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1 Introduction

In a series of works [1–4] it has been argued that a certain class of N = 1 supersymmetric

little string theories (LSTs) [5–15] of A-type [16, 17] exhibits an intricate web of dualities.

These theories are engineered in M-theory by N parallel M5-branes spread out on a circle

S1 and probing a transverse ZM geometry. A more geometric description of these theories

can be given in terms of F-theory compactified on a particular type of toric Calabi-Yau

threefold XN,M [18] which exhibits the structure of a double elliptic fibration.

While these LSTs contain string-like degrees of freedom (albeit without gravity), their

low energy limits are supersymmetric gauge theories in six dimensions. It was argued in [3]
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that, for given (N,M), the Calabi-Yau geometry XN,M engineers three (generically) dif-

ferent supersymmetric gauge theories, a fact which was termed triality. These theories are

very different regarding their matter- and gauge content and are related through intrin-

sically non-perturbative duality maps, which mixes coupling constants, Coulomb branch-

and gauge parameters.

Furthermore, it was conjectured in [1] (and shown explicitly in a large number of

examples) that the Calabi-Yau threefolds XN,M and XN ′,M ′ are dual1 to one another if

NM = N ′M ′ and gcd(N,M) = gcd(N ′,M ′). It is therefore expected that the (non-

perturbative) BPS-partition functions ZN,M (ω, ε1,2) and ZN ′,M ′(ω′, ε1,2) agree once a suit-

able duality map (conjectured in [1] for generic N and M) for the Kähler parameters

(mapping ω → ω′) is taken into account. This equality was shown explicitly in [2] for

M = 1 and for general (N,M) in [19] assuming a certain limit of two deformation pa-

rameters ε1,2 that are required to render ZN,M (ω, ε1,2) well defined. Combined with the

triality of supersymmetric gauge theories argued in [3], this lead to the conjecture [4] of

a vast web of dual gauge theories with gauge groups [U(N ′)]M
′

with NM = N ′M ′ and

gcd(N,M) = gcd(N ′,M ′).

While the dualities described above link very different looking theories in a non-

perturbative fashion, they also imply symmetries for individual theories: focusing on

M = 1, it was first remarked in [20] that this web of dualities implies invariance of the

partition function ZN,M (ω) under the group G̃(N) ∼= G(N)× SN . Here SN ∼= DihN ⊂ SN
is (a subgroup of) the Weyl group of the largest gauge group that can be engineered in a

gauge theory from XN,1. Furthermore

G(N) ∼=


Dih3 if N = 1, 3 ,

Dih2 if N = 2 ,

Dih∞ if N ≥ 4 ,

(1.1)

where Dih∞ is the group that is freely generated by two elements of order 2.

Using this insight, the properties of the partition function ZN,1 (or more specifically,

the free energy FN,1 associated with it) have been re-examined in [21, 22]: among other

things, on the one hand side it was argued in [21] that a particular subsector (called the

reduced free energy) of FN,1 is invariant with respect to the paramodular group ΣN , which

in the Nekrasov-Shatashvili limit [23, 24] ε2 → 0 is extended to Σ∗N ⊂ Sp(4,Q). This result

agrees with the earlier observation in [25] that the states contributing to the reduced free

energy form a symmetric orbifold CFT and that an expansion of the former shows a very

characteristic Hecke structure. On the other hand, by examining the examples N = 2, 3, 4

up to order 3 in the instanton parameter QR (from the point of view of the largest gauge

group U(N) that can be engineered from XN,1) it was discussed in [22] that the remaining

contributions to the free energy exhibit very suggestive structures. In particular, it was

argued, that these BPS counting functions can be written using particular combinations

of generating functions T (â1, . . . , âN−1; ρ) of multiple divisor sums, which were introduced

1The duality XN,M ∼ XN′,M′ means that these two manifolds share the same extended Kähler moduli

space, i.e. their Kähler moduli spaces are connected through so-called flop transformations. We refer to [1]

for details.
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in [26]. These functions are a generalisation of quasi-Jacobi forms and combine in a natural

fashion the modular properties (acting on the modular parameter ρ) of the free energy with

the âN+1 (affine) gauge algebra (with roots â1,...,N−1).

As was already remarked in [26], the generating functions T (â1, . . . , âN−1; ρ) are also

intimately connected to multiple zeta values and can be expanded in terms of (reduced)

polylogarithms. The latter have in recent years attracted a lot of attention in the study

of (loop) amplitudes in (supersymmetric) string theories (see e.g. [27–38] and references

therein for an overview). The current paper is motivated by extending this connection and

extracting a class of functions from the free energy FN,1, which show a certain resemblance

of so-called (modular) graph functions (see [32, 33, 38–45]) that have been studied recently

in the literature. To this end, we consider the so-called unrefined limit ε1 = −ε2 = ε and

study instanton expansions of the free energy for N = 2, 3 up to order Q3
R:

FN,1(â1, . . . , âN−1, ρ, R, S, ε) =

∞∑
r=1

QrR

∞∑
s=0

ε2s−2B
(N,r)
(s) (â1, . . . , âN−1, ρ, S) . (1.2)

The latter exhibit a number of very interesting patterns, which can schematically be rep-

resented in the form of graphs, that resemble effective higher point functions (even similar

to Feynman diagrams): indeed, to leading instanton order (i.e. for r = 1 in (1.2)) we find

that we can write

B
(N,r=1)
(s) = H

(0,1)
(s) (ρ, S)

N−1∑
i=0

(W(0)(ρ, S))N−1−i (H
(0,1)
(0) (ρ, S))iO(N),i(â1,...,N−1, ρ) , (1.3)

which we have verified for N = 2, 3 up to order s = 4 and also partially for N = 4, using

the data for s = 0 provided in [22]. In (1.3) we have as the fundamental building blocks

H
(0,1)
(s) = B

(N=1,r=1)
(s) and W(0), which is a particular quasi-Jacobi form of weight 0 and

index 1 (see (3.3) for the precise definition). The latter are ‘coupled’ through the coupling

function O(N),i, which is independent of S and s and depends on the roots of the gauge

algebra âN+1. The form (1.3) can graphically be presented as an N -point function, where

the external legs are given by H
(0,1)
(s) and W(0) respectively, which are connected via O(N),i

(see figure 9). While a priori nothing more than an amusing graphical representation, this

interpretation seems to go beyond a mere mnemonic device: for the examples N = 2, 3, 4

we find that O(N),0 = N , while O(N),1 is in fact (up to a â1,...,N−1-independent term)

related to the scalar Greens function on the torus (see appendix A.2). Moreover, the real

part of O(N),1 is the fundamental building block for the study of graph functions in [33].

Higher O(N),i, for i > 1, are more involved. However, using the presentation in terms of the

T (â1, . . . , âN−1; ρ) mentioned above, they can be written as combinations of polylogarithms

— a property they share in common with the graph functions in [33]. We leave it to further

work to analyse these functions in detail.

This paper is organised as follows: in section 2 we review the instanton partition func-

tion ZN,1(ω, ε1,2) and free energy FN,1(ω, ε1,2) as well as their symmetries found in [21, 22].

In sections 3 and 4 we study the cases N = 2 and N = 3 respectively, which reveal the

patterns mentioned above. In section 5 we summarise these examples and formulate a
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conjecture for the general structure in the form of (1.2). We also discuss similarities of

the free energy with modular graph functions in the literature of scattering amplitudes in

string- and field theory. Section 6 contains our conclusions and an outlook for future work.

Furthermore, two appendices contain a short review on modular objects and the generating

functions of multiple divisor sums.

2 Review: free energy

2.1 Little string free energy

In order to set the stage for subsequent sections, we start by reviewing the partition func-

tion and free energy of a class of little string theories of A-type [1, 2, 16, 17]. The latter can

be engineered through F-theory compactified on a class of toric, non-compact Calabi-Yau

threefolds [18], which are called XN,M for N,M ∈ N. The corresponding non-perturbative

BPS partition function ZN,M (ω, ε1,2) of these LSTs is captured by the topological string

partition function on XN,M [16] (see also [46–49]), which can be computed in a very ef-

ficient manner using the refined topological vertex (see [50–52]): indeed, in [2] a general

building block Wα1,...,αN
β1,...,βN

(â1,...,N , S; ε1,2) was computed that is labelled by 2N sets of inte-

ger partitions α1,...,N and β1,...,N and that depends on (a subset of) the Kähler parameters

of XN,M . The latter allows to compute the full instanton partition function by ‘gluing

together’ M -copies of itself, weighted in a suitable manner by the instanton parameters.

In the case M = 1, only a single building block is necessary and the non-perturbative part

of the partition function can be written as

ZN,1(â1,...,N−1, ρ, S,R; ε1,2) =
∑
{α}

(
N∏
i=1

Q|αi|mi

)
Wα1,...,αN
α1,...,αN

(â1,...,N−1, ρ, S; ε1,2) . (2.1)

Concerning the Kähler parameters of XN,1, we use the same basis that was introduced

in [3], i.e. (â1, . . . , âN−1, ρ, S,R), where the â1,...,N−1 and ρ play the roles of roots of the

affine âN+1 gauge algebra, S plays the role of a mass parameter, while R is related to the

coupling constant. The Qmi = e2πimi with mi = mi(R,S, â1,...,N−1, ρ) appearing in (2.1) are

linear combinations of (â1,...,N−1, S,R) and contain the only dependence on R. Thus, (2.1)

is essentially an expansion in powers of QR = e2πiR, which can therefore be identified with

an instanton expansion.

Rather than working with the partition function ZN,1, we work with the free energy

FN,1(â1,...,N−1, ρ, S,R; ε1,2) = PLogZN,1(â1,...,N−1, ρ, S,R; ε1,2) , (2.2)

which affords the following Fourier expansion

FN,1(â1, . . . , âN , S,R; ε1,2) =
∞∑

s1,s2=0

∞∑
r=0

∞∑
i1,...,iN

∑
k∈Z

εs1−11 εs2−12 f
(s1,s2)
i1,...,iN ,k,r

Qi1â1 . . . Q
iN
âN
QkS Q

r
R ,

(2.3)
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with the coefficients f
(s1,s2)
i1,...,iN ,k,r

.2 We use the same notation as in [21, 22], i.e. ρ =
∑N

i=1 âi
and

Qâi = e2πiâi , Qρ = e2πiρ =
∏N
i=1Qâi , QS = e2πiS , QR = e2πiR , for i = 1, . . . , N ,

(2.4)

and we introduce the following partial expansion

H
(i1,...,iN ,r)
(s1,s2)

(ρ, S) =

∞∑
`=0

∑
k∈Z

f
(s1,s2)
i1+`,i2+`,...,iN+`,k,rQ

k
S Q

`
ρ , ∀i1,...,N ∈ N ∪ {0} . (2.5)

The free energy can be formally3 recovered as

FN,1(â1, . . . , âN , S,R; ε1,2) =

∞∑
s1,s2=0

∞∑
r=0

εs1−11 εs2−12 QrRB
(N,r)
(s1,s2)

(â1, . . . , âN−1, ρ, S) , (2.6)

with the functions

B
(N,r)
(s1,s2)

=
′∑

i1,...,iN

H
(i1,...,iN ,r)
(s1,s2)

(ρ, S)Qi1â1 . . . Q
iN
âN
, (2.7)

and the sum is understood to run over all (i1, . . . , iN ) such that (at least) one ia = 0.

Finally, we define the coefficients which appear in the expansion of FN,1 in the unrefined

case ε1 = −ε2 = ε

H
(i1,...,iN ,r)
(s) =

∑
s1+s2=2s

(−1)s2−1H
(i1,...,iN ,r)
(s1,s2)

, B
(N,r)
(s) =

∑
s1+s2=2s

(−1)s2−1B
(N,r)
(s1,s2)

. (2.8)

Numerous examples of H
(i1,...,iN ,r)
(s1,s2)

have been computed in [22] and its properties have

been discussed in detail. In particular, it has been argued that a suitable set of func-

tions to represent the H
(i1,...,iN ,r)
(s1,s2)

are the generating functions of multiple divisor sums

T (X1, . . . , X`; ρ) that have been first introduced in [26] and which are defined in (B.1).

Rather than recounting all the properties of B
(N,r)
(s1,s2)

found in [22], we shall instead give

as an example the simplest case (namely N = 1) in the following, whose expansion will

provide us with the general building blocks that are used in the remainder of this paper.

2.2 Free energy for N = 1

The unrefined free energy for N = 1 (with ε1 = −ε2 = ε) is of the form

F1,1(ρ, S,R; ε1 = −ε2 = ε) =

∞∑
s=0

ε2s−2
∞∑
r=0

QrRH
(0,1)
(s) (ρ, S) ,

with H
(0,1)
(s) =

∑
s1+s2=2s

(−1)s2−1H
(0,1)
(s1,s2)

.

2Due to the plethystic logarithm PLog, FN,1 only counts single particle BPS states. The former is

defined as PLogZN,1(â1,...,N−1, ρ, S,R; ε1,2) =
∑∞
k=1

µ(k)
k

lnZN,1(k â1,...,N , k S, k R; k ε1,2), where µ is the

Möbius function.
3Here we do not worry about convergence: we shall reformulate the free energy in (modular) objects, for

which we utilise a suitable summation procedure [53] to guarantee convergence. See [22] for more details.
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To order Q1
R we have concretely

∞∑
s=0

ε2s−2H
(0,1)
(s) = −φ−2,1

ε2
+
φ0,1
24
−
∞∑
n=1

ε2n
(−1)nB2n+2E2n+2(ρ)φ−2,1(ρ, S)

(2n− 1)!!(2n+ 2)!!
, (2.9)

while for higher orders in QrR (with r > 1) it was found in [25]

H
(0,k)
(s) (ρ, S) = Tk

(
H

(0,1)
(s) (ρ, S)

)
=
∑
a|k

aw−1 µ(a)Hk/a
(
H

(0,1)
(s) (aρ, aS)

)
, (2.10)

where Hk is the k-th Hecke operator (see eq. (A.10)) and µ is the Möbius function. For

later convenience, we explicitly tabulate the first few coefficient-functions up to order Q2
R

as follows

s H
(0,1)
(s) H

(0,2)
(s)

0 −φ−2,1 −φ−2,1

24 (φ0,1+ψ2φ−2,1)

1
φ0,1
24

1
576

[
24E4φ

2
−2,1+(φ0,1−2ψ2φ2,1)(φ0,1+3ψ2φ−2,1)

]
2 −E4φ−2,1

240
φ−2,1

11520

[
5ψ2

2(φ0,1+4ψ2φ−2,1)−2E4(11φ0,1+41ψ2φ2,1)
]

3 −E6φ−2,1

6048
φ−2,1

290304

[
252E2

4φ−2,1+87E4ψ2φ0,1−2(8E6ψ2φ−2,1+ψ3
2(11φ0,1+7ψ2φ−2,1))

]
4 −E2

4 φ−2,1

172800

φ−2,1

74649600

[
−2178E2

4φ0,1+9372E4E6φ−2,1+ψ2(240E6φ0,1−416E6ψ2φ−2,1
+105ψ3

2φ0,1−242ψ4
2φ−2,1)

]
The Eisenstein series E2k and ψ2 and the Jacobi forms φ−2,1 and φ0,1 are defined in

appendix A.

3 Example N = 2

We start by considering the free energy for N = 2. More concretely, using the same

notation as in [21, 22], we can separate the latter into two pieces (for r ≥ 1)

B
(2,r)
(s) =H

(0,0,r)
(s) (ρ,S)+K

(r,2)
(s) (ρ,S, â1) , with K

(1,2)
(s) =

∞∑
n=1

H
(n,0,r)
(s)

(
Qnâ1 +

Qnρ
Qnâ1

)
. (3.1)

Below we shall analyse the orders r = 1, 2, 3 in more detail.

3.1 Order Q1
R

For low values of s we find for the terms H
(n,0,1)
(s) in (3.1) the following expressions

H
(n,0,1)
(0) = − 2n

1−Qnρ
φ2−2,1 ,

H
(n,0,1)
(1) =

n

12(1−Qnρ )
φ0,1 φ−2,1 ,

H
(n,0,1)
(2) = − n

120(1−Qnρ )
E4 φ

2
−2,1 ,

H
(n,0,1)
(3) = − n

3024(1−Qnρ )
E6 φ

2
−2,1 ,

H
(n,0,1)
(4) = − n

86400(1−Qnρ )
E2

4 φ
2
−2,1 .
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H
(0,1)
(0) H

(0,1)
(s)O(2),1

Figure 1. Coupling function O(2),1 appearing in the ε-expansion of K
(1,2)
(s) .

Comparing with the H
(0,1)
(s) appearing in the expansion of the free energy of N = 1 (as

tabulated in section 2.2), these examples exhibit a pattern which suggests4

K
(1,2)
(s) =H

(0,1)
(0) O

(2),1H
(0,1)
(s) , where O(2),1(â1,ρ) =−

∞∑
n=1

2n

1−Qnρ

(
Qnâ1 +

Qnρ
Qnâ1

)
. (3.2)

This relation can be represented graphically as in figure 1, where H
(0,1)
(0) is coupled to H

(0,1)
(s)

through the coupling function O(2),1. Notice that the latter is independent of s and only

depends on (â1, ρ), but not S (whose dependence in figure 1 is only given through H
(0,1)
(s)

and H
(0,1)
(0) ).

Similar to K
(1,2)
(s) , we can compute H

(0,0,1)
(s) , where the first few examples are

H
(0,0,1)
(0) = − 1

12
φ−2,1 (φ0,1 + 2E2 φ−2,1) ,

H
(0,0,1)
(1) =

1

288
φ0,1 (φ0,1 + 2E2 φ−2,1) ,

H
(0,0,1)
(2) = − 1

2880
E4 φ−2,1 (φ0,1 + 2E2 φ−2,1) ,

H
(0,0,1)
(3) = − 1

72576
E6 φ−2,1 (φ0,1 + 2E2 φ−2,1) ,

H
(0,0,1)
(4) = − 1

2073600
E2

4 φ−2,1 (φ0,1 + 2E2 φ−2,1) .

In the same manner as (3.2), these examples suggest the pattern

H
(0,0,1)
(s) (ρ, S) = W(0)O(2),0H

(0,1)
(s) , where

{
O(2),0 = 2 ,

W(0) = 1
24 (φ0,1 + 2E2 φ−2,1) .

(3.3)

As above, this relation can be represented graphically as in figure 2, where W(0) is coupled

to H
(0,1)
(s) through O(2),0. The quasi-Jacobi form W(0) is the leading term in the expansion

W (ρ, S, ε1,2) =
θ1(ρ;S + ε−)θ1(ρ;S − ε−)− θ1(ρ;S + ε+)θ1(ρ;S − ε+)

θ1(ρ; ε1)θ1(ρ; ε2)
= W(0) +O(ε1, ε2) ,

which appeared in [16] (see also [21]), as the function governing the counting of BPS states

of a (local) M5-brane with a single M2-brane ending on it on either side. We refer the

reader to [16, 21] for more details.

4Our notation is explained in more detail in section 5: there we shall denote general coupling functions

O(N),i, where i is a summation index labelling different classes of couplings.
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W(0) H
(0,1)
(s)O(2),0

Figure 2. Coupling function O(2),0 appearing in the expansion of the free energy H
(1,2)
(s) in powers

of ε.

In (3.2) and (3.3) we have called O(2),1 and O(2),0 coupling functions and have graph-

ically represented the contribution to the free energy in figure 1 and figure 2 like a(n

effective) ‘propagator’ appearing in a two-point function. In the case of the former, this

connection can be made more concrete: O(2),1 can (up to a non-holomorphic contribution)

be related to (the derivative of) the scalar two-point function on the torus, as we shall

explain explicitly in section 5.2.1.

3.2 Order Q2
R

We have seen that to leading instanton order, the free energy can be presented as a ‘two-

point function’ involving the effective coupling functions O(2),0 and O(2),1. Higher orders

in QR are more involved, however, still exhibit very interesting similar structures.

Indeed, slightly adopting the notation used in [22], for r = 2 in (3.1), we can write

H
(n,0,2)
(s) =

4∑
i=1

[
g
i,(n,2)
(s) + θn,2 h

i,(n,2)
(s)

] nφ5−i−2,1φi−10,1

1−Qnρ
, with θa,b =

{
0 if gcd(a, b) = 1 ,

1 if gcd(a, b) > 1 ,

where we can tabulate the coefficients g
i,(n,2)
(s) as follows

s g
1,(n,2)
(s) g

2,(n,2)
(s) g

3,(n,2)
(s) g

4,(n,2)
(s)

0 −n4+2E4
24 −n2

12 − 1
96 0

1 8n6+182n2E4−85E6
5040

41E4+34n4

2880
5n2

576
1

2304

2
2300E6n2−1722E2

4−1386E4n4−11n8

362880
−595E4n2+290E6−52n6

120960
−34E4−59n4

69120
−n2

4608

3
−5E6(3539E4+2376n4)+7n10

19958400

+E4n2(889E4+82n4)
604800

42E4(10E4+9n4)−628E6n2+7n8

870912
217E4n2−105E6+43n6

1451520
n4

55296

and in a similar fashion, we can tabulate the coefficients h
i,(n,2)
(s) as follows

s h
1,(n,2)
(s) h

2,(n,2)
(s) h

3,(n,2)
(s) h

4,(n,2)
(s)

0
ψ2
2

72 −ψ2

72
1

288 0

1
E6+ψ3

2
432

3E4−4ψ2
2

1728
ψ2

1728 − 1
6912

2
8E6ψ2+11ψ4

2
51840

−8E6−11ψ3
2

51840
5ψ2

2−4E4

69120 0

3
ψ3
2(11ψ

2
2−12E4)

435456
ψ2
2(12E4−11ψ2

2)
435456

8E6+7ψ3
2

1741824 0
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Figure 3. Coupling H
(0,1)
(0) (via O(2),1) and W(0) (via O(2),0) to three H

(0,1)
(si)

comprised in Bs(3).

We can similarly treat the contribution H
(0,0,2)
(s) in (3.1). Adapting the notation of [22],

we have

H
(0,0,2)
(s) (ρ, S) =

5∑
i=1

u
i,(2,2)
(s) (ρ)φ5−i−2,1(ρ, S)φi−10,1 (ρ, S) , (3.4)

where we find for the leading terms in s

s u
1,(2,2)
(s) u

2,(2,2)
(s) u

3,(2,2)
(s) u

4,(2,2)
(s) u

5,(2,2)
(s)

0
2E2(ψ2

2−6E4)+10E6−ψ3
2

1728
ψ2(ψ2−2E2)−3E4

1728
−4E2−ψ2

6912 − 1
6912 0

1
4E2(7ψ3

2−44E6)+3E4(68E4+35ψ2
2)−42ψ4

2

145152
E2(276E4−40ψ2

2)−146E6+5ψ3
2

207360
ψ2(4E2−5ψ2)+18E4

82944
4E2+ψ2

288·242
1

165888

Due to their complexity, we refrain from writing higher terms explicitly.

Combining these explicit expressions suggests that B
(2,2)
(s) can be presented as

B
(2,2)
(s) (ρ,S, â1) = T2

(
H

(0,0,1)
(s)

)
+2O(2),1H2

[
H

(0,1)
(0) H

(0,1)
(s)

]
−22s−4K

(1,2)
(s) (2ρ,2S,2â1)

+

[
H

(0,1)
(0) O

(2),1− 1

4
W(0)O(2),0

]
Bs(3)+H

(0,1)
(0)

∑
s={s1,s2,s3}

O(2),1
2,s

3∏
i=1

H
(0,1)
(si)

,

(3.5)

where we used the shorthand notation s = {s1, s2, s3}. The terms in the first line of (3.5)

are obtained through particular operations from the contributions (3.2) or (3.3) (i.e. the

free energy to order Q1
R). The first term in the second line corresponds to a coupling of

H
(0,0)
(0) (through O(2),1) or W(0) (through O(2),0) to three H

(0,1)
(si)

forming Bs(3), as shown in

figure 3. The latter is built from three H
(0,1)
(si)

in the following fashion

Bs(3) =
1

8

∑
s1,s2,s3

s1+s2+s3=s+2

csH
(0,1)
(s1)

H
(0,1)
(s2)

H
(0,1)
(s3)

, with
cs ∈ Z
s = {s1, s2, s3}

. (3.6)

Explicitly, for the lowest values of s, we find

B0(3) = 0 , B1(3) = 4H
(0,1)
(0) H

(0,1)
(1) H

(0,1)
(2) −3(H

(0,1)
(0) )2H

(0,1)
(3) ,

B2(3) = 4(H
(0,1)
(1) )2H

(0,1)
(2) +6H

(0,1)
(0) (H

(0,1)
(2) )2+12H

(0,1)
(0) H

(0,1)
(1) H

(0,1)
(3) +2(H

(0,1)
(0) )2H

(0,1)
(4) ,

B3(3) = 15(H
(0,1)
(1) )2H

(0,1)
(3) +H

(0,1)
(0) H

(0,1)
(2) H

(0,1)
(3) +100H

(0,1)
(0) H

(0,1)
(1) H

(0,1)
(4) +192(H

(0,1)
(0) )2H

(0,1)
(5) .
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Figure 4. Coupling of H
(0,1)
(0) to three H

(1,2)
(si)

through O(2),1
2,s .

The explicit numerical coefficients appearing in Bs(3) for higher values in s are difficult

to predict (and are in fact not unique), thus constituting information encoded in the free

energy, that does not immediately follow from the case N = 1. Finally, the last line in (3.5)

represents new terms that involve similar sums as in (3.2), with higher powers in n, as well

as Eisenstein series. It is, however, amusing that this contribution can still be represented

in a diagrammatic fashion along the lines of the remaining terms: as shown in figure 4, it

can be represented as H
(0,0)
(0) coupling to three other H

(0,1)
(si)

through the coupling function

O(2),1
2,s .5 For given s, the latter is

O(2),1
2,s =

∞∑
n=1

ds;sn
κ

1−Qnρ

(
Qnâ1 +

Qnρ
Qnâ1

)
+ wr=2

s,s (ρ) . (3.7)

In the first term, we have s = κ−5
2 +s1 +s2 +s3 and the ds;s ∈ Q are numerical coefficients.

The second term in (3.7) is independent of â1 and wr=2
s,s (ρ) are modular forms of weight w,

which satisfy s1 + s2 + s3 + w
2 = s+ 3. To leading order in s, we find explicitly

s s ds;s w2
s,s

0 {0, 0, 1} 2 0

{0, 0, 0} −1
24 0

1 {0, 1, 1} 5 −4E4
15

{0, 0, 2} 26
3

−10E4
63

{0, 0, 1} −17
60

19E6
630

{0, 0, 0} 1
630 0

2 {1, 1, 1} 3 −4E4
15

{0, 1, 2} 85
3 0

s s ds;s w2
s,s

2 {0, 0, 3} 115
3

14E4
15

{0, 1, 1} −59
120

−E6
105

{0, 0, 2} −11
12 0

{0, 0, 1} 13
1260

E2
4

1260

{0, 0, 0} −11
362880 0

3 {1, 1, 2} 62
3

−10E4
7

{0, 1, 3} 314
3 0

{0, 0, 4} 254 0

s s ds;s w2
s,s

3 {1, 1, 1} −1
4

−5E6
126

{0, 1, 2} −5
2

61E6
1386

{0, 0, 3} −18
5

91E6
990

{0, 1, 1} 43
2520 0

{0, 0, 2} 41
1260

5E2
4

616

{0, 0, 1} −1
5184 0

{0, 0, 0} 1
2851200 0

5Our notation is explained in section 5: we denote O(N),i
r,s , where i is a summation index labelling

different classes of couplings, r denotes the order of QrR, while s = {s1, . . . , sk} is a set of labels governing

the ε-expansion.
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(0)
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Figure 5. Coupling H
(0,1)
(0,0) (via O(2),1) and W(0) (via O(2),0) to five H

(0,1)
(si)

comprised in Bs(5).

We stress that the ds;s and w2
s,s are in general not unique6 and the above table simply

gives a(n economic) presentation. We finally remark that, despite being structurally very

similar, we have chosen to present the terms involving O(2),0,1 and O(2),1
2,s separately in the

last line of (3.5) since the latter is a completely holomorphic function, while the former

(once the O(2),1 are summed up) also contain quasi-modular contributions (see eq. (5.4)

below). From a ‘Feynman diagrammatic’ point of view, however, these two represent two

similar classes of couplings.

3.3 Order Q3
R

We can continue the previous analysis to order Q3
R. However, since explicit expansions to

this order are very difficult to compute, we shall limit ourselves to only the leading orders

in s. Due to their complexity, we refrain from explicitly writing the H
(n,0,3)
(s) (ρ, S), but

we refer the reader to [22]. The leading two orders in s, however, suggest the following

presentation

B
(2,3)
(s) (ρ,S, â1) = T3

(
H

(0,0,1)
(s)

)
+3O(2),1H3

[
H

(0,1)
(0) H

(0,1)
(s)

]
−32s−4K

(1,2)
(s) (3ρ,3S,3â1)

+

[
H

(0,1)
(0) O

(2),1− 1

9
W(0)O(2),0

]
Bs(5)+H

(0,1)
(0)

∑
s={s1,s2,s3,s4,s5}

O(2),1
3,s

5∏
i=1

H
(0,1)
(si)

,

(3.8)

which directly generalises (3.5) to order Q3
R: the terms in the first line are obtained through

certain operators from the free energy at order Q1
R. Furthermore, the first term in the

second line of (3.8) couples H
(0,1)
(0) (through O(2),1) and W(0) (through O(2),0) to Bs(5), as

schematically shown in figure 5. To leading order in s, we find for the former:

B0(5) = 0 ,

B1(5) =
64

11
H

(0,1)
(0)

[
22(H

(0,1)
(1) )3H

(0,1)
(2)

+ 99H
(0,1)
(0) (H

(0,1)
(1) )2H

(0,1)
(3) + 103(H

(0,1)
(0) )2H

(0,1)
(2) H

(0,1)
(3)

+ 330(H
(0,1)
(0) )2H

(0,1)
(1) H

(0,1)
(4)

]
. (3.9)

6This is e.g. due to linear relations such as e.g. E4H
(0,1)

(0) = 240H
(0,1)

(2) .
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Figure 6. Coupling of H
(0,1)
(0) to five H

(1,2)
(si)

through O(2),1
3,s .

Finally, the last term in the second line in (3.8) generalises the contribution depicted in

figure 4 in the sense that it couples H
(0,1)
(0) to five different H

(0,1)
(si)

(rather than just 3)

through a coupling function O(2),1
2,s , where s = {s1, s2, s3, s4, s5}, as schematically shown in

figure 6. We can write

O(2),1
3,s =

∞∑
n=1

ds;sn
κ

1−Qnρ

(
Qnâ1 +

Qnρ
Qnâ1

)
+ wr=2

s,s (ρ) , (3.10)

where ds,s ∈ Q are numerical coefficient and we have s = κ−9
2 +

∑5
a=1 sa. Furthermore,

the wr=2
s,s (ρ) are independent of â1 and are modular forms of weight w, which satisfy∑5

a=1 sa + w
2 = s+ 5. The leading contributions in s can be tabulated in the following:

s s ds,s wr=2
s,s

0 {0, 0, 1, 1, 1} −32
2 0

{0, 0, 0, 1, 2} −64 0

{0, 0, 0, 0, 3} −176
3 0

{0, 0, 0, 1, 1} 4
3 0

{0, 0, 0, 0, 2} 14
9 0

{0, 0, 0, 0, 1} − 4
135 0

{0, 0, 0, 0, 0} 1
7560 0

1 {0, 1, 1, 1, 1} −80
3 −16

5 E4

{0, 0, 1, 1, 2} −1264
3 −32

21 E4

s s ds,s wr=2
s,s

{0, 0, 0, 2, 2} −5504
9

2000
693 E4

{0, 0, 0, 1, 3} −2960
3

1024
165 E4

{0, 0, 1, 1, 1} 104
15 − 32

315 E6

{0, 0, 0, 1, 2} 30 0

{0, 0, 0, 0, 3} 908
45

56
495 E6

{0, 0, 0, 1, 1} − 34
105 0

{0, 0, 0, 0, 2} −284
945 0

{0, 0, 0, 0, 1} 1
280 0

{0, 0, 0, 0, 0} − 4
467775 0

As in the case of O(2),1
2,s , however, we stress that the above coefficients are not unique, but

just represent an economic choice.

3.4 Nekrasov-Shatashvili limit

The discussion above was exclusively focused on the so-called unrefined limit, i.e. ε1=−ε2.
For completeness, we also briefly comment on another limit, namely the Nekrasov-

Shatashvili limit [23, 24], i.e. effectively ε2 → 0. However, we shall limit ourselves to
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studying the order Q1
R (up to order ε51): while the latter also exhibits some very interest-

ing patterns, extracting a coupling function akin to (3.2) (in the unrefined limit) is more

involved. We shall therefore leave an in-depth analysis of this limit to future work [54].

We start with a presentation of the free energy (2.3) like in (3.1), suitable for the

NS-limit

B
(2,r)
(s,0) = H

(0,0,r)
(s,0) (ρ, S) +K

(r,2)
(s,0)(ρ, S, â1) , with K

(1,2)
(s,0) =

∞∑
n=1

H
(n,0,r)
(s,0) (ρ, S)

(
Qnâ1 +

Qnρ
Qnâ1

)
.

The contributions H
(0,0,r)
(s,0) (see (2.5)) have been studied in [25] and have been shown

to exhibit a very particular Hecke symmetry. We therefore focus on the contribution

K
(r,2)
(s,0)(ρ, S, â1), or more precisely H

(n,0,r)
(s,0) . In order to reveal similar structures as in the

unrefined limit (see eq. (3.2)) we first need to compute the H
(0,1)
(s,0) . The latter can be written

as [22]

H
(0,1)
(s,0) = u

1,(1,1)
(s,0) (ρ)φ−2,1(ρ, S) + u

2,(1,1)
(s,0) (ρ)φ0,1(ρ, S) , (3.11)

where u
i,(1,1)
(s,0) (ρ) are quasi-modular forms of weight s (for i = 1) and s− 2 (for i = 2). For

low values of s, they can be tabulated as follows

s 0 2 4 6

u
1,(1,1)
(s,0) −1 −E2

48 −5E2
2+13E4

40·242 −184E6+273E2E4+35E3
2

70·244

u
2,(1,1)
(s,0) 0 1

96
E2

8·242
7E4+5E2

2
160·243

Notice that the H
(0,1)
(s,0) satisfy

∂H
(0,1)
(s,0)

∂E2
=

1

2 · 24
H

(0,1)
(s−1,0) . (3.12)

Furthermore, the H
(n,0,r=1)
(s,0) (up to s = 6) have been computed in [22] and are of the form

H
(n,0,2)
(s,0) =

2∑
i=1

g
i,(n,1)
(s,0)

φ3−i−2,1φ
i−1
0,1

1−Qnρ
, with g

i,(n,1)
(s,0) =

∑
κ∈Nodd

piκ,s(ρ)nκ , (3.13)

where piκ,s(ρ) are quasi-modular forms of weight s− κ− 2i+ 3, which can be tabulated as

follows

s 0 2 4 6

κ 1 3 1 5 3 1 7 5 3 1

p1κ,s −2 1
3

−E2
12

−1
60

E2
72

−13E4−10E2
2

5760
192

35·243
−48E2
5·243

2(10E2
2+13E4)

5·243
−92E6−273E4E2−70E3

2
210·243

p2κ,s 0 0 1
24 0 −1

144
E2
576 0 1

5·242
−E2
6·242

5(E4+E2
2)

2·243

p3κ,s 0 0 0 0 0 −1
8·242 0 0 1

2·243
−E2
8·243
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Using this explicit form, we find that K
(1,2)
(s,0) can also be written as

K
(1,2)
(s,0) =

s/2∑
a,b=0

H
(0,1)
(a,0)Mab(â1)H

(0,1)
(b,0) , with Mab =−2

∞∑
n=1

(−1)
s
2
+a+bns+1−2(a+b)

(
Qnâ1 +

Qnρ
Qn
â1

)
(1−Qnρ )Γ(s−2(a+b−1))

.

Here, using a slightly imprecise notation, we understand that 1/Γ(−m) = 0 ∀m ∈ N∪{0}.
In this way, M is a

(
s
2 + 1

)
×
(
s
2 + 1

)
symmetric matrix with zero entries for a + b > s

2 .

Furthermore, the entries on the off-diagonal of M correspond precisely to the coupling

function O(2),1 in (3.2), while all entries in the top-left half correspond to holomorphic

derivatives of the latter with respect to â1. While this is still a very intriguing pattern

(which shall be further analysed in [54]) it does not make the coupling function appear in

such a clean fashion as in the unrefined case (see eq. (3.2)). Therefore, in the following we

shall further analyse the latter limit.

4 Example N = 3

Following [21, 22], the free energy for N = 3 can be decomposed as in (3.1) for the case

N = 2

B
(3,r)
(s) (ρ, S, â1, â2) = H

(0,0,0,r)
(s) (ρ, S) +K

(r,3)
(s) (ρ, S, â1, â2) , (4.1)

where in the following we shall limit ourselves to r = 1. The contribution K
(r,3)
(s) com-

prises three different types of terms. Using a slightly different notation than in [22] and

generalising a pattern arising up to order s = 2, we can present it in the following form

K
(1,3)
(s) (ρ, S, â1, â2) =

∞∑
n=1

[
n
λ1s(ρ, S)

1−Qnρ

(
∆

(n)
+ +Qnρ ∆

(−n)
+

)
+ n2

λ2s(ρ, S)

(1−Qnρ )2

(
∆

(n)
+ + ∆

(−n)
+

)]

+
λ3s(ρ, S)

24

∞∑
n1,n2=1

[
n2(n2 + 2n1)

(1−Qn1
ρ )(1−Qn2

ρ )
+

n21 − n22
(1−Qn1

ρ )(1−Qn1+n2
ρ )

] 3∑
i=1

Qn1+n2

âi

∑
j 6=i

Qn1

âj
.

(4.2)

In the second line we have defined Qâ3 = Qρ/(Qâ1Qâ2) to keep the notation compact, while

∆
(n)
+ =

∑3
i=1Q

n
âi

. Furthermore, the λ1,2,3s are quasi-Jacobi forms of index 3 and weights7

w1 = 2s− 4, w2 = w3 = 2s− 6, respectively. The λis can be decomposed as

λis(ρ, S) = −
3∑

a=1

αia,s(ρ) (φ−2,1(ρ, S))4−a (φ0,1(ρ, S))a−1 , (4.3)

7We remark that the λis are independent of the summation variables n or n1,2 in (4.2).
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Figure 7. Schematic contributions to K
(1,3)
(s) , in the form of a single H

(0,1)
(0) and a single W(0)

(diagram (a)) or two H
(0,1)
(0) (diagram (b)) coupling to H

(0,1)
(s) .

where the αia,s are quasi-modular forms of weight wi + 6 (for a = 1), wi + 4 (for a = 2) and

wi + 2 (for a = 3) respectively. Up to order s = 3, they can be tabulated as follows

s 0 1 2 3 4

a 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

α1
a,s

E2
6

1
12 0 0 − E2

144 − 1
288

E2E4
1440

E4
2880 0 E2E6

36288
E6

72576 0
E2E2

4
1036800

E2
4

2073600 0

α2
a,s 1 0 0 0 − 1

24 0 E4
240 0 0 E6

6048 0 0
E2

4
172800 0 0

α3
a,s 24 0 0 0 −1 0 E4

10 0 0 E6
252 0 0

E2
4

7200 0 0

These contributions can be summarised by the following pattern

K
(1,3)
(s) = O(3),1W(0)H

(0,1)
(0) H

(0,1)
(s) +O(3),2H

(0,1)
(0) H

(0,1)
(0) H

(0,1)
(s) , (4.4)

where we defined

O(3),1 =−
∞∑
n=1

2n

1−Qnρ

[
∆

(n)
+ +Qnρ∆

(−n)
+

]
, (4.5)

O(3),2 =
∞∑

n1,2=1

∑
iQ

n1+n2

âi

∑
j 6=iQ

n1

âj

1−Qn1
ρ

[
n2(n2+2n1)

(1−Qn2
ρ )

+
n21−n22

(1−Qn1+n2
ρ )

]
+

∞∑
n=1

n2Qnρ (∆
(n)
+ +∆

(−n)
+ )

(1−Qnρ )2
,

which can be presented as either a H
(0,1)
(0) and a W(0) or two H

(0,1)
(0) coupling to H

(0,1)
(s)

(figure 7).

It remains to study H
(0,0,0,1)
(s) appearing in (4.1), for which the first few examples (in

s) can be written as follows

H
(0,0,0,1)
(0) = − 1

192
φ−2,1(φ0,1 + 2E2 φ−2,1)

2 ,

H
(0,0,0,1)
(1) =

1

4608
φ0,1 (φ0,1 + 2E2 φ−2,1)

2 ,

H
(0,0,0,1)
(2) = − 1

46080
E4 φ−2,1 (φ0,1 + 2E2 φ−2,1)

2 ,

H
(0,0,0,1)
(3) = − 1

1161216
E6 φ−2,1 (φ0,1 + 2E2 φ−2,1)

2 ,

H
(0,0,0,1)
(4) = − 1

33177600
E2

4 φ−2,1 (φ0,1 + 2E2 φ−2,1)
2 ,
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W(0)

W(0)

H
(0,1)
(s)O(3),0

Figure 8. Contribution to H
(0,0,0,1)
(s) as two W(0) coupling to H

(0,1)
(s) .

These explicit examples exhibit a clear pattern which suggest that for generic s we can write

H
(0,0,0,1)
(s) = O(3),0W(0)W(0)H

(0,1)
(s) , where O(3),0 = 3 . (4.6)

This form can graphically be represented as in figure 8, with two W(0) coupling through

the constant O(3),0 = 3 to H
(0,1)
(s) .

5 General structure of the unrefined free energy

5.1 Summary of examples and general conjecture

Studying explicit expansions of the free energy for the cases N = 2 and N = 3 in the

unrefined limit has revealed a number of very intriguing patterns, which we conjecture to

hold in general: we have seen that the coefficient functions H
(0,1)
(s) , which appear in the

expansion of the free energy for N = 1 at order Q1
R (see eq. (2.9)) serve as the fundamental

building blocks to construct the free energies for N > 1 (also to higher orders in QR).

In particular we have seen that the way in which these building blocks are combined,

has a certain resemblance of a (Feynman) diagrammatic expansion. More specifically, the

examples studied above suggest that to leading order in QR, the free energy (2.6) in the

unrefined limit can be written as

B
(N,r)
(s) = H

(0,1)
(s) (ρ, S)

N−1∑
i=0

(W(0)(ρ, S))N−1−i (H
(0,1)
(0) (ρ, S))iO(N),i(â1,...,N−1, ρ) , (5.1)

where each term in this sum can be represented graphically through a diagram of the type

shown in figure 9: they correspond to the ‘coupling’ of i factors of H
(0,1)
(0) and (N − 1− i)

factors of W(0) to H
(0,1)
(s) through O(N),i(â1,...,N−1, ρ, S). In this decomposition, the only

s-dependence appears through H
(0,1)
(s) (on the right hand side of figure 9), while the only

dependence on the roots â1,...,N−1 of the gauge algebra aN+1 is located in O(N),i for i > 0.

Indeed, the summand i = 0 captures the contribution called H
(0,...,0,1)
(s) in (3.1) for N = 2

and (4.1) for N = 3, which is independent of the â1,...,N−1. In general, extrapolating the

examples8 encountered in sections 3 and 4, the O(N),i can schematically be written in the

8In [22] further results have been published for the case N = 4, which are also compatible with this form.
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W(0)

W(0)

W(0)

(N
−

1
−
i)

ti
m

es
H

(0,1)
(0)

H
(0,1)
(0)

H
(0,1)
(0)

i
tim

es

H
(0,1)
(s)O(N),i

Figure 9. Schematic contribution to B
(N,1)
(s) as (N − 1 − i) W(0) and i H

(0,1)
(0) coupling to H

(0,1)
(s)

through O(N),i, for i = 0, . . . , N − 1.

following form

O(N),i(â1,...,N−1, ρ, S) =
∑
`

∞∑
n1,...,ni=1

pi`(n1, . . . , ni) Λi`(â1, . . . , âN−1, ρ;n1, . . . , ni)∏i
a=1

(
1−Qt

i
`(n1,...,ni)
ρ

) . (5.2)

Here pi` are a set of ` homogeneous polynomials of order i in n1,...,i while ti` are a set of

` linear functions in n1,...,i. Furthermore, the Λi
` are rational functions in Qâ1,...,i = e2πiâi

and Qρ. They can in general be written as combinations of sums over (parts of) the

root lattice of the algebra âN+1. Finally, in the notation in (5.2) it is understood that

O(N),i=0 = const., and in fact the examples we have studied explicitly suggest9

O(N),i=0 = N , (5.3)

which is in agreement with the proposed T-duality of little string theories [17]. While in

this work, we have only studied higher orders in QR for N = 2, it is already clear from

this example that the former exhibits more complicated structures, generalising figure 9

in several ways. On the one hand side, to order QrR, we find terms that can be obtained

from the free energy at order Q1
R in (5.1) through the action of Hecke operators or through

multiplying the arguments by suitable integers. Examples of this type in N = 2 are given

written in (3.5) and (3.8). Furthermore, we also expect to find new terms, which can

schematically be represented as in figure 10. The latter correspond to coupling (N − 1− i)
factors of W(0) and i factors of H

(0,1)
(0) (for i = 0, . . . , N−1) to k = N(r−1)+1 factors H

(0,1)
(sa)

where a = 1, . . . , k. Here the coupling functions O(N),i
r,s a priori are different for distinct

choices of the external states (H
(0,1)
(s1)

, . . . ,H
(0,1)
(sk)

). They are therefore labelled by the set

of integers s = {s1, . . . , sk}. Contributions of the type shown in figure 10 for N = 2 are

exhibited in (3.7) for r = 2 and (3.10) for r = 3. Since they are difficult to analyse (and we

have in fact not been able to determine a general pattern), we shall content ourselves with

the schematic representation in figure 10 and shall not discuss them further in this work.

9We have also verified this for N = 4 up to order s = 4.
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H

(0,1)
(0)

H
(0,1)
(0)

H
(0,1)
(0)
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H
(0,1)
(s1)

··
·

H
(0,1)
(sk)

O(N),i
r,s

Figure 10. Schematic contribution to B
(N,r)
(s) as (N − 1− i) W(0) and i H

(0,1)
(0) coupling to multiple

H
(0,1)
(sa)

through O(N),i
r,s , for i = 0, . . . , N − 1 and a = 1, . . . , k = N(r − 1) + 1.

5.2 Modular graph functions

Throughout the computations in sections 3 and 4 as well as in the previous subsection

we have invoked a graphical representation for instanton contributions to the little string

free energy that resembles higher-point functions representing effective couplings. While

primarily a useful graphical device to organise the different contributions, we have already

remarked previously that there might be more to it, beyond a simple graphical similarity.

In this section, focusing mostly on the order Q1
R, we provide further evidence to this effect.

5.2.1 Propagator

We start by considering the simplest (non-trivial) coupling function O(N),1, for which we

have found the expressions in eq. (3.2) for N = 2 and eq. (4.5) for N = 3. Following [22],

these two functions can be written in terms of the Weierstrass elliptic function ℘(z; ρ)

(see (A.8))

O(2),1(â1, ρ) = − 2

(2πi)2

[
π2

3
E2(ρ) + ℘(â1; ρ)

]
, (5.4)

O(3),1(â1, â2, ρ) =
2

(2πi)2

3∑
`=1

[
π2

3
E2(ρ) + ℘(â`; ρ)

]
, with â3 = ρ− â1 − â2 . (5.5)

Written in this form, however, we can express O(2),1 and O(3),1 in terms of the two-point

function of a free boson on the torus (see appendix A.2)

G(z; ρ) = − ln

∣∣∣∣θ1(z; ρ)

θ′1(0, ρ)

∣∣∣∣2 − π

2Im(ρ)
(z − z̄)2 . (5.6)

Following [55, 56] the latter satisfies ∂2z G(z; ρ) = G′′(z; ρ) = ℘(z; ρ) + π2

3 Ê2(ρ) (where

Ê2(ρ) is defined in (A.7)), such that we can write

O(2),1(â1, ρ) = − 2

(2πi)2

[
G′′(â1; ρ) +

2πi

ρ− ρ̄

]
,

O(3),1(â1, â2, ρ) =
2

(2πi)2

3∑
`=1

[
G′′(â`; ρ) +

2πi

ρ− ρ̄

]
, with â3 = ρ− â1 − â2 . (5.7)
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This makes it clear that O(2),1(â1, ρ) and O(3),1(â1, â2, ρ) are modular objects, up to a term

proportional to (ρ − ρ̄)−1. Since the latter is precisely the contribution to complete the

E2 in (5.4) and (5.5) into Ê2, O(N),1 are (non-holomorphic) modular objects, provided E2

is replaced by Ê2. A similar behaviour under modular transformations has been observed

previously (see e.g. [49]) in certain expansions of the free energy.

Furthermore, using the data provided in [22], we can compute in the same manner

O(4),1 (i.e. for N = 4), for which we find

O(4),1(â1, â2, â3, ρ) = − 2

(2πi)2

(
12πi

ρ− ρ̄
+

4∑
`=1

G′′(â`; ρ) + G′′(â1 + â2; ρ) + G′′(â2 + â3; ρ)

)
,

(5.8)

where â4 = ρ − â1 − â2 − â3. We remark that the specific form of the last two terms in

the bracket of eq. (5.8) is due to the fact that we are considering the free energy in which

single-particle states have been removed.10 Including the latter in the full free energy for

N = 4 would lead to a more symmetric combination of arguments for the latter terms.

5.2.2 Modular graph functions

The coupling functions O(N),i for i > 1 are somewhat more involved. However, they still

share a fair amount of properties with so-called graph functions, which have appeared in

the study of Feynman diagrams in field theory as well as string theory [32, 33, 38–45]. To

make contact with these recent results in the literature, we choose to represent (5.4) in a

slightly different fashion [22]

O(2),1 = −2 I0 , with I0 =
∞∑
n=1

n

1−Qnρ

(
Qnâ1 +

Qnρ
Qnâ1

)
. (5.9)

The function I0 can (formally) be writen as a second derivative I0 = D2
â1
I−1 (where

Dâ1 = 1
2πi

∂
∂â1

= Qâ1
∂

∂Qâ1
) of the function

I−1 =
∞∑
n=1

n−1

1−Qnρ

(
Qnâ1 +

Qnρ
Qnâ1

)
=
∞∑
n=1

Qnâ1 +
∞∑
n=1

∞∑
k=1

k−1Qnkρ

(
Qkâ1 +Q−kâ1

)
=

∞∑
n=0

Li1(Q
n
ρ Qâ1) +

∞∑
n=1

Li1(Q
n
ρ Q
−1
â1

) . (5.10)

Comparing with the notation introduced in [33], we have

2Re(I−1) = D1,1(Qρ, Qâ1)− πIm(ρ)

3
, (5.11)

where we set ζ = Qâ1 and u = 0. The object D1,1 is one of the fundamental building blocks

in the construction of the modular graph functions discussed in [33]. In particular, it was

argued in [33] that the Iα := (Qâ1
∂

∂Qâ1
)2αI0 (for α ∈ N), which generically appear in the

10This is due to the presence of the plethystic logarithm rather than the simple logarithm in (2.2).
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expansion of the free energy, are combinations of polylogarithms, thus generalising (5.10).

In fact, following [22], the O(N),i have very similar properties: they can be written as

combinations of generating functions of multiple divisor sums T (â1, . . . , âN−1; ρ), which

have first been introduced in [26] (see appendix B for a short overview). For example, the

simplest case O(2),1 in (3.2) can be expressed as

O(2),1(â1, ρ) = −2Dâ1 [T (â1 − ρ; ρ)− T (−â1; ρ)] . (5.12)

In a similar fashion also other O(N),i can be represented in terms of the generating functions

of the multiple divisor sums T (â1, . . . , âN−1; ρ) (see [22]). Using the definition (B.1) along

with the presentation (B.4) for the latter, we see that O(N),i can also be decomposed into

polylogarithms. The main difference, however, is that the latter have in general negative

level. It would nonetheless be interesting to see, if these objects still allow a presentation

in terms of Eichler integrals as for example in [33]. We leave this question for future work.

6 Conclusions

In this paper we have continued the study of (non-perturbative) symmetries in a class of

little string theories of A-type (see [21, 22]). We have focused on those theories, which in

the low energy limit describe a six-dimensional gauge theory with gauge group U(N) (for

N ∈ N) and matter in the adjoint representation. Making use of recently discovered [21, 22]

patterns in the series expansion of the free energy (which we also verified to even higher

order in this work), we have organised the unrefined limit of the latter (which corresponds

to the choice ε1 = −ε2 of the deformation parameters) in a rather intriguing fashion: for

N = 2, 3 and to leading order in the instanton parameter (i.e. Q1
R), we have shown that the

B2,r
(s) can be organised in a way that resembles sums of higher-point functions (almost like

Feynman diagrams). Indeed, a general such contribution consists of N ‘external legs’ out of

which one is H
(0,1)
(s) and the remaining N−1 are either H

(0,1)
(0) or W(0) = 1

24(φ0,1+2E2 φ−2,1).

These are either basic building blocks of the free energy for N = 1 or related to the function

W that governs the BPS-counting of an M5-brane with a single M2-brane attached to it

on either side (see [21]). These external legs are coupled through the coupling functions

O(N),i (for i = 0, . . . , N − 1). The latter are functions of the roots â1,...,N−1 of the gauge

algebra aN+1 as well as ρ, but are independent of S and the deformation parameter s: in

the simplest case, i.e. for i = 0, the examples we have studied (including the case N = 4)

suggest that O(N),0 = N is a simple constant. For i = 1, O(N),i is a non-trivial function and

we have seen (for N = 2, 3, 4) that it can be related to the second derivative of the scalar

Greens function on the torus, i.e. the scalar propagator. It is this fact which leads us to

believe that the diagrammatic representation is more than a mere graphical device. Indeed,

higher coupling functions O(N),i>1 show certain similarities with graph functions that have

been studied in the literature (see notably [33]) in connection with scattering amplitudes in

string and field theory. Higher orders in the instanton parameter show similar structures,

however, they are complicated by two facts: (i) these ‘diagrams’ contain additional legs of

the form H
(0,1)
(s) with more complicated coupling functions; (ii) to this order we also find
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contributions that are obtained from the leading instanton result through the action of

(Hecke) operators.

The results obtained in this work lend themselves to direct generalisations in a number

of directions: on the one hand side it is interesting to understand if certain similarities

between the coupling functions O(N),i and graph functions is merely a coincidence or can

be made more concrete. In this regard it might be interesting whether the algebra of the

generating functions of multiple divisor sums [26] leads to an algebra of the O(N),i which

is akin to recent results in the amplitude literature (see e.g. [43, 44]). On the other hand,

the appearance of contributions to higher order in the instanton parameters that can be

obtained through the action of (Hecke) operators on the contributions to order Q1
R, is very

reminiscent of the Hecke like-structures observed in [25] in a particular subsector of the

free energy in the NS-limit (see also similar observations in [22]). It will be interesting in

the future to see if it is possible to make this connection more concrete.
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A Modular toolbox

In an attempt to keep this work self-contained, in this appendix we compile a minimum of

relations and properties regarding modular forms, which are necessary for the discussion

in the main body of this article. For more information, we refer the reader to e.g. [57].

A.1 Jacobi forms and Eisenstein series

In the main body of this paper we frequently encounter two sets of functions, namely the

Jacobi forms φ−2,1 and φ0,1 as well as the Eisenstein series E2k. The former are defined as

φ0,1(ρ, z) = 8

4∑
a=2

θ2a(z; ρ)

θ2a(0, ρ)
, and φ−2,1(ρ, z) =

θ21(z; ρ)

η6(ρ)
, (A.1)

where θa=1,2,3,4(z; ρ) are the Jacobi theta functions and η(ρ) is the Dedekind eta function.

These two are examples of weak Jacobi forms of index 1 and weight 0 and −2 respectively.

Under a weak Jacobi form of index m ∈ Z and weight w ∈ Z for a finite index subgroup

Γ ⊂ SL(2,Z), we understand a holomorphic function (here H is the upper complex plane)

φ : H× C −→ C
(ρ, z) 7−→ φ(ρ; z) , (A.2)
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with the properties

φ

(
aρ+ b

cρ+ d
;

z

cρ+ d

)
= (cρ+ d)w e

2πimcz2

cρ+d φ(ρ; z) , ∀

(
a b

c d

)
∈ Γ ,

φ(ρ; z + `1ρ+ `2) = e−2πim(`21ρ+2`1z) φ(ρ; z) , ∀ `1,2 ∈ N , (A.3)

which furthermore affords a Fourier expansion of the form

φ(z, ρ) =
∞∑
n=0

∑
`∈Z

c(n, `)Qnρ e
2πiz` . (A.4)

We can construct new Jacobi forms as polynomials in φ−2,1 and φ0,1 whose coefficients

are given by suitable modular forms. In the case of the full modular group, the latter are

generate by the ring of Eisenstein series spanned by {E4, E6}, where

E2k(ρ) = 1− 4k

B2k

∞∑
n=1

σ2k−1(n)Qnρ , ∀ k ∈ N , (A.5)

and B2k are the Bernoulli numbers, while σk(n) is the divisor sum. For certain applications,

we also defined

G2k(ρ) = 2ζ(2k) + 2
(2πi)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n)Qnρ = 2ζ(2k)E2k(ρ) , (A.6)

which differs by its normalisation. Notice that (A.5) includes the case k = 1, where

E2 is strictly speaking not a modular form. Instead it transforms with an additional

shift term under modular transformations. It can, however, be completed into Ê2, which

transforms with weight 2 under modular transformations, ate the expense of being no

longer holomorphic

Ê2(ρ, ρ̄) = E2(ρ)− 6i

π(ρ− ρ̄)
. (A.7)

With the help of the (holomorphic) Eisenstein series we can also define the Weierstrass

elliptic function

℘(z; ρ) =
1

z2
+

∞∑
k=1

(2k + 1)G2k+2(ρ) z2k . (A.8)

Furthermore, we also introduce the following objects

ψ2(ρ) = θ43(ρ, 0) + θ44(ρ, 0) = −2(E2(ρ)− 2E2(2ρ)) , and ψ3(ρ) = E2 − 3E2(3ρ) , (A.9)

which appear in the free energy for N = 2 to orders Q2
R and Q3

R respectively (see [22]).

These functions are in fact (proportional to) Eisenstein series of the congruence subgroup

Γ0(2) and Γ0(3), respectively (see [58, 59]; see also [60] for a review of modular forms for

congruence subgroups of SL(2,Z) of the type Γ0(N)).
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Finally, in the main body of this work, we shall also make use of Hecke operators. The

latter map Jacobi forms of index m and weight w into Jacobi forms of index km and weight

w for k ∈ N. Specifically, let Jw,m be the space of Jacobi forms of index m and weight w

of SL(2,Z), then the kth Hecke operator is defined as

Hk : Jw,m(Γ) −→ Jw,km(Γ)

φ(ρ, z) 7−→ Hk(φ(ρ, z)) = kw−1
∑
d|k

b mod d

d−w φ

(
kρ+ bd

d2
,
kz

d

)
. (A.10)

A.2 Torus propagator

In this appendix, we provide some more background material on the scalar Greens function

G(z), which appeared in the coupling functions O(N),1 for N = 2, 3, 4 (see (5.7) and (5.8)).

Our discussion follows mainly [55, 61, 62].

Consider a free scalar field theory (with field φ) on a torus whose periods of the two

non-contractible cycles are chosen to be 1 and ρ respectively. This theory is invariant under

differentiable reparametrisations of the torus, local Lorentz rotations and Weyl symmetry,

which gives rise to numerous Ward identitites that strongly constrain the higher-point

correlation functions. The Greens function is given by the two-point function

G(z − w; ρ) = 〈φ(z)φ(w)〉 = − ln

∣∣∣∣θ1(z − w; ρ)

θ′1(0, ρ)

∣∣∣∣2 − π

2Im(ρ)
(z − w − (z̄ − w̄))2 . (A.11)

The latter satisfies the relation (with ∆ the two-dimensional Laplacian)

∆z G(z; ρ) = 4π δ(2)(z)− 2π

Im(ρ)
. (A.12)

B Generating functions of multiple divisor sums

In [26] the following objects have been introduced

T (X1, . . . , X`; ρ) =
∑

s1,...,s`>0

[s1, . . . , sN−1; ρ]Xs1−1 . . . XsN−1−1 , (B.1)

which are generating functions of the following brackets of length `

[s1, . . . , s`; ρ] =
1

(s1 − 1)! . . . (s` − 1)!

∑
n>0

Qnρ
∑

u1v1+...u`v`=n
u1>...>u`>0

vs1−11 . . . vs`−1` . (B.2)

These in turn generate multiple divisor sums

σr1,...,r`(n) =
∑

u1v1+...+u`v`=n
u1>...>u`>0

vr11 . . . vr`` , for
r1, . . . , r` ∈ N ∪ {0}
`, n ∈ N

(B.3)
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which are generalisations of the usual divisor sigma σk(n), which for example appears in

the definition of the Eisenstein series (see (A.5)). The brackets of length ` can also be

written in the form [26]

[s1, . . . , s`; ρ] =
∑

n1....>n`>0

L̃i1−s1(Qn1
ρ ) . . . L̃i1−s`(Q

n`
ρ ) , (B.4)

where the normalised polylogarithms

L̃i1−s(z) =
Li1−s(z)

Γ(s)
, with Li−s =

∑
n>0

nszn =
zPs(z)

(1− z)s+1
. (B.5)

In the last line we have assumed |z| < 1 and we have introduced the Eulerian polynomials

Ps(X) =
s−1∑
n=0

As,nX
n , with As,n =

n∑
i=0

(−1)i

(
s+ 1

i

)
(n+ 1− i)s . (B.6)
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