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1 Introduction

String theory, in the ground-breaking works of Strominger and Vafa [1], has demonstrated

its viability as a theory of quantum gravity by providing a microscopic interpretation for

the macroscopic entropy of certain black holes. A similar microscopic explanation for

asymptotically AdS black holes has long been an important open problem. The AdS/CFT

correspondence [2–4] provides us with some insights into black hole puzzles by identifying

a gravity theory in asymptotically AdS spacetimes with a field theory on the boundary. It,

therefore, implicitly answers questions such as the information paradox via a unitary field

theory; we would like to know the answers explicitly.

The breakthrough occurred first for magnetically charged asymptotically AdS4 black

holes [5]. Benini, Hristov and Zaffaroni studied the topologically twisted index of the dual

ABJM theory on the boundary, and found that at the leading order it matches exactly
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the black hole entropy of AdS4 magnetically charged STU black holes after a Legendre

transformation. Since then many more cases and generalizations have been considered [6–

17] including incursions into sub-leading corrections [18–25].

For the asymptotically AdS5 case, using the superconformal index of N = 4 super-

Yang-Mills (SYM) theory on the boundary, some attempts of reproducing the AdS5 black

hole entropy via the AdS/CFT correspondence have been made [26], but the results did

not quite match the ones from the gravity side.

Recently, it was first found, on the gravity side, that the entropies of 1/16-BPS AdS5
electrically charged black holes [27–32] can be obtained by extremizing an entropy func-

tion [33], which has the same functional form as the supersymmetric Casimir energy of N =

4 SYM first studied in [34]. Several groups have now independently reproduced the entropy

function by studying the partition function or the superconformal index ofN = 4 SYM [35–

37] by slightly reinterpreting the original work in the superconformal index [26]. Further

extensions for the general growth of the N = 1 superconformal index [38–42] including via

the Bethe-Ansatz approach [43, 44] have been achieved. After this important progress, the

generalizations to other dimensions were also considered. For instance, the BPS AdS6 and

AdS4 black hole entropy functions have been studied on the gravity side in [45, 46], and

computed from the microscopic theories using the superconformal index [47–50]. Similarly,

the BPS AdS7 black hole entropy obtained from gravity [51] was also reproduced recently

using dual field theory partition function [52] and superconformal index [53]. By turning

on temperature or breaking the BPS constraint, the near-BPS AdS5 black hole entropy was

also computed both on the gravity side and from the microscopic field-theoretic side [54].

Although a lot of progress has been made towards the understanding of AdS black hole

entropies in various dimensions, most of the recent works are based on the study of super-

conformal indices, which are essentially computations done in the free field theory limit.

Hence, the results obtained in this way capture only perturbative information, and are

probably only reliable at the leading order. In order to go beyond the perturbative results

at the leading order, we need some exact non-perturbative approaches, and supersymmet-

ric localization is such a tool. Among the recent progress, it was first introduced in [35]

that the physical partition function of N = 4 SYM without a topological twist can be

computed on certain complex backgrounds using supersymmetric localization. The result

was used to obtain the BPS AdS5 black hole entropy function. In this paper, we extend

this idea to the BPS AdS4 black hole case by computing the exact partition function of 3d

ABJM theory on an appropriate curved background geometry that includes complexified

background fields. The result matches the BPS AdS4 entropy function from the grav-

ity side [45]. Similarly and alternatively to [48] our computation provides a microscopic

foundation for the Bekenstein-Hawking entropy of such black holes.

The first technical difficulty is the construction of the field theory on a curved back-

ground including complexified background fields on which the field theory can be defined

in a supersymmetric way. The systematic approach to this problem was formulated in the

work of Festuccia and Seiberg [55] who starting from a supergravity theory took a rigid

limit leading to supersymmetric field theories on curved spaces. This general approach was

explicitly applied to 3-dimensional curved spaces [56], and some specific complex back-
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grounds were constructed in [57] in order to produce the partition functions of 3d N = 2

Chern-Simons-matter theories on squashed S3, elucidating a previous puzzle regarding two

theories with the same supersymmetry but with different partition functions on the same

curved space as obtained in [58, 59].

In this paper, we apply the same technique of [57] to the boundary of rotating electri-

cally charged supersymmetric AdS4 black holes, which is a round S2 fibered over a circle,

S1, and described by the metric

ds2 = dτ2 + L2
[
dθ2 + sin2θ (dϕ− iΩdτ)2

]
. (1.1)

By appropriately turning on some complex background fields, we find that there exist

Killing spinors with anti-periodic boundary conditions along the circle S1 which is a re-

quirement for supersymmetric localization. The background is characterized by the chem-

ical potential Ω for the angular momentum and the electric potential Φ, both of which are

in general complex-valued, and there is a constraint between Ω and Φ in order to preserve

some supercharges. Using some supercharges on this background, we apply supersymmet-

ric localization techniques to compute the partition function of 3d N = 2 Chern-Simons-

matter theories. To address the ABJM theory we lift the degeneracy from LΦ to ∆I/2

(I = 1, · · · , 4) by turning on chemical potentials for the flavor symmetry. We study the

large-N limit of the free energy of the ABJM theory and show that if one additionally

restricts to a Cardy-like limit (|ω| ≡ |LΩ| ≪ 1), the large-N free energy has the expression:

F ≃ 2
√
2 i k

1

2N
3

2

3

√
∆1∆2∆3∆4

ω
, (1.2)

which precisely reproduces the entropy function of the rotating electrically charged BPS

AdS4 black holes [45, 46]. Our microscopic derivation is based on an approach quite

different from [48] whose starting point is the superconformal index.

The manuscript is organized as follows. In section 2 we describe the general setup which

includes a curved three-dimensional metric as well as complex background fields, in a man-

ner that admits certain amount of supersymmetry and Killing spinors with anti-periodic

boundary condition along S1. In that section we also briefly review the supersymmetric

gauge theories that can be defined on the constructed backgrounds. In section 3 the parti-

tion function of 3d N = 2 gauge theories are computed using supersymmetric localization.

Various details of the general computation are presented and we discuss the ABJM theory

as an explicit case. In section 4 we compute the free energy in the large-N and further

take a Cardy-like limit. In section 5 we demonstrate that the free energy of the ABJM

theory in that large-N and a Cardy-like limit reproduces the Bekenstein-Hawking entropy

of rotating electrically charged supersymmetric AdS4 black hole, thus providing a counting

of microstates via the AdS/CFT correspondence. A discussion, including prospects for

future research, is presented in section 6. Some conventions of spinors are summarized in

appendix A, useful identities of special functions are listed in appendix B.
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2 3d N = 2 SUSY theories on curved spaces

2.1 Supersymmetry with background fields

An important requisite for supersymmetric localization is to establish supersymmetry on

the given curved background. The term curved background not only refers to the metric

but to the set of auxiliary background fields involved.

The case we are mainly interested in has the following metric:

ds2 = dτ2 + L2
[
dθ2 + sin2θ (dϕ− iΩdτ)2

]
, (2.1)

where τ is a coordinate with period L, that is,

τ ∼ τ + L . (2.2)

We choose the period of S1 and the radius of S2 to be both L.

We can rewrite the metric as

ds2 = f2(dχ2 + adz2 + ādz̄2) + c2dzdz̄ , (2.3)

where z and z̄ denote the complex coordinates on the sphere S2. More precisely,

z = tan
θ

2
ei(ϕ−iΩτ) , (2.4)

χ = τ , (2.5)

and the factors in the metric (2.3) are chosen to be

f = 1 , (2.6)

a = 0 , (2.7)

c =
2L

eΩτ + e−Ωτ |z|2 . (2.8)

For later convenience, we also define another set of coordinates:

τ̃ ≡ τ , (2.9)

θ̃ ≡ θ , (2.10)

ϕ̃ ≡ ϕ− iΩτ . (2.11)

In these new coordinates the metric (2.1) becomes

ds2 = dτ̃2 + L2
[
dθ̃2 + sin2θ dϕ̃2

]
, (2.12)

showing its local equivalence to the standard metric on S1×S2. Globally, the difference is

encoded in the identifications of the coordinates.

One systematic approach to establishing supersymmetry for field theories in curved

backgrounds is to start with a supergravity theory and then consider its rigid limit [55].
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Following closely the discussion in ref. [56] which is rooted in the minimal gauged super-

gravity in three dimensions, one can construct two conserved supercharges satisfying the

following Killing spinor equations stemming from the gravitino variations:

(∇µ − iAµ)ζ = −1

2
Hγµζ − iVµζ −

1

2
ǫµνρV

νγρζ , (2.13)

(∇µ + iAµ)ζ̃ = −1

2
Hγµζ̃ + iVµζ̃ +

1

2
ǫµνρV

νγρζ̃ , (2.14)

where

ζα =
√
s

(
1

0

)
, ζα =

√
s

(
0

−1

)
. (2.15)

ζ̃α =
1√
s

(
0

1

)
, ζ̃α =

1√
s

(
1

0

)
, (2.16)

H = iκ , (2.17)

where κ is a constant. In the frame

e1 = dτ , ez ≡ e2 + ie3 = c dz , ez̄ ≡ e2 − ie3 = c dz̄, (2.18)

with c given by (2.8), the other background gauge fields can also be obtained to be

V1 = κ , (2.19)

V2 = 0 , (2.20)

V3 = 0 , (2.21)

A1 = − i

2
∂τ log s+

3

2
κ , (2.22)

A2 =
i

2c
∂z log

c

s
− i

2c
∂z̄ log(cs) , (2.23)

A3 = − 1

2c
∂z log

c

s
− 1

2c
∂z̄ log(cs) , (2.24)

where s(τ, z, z̄) is an arbitrary function which in this paper is chosen to be

s = e−8τΦ . (2.25)

With this choice, we can express the background gauge fields (2.22)–(2.24) more explicitly

as:

A1 = 4iΦ+
3

2
κ , (2.26)

A2 =
i

4
e−Ωτ (z − z̄) , (2.27)

A3 =
1

4
e−Ωτ (z + z̄) . (2.28)
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Following the same approach as in [57], we find that the explicit expressions of A2 and

A3 will be irrelevant for the following calculations, and the expression showing up in the

final result of localization is the following combination:

A1 −
1

2
V1 + iH = 4iΦ . (2.29)

This a key ingredient in our construction because the nature of the background fields

determines the asymptotic field on the gravity dual. More precisely, the background fields

determine the electric potential and the chemical potential for the angular momentum of

the AdS4 black hole.

It was shown in ref. [57] that one can introduce an additional rotation of the Killing

spinors with a parameter Θ while keeping the Killing spinor equations (2.13)–(2.14) invari-

ant:

ζ → eiγ1Θζ , ζ̃ → eiγ1Θζ̃ . (2.30)

For the Killing spinor equations (2.13)–(2.14) to still hold, we choose

Θ = −iτΩ , (2.31)

and at the same time we also fix the constant

κ = −2iΩ . (2.32)

The two Killing spinor equations (2.13) and (2.14) can be combined into one equation:

(∇µ − iAµγ1)ξ = −1

2
Hγµξ − iVµγ1ξ +

i

2
V νγµνγ1ξ , (2.33)

where a general solution ξα to this equation takes the form:

ξα = uζα + vζ̃α =

(
u eτ(Ω−4Φ)

v e−τ(Ω−4Φ)

)
(2.34)

with two complex constants u and v. If we require the anti-periodic boundary condition

along S1, then the Killing spinor ξ should obey

τ → τ + L ⇒ ξ → −ξ , (2.35)

which leads to the constraint

eL(Ω−4Φ) = −1 ⇔ L(4Φ− Ω) = πi (mod 2πi) . (2.36)

For simplicity, we consider u = v = 1. Hence, in the following ξ takes the form:

ξα =

(
eτ(Ω−4Φ)

e−τ(Ω−4Φ)

)
. (2.37)

Thus, a pair of independent supercharges with anti-periodic boundary conditions can be

constructed in the curved space (2.1) with complex background fields and we have fulfill the
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first step for supersymmetric localization. The amount of supersymmetry in this curved

background matches AdS4 black holes in 4d N = 2 gauged supergravity [60].

As we have seen, the construction of supersymmetry in this subsection is very similar

to [35] albeit in a different dimension. A similar analysis, relevant for AdS7 black holes,

was presented in [52]. The crucial new ingredient in all cases is the inclusion of complex

background fields and, consequently, spinors with anti-periodic boundary conditions along

S1 that do not break supersymmetry completely.

2.2 Review of the 3d N = 2 SUSY theories

Let us briefly review the 3d SUSY theories that can be constructed on a large class of

curved backgrounds following the implementation of rigid supersymmetry in [56]. The

background discussed in the previous section is a special case in this class and thus we can

borrow many of the results obtained in the literature (see, for example, [56] and [57]).

The 3D N = 2 vector multiplet in the Wess-Zumino gauge transforms in the following

way:

δaµ = −i(ζγµλ̃+ ζ̃γµλ) ,

δσ = −ζλ̃+ ζ̃λ ,

δλ = iζ(D + σH)− i

2
εµνργρζfµν − γµ ζ(i∂µσ − Vµσ) ,

δλ̃ = −iζ̃(D + σH)− i

2
εµνργρζ̃fµν + γµ ζ̃(i∂µσ + Vµσ) ,

δD = Dµ(ζγ
µλ̃− ζ̃γµλ)− iVµ(ζγ

µλ̃+ ζ̃γµλ)−H(ζλ̃− ζ̃λ) + ζ[λ̃, σ]− ζ̃[λ, σ] .

(2.38)

The transformations of the chiral and the anti-chiral multiplets are given by

δφ =
√
2ζψ ,

δψ =
√
2ζF −

√
2i(z − qσ − rH)ζ̃φ−

√
2iγµζ̃Dµφ ,

δF =
√
2i(z − qσ − (r − 2)H)ζ̃ψ + 2iqφζ̃λ̃−

√
2iDµ(ζ̃γ

µψ) ,

δφ̃ = −
√
2ζ̃ψ̃ ,

δψ̃ =
√
2ζ̃F̃ +

√
2i(z − qσ − rH)ζφ̃+

√
2iγµζDµφ̃ ,

δF̃ =
√
2i(z − qσ − (r − 2)H)ζψ̃ + 2iqφ̃ζλ−

√
2iDµ(ζγ

µψ̃) ,

(2.39)

where z, r and q denote, respectively, the central charge, the R-charge and the gauge charge

for the chiral multiplet and

Dµ ≡ ∇µ − ir

(
Aµ − 1

2
Vµ

)
− izCµ − iq[aµ, ·] , (2.40)

where Cµ satisfies

V µ = −iεµνρ∂νCρ . (2.41)

The transformation parameters ζ and ζ̃ satisfy the two Killing spinor equations (2.13) (2.14)

with opposite R-charges respectively. Suppose that ζ and ξ are two transformation param-

eters without tilde, and ζ̃ and ξ̃ are two transformation parameters with tilde. It is checked
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in ref. [56] that the transformations with only parameters with tilde and only parameters

without tilde satisfy the algebra:

{δζ , δξ}ϕ = 0 ,

{δ
ζ̃
, δ

ξ̃
}ϕ = 0 ,

{δζ , δζ̃}ϕ = −2i
(
L′
Kϕ+ ζζ̃(z − rH)ϕ

)
, (2.42)

where ϕ denotes an arbitrary field in the theory, and Kµ ≡ ζγµζ̃ is a Killing vector, while

L′
K is a modified Lie derivative with the local R- and z-transformation

L′
Kϕ ≡ LKϕ− irKµ

(
Aµ − 1

2
Vµ

)
ϕ− izKµCµϕ . (2.43)

Under these supersymmetry transformations, the following Lagrangians are invariant:

1. Fayet-Iliopoulos term (for U(1)-factors of the gauge group):

LFI = ξ(D − aµV
µ − σH) . (2.44)

2. Gauge-Gauge Chern-Simons Lagrangian:

Lgg = Tr

[
kgg
4π

(iεµνρaµ∂νaρ − 2Dσ + 2iλ̃λ)

]
. (2.45)

3. Gauge-R Chern-Simons Lagrangian (for U(1)-factors of the gauge group):

Lgr =
kgr
2π

(
iεµνρaµ∂ν

(
Aρ −

1

2
Vρ

)
−DH +

1

4
σ(R− 2V µVµ − 2H2)

)
. (2.46)

4. Yang-Mills Lagrangian:

LYM = Tr

[
1

4e2
fµνfµν +

1

2e2
∂µσ∂µσ − i

e2
λ̃γµ

(
Dµ +

i

2
Vµ

)
λ− i

e2
λ̃[σ, λ]

+
i

2e2
σεµνρVµfνρ −

1

2e2
V µVµσ

2 − 1

2e2
(D + σH)2 +

i

2e2
Hλ̃λ

]
. (2.47)

5. Matter Lagrangian:

Lmat = D
µφ̃Dµφ− iψ̃γµDµψ − F̃F + q(D + σH)φ̃φ− 2(r − 1)H(z − qσ)φ̃φ

×
(
(z − qσ)2 − r

4
R+

1

2

(
r − 1

2

)
V µVµ + r

(
r − 1

2

)
H2

)
φ̃φ

×
(
z − qσ

(
r − 1

2

)
H

)
iψ̃ψ +

√
2iq(φ̃λψ + φλ̃ψ̃) , (2.48)

where

Dµ ≡ ∇µ − ir

(
Aµ − 1

2
Vµ

)
+ ir0Vµ − izCµ − iq[aµ, ·] . (2.49)
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In principle we could also add a superpotential term to the theory:
∫

d2θW +

∫
d2θ̄ W , (2.50)

which is δ-exact. The superpotential W should be gauge invariant and have R-charge 2,

which imposes contraints on the fields and implicitly affects the final result of the partition

function. In this paper, for simplicity, we do not consider a superpotential term.

3 Partition functions of 3d N = 2 SUSY theories

We localize the 3d theory reviewed in the previous section following the approach intro-

duced in ref. [57], we find that similar steps to those in ref. [57] apply. The partition

function can be expressed as

Z =
1

|W|

∫
drσZclass Z

1−loop
chiral Z1−loop

vec , (3.1)

where |W| denotes the order of the Weyl group associated to the gauge group. The classical

contribution, Zclass, the 1-loop determinants Z1−loop
chiral for the 3d chiral multiplet and Z1−loop

vec

for the 3d vector multiplet can be obtained as follows.

3.1 Saddle-point configurations

Following the standard approach of supersymmetric localization, we can deform the original

theory by adding to the Lagrangian a δ-exact term t δV , where V is chosen to be

V = ψ†δψ + ψ̃†δψ̃ + λ†δλ+ λ̃†δλ̃ . (3.2)

The localization locus follows from

δψ = 0 , δψ̃ = 0 , δλ = 0 , δλ̃ = 0 , (3.3)

which can be directly obtained from the supersymmetry transformations (2.38) and (2.39).

These BPS equations can be written more precisely as follows:
√
2ζF −

√
2i(z − qσ − rH)ζ̃φ−

√
2iγµζ̃Dµφ = 0 , (3.4)

√
2ζ̃F̃ +

√
2i(z − qσ − rH)ζφ̃+

√
2iγµζDµφ̃ = 0 , (3.5)

iζ(D + σH)− i

2
εµνργρζfµν − γµ ζ(i∂µσ − Vµσ) = 0 , (3.6)

−iζ̃(D + σH)− i

2
εµνργρζ̃fµν + γµ ζ̃(i∂µσ + Vµσ) = 0 . (3.7)

We can multiply these equations with ζ and ζ̃ from the left and simplify them using

the spinor bilinears. The resulting equations are some scalar-valued partial differential

equations, and the solutions are

φ = F = φ̃ = F̃ = 0 , (3.8)

σ =
if23
V1

= − m

4ΩL2
, D = −σH =

m

2L2
, (3.9)

a1 = a , f23 =
m

2L2
, (3.10)
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while all the other fields vanishing. Among these solutions, the dynamical gauge fields aµ
have the saddle-point configurations:

a1 = a , a2 =
im(z − z̄) e−Ωτ

4L
, a3 =

m(z + z̄) e−Ωτ

4L
, (3.11)

or equivalently, in the frame (2.18) given by

aτ = a , az = − imz̄ e−Ωτ

2 (eΩτ + |z|2e−Ωτ )
, az̄ =

imz e−Ωτ

2 (eΩτ + |z|2e−Ωτ )
, (3.12)

where a and m are constants, and m takes value in the Cartan subalgebra of the gauge

group, such that

ρ(m) ∈ Z , α(m) ∈ Z (3.13)

with the weight vector ρ in the representation R and the root vector α in the adjoint

representation. The field strength f23 leads to the quantization condition:

1

2π

∫
f23 e

2 ∧ e3 = m , (3.14)

which clarifies explicitly why this is a monopole-type configuration.

3.2 Classical contribution

The classical part of the partition function, Zclass, includes the contributions from LFI ,

Lgg and Lgr. In this paper, we only turn on Lgg, which based on (2.17) (2.32) (3.9) can

be more explicitly expressed as

ZCS,m = exp

(
i

∫
d3x

√
gLgg

)
= exp

(
kgg
4π

∫
d3x

√
g
∑

i

[
m

2
i

4ΩL4
+

iaimi

2L2

])
. (3.15)

Note that we have the standard Chern-Simons contribution of the type a ∧ F which is

linear in the magnetic flux mi but we also have a contribution, coming from the term Dσ

which is quadratic in the flux.

There are two subtle points that we would like to emphasize. First, for the special

curved space given by the metric (2.1) we have to carefully consider the quantization con-

dition of the Chern-Simons level k. As discussed in e.g. [61], for a periodic Euclidean time

S1 the electron wave function transforms as eieω/~, which induces a gauge transformation:

Aµ → Aµ + ∂µω . (3.16)

Consequently, the Chern-Simons level has to satisfy the condition:

~k

e2
∈ Z . (3.17)

In fact, the additional shifts ∼ κ in the background gauge fields V1 (2.19) and A1 (2.22) can

be understood in this way, and the additional rotation of the Killing spinor (2.30) implies

that the wave function of physical spinors along a periodic S1 should be e−τΩL/πℓ, with ℓ

– 10 –
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denoting the effective circumference of S1. In this case, the corresponding Chern-Simons

level obeys
ikggΩL

2π2
∈ Z . (3.18)

For later convenience, let us define an integer-valued new constant k as

k ≡ ikggΩL

2π2
. (3.19)

Therefore,
kgg
4π

=
−iπk

2ΩL
. (3.20)

The second subtle point is that similar to the case of rotating BTZ black holes as

quotients of H3 [62], we should require a modified periodicity condition in order that the

coordinates are regular for ϕ ∈ [0, 2π]:

ϕ ∼ ϕ+ 2π , τ ∼ τ − 2πi

Ω
. (3.21)

Consequently, it will modify the Chern-Simons term by changing the effective circumference

of S1, and the classical contribution from (3.15) becomes

ZCS,m = exp

(
4π3kL

Ω2

∑

i

[
m

2
i

4ΩL4
+

iaimi

2L2

])
. (3.22)

3.3 1-loop determinants

To compute the 1-loop determinants in supersymmetric localization there are various ap-

proaches, for instance, using index theorem or explicit mode expansions. In this paper, we

follow the approach discussed in [57, 58, 63] by considering the unpaired spinors and the

missing spinors, whose contributions to the 1-loop determinants are not canceled by their

superpartners. Although [57] focuses on the squashed S3 as the curved space, the general

results there work for all the curved spaces in the class defined by the metric (2.3) and the

frame (2.18). Hence, in this subsection, we borrow the general results from [57] and apply

them to the case (2.1) studied in this paper. For more details, we refer to [57].

For the 3d chiral multiplet, the 1-loop determinant Z1−loop
chiral is expressed as the quotient

of the eigenvalues of the fermionic and the bosonic operators, M̂ψ and M̂φ, given by

M̂ψ = ie−2ImΘ

[
∇1− i(r−2)

(
A1−

1

2
V1

)
− i(z−qσ)C1−(z−qσ)+(r−2)H

]
, (3.23)

M̂φ= ie−2ImΘ

[
∇1− ir

(
A1−

1

2
V1

)
− i(z−qσ)C1+(z̄−qσ̄)+rH

]
. (3.24)

where we can use the background gauge symmetry of (2.41) to set C1 = 0, and we assume

z and σ to be purely imaginary. For simplicity, we also set the central charge to z = 0 in

the following calculations.

In the frame (2.18), the covariant derivative ∇1 can be expressed as

∇1 = ∇τ̃ − iΩ∇ϕ̃ . (3.25)
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Taking into account the eigenmodes of ∇τ̃ and ∇ϕ̃ given by 2πin0/L and 2im, with the

winding modes on S1 labelled by n0 ∈ Z and the spherical harmonics on S2 labelled by

(j,m) respectively, one can straightforwardly obtain the 1-loop determinant Z1−loop
chiral :

Z1−loop
chiral =

∏

ρ∈R

∏

n0∈Z

∏

j∈ 1

2
N

j∏

m=−j

2πin0 − iLρ(a1) + 2LΩm+ L(r − 2)4Φ + Lρ(σ)

2πin0 − iLρ(a1) + 2LΩm+ Lr4Φ + Lρ(σ)

=
∏

ρ∈R

∏

n0∈Z

∏

j∈ 1

2
N

j∏

m=−j

2πin0 − iLρ(a) + 2LΩm+ Lr4Φ− 2ΩL− ρ(m)
4ΩL

2πin0 − iLρ(a) + 2LΩm+ Lr4Φ− ρ(m)
4ΩL

=
∏

ρ∈R

∏

n0∈Z

∏

j∈ 1

2
N

j∏

m=−j

2πin0 − iLρ(a) + 2LΩ(m− 1) + Lr4Φ− ρ(m)
4ΩL

2πin0 − iLρ(a) + 2LΩm+ Lr4Φ− ρ(m)
4ΩL

=
∏

ρ∈R

∏

n0∈Z

∏

j∈ 1

2
N

2πin0 − iLρ(a) + 2LΩ(−j − 1) + Lr4Φ− ρ(m)
4ΩL

2πin0 − iLρ(a) + 2LΩj + Lr4Φ− ρ(m)
4ΩL

=
∏

ρ∈R

∏

n0∈Z

∏

n1∈N

2πin0 − iLρ(a)− LΩn1 − 2LΩ+ Lr4Φ− ρ(m)
4ΩL

2πin0 − iLρ(a) + LΩn1 + Lr4Φ− ρ(m)
4ΩL

=
∏

ρ∈R

∏

n0∈Z

∏

n1∈N

2πin0 − iLρ(a)− LΩn1 + L(r − 2)4Φ− ρ(m)
4ΩL

2πin0 − iLρ(a) + LΩn1 + Lr4Φ− ρ(m)
4ΩL

, (3.26)

where n1 ≡ 2j, while ρ denotes the weight vector in a representation R of the gauge group,

and we have used the condition (2.36).

For the 3d vector multiplet, we first choose the gauge ∇µAµ = 0. Correspondingly, we

add a gauge fixing term to the Lagrangian:

Lgf = Tr [c̄∇µ∇µc+ b∇µaµ] . (3.27)

After incorporating the cancellation among various modes, it was shown in [57] that the

1-loop determinant Z1−loop
vec can be expressed as the quotient of the eigenvalues of the

fermionic and the bosonic operators, MΦ and MB given by

MΦ = i
[
α(σ) +∇1

]
, (3.28)

MB = i
[
α(σ) +∇1

]
, (3.29)

where Φ and B are spin-0 and spin-1 modes respectively. Similar to the chiral multiplet,

we can also use (3.25) to express the eigenmodes of ∇1 into the eigenmodes of ∇τ̃ and

∇ϕ̃ given by 2πin0/L and 2im, with the winding modes on S1 labelled by n0 ∈ Z and the

spherical harmonics on S2 labelled by (j,m) respectively. Consequently, we obtain 1-loop
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determinant Z1−loop
vec :

Z1−loop
vec =

∏

α∈Adj

∏

n0∈Z

∏

j∈ 1

2
N

j∏

m=−j

2πin0 − iLα(a1) + 2LΩm+ Lα(σ)

2πin0 − iLα(a1) + 2LΩ(m− 1) + Lα(σ)

=
∏

α∈Adj

∏

n0∈Z

∏

j∈ 1

2
N

2πin0 − iLα(a) + 2LΩj − α(m)
4ΩL

2πin0 − iLα(a) + 2LΩ(−j − 1)− α(m)
4ΩL

=
∏

α∈Adj

∏

n0∈Z

∏

n1∈N

2πin0 − iLα(a) + LΩn1 − α(m)
4ΩL

2πin0 − iLα(a)− LΩn1 − 2LΩ− α(m)
4ΩL

=
∏

α∈Adj

∏

n0∈Z

∏

n1∈N

2πin0 − iLα(a) + LΩn1 − α(m)
4ΩL

2πin0 − iLα(a)− LΩn1 − 8LΦ− α(m)
4ΩL

=
∏

α∈Adj

∏

n0∈Z

∏

n1∈N

−2πin0 + iLα(a) + LΩn1 +
α(m)
4ΩL

−2πin0 + iLα(a)− LΩn1 − 8LΦ+ α(m)
4ΩL

=
∏

α∈Adj

∏

n0∈Z

∏

n1∈N

2πin0 − iLα(a)− LΩn1 − α(m)
4ΩL

2πin0 − iLα(a) + LΩn1 + 8LΦ− α(m)
4ΩL

, (3.30)

where n1 ≡ 2j, while α denotes the root vector in the adjoint representation of the gauge

group, and we have used the condition (2.36) as well as the following reflection symmetry

of the expression:

n0 → −n0 , α → −α . (3.31)

Hence, we see that the 1-loop determinant of the vector multiplet can be viewed as the

one of an adjoint chiral multiplet with the R-charge r = 2. Of course, in the above

expression we have omitted a term that eventually cancels with the integration measure

following [35, 63–65] which elaborated on the original treatment in [66].

Similar to ref. [35], we can regularize the infinite products of the 1-loop determinants

using double gamma functions. After a few steps, we find that the infinite products (3.26)

and (3.30) can be regularized as follows:

Z1−loop
chiral =

∏

ρ∈R

Γ2(γ + δ|1, β) · Γ2(1− γ − δ|1,−β)

Γ2(γ − δ|1, β) · Γ2(1− γ + δ|1,−β)
, (3.32)

Z1−loop
vec =

[
Z1−loop
chiral

]
ρ=α∈Adj, r=2

, (3.33)

where Γ2(x|a1, a2) is the double gamma function, and

β ≡ iLΩ

2π
, γ ≡ 2iLΦ

π
, (3.34)

δ ≡ 1

2π

[
− i ρ(m)

4ΩL
+ Lρ(a)− i(r − 1)4LΦ

]
. (3.35)

Due to the constraint (2.36), the parameters β and γ are not independent, instead they

satisfy

γ = β +
2n+ 1

2
(n ∈ Z) . (3.36)
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Using the identity (B.5), we can further rewrite the expression (3.32) as

Z1−loop
chiral =

∏

ρ∈R
e−πi

[
ζ2(0,γ+δ|1,β)−ζ2(0,γ−δ|1,β)

] ∏

k∈N

1− e2πi(γ−δ+kβ)

1− e2πi(γ+δ+kβ)

≡
∏

ρ∈R
e−πiΨ

(
e2πi(γ−δ); e2πiβ

)
∞(

e2πi(γ+δ); e2πiβ
)
∞

, (3.37)

where

Ψ ≡ − δ

β
(1 + β − 2γ) = δ

(
1 +

2n

β

)
(n ∈ Z) , (3.38)

and (a; q)m denotes the q-Pochhammer symbol defined as

(a; q)m ≡
m−1∏

k=0

(1− a qk) . (3.39)

Similarly, the 1-loop determinant for the vector multiplet can be further regularized as

Z1−loop
vec =

[
Z1−loop
chiral

]
ρ=α∈Adj, r=2

=
∏

α∈Adj

[
e−πiΨ

(
e2πi(γ−δ); e2πiβ

)
∞(

e2πi(γ+δ); e2πiβ
)
∞

]

ρ=α, r=2

. (3.40)

3.4 Full partition function

To summarize, we can consider an arbitrary 3d N = 2 supersymmetric gauge theory

defined on the curved background (2.1). Using the supersymmetric localization, we obtain

the exact partition function of the theory given by (3.1):

Z =
1

|W|
∑

m

∫
draZclass Z

1−loop
chiral Z1−loop

vec ,

where the classical contribution Zclass is given only by the Chern-Simons term ZCS,m (3.22),

while the regularized 1-loop determinants Z1−loop
chiral and Z1−loop

vec are given by (3.37)

and (3.40).

3.5 ABJM theory

We now consider the ABJM theory as a special example of the general case discussed in

this section. The ABJM theory is a 3d gauge theory with gauge group U(N)×U(N), whose

Chern-Simons levels are k and −k, respectively [67]. This theory describes the low-energy

effective theory of N M2-branes probing C4/Zk. The R-symmetry group is SO(6) ∼= SU(4).

In 3d N = 2 language, the field content includes 2 vector multiplets of R-charge 2 with the

gauge fields Aµ and Ãµ for U(N)×U(N) respectively, while the matter fields are

CI = (A1, A2, B̄
1̇, B̄2̇) , ΨI = (−ψ2, ψ1, −χ̄2̇, χ̄1̇) , (3.41)

which can be group into 4 chiral multiplets of R-charge 1
2 as

(Aa, ψaα) ∈ (N, N̄) , (Bȧ, χȧα) ∈ (N̄,N) , (3.42)
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fields h1 h2 h3

(A1, A2)
(
1
2 , −1

2

) (
1
2 , −1

2

) (
−1

2 , −1
2

)

(B1̇, B2̇)
(
1
2 , −1

2

) (
−1

2 ,
1
2

) (
−1

2 , −1
2

)

(ψ1±, ψ2±)
(
1
2 , −1

2

) (
1
2 , −1

2

) (
1
2 ,

1
2

)

(χ1̇±, χ2̇±)
(
1
2 , −1

2

) (
−1

2 ,
1
2

) (
1
2 ,

1
2

)

Aµ, Ãµ 0 0 0

λ±, λ̃± 0 0 −1

σ, σ̃ 0 0 0

Q± 0 0 1

S± 0 0 −1

Table 1. Charges (h1, h2, h3) of the fields.

where a = 1, 2 and ȧ = 1̇, 2̇ are double indices of SU(2)× SU(2) ⊂ SU(4)R. We use h1, h2
and h3 to denote the three Cartans of SO(6)R, while

1
2(h1±h2) denote the two Cartans of

the subgroup SU(2)×SU(2). The charges h1,2,3 of different fields are listed in the following

table [68, 69]:

The partition function for the ABJM theory on the background (2.1) is given by

Z =
1

(N !)2

∑

mi, m̃i

∫ N∏

i=1

dλi dλ̃i

(2π)2

· e
kgg
4π

∫
d3x

√
g
∑

i

(
m
2
i

4ΩL4+
iaimi
2L2 − m̃

2
i

4ΩL4−
iãim̃i
2L2

)

· e−πi
∑

i,j

∑4
I=1 Ψ

c
I · e−πi

∑
i 6=j

∑2
K=1 Ψ

v
K

·


∏

i,j

4∏

I=1

(
e2πi(γ−δcI); e2πiβ

)
∞(

e2πi(γ+δc
I
); e2πiβ

)
∞


 ·


∏

i 6=j

2∏

K=1

(
e2πi(γ−δvK); e2πiβ

)
∞(

e2πi(γ+δv
K
); e2πiβ

)
∞


 , (3.43)

where we define new variables λi and λ̃i:

i
λi

2π
≡ − imi

4ΩL
+ Lai , i

λ̃i

2π
≡ − im̃i

4ΩL
+ Lãi . (3.44)

Here ai and ãi denote the values of a and ã in the i-th Cartan of the gauge group, which

should not be confused with the saddle-point configurations of aµ discussed in 3.1. The

explicit expressions of δ’s for the 4 chiral multiplets (I = 1, · · · , 4) in the bifundamental
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representation and the 2 vector multiplets (K = 1, 2) in the adjoint representation are

δcI=1,2 ≡
1

2π

[
i

(
λi − λ̃j

2π

)
+ 2iLΦ± 1

2
ϕ1

]
, (3.45)

δcI=3,4 ≡
1

2π

[
i

(
λ̃j − λi

2π

)
+ 2iLΦ± 1

2
ϕ2

]
, (3.46)

δvK=1 ≡
1

2π

[
i

(
λi − λj

2π

)
− 4iLΦ

]
, (3.47)

δvK=2 ≡
1

2π

[
i

(
λ̃i − λ̃j

2π

)
− 4iLΦ

]
, (3.48)

where ϕ1 and ϕ2 denote the chemical potentials corresponding to the Cartans 1
2(h1 ± h2)

of the subgroup SU(2)× SU(2) of the R-symmetry group. In the second line of (3.43), Ψc
I

(I = 1, · · · , 4) and Ψv
K (K = 1, 2) are related to δcI and δvK as

Ψc
I = δcI

(
− 1

β

)
(1 + β − 2γ) , Ψv

K = δvK

(
− 1

β

)
(1 + β − 2γ) . (3.49)

Due to the identity
∑

i,j

4∑

I=1

Ψc
I −

∑

i 6=j

2∑

K=1

Ψv
K = 0 , (3.50)

the second line of eq. (3.43) will become 1, which is consistent with the fact that there is

no conformal anomaly in 3d.

We can work with the new variables λi and λ̃i, then the magnetic fluxes mi and m̃i

appear only in the classical part of the partition function, more precisely, the gauge-gauge

Chern-Simons term. Let us take a closer look at this term. In terms of λi and λ̃i, this term

can be expressed as follows:

ZCS =
∑

mi, m̃i

e
4π3kL

Ω2

∑
i

(
m
2
i

4ΩL4+
iaimi
2L2 − m̃

2
i

4ΩL4−
iãim̃i
2L2

)

=
∑

mi, m̃i

e

∑
i

(
kπ3

m
2
i

2L3Ω3−
kπ2

miλi
L2Ω2 − kπ3

m̃
2
i

2L3Ω3+
kπ2

m̃iλ̃i
L2Ω2

)

. (3.51)

Applying the Poisson resummation formula:
∞∑

m=−∞
e−πm2A+2πmAs =

eπAs2

√
A

∞∑

n=−∞
e−

πn2

A
−2πins , (3.52)

we obtain from (3.51) the following expression:

ZCS = e

∑
i

(
− kπλ2i

2LΩ
+

kπλ̃2i
2LΩ

)
∑

ni, ñi

e

∑
i

[
2L3Ω3

n
2
i

πk
−2iLΩniλi−

2L3Ω3
ñ
2
i

πk
+2iLΩñiλ̃i

]

. (3.53)

In the next section, we will consider the Cardy limit (|LΩ| ≪ 1), for which the sums over

ni and ñi in ZCS can be neglected. Hence, in the Cardy limit we can approximate ZCS by

the first exponential factor of (3.53).
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4 Large-N matrix model

Unlike the 4d case discussed in [35], the conformal anomaly is absent in 3d. Hence, in order

to compare with the results from the gravity side, we have to perform a large-N analysis

of the matrix model obtained by localizing the ABJM theory, similar to the procedure in

refs. [5, 70].

In order to simplify the matrix model from localization and extract the leading order

contribution to the AdS4 black hole entropy, we will consider two different limits in se-

quence. First, we will consider the Cardy limit given by |LΩ| ≪ 1. After that we will take

the standard large-N limit.

In the following we focus on the ABJM theory. From the localization result of the

partition function (3.43) on the background discussed in section 2, we obtain the free energy

F = −logZ

=
kπ

2LΩ

∑

j

(λ2
j − λ̃2

j ) +O(Ω)

+ 2 logN ! + 2N log 2π + Fc + Fv , (4.1)

where

Fc ≡ −
∑

i,j

4∑

I=1

log

[(
e2πi(γ−δcI); e2πiβ

)
∞(

e2πi(γ+δc
I
); e2πiβ

)
∞

]
, (4.2)

Fv ≡ −
∑

i,j

2∑

K=1

log

[(
e2πi(γ−δcK); e2πiβ

)
∞(

e2πi(γ+δc
K
); e2πiβ

)
∞

]
. (4.3)

We can compute the leading contribution to the free energy F at large N analyti-

cally using the approach introduced in [5, 70]. First, let us consider Fc. We apply the

definitions (3.34)–(3.35) and (3.45)–(3.48) to rewrite it as

Fc = −
∑

i,j

log

(
e

λi−λ̃j
2π

−2LΦ− i
2
ϕ1 ; e−LΩ

)

∞
+
∑

i,j

log

(
e−

λi−λ̃j
2π

−6LΦ+ i
2
ϕ1 ; e−LΩ

)

∞

−
∑

i,j

log

(
e

λi−λ̃j
2π

−2LΦ+ i
2
ϕ1 ; e−LΩ

)

∞
+
∑

i,j

log

(
e−

λi−λ̃j
2π

−6LΦ− i
2
ϕ1 ; e−LΩ

)

∞

−
∑

i,j

log

(
e−

λi−λ̃j
2π

−2LΦ− i
2
ϕ2 ; e−LΩ

)

∞
+
∑

i,j

log

(
e

λi−λ̃j
2π

−6LΦ+ i
2
ϕ2 ; e−LΩ

)

∞

−
∑

i,j

log

(
e−

λi−λ̃j
2π

−2LΦ+ i
2
ϕ2 ; e−LΩ

)

∞
+
∑

i,j

log

(
e

λi−λ̃j
2π

−6LΦ− i
2
ϕ2 ; e−LΩ

)

∞
. (4.4)

Due to the constraint (2.36), in the Cardy limit (|LΩ| ≪ 1) there is e8LΦ ≈ e−2πi = 1.

Hence, the exponents in (4.4) can be shifted by multiples of 8LΦ without changing the
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result at the leading order, and at the leading order we can rewrite (4.4) as

Fc ≃ −
∑

i,j

log

(
e

λi−λ̃j
2π

−2LΦ− i
2
ϕ1 ; e−LΩ

)

∞
+
∑

i,j

log

(
e−

λi−λ̃j
2π

+2LΦ+ i
2
ϕ1 ; e−LΩ

)

∞

−
∑

i,j

log

(
e

λi−λ̃j
2π

−2LΦ+ i
2
ϕ1 ; e−LΩ

)

∞
+
∑

i,j

log

(
e−

λi−λ̃j
2π

+2LΦ− i
2
ϕ1 ; e−LΩ

)

∞

−
∑

i,j

log

(
e−

λi−λ̃j
2π

−2LΦ− i
2
ϕ2 ; e−LΩ

)

∞
+
∑

i,j

log

(
e

λi−λ̃j
2π

+2LΦ+ i
2
ϕ2 ; e−LΩ

)

∞

−
∑

i,j

log

(
e−

λi−λ̃j
2π

−2LΦ+ i
2
ϕ2 ; e−LΩ

)

∞
+
∑

i,j

log

(
e

λi−λ̃j
2π

+2LΦ− i
2
ϕ2 ; e−LΩ

)

∞
. (4.5)

To obtain the expression corresponding to (4.5) in the continuum limit, we adopt the

redefinitions

λj =
Nαtj − ivj

π
, λ̃j =

Nαtj − iṽj
π

, δv ≡ ṽ − v , (4.6)

and the replacement
N∑

i=1

⇒ N

2π

∫
dt ρ(t) . (4.7)

Moreover, we apply the expansion of the q-Pochhammer symbol near q = 1 [71]:

log(z, e~)∞ =
1

~
Li2(z) +O(1) (4.8)

to obtain the leading contributions in the Cardy limit (|LΩ| ≪ 1). Consequently, in the

Cardy limt the leading order of (4.5) has the expression:

Fc ≃
1

ΩL

∑

i,j

Li2

(
e

λi−λ̃j
2π

−2LΦ− i
2
ϕ1

)
− 1

ΩL

∑

i,j

Li2

(
e−

λi−λ̃j
2π

+2LΦ+ i
2
ϕ1

)

+
1

ΩL

∑

i,j

Li2

(
e

λi−λ̃j
2π

−2LΦ+ i
2
ϕ1

)
− 1

ΩL

∑

i,j

Li2

(
e−

λi−λ̃j
2π

+2LΦ− i
2
ϕ1

)

+
1

ΩL

∑

i,j

Li2

(
e−

λi−λ̃j
2π

−2LΦ− i
2
ϕ2

)
− 1

ΩL

∑

i,j

Li2

(
e

λi−λ̃j
2π

+2LΦ+ i
2
ϕ2

)

+
1

ΩL

∑

i,j

Li2

(
e−

λi−λ̃j
2π

−2LΦ+ i
2
ϕ2

)
− 1

ΩL

∑

i,j

Li2

(
e

λi−λ̃j
2π

+2LΦ− i
2
ϕ2

)
. (4.9)

Let us call the 8 terms in the expression (4.5) as F
(1)
c - F

(8)
c respectively.

Recall that the function Li2(e
iu) has the following property:

Li2(e
iu) = −Li2(e

−iu) +
u2

2
− πu+

π2

3
, for 0 < Re(u) < 2π ;

Li2(e
iu) = −Li2(e

−iu) +
u2

2
+ πu+

π2

3
, for −2π < Re(u) < 0 .

(4.10)
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Using this property and assuming that

Re

(
i(λi − λ̃j)

2π
− 2iLΦ± 1

2
ϕ1

)
< 0 ,

Re

(
i(λi − λ̃j)

2π
+ 2iLΦ± 1

2
ϕ2

)
> 0 ,

(4.11)

we can rewrite some terms in (4.9) as follows:

F (2)
c =

1

ΩL

∑

i,j

[
Li2

(
e

λi−λ̃j
2π

−2LΦ− i
2
ϕ1

)
− 1

2

(
i(λi − λ̃j)

2π
− 2iLΦ+

1

2
ϕ1

)2

− π

(
i(λi − λ̃j)

2π
− 2iLΦ+

1

2
ϕ1

)
− π2

3

]
, (4.12)

F (4)
c =

1

ΩL

∑

i,j

[
Li2

(
e

λi−λ̃j
2π

−2LΦ+ i
2
ϕ1

)
− 1

2

(
i(λi − λ̃j)

2π
− 2iLΦ− 1

2
ϕ1

)2

− π

(
i(λi − λ̃j)

2π
− 2iLΦ− 1

2
ϕ1

)
− π2

3

]
, (4.13)

F (5)
c = − 1

ΩL

∑

i,j

[
Li2

(
e

λi−λ̃j
2π

+2LΦ+ i
2
ϕ1

)
− 1

2

(
i(λi − λ̃j)

2π
+ 2iLΦ− 1

2
ϕ1

)2

+ π

(
i(λi − λ̃j)

2π
+ 2iLΦ− 1

2
ϕ1

)
− π2

3

]
, (4.14)

F (7)
c = − 1

ΩL

∑

i,j

[
Li2

(
e

λi−λ̃j
2π

+2LΦ− i
2
ϕ1

)
− 1

2

(
i(λi − λ̃j)

2π
+ 2iLΦ+

1

2
ϕ1

)2

+ π

(
i(λi − λ̃j)

2π
+ 2iLΦ+

1

2
ϕ1

)
− π2

3

]
. (4.15)

Consequently, (4.9) becomes

Fc ≃
2

ΩL

∑

i,j

Li2

(
e

λi−λ̃j
2π

−2LΦ− i
2
ϕ1

)
+

2

ΩL

∑

i,j

Li2

(
e

λi−λ̃j
2π

−2LΦ+ i
2
ϕ1

)

− 2

ΩL

∑

i,j

Li2

(
e

λi−λ̃j
2π

+2LΦ+ i
2
ϕ2

)
− 2

ΩL

∑

i,j

Li2

(
e

λi−λ̃j
2π

+2LΦ− i
2
ϕ2

)

− 1

ΩL
(4iπ + 8ΦL)

∑

i,j

λi − λ̃j

2π
− 1

4ΩL
(ϕ2

1 − ϕ2
2)


∑

i,j

1


 . (4.16)

Let us call the first 4 terms F
(I)
c - F

(IV )
c respectively, for which we carefully distinguish

i = j, i > j and i < j. After applying the property (4.10) and the assumption (4.11)
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several times, we can express F
(I)
c - F

(IV )
c as follows:

F (I)
c =

2

LΩ

N

2π

∫
dt ρ(t) Li2

(
e

i

2π2 δv−2LΦ− i
2
ϕ1

)

+
2i

LΩ
2π

N2−α

4π

∫
dt ρ2(t) g+

(
1

2π2
δv(t) + 2iLΦ− 1

2
ϕ1

)

− 2

LΩ

∑

i>j

[
1

2

(
λi − λ̃j

2π
− 2LΦ− i

2
ϕ1

)2

− iπ

(
λi − λ̃j

2π
− 2LΦ− i

2
ϕ1

)
− π2

3

]

+O(Ω0) , (4.17)

F (II)
c =

2

LΩ

N

2π

∫
dt ρ(t) Li2

(
e

i

2π2 δv−2LΦ+ i
2
ϕ1

)

+
2i

LΩ
2π

N2−α

4π

∫
dt ρ2(t) g+

(
1

2π2
δv(t) + 2iLΦ+

1

2
ϕ1

)

− 2

LΩ

∑

i>j

[
1

2

(
λi − λ̃j

2π
− 2LΦ+

i

2
ϕ1

)2

− iπ

(
λi − λ̃j

2π
− 2LΦ+

i

2
ϕ1

)
− π2

3

]

+O(Ω0) , (4.18)

F (III)
c = − 2

LΩ

N

2π

∫
dt ρ(t) Li2

(
e

i

2π2 δv+2LΦ+ i
2
ϕ2

)

− 2i

LΩ
2π

N2−α

4π

∫
dt ρ2(t) g−

(
1

2π2
δv(t)− 2iLΦ+

1

2
ϕ2

)

+
2

LΩ

∑

i>j

[
1

2

(
λi − λ̃j

2π
+ 2LΦ+

i

2
ϕ2

)2

+ iπ

(
λi − λ̃j

2π
+ 2LΦ+

i

2
ϕ2

)
− π2

3

]

+O(Ω0) , (4.19)

F (IV )
c = − 2

LΩ

N

2π

∫
dt ρ(t) Li2

(
e

i

2π2 δv+2LΦ− i
2
ϕ2

)

− 2i

LΩ
2π

N2−α

4π

∫
dt ρ2(t) g−

(
1

2π2
δv(t)− 2iLΦ− 1

2
ϕ2

)

+
2

LΩ

∑

i>j

[
1

2

(
λi − λ̃j

2π
+ 2LΦ− i

2
ϕ2

)2

+ iπ

(
λi − λ̃j

2π
+ 2LΦ− i

2
ϕ2

)
− π2

3

]

+O(Ω0) , (4.20)

where

g−(x) ≡
x3

6
+

π

2
x2 +

π2

3
x , g+(x) ≡

x3

6
− π

2
x2 +

π2

3
x . (4.21)

The sum of the third lines of (4.17)–(4.20) is

2

ΩL
(4iπ + 8ΦL)

∑

i>j

λi − λ̃j

2π
+

1

2ΩL
(ϕ2

1 − ϕ2
2)


∑

i>j

1


 , (4.22)

which cancels the third line of (4.16) up to a constant of order O(N). Therefore, the final

expression of the leading terms of Fc in the Cardy limit is given by the sum of the first

and second lines of (4.17)–(4.20).
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For the vector multiplet we obtain

Fv = −
∑

i 6=j

log

(
e

λi−λj
2π

−8LΦ; e−LΩ

)

∞
+
∑

i 6=j

log

(
e−

λi−λj
2π ; e−LΩ

)

∞

−
∑

i 6=j

log

(
e−

λ̃i−λ̃j
2π

−8LΦ; e−LΩ

)

∞
+
∑

i 6=j

log

(
e

λ̃i−λ̃j
2π ; e−LΩ

)

∞
. (4.23)

At the leading order, each term of Fv can be expressed as

F (1)
v ≃ 1

LΩ

∑

i 6=j

Li2

(
e

λi−λj
2π

−8LΦ

)
, (4.24)

F (2)
v ≃ − 1

LΩ

∑

i 6=j

Li2

(
e−

λi−λj
2π

)
, (4.25)

F (3)
v ≃ 1

LΩ

∑

i 6=j

Li2

(
e

λ̃i−λ̃j
2π

−8LΦ

)
, (4.26)

F (4)
v ≃ − 1

LΩ

∑

i 6=j

Li2

(
e−

λ̃i−λ̃j
2π

)
. (4.27)

They cancel each other at the leading order of the Cardy limit, because in this limit

e−8LΦ ≈ 1.

Putting everything together and neglecting some subleading terms, we obtain the free

energy in both the large-N and the Cardy limit:

F ≃ N1+α ik

LΩ

∫
dt t ρ(t) δ̃v(t)

+N
2

LΩ

1

2π

∫
dt ρ(t)

[
Li2

(
ei[δ̃v(t)+i∆3]

)
+ Li2

(
ei[δ̃v(t)+i∆4]

)

− Li2

(
ei[δ̃v(t)−i∆1]

)
− Li2

(
ei[δ̃v(t)−i∆2]

)]

+N2−α 4iπ

LΩ

1

4π

∫
dt ρ2(t)

[
g+

(
δ̃v(t) + i∆3

)
+ g+

(
δ̃v(t) + i∆4

)

− g−
(
δ̃v(t)− i∆1

)
− g−

(
δ̃v(t)− i∆2

)]
, (4.28)

where

δ̃v(t) ≡ 1

2π2
δv(t) , (4.29)

∆3 ≡ 2LΦ+
i

2
ϕ1 , ∆4 ≡ 2LΦ− i

2
ϕ1 , (4.30)

∆1 ≡ 2LΦ+
i

2
ϕ2 , ∆2 ≡ 2LΦ− i

2
ϕ2 . (4.31)
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In order that the terms of the orders O(N1+α) and O(N2−α) in (4.28) compete with each

other, we further require that

α =
1

2
. (4.32)

Hence, we obtain the leading contribution of the free energy F at the order O(Ω−1) in both

the large-N and the Cardy limit:

F ≃ N
3

2
ik

LΩ

∫
dt t ρ(t) δ̃v(t)

+N
1

πLΩ

∫
dt ρ(t)

[
Li2

(
ei[δ̃v(t)+i∆3]

)
+ Li2

(
ei[δ̃v(t)+i∆4]

)

− Li2

(
ei[δ̃v(t)−i∆1]

)
− Li2

(
ei[δ̃v(t)−i∆2]

)]

+N
3

2
i

LΩ

∫
dt ρ2(t)

[
g+

(
δ̃v(t) + i∆3

)
+ g+

(
δ̃v(t) + i∆4

)

− g−
(
δ̃v(t)− i∆1

)
− g−

(
δ̃v(t)− i∆2

)]
. (4.33)

Although the second integral of (4.33) is of the order O(N), while the first and the third in-

tegrals are of the order O(N
3

2 ), the second line will contribute to the saddle point solutions.

We can add a new term with the Lagrange multiplier µ that imposes the normalization

condition
∫
dt ρ(t) = 1. Consequently,

LΩ

iN
3

2

F ≃ k

∫
dt t ρ(t) δ̃v(t)− µ

[ ∫
dt ρ(t)− 1

]

− i

πN
1

2

∫
dt ρ(t)

[
Li2

(
ei[δ̃v(t)+i∆3]

)
+ Li2

(
ei[δ̃v(t)+i∆4]

)

− Li2

(
ei[δ̃v(t)−i∆1]

)
− Li2

(
ei[δ̃v(t)−i∆2]

)]

+

∫
dt ρ2(t)

[
g+

(
δ̃v(t) + i∆3

)
+ g+

(
δ̃v(t) + i∆4

)

− g−
(
δ̃v(t)− i∆1

)
− g−

(
δ̃v(t)− i∆2

)]
. (4.34)

This is precisely the Bethe potential considered in [5] and the matrix model obtained from

the superconformal index [48].

We can follow the same steps as in [5] to analyze the saddle-point contributions to the

free energy F . Let us first consider the case k = 1. We derive the saddle-point equations

from the large-N free energy in the Cardy limit as follows:

LΩ

iN
3

2

∂F

∂ρ
= 0 ,

LΩ

iN
3

2

∂F

∂δ̃v
= 0 . (4.35)
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Similar to [5], we define YI through

δ̃v ≡ ie−N
1
2 Y3 − i∆3 , δ̃v ≡ ie−N

1
2 Y4 − i∆4 ,

δ̃v ≡ ie−N
1
2 Y1 + i∆1 , δ̃v ≡ ie−N

1
2 Y2 + i∆2 ,

(4.36)

and these special values of δ̃v are called (δ̃v)∗. The saddle-point equations (4.35) become

t δ̃v+2ρ

[
g+

(
δ̃v(t) + i∆3

)
+g+

(
δ̃v(t) + i∆4

)
−g−

(
δ̃v(t)− i∆1

)
−g−

(
δ̃v(t)− i∆2

)]
= µ ,

(4.37)

when δ̃v 6≈ (δ̃v)∗:

t+ ρ

[
g′+

(
δ̃v(t) + i∆3

)
+ g′+

(
δ̃v(t) + i∆4

)
− g′−

(
δ̃v(t)− i∆1

)
− g′−

(
δ̃v(t)− i∆2

)]
= 0 ,

(4.38)

when δ̃v = (δ̃v)∗:

t+ ρ

[
g′+

(
δ̃v(t) + i∆3

)
+ g′+

(
δ̃v(t) + i∆4

)
− g′−

(
δ̃v(t)− i∆1

)
− g′−

(
δ̃v(t)− i∆2

)]

= − 1

π
(Y3 + Y4 − Y1 − Y2) . (4.39)

Let us first define

t≪ ≡ − µ

i∆3
, t< ≡ − µ

i∆4
, t> ≡ µ

i∆2
, t≫ ≡ µ

i∆1
. (4.40)

The sadde-point equations (4.37)–(4.39) can be solved in different intervals:

1. t ∈ [t≪, t<]:

ρ =
µ+ t i∆3

(i∆1 + i∆3)(i∆2 + i∆3)(i∆4 − i∆3)
, (4.41)

δv = −i∆3 , (4.42)

Y3 =
π(−t i∆4 − µ)

i∆4 − i∆3
. (4.43)

2. t ∈ [t<, t>]:

ρ =
2πµ+ t(i∆3 i∆4 − i∆1 i∆2)

(i∆1 + i∆3)(i∆2 + i∆3)(i∆1 + i∆4)(i∆2 + i∆4)
, (4.44)

δv =
µ(i∆1 i∆2 − i∆3 i∆4) + t

∑
I<J<K i∆I i∆J i∆K

2πµ+ t(i∆3 i∆4 − i∆1 i∆2)
. (4.45)

3. t ∈ [t>, t≫]:

ρ =
µ− t i∆1

(i∆1 + i∆3)(i∆1 + i∆4)(i∆2 − i∆1)
, (4.46)

δv = i∆1 , (4.47)

Y1 =
π(t i∆2 − µ)

i∆2 − i∆1
. (4.48)
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Outside these intervals the function ρ vanishes, hence we only need to consider the solutions

in these intervals.

By requiring that ∫
dt ρ(t) = 1 , (4.49)

we can fix the constant µ. Applying the constraint (2.36), we obtain the expression of µ

at the leading order:

µ =
√
2∆1∆2∆3∆4 . (4.50)

Plugging all the solutions back into the large-N matrix model (4.33), we obtain at the free

energy at the saddle points for k = 1:

F ≃ iN
3

2

LΩ

2
√
2∆1∆2∆3∆4

3
. (4.51)

We can define

ω ≡ LΩ , (4.52)

then the free energy (4.51) at the saddle points for k = 1 becomes

F ≃ 2
√
2 iN

3

2

3

√
∆1∆2∆3∆4

ω
, (4.53)

and now the constraint (2.36) is

∑

I

∆I − 2ω = −2πi (mod 4πi) . (4.54)

In order to obtain the free energy at arbitrary value of k, similar to [48], we can redefine

ρ = kρ̂ and perform similar steps. The final result of the real free energy at arbitrary k is

F ≃ 2
√
2 i k

1

2N
3

2

3

√
∆1∆2∆3∆4

ω
, (4.55)

obeying the same constraint (4.54).

5 Electrically charged AdS4 black hole entropy

In the large-N limit, the ABJM theory is dual to M-theory on AdS4×S7/Zk [67]. Hence, we

expect that the free energy of the ABJM theory in both the large-N and the Cardy limits

obtained in the previous section should correspond to the free energy of the electrically

charged AdS4 black hole according to the AdS/CFT correspondence. In this section we

briefly review how to obtain the entropy of the rotating electrically charged AdS4 black

hole from the entropy function [45, 46]. A microscopic derivation of this entropy function

was obtained in [48] starting from the superconformal index; our result in equation (4.55)

provides an alternative microscopic description.

Before we discuss the microscopic black hole entropy, there is a conceptual issue that

we would like to emphasize. The rotating electrically charged AdS4 black holes discussed
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in this section are solutions in the 4d Lorentzian supergravity theory, whose holography

has been studied in [72]. However, in order to perform the localization, we have to consider

the 3d supersymmetric field theories on the Euclidean boundary manifold in section 2

through section 4. In spite of the different signatures, the partition function Z and the

large-N free energy F obtained for the Euclidean boundary manifold can still be used to

study the asymptotically AdS4 black holes in the Lorentzian supergravity theory, because

the Killing spinors found in section 2 for the Euclidean boundary manifold can be Wick

rotated easily to produce the Killing spinors for the Lorentzian boundary manifold. Hence,

we can interpret the results of Z and F obtained in the previous sections as the ones for

the Lorentzian signature via an analytic continuation.

We first define an entropy function via a Legendre transformation:

S(∆I , ω) =
2
√
2 i k

1

2N
3

2

3

√
∆1∆2∆3∆4

ω
−2ωJ−

∑

I

∆IQI−Λ

(
∑

I

∆I − 2ω + 2πi

)
. (5.1)

The entropy function depends on the potentials (∆I , ω), while the electric charges QI and

the angular momentum J are introduced through the Legendre transformation. By extrem-

izing S(∆I , ω) as a function of (∆I , ω), we can express the potentials (∆I , ω) in terms of

(QI , J). Plugging these solutions back into (5.1), we obtain the BPS black hole entropy.

Now let us define two new variables

∆̃I ≡ −∆I , ω̃ ≡ −2ω (5.2)

satisfying the following constraint equivalent to (4.54):
∑

I

∆̃I − ω̃ = 2πi (mod 4πi) . (5.3)

Using these new variables, we can express the entropy function as

S(∆̃I , ω̃) = −4
√
2 i k

1

2N
3

2

3

√
∆̃1∆̃2∆̃3∆̃4

ω̃
+ω̃J+

∑

I

∆̃IQI+Λ

(
∑

I

∆̃I − ω̃ − 2πi

)
. (5.4)

We extremize the entropy function (5.4) by solving the equations:

∂S

∂∆̃I

= 0 ,
∂S

∂ω̃
= 0 , (5.5)

more explicitly,

QI + Λ =
4
√
2 i k

1

2N
3

2

3

√
∆̃1∆̃2∆̃3∆̃4

2∆̃I ω̃
, (5.6)

J − Λ = −4
√
2 i k

1

2N
3

2

3

√
∆̃1∆̃2∆̃3∆̃4

ω̃2
. (5.7)

Substituting these equations into the entropy function (5.4), we obtain

S = −2πiΛ . (5.8)
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Moreover, we can combine the equations (5.6) and (5.7) into one equation:

Q1Q2Q3Q4 + Λ

(
∑

I<J<K

QIQJQK

)
+ Λ2

(
∑

I<J

QIQJ

)
+ Λ3

(
∑

I

QI

)
+ Λ4

= −2

9
kN3(Λ2 − 2ΛJ + J2) . (5.9)

In order for the entropy S to be real-valued, Λ should be purely imaginary according

to (5.8). We can separate the real and the imaginary parts of (5.9) to obtain two indepen-

dent real-valued equations:

Λ4 + Λ2

(
∑

I<J

QIQJ

)
+Q1Q2Q3Q4 = −2

9
kN3Λ2 − 2

9
kN3J2 , (5.10)

Λ3

(
∑

I

QI

)
+ Λ

(
∑

I<J<K

QIQJQK

)
=

4

9
kN3JΛ . (5.11)

We then solve (5.11) to obtain Λ and consequently the black hole entropy SBH . By sub-

stituting the solution of Λ into (5.10), we will obtain a constraint on J and QI ’s.

To simplify the discussions, we consider a degenerate case Q1 = Q3, Q2 = Q4, and the

corresponding solution to Λ and the constraint on J and QI ’s are

Λ = ± i

3

√
9Q1Q2(Q1 +Q2)− 2kJN3

Q1 +Q2
, (5.12)

2kJ2N3 + 2kJN3(Q1 +Q2)− 9Q1Q2(Q1 +Q2)
2 = 0 . (5.13)

We take the minus sign in the solution to Λ, in order for the black hole entropy to be

non-negative, which has the value

SBH =
2π

3

√
9Q1Q2(Q1 +Q2)− 2kJN3

Q1 +Q2
. (5.14)

In fact, the black hole entropy SBH and the angular momentum J can be expressed

in an alternative way. From (5.13) we obtain

9Q1Q2(Q1 +Q2)− 2kJN3 =
2kJ2N3

Q1 +Q2
. (5.15)

By plugging it into (5.14), we have another expression of the black hole entropy

SBH =
2
√
2πk

1

2N
3

2

3

J

Q1 +Q2
. (5.16)

We can also view (5.13) as a quadratic equation for J . By solving it, we obtain the

expression of J

J =
1

2
(Q1 +Q2)

(
−1±

√
1 +

18Q1Q2

kN3

)
. (5.17)
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If we identify some parameters with the ones on the gravity side in the following way:

1

G
=

2
√
2

3
g2k

1

2N
3

2 , QBH =
g

2
Q , JBH = J , (5.18)

we can rewrite the black hole entropy (5.16) and the angular momentum (5.17) as

SBH =
π

g2G

JBH(
2
gQBH,1 +

2
gQBH,2

) , (5.19)

JBH =
1

2

(
2

g
QBH,1 +

2

g
QBH,2

)(
−1 +

√
1 + 16g4G2

2QBH,1

g

2QBH,2

g

)
, (5.20)

where we assume that JBH > 0. The expressions (5.19) and (5.20) match exactly the

results on the gravity side [45, 73, 74]. Recently, more general AdS4 solutions with four

generic electric charges QI ’s have been constructed in [75].

6 Discussion

In this manuscript we compute the partition function of 3d N = 2 gauge theories on curved

spaces coinciding with the asymptotics of rotating electically charged supersymmetric AdS4
black holes. We have turned on some complex background fields to preserve a pair of

independent supercharges with anti-periodic boundary conditions along S1, matching the

amount of supersymmetry of AdS4 black holes in 4d N = 2 gauged supergravity. We then

applied supersymmetric localization to compute the corresponding partition functions. As

a special example, we consider the ABJM theory on this background, whose partition

function in the large-N and a Cardy-like limits successfully produces the entropy function

and the corresponding black hole entropy of a class of rotating electrically charged BPS

AdS4 black holes. Our approach complements the previous microscopic explanation of the

black hole entropy based on the superconformal index of the ABJM field theory [48].

There are various conceptual issues that deserve further investigation. For instance,

although the starting points for free energy computations are not the same, different ap-

proaches all lead effectively to the same matrix model. Originally the matrix model was

studied in [5] as the result of the large−N limit of the topologically twisted index in a

successful microscopic description of magnetically charged BPS AdS4 black holes. The

very same effective matrix model resurfaced in the study of the superconformal index of

ABJM theory [48] as a microscopic description of rotating, electrically charged BPS AdS4
black holes. Finally, this effective matrix model shows in our work which is based on

supersymmetric localization. It would be quite interesting to gain a better understand-

ing of this coincidence at a more fundamental level. There seem to be universal relations

among these various partitions functions which might even reach the sphere partition func-

tion ZS3 . Related to this observation, some other universal relations among conformal

anomaly coefficients and partition functions in different dimensions have been previously

found in [76, 77] and more recently in [49]. At the technical level, adding magnetic charges

or electric charges and angular momentum simply changes an overall factor in the same
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matrix model. An attack on this question can probably be mounted following direct com-

putations of indices and partition functions such as [78–82]. A rigorous understanding of

these universal relations can possibly be achieved from the insightful work [83] and the

formula therein ZMq,p with an additional refinement.

We can generalize our results on BPS AdS4 black hole entropy in various ways. Since

the supersymmetric localization provides the exact results, besides the leading order dis-

cussed in this paper, we may extract the subleading 1-loop corrections to the black hole

entropy from the exact partition function of the boundary ABJM theory. As various previ-

ous works has demonstrated [18–22, 25, 50, 84–86] such an analysis can provide more precise

tests of the AdS/CFT correspondence. Going beyond the Cardy-like limit, however, seems

more formidable. The absence of a Bethe Ansatz description for the superconformal index

seems to block a route that was successfully taken in the 4d context [43, 44]. It would

be interesting to consider near-BPS configurations by turning on temperature or slightly

violating the BPS constraint (4.54), in the same spirit as [54]. The same technique, in

principle, can be applied to more general black holes, e.g. AdS4 dyonic black holes, or

AdS black holes in other dimensions. Moreover, we should be able to introduce M5-branes

and use the new techniques to study a system of M2-branes suspended between parallel

M5-branes described by ABJM theory with some appropriate boundary conditions [87, 88].

Beyond the exciting applications to black hole entropy counting, the supersymmetric

localization applied to the complex background itself is very important progress. Similar

to the 4d case [35], these new field theoretic observables are among the first that can be

constructed relying on spinors with anti-periodic boundary condition along S1 without

completely breaking supersymmetry. Supersymmetric localization is thus providing a new

class of, in principle, exact nonperturbative observables. It is a well-defined and interesting

field theoretic question to study these observables in supersymmetric 3d field theories in

general and, eventually, use them to connect with other important methods such as the

conformal bootstrap.
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A Conventions

The 3d γ-matrices are chosen to be

γ1 = σ3 , γ2 = −σ1 , γ3 = −σ2 , (A.1)

– 28 –



J
H
E
P
0
3
(
2
0
2
0
)
0
8
1

where σi are the standard Pauli matrices. They satisfy

[γm, γn] = 2iεmnpγ
p . (A.2)

In this paper, we use commuting spinors. The product of two spinors are defined as

ψχ = ψαCαβχ
β , ψγµχ = ψα(Cγµ)αβχ

β , (A.3)

where the indices can be raised and lowered using

C =

(
0 1

−1 0

)

is the charge conjugation matrix. The spinor bilinears of commuting spinors satisfy

ψχ = −χψ , ψγµχ = χγµψ . (A.4)

B Special functions

B.1 Multiple gamma and multiple zeta functions

The double zeta function ζ2(s; x|ε1, ε2) can be viewed as the regularization of the infinite

sum:

ζ2(s; x|ε1, ε2) =
∑

m,n≥0

(x+mε1 + nε2)
−s . (B.1)

The double gamma function is defined as

Γ2(x|ε1, ε2) = exp
d

ds

∣∣∣∣
0

ζ2(s; x|ε1, ε2) . (B.2)

It can be viewed as a regularized infinite product depending on the signs of ε1, ε2:

Γ2(x|ε1, ε2) ∝





∏

m,n≥0

(x+mε1 + nε2)
−1 , for ε1 > 0, ε2 > 0 ;

∏

m,n≥0

(x+mε1 − (n+ 1)ε2) , for ε1 > 0, ε2 < 0 ;

∏

m,n≥0

(x− (m+ 1)ε1 + nε2) , for ε1 < 0, ε2 > 0 ;

∏

m,n≥0

(x− (m+ 1)ε1 − (n+ 1)ε2)
−1 , for ε1 < 0, ε2 < 0 .

(B.3)

The Barnes’ multiple gamma functions ΓN (z|a1, a2) satisfy the following identity for

N ∈ N:

ΓN+1(z|1, ~β) · ΓN+1(1− z|1,−~β) = e−πiζN+1(0,z|1,~β)
∏

~k∈NN

(
1− e2πi(z+

~k·~β)
)−1

, (B.4)
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where ζN+1(0, z|1, ~β) are the Barnes’ multiple zeta functions. In particular, we need the

special case N = 1 in this paper:

Γ2(z|1, β) · Γ2(1− z|1,−β) = e−πiζ2(0,z|1,β)
∏

k∈N

(
1− e2πi(z+kβ)

)−1
, (B.5)

with ζ2(0, z|1, β) given explicitly by

ζ2(0, z|1, β) =
z2

2β
− (1 + β)z

2β
+

1 + 3β + β2

12β
. (B.6)

More details of ΓN (z|a1, a2) and ζN (z|a1, a2) can be found in [89].

B.2 Polylogarithmic functions

In the main text we have used some properties of the polylogarithmic functions Li2(x) and

Li3(x). The general polylogarithmic function Lin(x) is defined as

Lik(x) ≡
∞∑

n=1

xn

nk
. (B.7)

The functions Li2(e
iu) and Li3(e

iu) have the following properties for with 0 < Re(u) < 2π:

Li2(e
iu) + Li2(e

−iu) =
u2

2
− πu+

π2

3
, (B.8)

Li3(e
iu)− Li3(e

−iu) =
i

6
u3 − iπ

2
u2 +

iπ2

3
u . (B.9)

B.3 q-Pochhammer symbol

The q-Pochhammer symbol (a; q)m is defined as

(a; q)m ≡
m−1∏

k=0

(1− a qk) . (B.10)

For q ≈ 1, the q-Pochhammer symbol (a; q)∞ has an expansion [71]:

log(z, e~)∞ =
1

~

∞∑

n=0

Bn ~
n

n!
Li2−n(z), Re ~ < 0, (B.11)

where Bn are the Bernoulli numbers.
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[43] A. González Lezcano and L.A. Pando Zayas, Microstate counting via Bethe Ansätze in the 4d

N = 1 superconformal index, arXiv:1907.12841 [INSPIRE].

[44] A. Lanir, A. Nedelin and O. Sela, Black hole entropy function for toric theories via Bethe

Ansatz, arXiv:1908.01737 [INSPIRE].

[45] S. Choi, C. Hwang, S. Kim and J. Nahmgoong, Entropy functions of BPS black holes in

AdS4 and AdS6, J. Korean Phys. Soc. 76 (2020) 101 [arXiv:1811.02158] [INSPIRE].

[46] D. Cassani and L. Papini, The BPS limit of rotating AdS black hole thermodynamics,

JHEP 09 (2019) 079 [arXiv:1906.10148] [INSPIRE].

[47] S. Choi and S. Kim, Large AdS6 black holes from CFT5, arXiv:1904.01164 [INSPIRE].

[48] S. Choi, C. Hwang and S. Kim, Quantum vortices, M2-branes and black holes,

arXiv:1908.02470 [INSPIRE].

[49] N. Bobev and P.M. Crichigno, Universal spinning black holes and theories of class R,

JHEP 12 (2019) 054 [arXiv:1909.05873] [INSPIRE].

[50] F. Benini, D. Gang and L.A. Pando Zayas, Rotating black hole entropy from M5 branes,

arXiv:1909.11612 [INSPIRE].

[51] S.M. Hosseini, K. Hristov and A. Zaffaroni, A note on the entropy of rotating BPS AdS7 × S4

black holes, JHEP 05 (2018) 121 [arXiv:1803.07568] [INSPIRE].
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[74] M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, Rotating black holes in gauged

supergravities: thermodynamics, supersymmetric limits, topological solitons and time

machines, hep-th/0504080 [INSPIRE].

[75] K. Hristov, S. Katmadas and C. Toldo, Matter-coupled supersymmetric Kerr-Newman-AdS4

black holes, Phys. Rev. D 100 (2019) 066016 [arXiv:1907.05192] [INSPIRE].

[76] F. Benini, N. Bobev and P.M. Crichigno, Two-dimensional SCFTs from D3-branes,

JHEP 07 (2016) 020 [arXiv:1511.09462] [INSPIRE].

[77] N. Bobev and P.M. Crichigno, Universal RG flows across dimensions and holography,

JHEP 12 (2017) 065 [arXiv:1708.05052] [INSPIRE].

[78] S.M. Hosseini and A. Zaffaroni, Large N matrix models for 3d N = 2 theories: twisted index,

free energy and black holes, JHEP 08 (2016) 064 [arXiv:1604.03122] [INSPIRE].

– 34 –

https://doi.org/10.1016/0370-2693(95)01607-4
https://arxiv.org/abs/hep-th/9512222
https://inspirehep.net/search?p=find+EPRINT+hep-th/9512222
https://arxiv.org/abs/1606.06687
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.06687
https://doi.org/10.21468/SciPostPhys.8.2.017
https://arxiv.org/abs/1811.08433
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.08433
https://doi.org/10.1007/JHEP10(2013)095
https://arxiv.org/abs/1307.6848
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.6848
https://doi.org/10.1016/j.nuclphysb.2012.07.019
https://arxiv.org/abs/1110.6400
https://inspirehep.net/search?p=find+EPRINT+arXiv:1110.6400
https://doi.org/10.1007/JHEP08(2014)123
https://arxiv.org/abs/1405.5144
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.5144
https://doi.org/10.1007/JHEP03(2010)089
https://arxiv.org/abs/0909.4559
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4559
https://doi.org/10.1088/1126-6708/2008/10/091
https://arxiv.org/abs/0806.1218
https://inspirehep.net/search?p=find+EPRINT+arXiv:0806.1218
https://doi.org/10.1088/1126-6708/2009/01/014
https://arxiv.org/abs/0806.3251
https://inspirehep.net/search?p=find+EPRINT+arXiv:0806.3251
https://doi.org/10.1016/j.nuclphysb.2009.06.025
https://doi.org/10.1016/j.nuclphysb.2012.07.015
https://arxiv.org/abs/0903.4172
https://inspirehep.net/search?p=find+EPRINT+arXiv:0903.4172
https://doi.org/10.1103/PhysRevD.83.046001
https://arxiv.org/abs/1011.5487
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5487
https://arxiv.org/abs/1812.07690
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.07690
https://doi.org/10.1007/JHEP05(2013)057
https://arxiv.org/abs/1302.5228
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.5228
https://doi.org/10.1016/j.nuclphysb.2005.03.034
https://arxiv.org/abs/hep-th/0411045
https://inspirehep.net/search?p=find+EPRINT+hep-th/0411045
https://arxiv.org/abs/hep-th/0504080
https://inspirehep.net/search?p=find+EPRINT+hep-th/0504080
https://doi.org/10.1103/PhysRevD.100.066016
https://arxiv.org/abs/1907.05192
https://inspirehep.net/search?p=find+EPRINT+arXiv:1907.05192
https://doi.org/10.1007/JHEP07(2016)020
https://arxiv.org/abs/1511.09462
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.09462
https://doi.org/10.1007/JHEP12(2017)065
https://arxiv.org/abs/1708.05052
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.05052
https://doi.org/10.1007/JHEP08(2016)064
https://arxiv.org/abs/1604.03122
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.03122


J
H
E
P
0
3
(
2
0
2
0
)
0
8
1

[79] S.M. Hosseini and N. Mekareeya, Large N topologically twisted index: necklace quivers,

dualities and Sasaki-Einstein spaces, JHEP 08 (2016) 089 [arXiv:1604.03397] [INSPIRE].

[80] D. Jain and A. Ray, 3d N = 2 ÂDE Chern-Simons quivers,
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