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1 Introduction

The concept of spontaneous symmetry breaking is a powerful organizational principle for

effective theories found throughout different branches of physics. Because objects trans-

forming under such symmetry group G are not in a representation of G, the group is often

said to be non-linearly realized. The coset construction — so called because it relates

the Goldstones bosons arising from the breaking pattern G → H to the coset space G/H

— is part and parcel of building theories that non-linearly realize symmetry groups, the

machinery for which was first introduced more than 50 years ago in [1, 2].

While the coset construction applied to internal (compact and semisimple) groups is

well understood, considerable effort has been made in the last years to study its application
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to spacetime symmetry groups. After all, the breaking of these groups is at the heart

of many concepts of physics, such as cosmology and condensed matter [3–6]. One of

the most significant distinctions from internal groups is that a non-linear realization of

spacetime symmetries can have fewer degrees of freedom than there are broken generators,

the phenomenon of Goldstone inessentially [7–9].

Given spacetime coordinates x and two kinds of Goldstones π and ξ, we say π is

essential if (a) it transforms without reference to ξ, that is, π → π̃(π, x); and (b) x and π

fully realize the symmetry, meaning their transformations depend on all group parameters.

In this case, ξ is unneeded to realize the group and can be discarded: it’s inessential.

Goldstone inessentiality can also be formulated in terms of inverse Higgs constraints

(IHCs). These are relations built out of the invariants that connect π and ξ. If this relation

includes derivatives of π while ξ appears only algebraically, the constraint can be solved to

eliminate ξ in terms of π and its derivatives.1

This hierarchy between Goldstones is peculiar, and the question then arises: is such

structure unique? That is, given any parametrization (choice of coordinates) for some coset

space, can we uniquely determine the essentiality of a Goldstone boson? If true, it would

mean the coset construction for spacetime symmetries is universal, meaning that different

physicists arrive at the same theory regardless of how they choose to parametrize their

coset spaces, assuming a common set of rules. On the other hand, the construction would

be not unique if the two physicists end up eliminating different degrees of freedom from

their theory and arrive at inequivalent actions.

We show the second case can happen. We provide a toy geometrical example in sec-

tion 2.1 and then a proper physical example in section 4, where changing the parametriza-

tion changes the essential nature of the Goldstones, leading to different theories.

The reason is that the hierarchical property “π transforms without reference to ξ” is a

kind of structure. Reparametrizing the coset space induces a field redefinition between all

objects that is guaranteed to preserve the group product structure, but not necessarily any

other structure, including this hierarchical property. Equivalently, each IHC will always be

mapped to a new IHC, but this new constraint might be unusable if it can’t be solved. This

opens the door for physicists to make different choices of which Goldstones to eliminate

(or which IHC to use). We discuss this in more detail in section 2.2.

In the literature, it’s customary to perform the coset construction by means of the dis-

tinguished Maurer-Cartan form (e.g. [11, 12]). This is convenient, since we can refrain from

explicitly deriving the transformation laws for our objects. But because those transforma-

tions are precisely our focus here — in particular, which kinds of Goldstones transform

without reference to the others — we introduce in section 3 an alternative method based

on [13] that requires computation of those transformations but dispenses use of the Maurer-

Cartan form. Readers interested only in discussions and results are invited to skip it.

Conventions. We work in (−+ + + . . .) signature. All transformations here are treated

under the passive viewpoint, meaning we don’t pullback the arguments of functions if the

1In some cases, different kinds of Goldstone might mix, yet an IHC still exists that allows one to be

eliminated in favor of the other. The special galileon [10] is an example. Nonetheless, a redefinition of

coordinates and fields should unmix the Goldstones; see section B.2.
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dependent variables transform, e.g., x → x̃(x) and f(x) → f̃(x̃). Unless said otherwise,

quantities written in capital lettters (e.g., X or Π) are invariant under the symmetry group

under consideration.

2 Non-uniqueness of coset construction

First, we provide in section 2.1 a toy geometrical example where the coset construction

fails to deliver a unique result. For the interested reader, we discuss the more technical

aspects of why this happens for non-semisimple groups in section 2.2.

2.1 How to draw curves

Suppose two physicists, Rachel and Leo, are asked to build the action for plane curves from

the coset ISO(2)/{1}, where {1} is the trivial group containing only the identity. The two

agree on the following common rules:

• They will employ reparametrization invariance for their curves.

• The resulting action can contain only first or second derivatives.

• They should attempt to eliminate inessential degrees of freedom if possible.

Rachel’s theory. Rachel decides to parametrize the coset space as `R = exP1eyP2eθJ ,

where Pi are translation generators and J the rotation one. All the objects {x, y, θ} are

functions of some diffeomorphism parameter λ. She computes the transformation laws of

these objects under a Euclidean group element (ai, ϕ) and finds:

x→ x cos(ϕ)− y sin(ϕ) + a1, (2.1)

y → y cos(ϕ) + x sin(ϕ) + a2, (2.2)

θ → θ + ϕ. (2.3)

Rachel notices that just x and y are sufficient to fully realize the symmetry and that

they transform without reference to θ; she keeps them as essential and discards θ as inessen-

tial. Equivalently, she can find the constraint tan(θ)∂λx = ∂λy, which is algebraic in θ.

She then computes the following action:

SR =

∫
dλ
√

(x′)2 + (y′)2 P

(
−y′x′′ + x′y′′

((x′)2 + (y′)2)3/2

)
, (2.4)

where P is some arbitrary function and primes denote ∂λ. This is of course familiar from

plane geometry; the object inside the P function is the extrinsic curvature κ of a curve

embedded in Euclidean space.

It is useful to understand how this action represents a prescription for drawing curves

on paper. Rachel slides a ruler against the paper in a fixed direction. With the other hand,

she holds a pen next to the ruler, allowing the pen to be pushed by it. Reparametrization

invariance arises because the speed of the ruler can be removed as a degree of freedom;

Rachel’s actual degree of freedom is in moving the pen along the direction parallel to the

ruler. For linear equations of motion obtained from P (κ) = 1, she doesn’t move the pen

at all, only letting it be pushed by the ruler, and draws a straight line.
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Leo’s theory. Leo then takes the parametrization Rachel used, but to be contrarian,

flips the order of the exponentials, writing his as `L = eθJeσP2eπP1 . His transformation

laws are:

θ → θ + ϕ, (2.5)

π → π + a1 cos(θ) + a2 sin(θ), (2.6)

σ → σ + a2 cos(θ)− a1 sin(θ), (2.7)

Leo now notices that θ and π form an essential pair: together they fully realize the

group, and neither one transforms with reference to the inessential σ. Leo then discards

σ, which he could also do through the constraint σ∂λθ = ∂λπ, and derives the following

action:2

SL =

∫
dλ θ′ F

(
π +
−π′θ′′ + θ′π′′

(θ′)3

)
. (2.8)

Leo’s action is more peculiar. The object inside the F function is a notion of torsion

τ ,3 which we’ll discuss shortly. In terms of drawing curves, it works as follows. He places a

wheel together with a ruler on the paper. He then rotates the ruler without slipping around

the wheel, which is kept fixed. Again, the ruler’s angular speed can be removed as a degree

of freedom; the actual one is in moving the pen parallel to the ruler. For linear equations

of motion obtained from F (τ) = τ2, Leo doesn’t move the pen with respect to the ruler

and draws an involute of the wheel. See figure 1 for visualization.4

The invariant τ can be called torsion because it’s connected to the winding of the pen

around the wheel and thus to the displacement of the pen from its original position after

one rotation cycle. A curve that doesn’t close after one cycle must necessarily have nonzero

torsion.

Inequivalence between the two. In appendix A, we show that no redefinition between

Rachel’s (x, y) and Leo’s (θ, π) exists. Even if we allow for higher derivatives in the action,

the two can’t be matched. They represent two distinct ways of drawing curves. While

not particularly relevant for physics, the point of this example was to show that the coset

construction doesn’t necessarily produce unique results. Rachel and Leo started from the

same coset space and employed the same prescription of removing inessential degrees of

freedom, but arrived at inequivalent results.

In the following subsection, we discuss the reason why this can happen. In section 4

we apply the same logic Leo did to produce a physical example in spacetime.

2.2 Why it’s not unique

We will first briefly review the connection of Goldstone bosons and homogeneous spaces

in section 2.2.1 and the fundamentals of the coset construction in section 2.2.2. Then, in

section 2.2.3, we discuss inequivalencies that arise in non-semisimple groups.

2Alternatively, he could’ve eliminated π in favor of σ but the final result is the same.
3Different from the torsion of spatial curves.
4Readers familiar with children’s toys will recognize this as a spirograph drawing.
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Figure 1. To draw curves, Leo rolls a ruler without slipping around a fixed wheel while allowing

the pen to be pushed by the ruler. In this picture, Leo has kept the pen still with respect to the

ruler. The curve is drawn for a full rotation cycle, though we have included only five positions of

the ruler to avoid overcrowding the figure.

2.2.1 Goldstone bosons live in homogeneous spaces

Perhaps the fundamental property of Goldstone bosons is that a zero background value for

one of these bosons can be transformed into a nonzero one under action of the symmetry

group G:

π = 0 → π 6= 0, (2.9)

so that the actual value of the Goldstone’s vacuum is irrelevant. This property goes by the

name of transitive group action. Isometry groups of maximally symmetric manifolds act

transitively as well: the translations of Minkowski spacetime can move the origin somewhere

else, and so can the homotheties (translations plus dilations) of de Sitter spacetime.5 The

points of a maximally symmetry manifold are indistinguishable from each other.

The symmetries that move a field’s background are said to be broken, while those

that move the origin of spacetime are said to be inhomogeneous. If all all inhomegeneous

symmetries are unbroken, we can collect all spacetime coordinates x and all Goldstones π

into a single space Q = {x, π} and the action of G on Q remains transitive. This Q is then

called a homogeneous space under G. Put another way, a homogeneous space has a single

orbit under G: the whole space itself.

The π’s in this context should be seen as just coordinates of the space Q, not yet as

functions of spacetime. A specific solution of the equations of motion is then the subspace

given by the embedding π(x).6

5Recall the origin of de Sitter spacetime in conformal time is −1/Hubble, so not invariant under dilations,

even though they act linearly.
6As our focus is to build effective actions, we can always do so classically and then quantize the action

afterwards. It would be interesting to extend the formalism discussed here to work with operators and

Hilbert spaces from the get-go, though we won’t do it here.
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2.2.2 A homogeneous space is equivalent to a coset space. . .

The fact all coordinates and fields live in a homogeneous space turns out to be powerfully

constraining for model building, because homogeneous spaces are mostly unique. To specify

one such space under the group G, we simply need to know the stability subgroup S of the

origin of Q. That’s the subgroup of G that leaves both the origin of spacetime and the

backgrounds of all fields invariant (i.e., unbroken homogeneous symmetries). Then the

orbit-stabilizer theorem establishes that Q corresponds to a coset space:

Q ∼ G

S
, (2.10)

where ∼ means equivalence in the sense that it preserves the group product (i.e., home-

omorphism), but not necessarily any additional structure Q might have. Concretely, this

means that any q ∈ Q can be written in terms of some group element `s ∈ G acting on

the origin of Q, where ` ∈ G is called a lift (or coset space representative) and s ∈ S is an

arbitrary stability element.

So for each element in Q there’s a corresponding element in G, with some S-ambiguity,

thus intuitively Q ∼ G/S. But a left coset space has a canonical group action by left

multiplication of g ∈ G:

`S → ˜̀S
def
= g`S. (2.11)

Hence, specifying the full symmetry group G and the stability subgroup S automat-

ically specifies the transformation laws of all coordinates and fields, which by extension

fixes all invariants that can be used to build an action. This construction — mapping the

physical entities in Q to some coset space and deriving invariants — goes by the name of

coset construction.

2.2.3 . . . up to additional structure

The orbit-stabilizer theorem guarantees any homogeneous space Q with a G-action is equiv-

alent, up to additional structure, to the coset space G/S, the key phrase here being “up

to additional structure”.

Perhaps the first such structure one may think of is topology. This is a valid argu-

ment. Nonetheless, in the context of an effective theory, we typically are interested only in

expanding fields perturbatively around the vacuum, so that the topology of field space is

of little interest. Spacetime itself could have nontrivial topology as well, but by the same

token we would prefer to restrict ourselves to local measurements that can’t probe such ex-

otica. So although topology might indeed lead to non-trivial physics beyond perturbation

theory, we leave it aside in the following.

Typically in physics we have spacetime coordinates x and internal space coordinates

φ. Crucially, spacetime is distinguished from internal space, because the x’s can only

transform among themselves, i.e., x → x̃(x, g) under some g ∈ G. Another way of stating

the same thing is that the isometries of a spacetime are intrinsic to the spacetime itself;

they can’t depend on what you put inside. On the other hand, the φ are allowed to mix

with x, i.e., φ→ φ̃(φ, x, g); this is simply a non-uniform symmetry for our fields.

– 6 –
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Similarly, if Q contains essential Goldstones π and inessential ones ξ, then by definition

the action of G only mixes the π among themselves (and possibly the coordinates x) without

reference to ξ.

This kind of hierarchy where some objects transform without reference to others is

a type of additional structure.7 Not all field redefinitions will preserve it. For example,

replacing π by π̄ = π̄(π, ξ) will typically cause the transformation of π̄ to also depend on

ξ, and now the hierarchy is lost. Equivalently, a coset space parametrization in which an

inverse Higgs constraint is algebraic can be mapped to one where the constraint is now

differential and typically unsolvable.

This isn’t particularly surprising. The orbit-stabilizer theorem only guarantees

reparametrizations of the coset space preserve the group product structure, not this kind of

hierarchical structure. But since this hierarchy is precisely linked to the removal of physical

degrees of freedom, if multiple hierarchies exist then different physics can arise.

Here’s one example where inequivalent hierachies for some coset space are possible.

Following the Levi decomposition of G, any group can be written as G = R o L, so that

each symmetry can be classified as belonging to either the radical R or the (semi)simple

factor L. See appendix B for details. Then when we parametrize the coset space, there are

at least two orderings of the exponentials that endow the objects with different hierarchical

structure; we leave the proof of this statement for appendix B.1. The two Levi orderings are:

`R
def
= radical symmetries× simple symmetries, (2.12)

`L
def
= simple symmetries × radical symmetries. (2.13)

In `R, the radical objects fully realize the group, without reference to the simple ones.

In `L, the simple ones together with a reduced number of the radicals might fully realize

the group. By means of example (both in sections 2.1 and later in 4), we know that these

orderings can swap which Goldstones are essential or inessential, so they can potentially

lead to different physics for any symmetry breakdown.

Of course, the above assumes R even exists to begin with. If G is a simple group,

then the Levi decomposition is trivial and it’s not clear if such ambiguities can arise. That

they don’t for internal groups is well established, but we don’t know if that’s the case for

simple spacetime groups such as the conformal group SO(2, D) (see also [14] for possible

ambiguities in conformal group breakdown).

3 Normalization construction

We now describe the general method for constructing objects that realize some symmetry,

linearly or non-linearly. The procedure is essentially based on [12, 13], and we direct the

reader to those references for formal proofs of the method.

The reason why we use this technique rather than the usual one based on the Maurer-

Cartan form is to highlight the importance of the transformation laws themselves, which

7It’s a kind of fiber bundle structure, though somewhat different from how the concept is used in physics.
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dictate whether additional structure is present for the objects in our theory and, by exten-

sion, whether the resulting effective action is unique.

The basic idea is the notion that anything that can be transformed away by the sym-

metry group cannot, by definition, be an invariant. But the group is finite, so there’s only

a finite amount of quantities it can transform away before its symmetries have been used

up. Anything that remains afterwards is an invariant.

For example, consider a nonrelativistic particle in 3D Euclidean space with position ~x

under the Galilean group. We can spend all three translations moving ~x to ~0. Then we

can spend all three boosts shifting the velocity ~̇x to ~0. Now only rotations remain, but it’s

impossible to eliminate the acceleration ~̈x simply by rotating; at most, we can align it with

some preferred axis. Thus |~̈x| is what remains; it’s the invariant of the Galilean group.

Step 1. As input, one must inform the physicist about the full symmetry group of the

problem, the broken symmetries, and the inhomogeneous symmetries in spacetime. This

determines G and its stability subgroup S.

Step 2. Next, we must parametrize the lift of G/S. As discussed in section 2.2.3, two

convenient choices for non-semisimple groups are given by:

`R
def
= radical symmetries× simple symmetries, (3.1)

`L
def
= simple symmetries × radical symmetries. (3.2)

Step 3. We now derive the transformed lift ˜̀ under a group element g ∈ G, following the

canonical group action on a coset via the group product: `S → ˜̀S = g`S. This gives the

transformation laws x→ x̃ and π → π̃.

Step 4. When deriving the transformation laws for the objects in the homogeneous space,

we might observe that some transform without reference to the others, meaning the space

might have some hierarchical structure. Suppose Q = {q, p} with action under g ∈ G:

q → q̃(q; g), (3.3)

p→ p̃(p, q; g), (3.4)

where q̃ depends on all parameters of g. Then we can construct a new homogeneous space

Q̄
def
= {q} deprived of the p’s, which still has a consistent action under G. Also, because q̃

depends on all parameters of g, this reduced space still realizes the full group G (i.e., the

action is faithful).

If this is possible then we can forget the p’s exist and perform the construction solely on

the q’s, in which case the p’s are called inessential and the q’s essential. This is equivalent

to imposing an inverse Higgs constraint after deriving the invariants, except here we do

this from the very beginning.

Which objects are essential or inessential can depend on the ordering selected in step 2.

This is because a reparametrization of the lift (i.e., a field redefinition) will not, in general,

preserve the hierarchy between objects in the coset space.

– 8 –
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Step 5. The final step is to derive the actual invariants. At this point, we have a (possibly

reduced in the previous step) homogeneous space with coordinates and fields, Q = {x, π}
and the transformation rules for x̃ and π̃ which follow from ˜̀. We now try to use the group

action to set to zero as many objects in Q as possible.

Obviously Q is an homogeneous space, so by definition everything in it can be elimi-

nated. But we know how x and π transforms, so we know how ∂xπ does too, as well as all

higher derivatives. Thus we take our original homogeneous space Q = {x, π} and extend

it with a finite amount of derivatives ∂xπ, ∂2xπ, and so on.8 We then transform those

quantities under some special g∗ ∈ G to be determined later. These transformed objects

are denoted with capital letters rather than tildes (e.g., X instead of x̃) due to their special

status as putative invariants.

Transforming (x, π) under the g∗, we schematically have:

x
g∗−→ X, (3.5)

π
g∗−→ Π, (3.6)

∂π

∂x

g∗−→ dΠ

dX
, (3.7)

∂2π

∂x2
g∗−→ d2Π

dX2
, (3.8)

...

1. We start by normalizing X and Π to zero,9 which allows us to solve for some of the

parameters of g∗. If this completely fixes g∗, then dΠ/dX are the invariants of the

theory,10 and we’re done.

2. If not, we then attempt to normalize as many of the dΠ/dX to zero as possible,

which lets us fix more of the g∗. If g∗ is completely fixed by now, then the remaining

dΠ/dX are the invariants we’re after. If none remain, then the d2Π/dX2 are the

invariants.

3. If g∗ still hasn’t been fixed, we repeat the procedure, setting as many of the d2Π/dX2

to zero as possible, and so on. In the end, when g∗ is completely determined (which

can always be done since the group is finite-dimensional, so a finite number of normal-

izations fixes all parameters), the lowest order in derivatives dnΠ/dXn that survived

the process are the invariants.

Invariant one-forms then follow by transforming the basis dx under the g∗ found above.

By extension we can build the invariant volume form dV :

dx
g∗−→ dX, (3.9)

dV
def
=

1

D!
dX0 ∧ dX1 ∧ . . . ∧ dXD. (3.10)

8Formally, the homogeneous space is a fiber bundle, so it can be prolonged into a jet bundle [15,

chapter 4].
9We can set it to any constant without affecting the result. For clarity of notation, we set it to zero.

10Notice that setting Π = 0 doesn’t imply dΠ = 0.
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An invariant derivative can also be constructed, by inverting the invariant one-form

as usual. That is, if dXα = Mα
βdxβ , then the invariant derivative is d/dXα = (M−1)βα∂β .

Such derivatives can act on the invariants we obtained to produce higher-order invariants,

or act on additional matter fields that don’t transform under the group G and weren’t part

of the construction.

This gives the complete toolbox needed to build the most general invariant action.

Notice that in this procedure, we must use normalization constraints to fix all pa-

rameters of the group element g∗. However, in many cases, the objects we work with

will transform linearly (i.e., in a representation) under some subgroup of G, typically the

unbroken subgroup or the stability subgroup. In this case, if we contract objects covari-

antly under this subgroup, the corresponding group parameters will naturally drop out

anyway. So these parameters don’t need to be fixed, which saves us some time. But it’s

not always guaranteed that a certain lift parametrization will automatically induce a lin-

ear transformation that let us exploit covariance of objects. We encounter such issue in

section 4.

Example: curvature of curves. Let’s look at the quintessential example of planar

curves. The coset space is ISO(2)/{1} and we parametrize the lift as `R = exP1eyP2eθJ .

The three generators admit a matrix representation:

P1 =

0 0 1

0 0 0

0 0 0

 P2 =

0 0 0

0 0 1

0 0 0

 J =

0 −1 0

1 0 0

0 0 0

 , (3.11)

so that the group product can be easily computed in terms of matrix products. This gives

the transformation laws that Rachel found in (2.1), (2.2). Since (x, y) fully realize the

group, we discard θ. We have the following quantities by transforming x, y and derivatives

of y with respect to x, under the special group element g∗ = (ai∗, ϕ∗):

X = x cos(ϕ∗)− y sin(ϕ∗) + a1∗, (3.12)

Y = y cos(ϕ∗) + x sin(ϕ∗) + a2∗, (3.13)

dY

dX
=
y′ cos(ϕ∗) + sin(ϕ∗)

cos(ϕ∗)− y′ sin(ϕ∗)
, (3.14)

d2Y

dX2
=

y′′

(cos(ϕ∗)− y′ sin(ϕ∗))3
. (3.15)

Normalizing X = Y = dY/dX = 0 solves for the group element g∗:

a1∗ =
−x− yy′√

1 + (y′)2
a2∗ =

−y + xy′√
1 + (y′)2

ϕ∗ = − arctan(y′), (3.16)

leaving us with the invariant curvature and measure:

d2Y

dX2
=

y′′

(1 + (y′)2)3/2
dX = dx

√
1 + (y′)2. (3.17)

– 10 –
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3.1 Coordinate independence

We can also perform the construction in a coordinate-independent manner. We declare

all objects in the homogeneous space, both x and π, to be functions of D external diffeo-

morphism parameters λ. While λ transforms under Diff(D), the basis forms dλ transform

under local GL(D):

dλa → Jabdλ
b, (3.18)

where J is the Jacobian of the diffeomorphism. Following a similar logic as before, we can

transform dλ under some special Jacobian J∗ to be determined to produce the invariant

one-forms:

dλ
J∗−→ dΛ. (3.19)

Now, in addition to fixing the special group element g∗, we also need to fix the special

Jacobian J∗. That’s D2 extra parameters to fix! Luckily, because λ is now our independent

variable, we don’t work with the quantities dΠ/dX, but rather dΠ/dΛ and dX/dΛ:

∂x

∂λ

g∗,J∗−−−→ dX

dΛ
, (3.20)

∂π

∂λ

g∗,J∗−−−→ dΠ

dΛ
. (3.21)

The dX/dΛ now give precisely the extra quantities that can be normalized to conve-

nient values in order to fix the Jacobian.

Example: diffeomorphic curvature of curves. As in the previous example, but now

we impose diffeomorphism symmetry. Instead of taking derivatives with respect to the

form dx, which gets transformed into dX under the special group element g∗, we take

derivatives with respect to the form dλ, which becomes dΛ under the special Jacobian J∗.

Importantly, J is an element of local GL(1), so while dg = 0, we have dJ 6= 0. Thus, our

quantities are:

X = x cos(ϕ∗)− y sin(ϕ∗) + a1∗, (3.22)

Y = y cos(ϕ∗) + x sin(ϕ∗) + a2∗, (3.23)

dX

dΛ
=

1

J∗

[
x′ cos(ϕ∗)− y′ sin(ϕ∗)

]
, (3.24)

dY

dΛ
=

1

J∗

[
y′ cos(ϕ∗) + x′ sin(ϕ∗)

]
, (3.25)

d2X

dΛ2
=
J ′∗ (sin(ϕ∗)y

′ − cos(ϕ∗)x
′) + J∗ (cos(ϕ∗)x

′′ − sin(ϕ∗)y
′′)

J3
∗

, (3.26)

d2Y

dΛ2
=
J∗ (sin(ϕ∗)x

′′ + cos(ϕ∗)y
′′)− J ′∗ (sin(ϕ∗)x

′ + cos(ϕ∗)y
′)

J3
∗

. (3.27)

Setting X = Y = dY/dΛ = 0 and dX/dΛ = 1 fixes everything:

a1∗ =
−xx′ − yy′√
(x′)2 + (y′)2

a2∗ =
−yx′ + xy′√
(x′)2 + (y′)2

ϕ∗ = − arctan(y′/x′) J∗ =
√

(x′)2 + (y′)2,

(3.28)
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so that the invariant curvature and measure are:

d2Y

dΛ2
=
−y′x′′ + x′y′′

[(x′)2 + (y′)2]3/2
dΛ = dλ

√
(x′)2 + (y′)2. (3.29)

Note that d2X/dΛ2 = 0 after imposing (3.28) so that the final number of invariant

observables is the same as in the problem without diffeomorphism invariance. This is

expected since coordinate independence is simply a redundancy in the description; the two

problems are physically the same.

3.2 Quasi-invariants

The previous procedure concerns the construction of a strictly invariant action. Physics,

however, isn’t that strict and can tolerate actions that change by a total derivative. Terms

that do so are called quasi-invariants, or Wess-Zumino terms.

To find these in D spacetime dimensions, we must locate invariant (D + 1)-forms β

that are exact, so β = dα, but with α itself not being invariant. Then the invariance of β

together with d2 = 0 imply the quasi-invariance of α. And of course α is a D-form, so
∫
α

will be a valid supplement to the action.

We have invariant one-forms given by:

dx
g∗−→ dX, (3.30)

dπ
g∗−→ dΠ, (3.31)

evaluated under the special group element g∗ that we fixed before, and treating dπ as an

independent form, that is, we don’t write dπa = ∂µπ
adxµ. Higher forms can be constructed

with sufficient applications of the wedge product between the dX and dΠ. The procedure

is fairly standard, so we simply direct the reader to [16] for more detailed instructions.

4 Extended example: Poincaré to de Sitter

Let’s consider an extended example in spacetime and in higher dimensions that illustrates

many of the ambiguities and inequivalencies that can arise when performing the coset

construction for spacetime symmetry groups.

Step 1. Suppose we are given the symmetry breaking pattern ISO(1, D) → SO(1, D).

This covers the broken symmetries, but to fully determine the stability subgroup we need to

know which symmetries are inhomogeneous in spacetime. There are two canonical options:

• Since ISO(1, D) is the isometry group of Minkowski spacetime MD+1, we could take

the spacetime origin to be the origin of MD+1. Then the inhomogeneous transforma-

tions are the translations, so that the overall stability group is S = SO(1, D).

• Since SO(1, D) is the isometry group of de Sitter spacetime dSD, we could take the

spacetime origin to be the origin of dSD. Then the inhomogeneous transformations

are the homotheties, so that the overall stability group is S = SO(1, D − 1) (see the

next step).
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The choices are inequivalent; this is trivial to see since the first corresponds to the

coset space ISO(1, D)/ SO(1, D) while the second to ISO(1, D)/ SO(1, D − 1). The first

gives rise to the usual embedding of the de Sitter hyperboloid in an ambient Minkowski

space; as it has already been explored in [17], we won’t focus on it here. We will thus pick

the second option, the coset space ISO(1, D)/ SO(1, D − 1).

Step 2. Let us now parametrize the lift that connects the elements in our theory to a

coset in ISO(1, D)/ SO(1, D − 1). Once again we are presented with inequivalent choices.

One option would be to write:

`R = ex
µPM

µ eπP
M
D eη

µMM
µD , (4.1)

where PM are the usual translations of Minkowski space and MM Lorentz transformations;

the Greek indices µ, ν range from 0 to d = D − 1. But this lift parametrization gives the

well known DBI action for a Minkowski brane embedded in Minkowski bulk [17]:

S =

∫
dDx

√
1 + (∂π)2. (4.2)

Let’s use the other Levi ordering, thus inverting the radical-then-simple order of (4.1).

For clarity, we define a new basis for the simple generators:

DdS = MM
0D, (4.3)

P dS
i = MM

0i −MM
iD, (4.4)

MdS
µν = MM

µν , (4.5)

with Latin indices i, j ranging from 1 to d. The DdS and P dS
i generators satisfy the

homothety algebra, that is, they are spacetime dilation and space translations, respectively:

[P dS
i , P dS

j ] = 0 [P dS
i , DdS] = P dS

i , (4.6)

so that the stability subgroup (unbroken group minus homotheties) is indeed SO(1, d), as

advertised above. We thus write the simple-then-radical lift as:

`L = ex
iPdS
i etD

dS
eξ
µPM

µ +πPM
D . (4.7)

Step 3. We now need the transformation laws, which follow from the group action on

a coset element: `S → g`S. While straightforward, the computation itself can be tedious

(it helps to switch to conformal time t = − log(−τ), with Hubble = 1). One concern we

encounter is that then ξµ isn’t a vector. For instance, it’s strictly invariant rather than

covariant under a dilation. In principle this isn’t an issue; the procedure in section 3 doesn’t

require covariance under the unbroken subgroup. By inspection, though, we can see that

a field redefinition ξµ = Aµ/τ gives the proper covariant transformation for Aµ, so we will

make use of this for simplicity. We stress, however, that this step is ad hoc; had we been

unable to find this convenient field redefinition, we would have had to perform the full

construction, without exploiting covariance.
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Under the simple part of the group (unbroken SO(1, D)) we obtain that xµ = (τ, xi)

transform as the (flat slicing) coordinates of de Sitter spacetime in conformal time (see

appendix C for explicit expressions), π as a scalar and Aµ as a vector.

As for the radical part of the group (broken RD+1), we have:

xµ → xµ, (4.8)

π → π − θ, (4.9)

Aµ → Aµ + ∂µθ, (4.10)

θ
def
=

1

τ

(
c+ bixjδij +

1

2
axµxνηµν

)
, (4.11)

where a, bi, c are the parameters of the broken translations. Notice how Aµ transforms as

if it were a gauge vector, with π its longitudinal mode. However, we aren’t interested in

imposing gauge invariance, that is, for any choice of θ, but rather only for the specific θ

given above.

For convenience, it is useful to note that θ satisfies:

[∇(µ∇ν) + gµν ]θ = 0, (4.12)

for ∇µ and gµν the usual geometrical objects of de Sitter space (in this context, θ is a

scalar).

Step 4. Our bosons are antisocial: Aµ transforms without π and π without Aµ, and

any by itself still fully realizes the broken translations (and the xµ realize the rest of the

group). This means we could, in principle, remove either one. For instance, removing the

vector would give a dS galileon [16, 18]. However, we’re interested in investigating whether

both can be kept (i.e., if no inverse Higgs constraint needs to be imposed, despite being

available), so we will treat neither boson as removable.

Step 5. To derive invariants, we first transform all objects under some special group

element g∗, whose specific form will be fixed later:

xα
g∗−→ Xα, (4.13)

π
g∗−→ Π, (4.14)

Aβ
g∗−→ Aβ . (4.15)

We wish to shift those objects back to the origin of spacetime and field space, so we

set X0 = −1, Xi = 0, Π = 0 and Aµ = 0. This solves for all the group parameters of the

Minkowski translations a, bi and c, the dilation Λ, and the de Sitter translations di:

a∗ = A0 + π, [bi]∗ = Ai, c∗ =
1

2
(A0 − π) Λ∗ = −1

τ
di∗ = −xi. (4.16)

The group parameters for the stability group SO(1, d) remain. However, both Π and

Aα, as well as derivatives d/dXα, transform covariantly under it, so we don’t need to
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fix those parameters as long as we perform manifestly invariant contractions of the α, β

indices.

Since we have exhausted the zeroth order objects Π and A, we extend it to their

derivatives:

∂απ
g∗−→ dΠ

dXα
, (4.17)

∂αAβ
g∗−→

dAβ
dXα

, (4.18)

which must be evaluated under the g∗ we found above.

The covariant one-forms dX are found in a similar manner, from transforming dx

under g∗. The result is:

dXα =
1

τ
δαµdxµ, (4.19)

dΠ

dXα
= τδµα(Aµ + ∂µπ), (4.20)

dAβ
dXα

= τ2δµαδ
ν
β(∇µAν − πgµν). (4.21)

These objects live in flat spacetime, so they must be contracted with ηαβ or εα1α2....

For ease of notation, we can write the corresponding objects living in the curved de Sitter

space together with the volume measure, via the tetrad property (τδµα)(τδνβ)ηαβ = gµν :

dV =
1

D!
εα1α2...dX

α1 ∧ dXα2 ∧ . . . =
dDx

τD
= dDx

√
−g, (4.22)

Vµ = Aµ + ∂µπ, (4.23)

Fµν = ∂[µAν], (4.24)

Sµν = ∇(µAν) − πgµν , (4.25)

where Fµν and Sµν come from splitting (4.21) into its antisymmetric and symmetric parts,

and Vµ is just (4.20) renamed. The µ, ν indices are to be contracted with gµν . Note that

Fµν and Vµ are U(1)-invariant, by accident as that wasn’t part of the original construction,

but Sµν isn’t.

There’s another parametrization of these invariants that’s more useful. By symmetriz-

ing ∇µVν , we can rewrite Sµν without explicit reference to Aµ:

Sµν = ∇(µVν) − [∇(µ∇ν) + gµν ]π. (4.26)

But Sµν and Vµ are covariant so the following operator must be covariant as well:

Hµν
def
= [∇(µ∇ν) + gµν ]π. (4.27)

In principle, the strictly invariant action (no Wess-Zumino terms yet) then is:

S =

∫
dDx

τD
P (Vµ, Hµν ;∇µ), (4.28)

where Fµν is implicitly included given Vµ and ∇µ. Making sure the action is healthy,

however, further constrains it:
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• The scalar π appears only in Hµν , with second derivatives. They need to appear

in the special combinations that don’t propagate ghosts [16, 19], but we restrict the

action to only first derivatives.

• Similarly, the vector Vµ can have kinetic terms of the form ∇µV µ and ∇(µVν). Those,

too, have to appear in a special combination that does not propagate a ghost, as a

massive vector should have only three degrees of freedom. Such generalized Proca

theories in curved spacetime have already been derived in [20, 21]; we must simply

specialize to the case of de Sitter. This fixes the Vµ part of the action.

After these considerations, the final strictly invariant Lagrangian is simply the gener-

alized Proca one:

Lgen. Proca(Vµ;∇µ), (4.29)

described in [20, 21]. Since the decomposition of the invariant Vµ in terms of the Goldstones

is Vµ = Aµ+∂µπ, this theory begs to be rewritten following the usual Stückelberg procedure.

Defining the generalized Stückelberg Lagrangian, Lgen. Stück(Aµ, ∂µπ)
def
= Lgen. Proca(Aµ +

∂µπ), we write the action as:

S =

∫
dDx
√
−gLgen. Stück(Aµ, ∂µπ;∇µ). (4.30)

It is not unusual that the strict invariants for π ended up higher order in derivatives.

From the transformation (4.9), π appears to be a galileon. As discussed in [16], galileon

invariants tend to be higher order in derivatives. But now the theory has too much sym-

metry. While it’s technically ISO(1, D) invariant, that group gets drowned in the infinite

U(1) gauge group. In order to rescue it while preserving the theory’s health, we will use

quasi-invariants that break U(1) but not ISO(1, D).

4.1 Adding quasi-invariants

In addition to strict invariants, we also have quasi-invariants, or Wess-Zumino terms, that

change by a total derivative. For the sake of expediency, we just write down the first three,

restoring the Hubble constant H:

W1 = π, (4.31)

W2 = (∂π)2 −DH2π2, (4.32)

W3 = (�π)
[
(∂π)2 − (D − 1)H2π2

]
− 2

3
D(D − 1)H4π3, (4.33)

though we will require only W2 for building a healthy theory. Notice these terms appear like

the usual galileon operators, except with some corrections due to H. Indeed, in the limit

H → 0, we get the Minkowski galileons [16, 22] as expected from the group contraction.

Looking at W2, the kinetic term has the wrong sign compared to the mass term. This

is not a problem, because (∂π)2 also appears in the generalized Stückelberg Lagrangian, so

we may hope to combine those two into something with the proper sign. Indeed, we can

extract the mass term −(m2/2)(Aµ + ∂µπ)2 from Lgen. Stück and add it to qm2W2 where q
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is some dimensionless constant. Performing the canonical normalization πc
def
= m

√
1− qπ

then gives the following action:

S =

∫
dDx
√
−g

[
− 1

4
F 2 − 1

2
m2A2 − m√

1− q
(A · ∂)πc + Lintgen. Stück

− 1

2
(∂πc)

2 − 1

2

(
q

1− q

)
DH2π2c +

other

WZ terms

]
,

(4.34)

where Lintgen. Stück denotes all generalized Stückelberg interactions. The theory is healthy as

long as 0 ≤ q < 1. Furthermore, the special case q = 0 together with setting all other

Wess-Zumino terms to zero restores the U(1) gauge symmetry.

To sum up, we have a healthy action (4.34) constructed from the same coset space as

the action for a Minkowski brane embedded in Minkowski bulk (4.2), but the two theories

have nothing to do with which other. In particular they don’t even have the same number

of degrees of freedom: here, the vector Goldstone can be kept, but in the Minkowski brane,

it’s inessential. Despite their coset constructions parametrizing the same coset space, they

represent different physics due to flipping the Levi ordering of the parametrization.

4.2 No inessential Goldstones

This problem is peculiar in that both Goldstones are essential and inessential: either π or

Aµ can be eliminated in favor of derivatives of the other. One way to see this is to return to

the transformation laws (4.9) and (4.10) and recall that the π doesn’t mix with the Aµ and

vice-versa. We could’ve eliminated either and straightforwardly derived invariants using

only one of them. It might also be instructive to look at this issue from the inverse Higgs

constraint (IHC) point of view. Note that in this case the IHCs will not be equivalent to

integrating out fields via their equations of motion.

To eliminate Aµ, we perform the following covariant normalization:

Vµ = 0 =⇒ Aµ = −∂µπ. (4.35)

Alternatively, π can be eliminated through the invariant normalization of gµνSµν :

S = 0 =⇒ π =
1

D
∇µAµ. (4.36)

For pure scalar theories with extended shift symmetries in de Sitter, see [19], while [23]

discusses vectors with such symmetries in a similar context. Here we focused on showing

that a theory mixing scalar and vectors is possible. Despite the existence of inverse Higgs

constraints from a group-theoretical point of view, their usage isn’t demanded by the

physics.

5 Discussion

In this paper we have returned to the first principles of the coset construction to investigate

its universality when applied to spacetime symmetry groups. We discussed the natural
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hierarchical structure that Goldstones can acquire when the group G is not semisimple,

which dictates which Goldstones are essential and which can be eliminated. By direct

example, we showed that an arbitrary reparametrization of the coset space might not

preserve this structure, changing which inessential Goldstones can be conveniently removed.

In particular, by reparametrizing the coset space of a Minkowski brane in Minkowski

bulk, we constructed a theory for a scalar and vector Goldstones living in de Sitter space

and non-linearly realizing the Poincaré group. At first sight, one may wonder how this is

possible, given that gauge Goldstones that non-linearly realize spacetime symmetries should

not exist according to [24] (our vector boson isn’t gauge, but can of course be decomposed

into one plus a scalar). Simply put, the assumptions of the no-go theorem aren’t satisfied:

our unbroken subgroup is de Sitter, whereas that of [24] is Poincaré, and [24] assumes

removal of the inessential Goldstones, which in our case can’t be executed. Also, note

that transformation for the vector is trivialized in the H → 0 limit, so group contraction

doesn’t provide a counter-example to the no-go theorem. Indeed, the vector is an example

of a symmetry realization unique to de Sitter without analogue in Minkowski, a possibility

brought up in [25].

That the universality of the coset construction isn’t protected under transformations

that change the Goldstone hierarchy isn’t a new fact. In [26], the authors construct two

inequivalent theories related by a map that mixes essential and inessential Goldstones,

though they didn’t bring up the hierarchy issue. It’s not surprising these theories would

then have different hierarchical structures.

A possible extension of this work would be to classify all possible hierarchical structures

for a given coset space with inequivalent physics. We provided two candidates, based on

the Levi ordering, but we don’t know if they are exhaustive. Furthermore, even if a

reparametrization mixes essential and inessential Goldstones, it doesn’t necessarily mean

the resulting theories will be inequivalent; an example is given in [14, section 4.2].

Another avenue of further research is the study of simple spacetime symmetry groups.

Nonlinear realizations of such groups can still involve inessential bosons. The basic example

is how the breaking of the conformal group down to Poincaré gives rise to an essential

dilaton and an inessential special conformal boson [18]. Yet such groups have a trivial Levi

decomposition, so wherever it is that their Goldstone hierarchy is coming from, it’s not

coming from there. Further study to determine whether the coset construction is unique

in this case is required.

A last question concerns the issue of UV completion, which we haven’t touched upon

at all. Given two inequivalent theories derived from the same coset space, it would be

interesting to see what the theories look like once the broken symmetries are restored and

if they relate in any way.

A Rachel and Leo don’t understand each other

Here we show that the two actions describing plane curves that Rachel and Leo found in

section 2.1 are inequivalent.
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Suppose they are equivalent and Rachel’s language can be translated to Leo’s and

vice-versa. Then, we have to find an invertible redefinition that maps Rachel’s variables to

Leo’s. A naive first attempt would be to set `R = `L, then use the inverse Higgs constraints

that Rachel and Leo found to eliminate the inessential fields in terms of derivatives of the

essentials. However, this redefinition would mix fields with their own derivatives, and one

straightforwardly shows they are not invertible. For example, mapping Rachel to Leo then

back to Rachel doesn’t output the original input.

Instead, notice that Rachel’s y transforms as a shift under P1, that is, y → y+ a1, but

Leo’s corresponding π doesn’t:

π → π + a1 cos θ, (A.1)

while θ doesn’t transform. To try to match the two actions, we must redefine π = π(φ, θ)

so that φ transforms as a shift under P1 as well. Notice the definition of θ is irrelevant due

to the gauge symmetry. To find the π redefinition, we consider the infinitesimal variation

δπ(φ, θ) together with the conditions δφ = a1 and δθ = 0 which gives the differential

equation:

∂φπ = cos θ, (A.2)

solved by π = φ cos θ + f(θ) for f a free function. If we now take Leo’s fundamental

invariant torsion and replace π by φ, we get:

τ = π +
−π′θ′′ + θ′π′′

(θ′)3
, (A.3)

=
cos θ

(θ′)2
φ′′ − 2(θ′)2 sin θ + θ′′ cos θ

(θ′)3
φ′ +

(
f ′′(θ) + f(θ)

)
. (A.4)

Now, we need to pick a gauge for θ(λ) together with the function f so that the above

becomes the same mathematical expression for Rachel’s curvature invariant,

κ =
y′′

[1 + (y′)2]3/2
, (A.5)

where we picked the x(λ) = λ gauge for Rachel to simplify the expression. At the same

time, we have to pick a gauge for θ(λ) so that Rachel’s and Leo’s invariant line elements

also match:

d`R =
√

1 + (y′)2dλ (A.6)

d`L = θ′dλ . (A.7)

This is impossible; matching the line elements requires θ =
∫

dλ
√

1 + (y′)2 which

causes Leo’s torsion to become nonlocal while Rachel’s is local. Notice we never invoked

any action, thus the argument holds even if Rachel and Leo are allowed to use higher

derivative invariants.
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B Levi decomposition

Let us quickly recall the notion of the Levi decomposition. Any finite Lie group G can be

decomposed11 using a single semidirect product [27]:

G = Ro L, (B.1)

where:

• L is the simple (or Levi) factor, a semisimple group;

• R is the radical, a group whose algebra is maximally solvable.

A subalgebra i of g is solvable if it’s an ideal (so [i, g] ⊆ i) and if it telescopes to zero

upon repeated application of the commutator, meaning:

[i, i] = i1 ⊂ i, (B.2)

[i1, i1] = i2 ⊂ i1, (B.3)

[i2, i2] = i3 ⊂ i2, (B.4)

...

[in, in] = 0, (B.5)

after a finite number n of steps. The largest such ideal is then the algebra’s radical.

Some examples of Levi decomposition:

• Poincaré ∼ translations o Lorentz,

• Galileo ∼ (translations and boosts) o rotations,

• General affine ∼ (translations and dilation) o special linear.

B.1 Levi ordering

Now suppose we want to work with the coset space G/S. We will assume that G is not

semisimple, but S is. Ideally we would like to classify all possible hierarchical structures

the homogeneous space could have, but we will limit ourselves to only showing at least two

inequivalent ones exist.

Let P be the generators living in the radical of G, and T those in the simple factor.

Finally, if a simple generator is not in the stability group S, denote it by A; conversely,

denote a simple generator in S by V . Then at least two parametrizations of the lift give

different structures:

`R
def
= ezP eξA (z transforms by itself), (B.6)

`L
def
= eξAezP (ξ transforms by itself). (B.7)

11To make the claim mathematically unimpeachable, we note the decomposition also admits discrete

group factors and that the simple factor is only unique up to conjugation by the group’s nilradical. We

ignore these technicalities here.
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To establish this, we act with the group G and check the form of each transformation

law. We will make use of the following braiding identities:

eaP euT = euT eMuaP , (B.8)

eaP evT = evT eMvaP , (B.9)

eaP eξA = eξAev(ξ)V eMξaP , (B.10)

where Mu is a linear map. They follow from the Baker-Campbell-Hausdorff formula upon

usage of the ideal property of the radical, [P, T ] ∼ P , together with closure of the T ’s

and V ’s.

Radical first. We act with some g = euT eaP on `RS to derive transformation laws:

˜̀
RS = euT eaP ezP eξAS (B.11)

= euT ez̃(z;a)P eξAS

= eMuz̃(z;a)P euT eξAS

= eMuz̃(z;a)P eξ̃(ξ;u)AS,

where we used, in order, closure of R, then braiding, then closure of L; the underline

denotes where we use each argument. To conclude, the objects in the homogeneous space

transform as:

z →Muz̃(z; a), ξ → ξ̃(ξ;u), (B.12)

so that z fully realizes the group: it transforms by itself and its transformation depends on

all group parameters.

Simple first. Without loss of generality, flip the order of the group element, so now

g = eaP euT acting on `LS:

˜̀
LS = eaP euT eξAezPS (B.13)

= eaP eξ̃(ξ;u)Aeũ(u;ξ)V ezPS

= eaP eξ̃(ξ;u)AeMũzPS

= eξ̃(ξ;u)Aev(ξ;u)V eMξ̃aP eMũzPS

= eξ̃(ξ;u)Aez̃(z,ξ;u,a)PS,

using closure of L, then braiding, then braiding again, then closure of P with V . Thus the

transformations are:

ξ → ξ̃(ξ;u), z → z̃(z, ξ;u, a), (B.14)

so ξ transforms by itself, but z transforms with reference to ξ.
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B.2 Example: special galileon

Let us use the techniques of the Levi decomposition and ordering to study the hierarchy

of a particular kind of theory, the special galileon [10]. The usual galileon theory is built

out of the coset space GAL(D, 1)/ SO(1, D − 1) parametrized by:

` = ex
µPµeφQeξ

µBµ , (B.15)

with the only nonzero commutator (besides those with Lorentz Mµν , which follow from a

generator’s tensorial structure) being:

[Pµ, Bν ] = ηµνQ. (B.16)

One then derives that ξµ is inessential, in the sense we defined before: the transforma-

tions of xµ and φ don’t depend on ξµ while fully realizing the symmetry group.

The algebra above can be extended with an additional generator Sµν , symmetric in

indices, such that [10, 28]:

[Pµ, Sνρ] = ηµνBρ + ηµρBν −
2

D
ηµρBµ, (B.17)

[Bµ, Sνρ] = α2

(
ηµνPρ + ηµρPν −

2

D
ηµρPµ

)
, (B.18)

[Sµν , Sρσ] = α2 (ηµρMνσ + ηµσMνρ + ηνρMµσ + ηνσMµρ) . (B.19)

One then performs the coset construction paremetrizing the coset space lift as:

` = ex
µPµeφQeξ

µBµe
1
2
σµνSµν , (B.20)

for which now one obtains that the Sµν mixes xµ, ξµ and φ together. It would appear the

addition of a new symmetry has rendered ξµ essential. Nonetheless, such vector can still be

removed by means of inverse Higgs constraint [28]. We will show, however, that a different

parametrization exists, one in which the Goldstone hierarchy is manifest and there is no

mixing with ξµ.

To do this, we must Levi decompose this new algebra, using the methodology out-

lined in this appendix. First, recall the standard Galileo group, without the Sµν , has the

decomposition:

GAL(D, 1) = exp(span(P,Q,B)) o SO(1, D − 1). (B.21)

But span(P,Q,B) is still an ideal even when adding Sµν :

[span(P,Q,B), S] = span(P,Q,B). (B.22)

So it is still contained within the radical of the special Galileo group; the addition of

the Sµν doesn’t reduce the original radical in size.

It doesn’t increase it either. This is easy to see, since [S, S] ∼M violates the solvability

criterion. Hence, the new generators must be added to the simple factor, the Lorentz group.
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And due to nontrivial commutators between Sµν and Mµν , it must genuinely enlarge the

Lorentz group, rather than just being an additional direct factor.

Simple algebras are well classified, and one can immediately check then that span(M,S)

is the special linear algebra. A way to intuit this is that the parameters of a Lorentz

transformation can be collected in an antisymmetric tensor aµν , those of the additional

symmetries in a traceless symmetric tensor sµν [10]; the two together give any traceless

matrix. Hence, the special Galileo group decomposes as:

SGAL(1, D) = exp(span(P,Q,B)) o SL(D). (B.23)

There must exist a choice of basis for which the radical transforms under the simple

factor as a representation. The special Galileo algebra as given in the basis of B.18 does

not display this property, so let us perform a basis change:

P̃µ =
1√
2

(αPµ +Bµ) , B̃µ =
1√
2

(Bµ − αPµ) , Q̃ = αQ, S̃µν = Sµν/α.

(B.24)

The special Galileo algebra now reads:

[P̃µ, B̃ν ] = ηµνQ̃, (B.25)

[P̃µ, S̃νρ] = ηµνP̃ρ + ηµρP̃ν −
2

D
ηµρP̃µ (B.26)

[B̃µ, S̃νρ] = −ηµνB̃ρ − ηµρB̃ν +
2

D
ηµρB̃µ, (B.27)

[S̃µν , S̃ρσ] = ηµρMνσ + ηµσMνρ + ηνρMµσ + ηνσMµρ. (B.28)

Now, if we parametrize the coset space as

` = ex
µP̃µeφQ̃eξ

µB̃µe
1
2
σµν S̃µν , (B.29)

the arguments of section B.1 guarantee that xµ, ξµ and φ transform as representations

under S̃µν . As usual, the condition [S̃, P̃ ] ∼ P̃ implies the braiding,

esS̃exP̃ = eMsxP̃ esS̃ , (B.30)

for some linear map Ms, and a similar argument for ξ and φ. Thus, they don’t mix under

action of Sµν . In particular, under the entire group, x transforms only with itself, and

φ transforms with φ and x, and together they fully realize the group. The φ is then an

essential Goldstone, in the group action definition we used through this work.

B.3 Supergroups

While we have not discussed supersymmetries in this work, let us briefly outline how the

Levi decomposition applies to them, as this is relevant for understanding the hierarchy of

Goldstone fermions arising in broken supersymmetric theories.

First, recall that a super Lie group is still a group [29]. It is still a manifold with

morphisms satisfying certain axioms, but the manifold is allowed to have both bosonic
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coordinates xµ and fermionic coordinates θα, θ̄β̇ . Much in the same way Pµ generates

translations of xµ, the supercharges Qα, Q̄β̇ generate supertranslations of θα, θ̄β̇ [30].

A super Lie group, being a group, must satisfy the Levi decomposition theorem, and

thus one needs to ask if the supertranslations go in the radical or the simple factor. For the

super Poincaré group, one can realize the algebra as a standard algebra of commutators,

rather than a graded one [31, 32], then check for the solvable and ideal properties of the

radical. Perhaps unsurprisingly, the supertranslations go in the radical [30]:

sISO(1, D) = exp(span(P,Q, Q̄)) o SO(1, D − 1). (B.31)

Much of the machinery described in this appendix referring to coset space parametriza-

tion and hierarchy of Goldstone fields applies unchanged when supergroups are seen in this

manner.12

C Finite de Sitter isometries

The transformation laws for xµ = (τ, xi) derived in section 4 correspond to the de Sitter

isometries. The straightforward ones are the translations di, dilation Λ and rotations θij :

τ → Λτ, (C.1)

xi → ΛR(θ)ij(x
j + dj). (C.2)

Meanwhile, a boost with rapidity β along the x-direction is given by:

τ → 2τ

(1−H2ηµνxµxν) + (1 +H2ηµνxµxν) cosh(β) + 2Hx sinh(β)
, (C.3)

x→ 2x cosh(β) + sinh(β)(1 +H2ηµνx
µxν)/H

(1−H2ηµνxµxν) + (1 +H2ηµνxµxν) cosh(β) + 2Hx sinh(β)
, (C.4)

yj → 2yj

(1−H2ηµνxµxν) + (1 +H2ηµνxµxν) cosh(β) + 2Hx sinh(β)
, (C.5)

for j 6= 1. Boosts along the other yj-directions follow identically by rotational symmetry.

Upon changing to physical time and taking the H → 0 limit, we retrieve the Minkowski

boost.
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