,i,S

(6)
15,ji

=
[
γ

(0)
1

]
Q

(6)
11,i,S

(6)
17,ji

= −4

9
Yχdχ , (C.43)

whereas the mixing Q
(6)
10,i, Q

(6)
11,i into the operators S

(6)
12,ij-S

(6)
17,ij vanishes. The mixing of

Q
(6)
10,i, Q

(6)
11,i into the operators S

(6)
23,i, S

(6)
24,i is given by

[
γ

(0)
1

]
Q

(6)
10,iS

(6)
23,i

=
[
γ

(0)
1

]
Q

(6)
11,iS

(6)
24,i

=
2

3
Yχdχ . (C.44)

The mixing of Higgs-DM into SM is given by[
γ

(0)
1

]
Q

(6)
16,i×S

(6)
19,i···S

(6)
25,i

= Yχdχ

(
2
9

8
9 −4

9 0 −2
3 −4

3
2
3

)
. (C.45)

The mixing proportional to g2 has only a few non-vanishing entries, given by[
γ

(0)
2

]
Q

(6)
1,iS

(6)
1,ij

=
[
γ

(0)
2

]
Q

(6)
1,iS

(6)
11,ij

=
[
γ

(0)
2

]
Q

(6)
1,iS

(6)
18,ij

=
[
γ

(0)
2

]
Q

(6)
9,iS

(6)
11,ij

=
[
γ

(0)
2

]
Q

(6)
9,iS

(6)
22,i

=
[
γ

(0)
2

]
Q

(6)
15 S

(6)
18,i

=
[
γ

(0)
2

]
Q

(6)
15 S

(6)
22,i

=
8

9
Jχdχ ,

(C.46)

[
γ

(0)
2

]
Q

(6)
9,iS

(6)
8,ij

=
[
γ

(0)
2

]
Q

(6)
15 S

(6)
25

=
2

9
Jχdχ . (C.47)

Again, all the undisplayed entries vanish. The mixing of the SM operators among them-

selves can be taken from the literature [104–106].

D Mixing in the dark sector

In this appendix we provide the results for the mixing of the operators in the SM-DM

sector into the pure DM operators. We write the dimension-six effective Lagrangian as

L =
∑
a

C
dm,(6)
a

Λ2
S(6)
a , (D.1)

where the relevant operators are given in eq. (2.18) (recall that we neglect the mixing of

operators within the dark sector).

The mixing of DM-SM operators into DM operators is given by

[
γ

(0)
1

]
Q

(6)
2...4,i×D

(6)
1

=
[
γ

(0)
1

]
Q

(6)
6...8,i×D

(6)
2

= Yχ

 2
3
4
3

−2
3

 , (D.2)

[
γ

(0)
1

]
Q

(6)
10,11,i×D

(6)
1

=
[
γ

(0)
1

]
Q

(6)
13,14,i×D

(6)
2

= Yχ

(
−2

3

−2
3

)
, (D.3)
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[
γ

(0)
1

]
Q

(6)
16 ×D

(6)
1

=
[
γ

(0)
1

]
Q

(6)
18 ×D

(6)
2

=
1

3
Yχ , (D.4)

and [
γ

(0)
2

]
Q

(6)
1,iD

(6)
3

=
[
γ

(0)
2

]
Q

(6)
5,iD

(6)
4

= 2 , (D.5)[
γ

(0)
2

]
Q

(6)
9,iD

(6)
3

=
[
γ

(0)
2

]
Q

(6)
12,iD

(6)
4

=
2

3
, (D.6)[

γ
(0)
2

]
Q

(6)
15 D

(6)
3

=
[
γ

(0)
2

]
Q

(6)
17 D

(6)
4

=
1

3
, (D.7)

while the mixing of the DM operators into the DM-SM sector is given by

[
γ

(0)
1

]
D

(6)
1 ···D

(6)
4 ×Q

(6)
1,i ···Q

(6)
4,i

= Yχ


0 2

9 + 4
9dχ

8
9 + 16

9 dχ −4
9 − 8

9dχ
0 0 0 0

0 2
9Jχ 8

9Jχ −4
9Jχ

0 0 0 0

 , (D.8)

[
γ

(0)
1

]
D

(6)
1 ···D

(6)
4 ×Q

(6)
5,i ···Q

(6)
8,i

= Yχ


0 0 0 0

0 2
9 + 2

9dχ
8
9 + 8

9dχ −4
9 − 4

9dχ
0 0 0 0

0 2
9Jχ 8

9Jχ −4
9Jχ

 , (D.9)

[
γ

(0)
1

]
D

(6)
1 ···D

(6)
4 ×Q

(6)
9,i ···Q

(6)
14,i

= Yχ


0 −2

3 − 4
3dχ −4

3 − 8
3dχ 0 0 0

0 0 0 0 −2
3 − 2

3dχ −4
3 − 4

3dχ
0 −2

3Jχ −4
3Jχ 0 0 0

0 0 0 0 −2
3Jχ −4

3Jχ

 ,

(D.10)

[
γ

(0)
1

]
D

(6)
1 ···D

(6)
4 ×Q

(6)
15 ···Q

(6)
18

= Yχ


0 2

3 + 4
3dχ 0 0

0 0 0 2
3 + 2

3dχ
0 2

3Jχ 0 0

0 0 0 2
3Jχ

 , (D.11)

and [
γ

(0)
2

]
D

(6)
1 Q

(6)
1,i

=
[
γ

(0)
2

]
D

(6)
2 Q

(6)
5,i

=
[
γ

(0)
2

]
D

(6)
1 Q

(6)
9,i

=
[
γ

(0)
2

]
D

(6)
2 Q

(6)
12,i

(D.12)

=
[
γ

(0)
2

]
D

(6)
1 Q

(6)
15

=
[
γ

(0)
2

]
D

(6)
2 Q

(6)
17

=
8

3
, (D.13)[

γ
(0)
2

]
D

(6)
3 Q

(6)
1,i

=
[
γ

(0)
2

]
D

(6)
3 Q

(6)
9,i

=
[
γ

(0)
2

]
D

(6)
3 Q

(6)
15

=

(
8

3
+

16

9
dχ

)
Jχ −

8

3
, (D.14)

[
γ

(0)
2

]
D

(6)
4 Q

(6)
5,i

=
[
γ

(0)
2

]
D

(6)
4 Q

(6)
12,i

=
[
γ

(0)
2

]
D

(6)
4 Q

(6)
17

=

(
8

3
+

8

9
dχ

)
Jχ −

8

3
. (D.15)

All non-displayed entries vanish.

E Unphysical operators

We extract the anomalous dimensions by renormalizing off-shell Greens functions in d =

4 − 2ε dimensions. In the intermediate stages of the computation it is thus necessary to

introduce unphysical operators.
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E.1 Evanescent operators

The one-loop mixing among the “physical” operators is not affected by the definition of

evanescent operators, i.e., operators that are required to project one-loop Green’s functions

in d = 4 − 2ε dimensions but vanish in d = 4. Nevertheless, for completeness and future

reference we list below the ones we used for the one-loop computations. The evanescent

operators with quark fields are chosen as

E
(6)
1,i = (χ̄γµγνγρτ̃

aχ)(Q̄iLγ
µγνγρτaQiL)− 10Q

(6)
1,i + 6Q

(6)
5,i , (E.1)

E
(6)
2,i = (χ̄γµγνγργ5τ̃

aχ)(Q̄iLγ
µγνγρτaQiL) + 6Q

(6)
1,i − 10Q

(6)
5,i , (E.2)

E
(6)
3,i = (χ̄γµγνγρχ)(Q̄iLγ

µγνγρQiL)− 10Q
(6)
2,i + 6Q

(6)
6,i , (E.3)

E
(6)
4,i = (χ̄γµγνγργ5χ)(Q̄iLγ

µγνγρQiL) + 6Q
(6)
2,i − 10Q

(6)
6,i , (E.4)

E
(6)
5,i = (χ̄γµγνγρχ)(ūiRγ

µγνγρuiR)− 10Q
(6)
3,i − 6Q

(6)
7,i , (E.5)

E
(6)
6,i = (χ̄γµγνγργ5χ)(ūiRγ

µγνγρuiR)− 6Q
(6)
3,i − 10Q

(6)
7,i , (E.6)

E
(6)
7,i = (χ̄γµγνγρχ)(d̄iRγ

µγνγρdiR)− 10Q
(6)
4,i − 6Q

(6)
8,i , (E.7)

E
(6)
8,i = (χ̄γµγνγργ5χ)(d̄iRγ

µγνγρdiR)− 6Q
(6)
4,i − 10Q

(6)
8,i , (E.8)

while the evanescent operators involving lepton fields are

E
(6)
9,i = (χ̄γµγνγρτ̃

aχ)(L̄iLγ
µγνγρτaLiL)− 10Q

(6)
9,i + 6Q

(6)
12,i , (E.9)

E
(6)
10,i = (χ̄γµγνγργ5τ̃

aχ)(L̄iLγ
µγνγρτaLiL) + 6Q

(6)
9,i − 10Q

(6)
12,i , (E.10)

E
(6)
11,i = (χ̄γµγνγρχ)(L̄iLγ

µγνγρLiL)− 10Q
(6)
10,i + 6Q

(6)
13,i , (E.11)

E
(6)
12,i = (χ̄γµγνγργ5χ)(L̄iLγ

µγνγρLiL) + 6Q
(6)
10,i − 10Q

(6)
13,i , (E.12)

E
(6)
13,i = (χ̄γµγνγρχ)(¯̀i

Rγ
µγνγρ`iR)− 10Q

(6)
11,i − 6Q

(6)
14,i , (E.13)

E
(6)
14,i = (χ̄γµγνγργ5χ)(¯̀i

Rγ
µγνγρ`iR)− 6Q

(6)
11,i − 10Q

(6)
14,i . (E.14)

E.2 EOM — Vanishing operators

The equations of motion (EOM) for the W and B gauge-boson field are, in our conventions,

DνW a
νµ ≡ (∂νδab − g2ε

abcW ν,c)W b
νµ = −g2

∑
ψ

ψ̄τ̃aγµψ − ig2H
†
↔
Da
µ H, (E.15)

and

DνBνµ ≡ ∂νBνµ = g1

∑
ψ

Y

2
ψ̄γµψ + i

g1

2
H†

↔
Dµ H , (E.16)

up to gauge-fixing and ghost terms (see ref. [107] for a more detailed discussion of the EOM

in effective theories.). The sum is over all active fermion fields.
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The following operators vanish via the EOM of the gauge fields; they contribute to the

same amplitudes as the physical four-fermion operators. Therefore, the mixing of physical

operators into the EOM-vanishing operators (computed from penguin diagrams) affects

the anomalous dimensions of four-fermion operators. There are four operators involving

DM currents,

P
(6)
1 =

1

g2
(χ̄γµτ̃

aχ)DνW
a,νµ +

∑
i

(
Q

(6)
1,i +Q

(6)
9,i

)
+Q

(6)
15 +D

(6)
3 , (E.17)

P
(6)
2 =

1

g1
(χ̄γµχ)DνB

νµ

−
∑
i

(
1

6
Q

(6)
2,i +

2

3
Q

(6)
3,i −

1

3
Q

(6)
4,i −

1

2
Q

(6)
10,i −Q

(6)
11,i

)
− 1

2
Q

(6)
16 −

Yχ
2
D

(6)
1 ,

(E.18)

P
(6)
3 =

1

g2
(χ̄γµγ5τ̃

aχ)DνW
a,νµ +

∑
i

(
Q

(6)
5,i +Q

(6)
12,i

)
+Q

(6)
17 +D

(6)
4 , (E.19)

P
(6)
4 =

1

g1
(χ̄γµγ5χ)DνB

νµ

−
∑
i

(
1

6
Q

(6)
6,i +

2

3
Q

(6)
7,i −

1

3
Q

(6)
8,i −

1

2
Q

(6)
13,i −Q

(6)
14,i

)
− 1

2
Q

(6)
18 −

Yχ
2
D

(6)
2 ,

(E.20)

four operators involving quark currents,

P
(6)
5,i =

1

g2
(Q̄iLγ

µτ̃aQiL)DνW
a,νµ +Q

(6)
1,i +

∑
j

(
S

(6)
1,ij + S

(6)
11,ij

)
+ S

(6)
18,i , (E.21)

P
(6)
6,i =

1

g1
(Q̄iLγ

µQiL)DνB
νµ − Yχ

2
Q

(6)
2,i

−
∑
j

(
1

6
S

(6)
2,ij +

2

3
S

(6)
3,ij −

1

3
S

(6)
4,ij −

1

2
S

(6)
12,ij − S

(6)
13,ij

)
− 1

2
S

(6)
19,i ,

(E.22)

P
(6)
7,i =

1

g1
(ūiRγ

µuiR)DνB
νµ − Yχ

2
Q

(6)
3,i

−
∑
j

(
1

6
S

(6)
3,ji +

2

3
S

(6)
5,ij −

1

3
S

(6)
6,ij −

1

2
S

(6)
14,ij − S

(6)
16,ij

)
− 1

2
S

(6)
20,i ,

(E.23)

P
(6)
8,i =

1

g1
(d̄iRγ

µdiR)DνB
νµ − Yχ

2
Q

(6)
4,i

−
∑
j

(
1

6
S

(6)
4,ji +

2

3
S

(6)
6,ji −

1

3
S

(6)
7,ij −

1

2
S

(6)
15,ij − S

(6)
17,ij

)
− 1

2
S

(6)
21,i ,

(E.24)

two operators involving Higgs currents,

P
(6)
9 =

1

g2
[H†i

↔
D
a
µH]DνW

a,νµ +Q
(6)
15 +

∑
i

(
S

(6)
18,i + S

(6)
22,i

)
+

1

4
S

(6)
25 , (E.25)

P
(6)
10 =

1

g1
(H†i

↔
DµH)DνB

νµ − Yχ
2
Q

(6)
16

−
∑
i

(
1

6
S

(6)
19,i +

2

3
S

(6)
20,i −

1

3
S

(6)
21,i −

1

2
S

(6)
23,i − S

(6)
24,i

)
− 1

2
S

(6)
25 ,

(E.26)
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and three operators involving lepton currents,

P
(6)
11,i =

1

g2
(L̄iLγ

µτ̃aLiL)DνW
a,νµ +Q

(6)
9,i +

∑
j

(
1

4
S

(6)
8,ij + S

(6)
11,ji

)
+ S

(6)
22,i , (E.27)

P
(6)
12,i =

1

g1
(L̄iLγ

µLiL)DνB
νµ − Yχ

2
Q

(6)
10,i

−
∑
j

(
1

6
S

(6)
12,ji +

2

3
S

(6)
14,ji −

1

3
S

(6)
15,ji −

1

2
S

(6)
8,ij − S

(6)
9,ij

)
− 1

2
S

(6)
23,i ,

(E.28)

P
(6)
13,i =

1

g1
(¯̀i
Rγ

µ`iR)DνB
νµ − Yχ

2
Q

(6)
11,i

−
∑
j

(
1

6
S

(6)
13,ji +

2

3
S

(6)
16,ji −

1

3
S

(6)
17,ji −

1

2
S

(6)
9,ji − S

(6)
10,ij

)
− 1

2
S

(6)
24,i .

(E.29)

Several additional operators, vanishing due to the EOM for the DM fields, are needed

to project all one-loop Greens functions with insertions of the operators in eqs. (2.5), (2.7)

and eqs. (2.16), (2.17), respectively: two dimension-five operators,

P
(5)
1 = χ̄ /D /Dχ , P

(5)
2 = χ̄ /D /Diγ5χ , (E.30)

and eight dimension-six operators,

P
(6)
14 = (χ̄τ̃ai /Dχ)(H†τaH) , P

(6)
15 = (χ̄i /

←
D
†τ̃aχ)(H†τaH) , (E.31)

P
(6)
16 = (χ̄i /Dχ)(H†H) , P

(6)
17 = (χ̄i /

←
D
†χ)(H†H) , (E.32)

P
(6)
18 = (χ̄τ̃ai /Dγ5χ)(H†τaH) , P

(6)
19 = (χ̄i /

←
D
†γ5τ̃

aχ)(H†τaH) , (E.33)

P
(6)
20 = (χ̄i /Dγ5χ)(H†H) , P

(6)
21 = (χ̄i /

←
D
†γ5χ)(H†H) . (E.34)
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