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Abstract: The Higgs boson pair production via gluon fusion at high-energy hadron col-

liders, such as the LHC, is vital in deciphering the Higgs potential and in pinning down

the electroweak symmetry breaking mechanism. We carry out the next-to-next-to-next-to-

leading order (N3LO) QCD calculations in the infinite top-quark mass limit and present

predictions for both the inclusive and differential cross sections, albeit the differential distri-

butions other than the invariant mass distribution of the Higgs boson pair are approximated

at N3LO. Such corrections are indispensable in stabilising the perturbative expansion of

the cross section in the strong coupling αs. At the inclusive level, the scale uncertainties

are reduced by a factor of four compared with the next-to-next-to-leading order (NNLO)

results. Given that the inclusion of the top-quark mass effects is essential for the phe-

nomenological applications, we use several schemes to incorporate the N3LO results in

the infinite top-quark mass limit and the next-to-leading order (NLO) results with full

top-quark mass dependence, and present theoretical predictions for the (differential) cross

sections in the proton-proton collisions at the centre-of-mass energies
√
s = 13, 14, 27 and

100 TeV. Our results provide one of the most precise theoretical inputs for the analyses of

the Higgs boson pair events.
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1 Introduction

In view of the null results in the beyond the Standard Model (BSM) searches so far at col-

liders, it seems that a realistic way of looking for new physics in the future is to precisely

study the nature of the Higgs sector. Any small deviation with respect to the Standard
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Model (SM) predictions would indicate the signal of new physics. In particular, the elec-

troweak symmetry breaking mechanism remains to be understood. It can be deciphered

by specifying the form of the Higgs potential. In the SM, such a potential is determined

by two SU(2)L×U(1)Y gauge invariant renormalisable operators constructed from a single

Higgs SU(2)L doublet H =
(
H+, H0

)T
, i.e.

V (H) = −µ2H†H + λSM
(
H†H

)2
, µ2 > 0, λSM > 0. (1.1)

This Higgs potential has a well-known shape of a “Mexican hat”. The spontaneous sym-

metry breaking happens after the Higgs field captures a non-vanishing vacuum expectation

value v, which is related to the Fermi constant GF via v =
(√

2GF
)−1/2

=
(
µ2/λSM

)1/2
.

The quantum fluctuation of the real scalar field around the minimum value of the potential

V (H) at H0 =
(
0, v/
√

2
)T

represents a physical Higgs boson h. The Higgs boson mass at

tree-level is given by m2
h = 2µ2, and the Higgs self-interactions become

V (h) =
m2
h

2
h2 + λSMvh3 +

1

4
λSMh4. (1.2)

One can see that the Higgs potential in the SM is fully determined by GF and mh, whose

values have been measured precisely [1]. Therefore, independent measurements on the

Higgs trilinear and quartic couplings are very important to test the SM Higgs sector. In

fact, several UV-complete new physics models predict modifications of the Higgs potential

and the Higgs trilinear coupling λhhh [2, 3]. Some of them (see e.g. refs. [4–6]) can possess

very different λhhh value from the SM expectation λSM
hhh = λSM = m2

h/2v
2 but still have

SM-compatible Higgs interactions with the massive gauge bosons and fermions. The mea-

surement of the Higgs self couplings seems the only way to understand the dynamics of

electroweak symmetry spontaneously breaking.

The Higgs trilinear coupling can be either directly probed via the Higgs boson pair

production or indirectly constrained by using the loop effects in the precision observ-

ables (e.g. the single Higgs boson signal strengths at the LHC [7–12] or at an e+e− col-

lider [13], the electroweak oblique parameters [14], or the W boson mass and the effective

sine [15]). The existing direct measurements of the Higgs pair cross sections at the LHC

only loosely bound λhhh [16, 17] due to the low statistics. The current best constraint

−5 < λhhh/λ
SM
hhh < 12 at 95% confidence level (CL) is from the ATLAS collaboration with

36.1 fb−1 Run-2 data [16]. The situation will be largely improved at the phase of the HL-

LHC with 3000 fb−1 integrated luminosity [18]. Meanwhile, novel analysis techniques (e.g.

new kinematic variables [19] or machine learning [20]) have been proposed to expedite the

discovery. In addition, the envisaged future hadron colliders, like the FCC-hh, are expected

to be the ultimate precision machines for determining λhhh [21], strongly gaining from both

the 20 times bigger cross section and the higher integrated luminosity.

Although this process is mainly limited by the low statistics at the moment, the con-

tinuous measurements at the LHC are still quite valuable, because even the loose bounds

can already exclude some new physics models or corner the parameter space, which pre-

dicts the enhanced yields of pp→ hh (see e.g. [22]). The indirect constraints on λhhh from
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Figure 1. The LO Feynman diagrams of the process gg → hh with full top-quark mass dependence

(first row) and in the infinite top-quark mass limit (second row).

the single-Higgs data have been set in the range λhhh/λ
SM
hhh ∈ [−3.2, 11.9] at 95% CL with

79.8 fb−1 Run-2 data by ATLAS [23]. These constraints are already comparable with the

direct ones and impact the final bounds with the combinations of the direct and indirect

measurements [24]. As opposed to the direct bounds, the improvements of the indirect

bounds are limited by the systematics and thus will be harder at the HL-LHC. Never-

theless, these indirect approaches feature different systematics than direct measurements

and can be thought as independent cross checks. On the other hand, the extraction of the

quartic Higgs self-coupling from the triple Higgs production is much difficult (though not

hopeless) at hadron colliders, because the corresponding cross sections are three orders of

magnitude smaller than the double-Higgs production [25].

Similar to the single Higgs hadroproduction, the dominant di-Higgs production chan-

nel at a high-energy hadron collider is via the gluon-gluon fusion (ggF) [3, 26, 27]. Other

channels are at least one order of magnitude lower in their yields. Due to the absence of

the tree-level interactions between the Higgs boson and gluons in the SM, the leading order

(LO) cross section σ(gg → hh) was computed from one-loop amplitude squared [28–30],

where two representative LO Feynman diagrams can be seen in the first row of figure 1.

Further improvements of the fixed-order perturbative calculations without any approx-

imation are quite challenging. The full next-to-leading order (NLO) QCD calculations

involving complicated two-loop Feynman integrals were carried out only recently [31–34]

thanks to the new advances of the numerical approaches [35–37]. The NLO results were

complemented with soft-gluon resummation [38] or parton-shower (PS) effects [39–41]. The

ggF NLO predictions are plagued with the large theoretical uncertainties from the scale

variations [31] and the top-quark mass scheme dependence [33]. Moreover, at NLO+PS,

some differential distributions (e.g. the distribution at large transverse momentum of the

Higgs boson pair) differ significantly by adopting different matching schemes [39] or shower

scales [40].

Instead of starting from the loop-induced process, one can also carry out the heavy

top-quark mass mt expansions in the amplitudes. We refer to the leading expansion term

in 1/m2
t as the infinite top-quark mass limit mt → +∞. In such an approximation, the two

Higgs bosons can be generated by the two gluon scatterings at tree level (see the second
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row of figure 1), which makes the higher-order perturbative calculations more feasible. The

first NLO computation in the mt → +∞ limit was performed two decades ago [42]. Next-

to-next-to-leading order (NNLO) was also available [43–46], and recently we have presented

the first next-to-next-to-next-to-leading order (N3LO) calculation [47]. Besides these fixed-

order results, the soft-gluon resummation effects are also considered in refs. [48–50]. In spite

of the success of improving the perturbative accuracy in the cross section calculations, it is

widely acknowledged that the mt → +∞ approximation is insufficient for the phenomeno-

logical applications. Many theoretical efforts have been devoted to investigate the finite

mt corrections to this approximation [25, 27, 51–55]. Moreover, there are also many well-

motivated attempts to evaluate the involved two-loop gg → hh amplitudes in the analytic

forms by taking other approximations (e.g. in the small top-quark mass [56, 57], the small

Higgs transverse momentum [58] and the small Higgs mass [59] limits).

The primary goal of this paper is to extend our previous N3LO results in ref. [47] and

to include the top-quark mass effects for the phenomenological applications. The remaining

context is organised as follows. In section 2, after the description of our method, we provide

the validation of our calculations as well as the extensive numerical results in the infinite

top-quark mass limit. We take into account the finite mt effects at N3LO based on the NLO

QCD results with full mt dependence in section 3. The conclusion is drawn in section 4.

Additional results and some technical details can be found in the appendices. The hard

functions, in particular the new one-loop analytic expressions, are shown in appendix A. An

NLO model and the R2 Feynman rules are described in appendix B. The renormalisation

scale dependence in the N3LO results is discussed in appendix C. Finally, appendix D

collects the additional plots for the differential distributions.

2 N3LO corrections in the infinite top-quark mass limit

2.1 Effective Lagrangian and Wilson coefficients

The interactions between the Higgs bosons and gluons are mainly generated by top-quark

loops, where two LO Feynman diagrams are shown in the first row of figure 1. The

effective Lagrangian in the infinite top-quark mass limit is obtained through integrating

out the top-quark loop contribution (see the second row of figure 1). For the Higgs boson

pair production, the relevant effective Lagrangian can be written as

Leff =
αs

12π

[
(1 + δ) ln

(
1 +

h

v

)
− η

2
ln2

(
1 +

h

v

)]
GaµνG

a µν (2.1)

= −1

4

(
Ch

h

v
− Chh

h2

2v2

)
GaµνG

a µν +O(hk, k ≥ 3),

where αs is the strong coupling and Gaµν is the gluon field strength tensor. On the right

hand side of the second equation, O(hk, k ≥ 3) means that we have ignored terms involving

more than two Higgs bosons in the effective Lagrangian. The Wilson coefficients δ and η,

or equivalently Ch and Chh, comprise the QCD radiative corrections of the top-quark loops.

Ch and Chh can be easily derived in terms of δ and η as

Ch = −αs
3π

(1 + δ) , Chh = −αs
3π

(1 + δ + η) . (2.2)
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These Wilson coefficients can be perturbatively expanded in a series of αs,

δ =
∑
i=0

(αs
4π

)i
δ(i) , η =

∑
i=0

(αs
4π

)i
η(i) ,

Ch = −αs
3π

∑
i=0

(αs
4π

)i
C

(i)
h , Chh = −αs

3π

∑
i=0

(αs
4π

)i
C

(i)
hh . (2.3)

Their four-loop analytic expressions are already known in the literature [43, 45, 60–69]. In

our N3LO calculations, the results up to three loops are needed. They are given in the

on-shell top-quark mass scheme by [68]

δ(0) = 0 , δ(1) = 11 ,

δ(2) =Lt

(
19 +

16

3
nf

)
+

2777

18
− 67

6
nf ,

δ(3) =L2
t

(
209 + 46nf −

32

9
n2
f

)
+ Lt

(
4834

9
+

2912

27
nf +

77

27
n2
f

)
− 2761331

648
+

897943ζ3

144
+

(
58723

324
− 110779ζ3

216

)
nf −

6865

486
n2
f , (2.4)

and

η(0) = 0 , η(1) = 0 ,

η(2) =
32nf

3
+

70

3
,

η(3) =Lt

(
−

128n2
f

9
+

1528nf
9

+
2356

3

)
+

154n2
f

27
+

4324nf
27

+
5332

27
, (2.5)

where Lt = ln(µ2
R/m

2
t ), mt is the top-quark pole mass, µR is the renormalisation scale and

nf is the number of the light-quark flavours. The expressions of Ch and Chh are

C
(0)
h = 1, C

(0)
hh = C

(0)
h , (2.6)

C
(i)
h = δ(i), C

(i)
hh = C

(i)
h + η(i), i ≥ 1.

2.2 Breakdown in three channels

The ggF Higgs boson pair production in the infinite top-quark mass limit with the effective

Lagrangian defined in eq. (2.1) can be divided into three channels according to the number

of effective vertices at the squared amplitude level. Three representative Born cut-diagrams

are shown in figure 2. There are two (class-a), three (class-b) and four (class-c) effective

vertices insertions respectively. In other words, the double-Higgs (differential) cross section

can be decomposed into

dσhh = dσahh + dσbhh + dσchh. (2.7)

Because there are at least one αs power in the Wilson coefficients Ch and Chh, their Born

cross sections contribute to different αs orders, which are summarised in table 1. The

– 5 –
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Figure 2. Representative Born cut-diagrams for the Higgs boson pair production in the effective

theory. The cross section can be classified by the number of effective vertices between the two Higgs

bosons and gluons.

LO NLO NNLO N3LO

total O(α2
s) O(α3

s) O(α4
s) O(α5

s)

class-a O(α2
s) O(α3

s) O(α4
s) O(α5

s)

class-b 0 O(α3
s) O(α4

s) O(α5
s)

class-c 0 0 O(α4
s) O(α5

s)

Table 1. The perturbative orders in αs for different classes at the amplitude squared level. We

call the O(α3
s) contribution in class-b as the LO in this class though it is an NLO correction to the

cross section of Higgs pair production. The same rule applies to the class-c part.

lowest orders of class-a, -b and -c are O(α2
s), O(α3

s) and O(α4
s) respectively, which means

that they contribute to LO, NLO and NNLO parts of the Higgs boson pair cross section.

For the purpose of N3LO calculations in the present paper, we need to calculate N3LO,

NNLO and NLO corrections to the class-a, -b and -c part, respectively.

2.3 Methodology and validation

2.3.1 The class-a part

We have two approaches to compute NNLO (i.e. up to O(α4
s)) cross section in the class-a

part. The first one is that we can perform a fully-differential NNLO calculation based on

the qT -subtraction method, which was originally proposed in ref. [70].1 In this paper, we

will use the qT -subtraction method in the framework of the soft-collinear effective theory

(SCET) [92–96]. In this approach, the class-a (differential) cross section can be further

divided into

dσahh = dσahh

∣∣∣
phhT <pvetoT

+ dσahh

∣∣∣
phhT >pvetoT

, (2.8)

where phhT is the transverse momentum of the Higgs pair system, i.e. qT = phhT . The first

(second) term on the right-hand side of eq. (2.8) is imposed the kinematic cut phhT < pveto
T

(phhT > pveto
T ).

The first piece dσahh

∣∣
phhT <pvetoT

is computed with the aid of the transverse-momentum re-

summation formalism in SCET. The cross section of this part is factorised as a convolution

1With qT -subtraction method, tremendous works have been done at the NNLO accuracy [46, 70–88].

Through solving the renormalisation equations up to N3LO, the small qT cross section has also been studied

at N3LO for certain processes [89–91] with constant terms missing at three loops in the collinear sector.

– 6 –
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of the hard, beam and soft functions

dσahh
dphhT

= Ha ⊗Bg ⊗Bg ⊗ S ×

(
1 +O

((
phhT
)2

Q2

))
, (2.9)

where we have ignored the power-suppressed terms O
((phhT

Q

)2)
. Such a factorisation for-

malism holds when phhT is sufficiently smaller than the hard scale Q, which is derived by

studying the IR behaviour of QCD. The transverse-momentum dependent (TMD) gluon

beam function Bg is universal in the sense that it is independent of the process but only

relies on the species of the initial state (i.e. gluon). The soft function S is also the same

for all processes only involving colourless final states with the gluon-gluon initial state.

The calculations of the TMD beam and soft functions can be carried out with a rapidity

regulator, while the physical results are independent of the choice of such a regulator. The

two-loop analytic results for these TMD beam and soft functions can be found in [97–102],

and the N3LO results have been obtained very recently [103, 104]. On the other hand, the

hard function Ha is process dependent. The detailed discussions about the hard functions

can be found in appendix A.

Due to the non-vanishing transverse momentum of the Higgs pair system phhT > pveto
T ,

only the events with additional jets will be maintained in the second piece of eq. (2.8)

dσahh

∣∣
phhT >pvetoT

. In our case, the NNLO computation of class-a requires us to calculate

the NLO corrections to a Higgs pair plus a jet with two effective vertices insertions.

Such a task can be carried out by using the automated simulation framework Mad-

Graph5 aMC@NLO (MG5 aMC henceforth)2 [106] with an NLO Universal FeynRules

Output (UFO) model [112] based on the SM Lagrangian and the effective Lagrangian

eq. (2.1). The details about the model, in particular the analytic expressions of the ratio-

nal R2 terms, can be found in appendix B. Due to the different αs orders in the three Born

classes, we need the recent development [113] in MG5 aMC that is capable of handling

mixed-order scenarios.

Within the qT -subtraction approach, the independence on pveto
T in the finite cross

section should always be guaranteed when pveto
T is approaching zero. We have explicitly

checked this in the NNLO class-a cross section σa,NNLO
hh shown in figure 3.

Alternatively, the class-a cross section can be related to the single Higgs production

cross section, because they share exactly the same topology in the infinite top-quark mass

limit. In the di-Higgs case, the class-a part can be viewed as the production of an off-shell

Higgs boson from ggF and its decay into two on-shell Higgs bosons. The off-shell Higgs

boson has an invariant mass of the final-state Higgs boson pair mhh. The explicit relation is

dσahh
dmhh

= fh→hh

(
Chh
Ch
− 6λhhhv

2

m2
hh −m2

h

)2

×
(
σh
∣∣
mh→mhh

)
, (2.10)

2Let us briefly describe the framework here. The computations of one-loop amplitudes are carried

out in the module MadLoop [105, 106] by exploiting Collier [107] package, while the real-emission

parts are evaluated with the module MadFKS [108, 109] by using the FKS infrared (IR) subtraction

method [110, 111].
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Figure 3. The pvetoT dependence of the NNLO cross section for the class-a at
√
s = 13 TeV LHC.

The error bars denote the Monte Carlo integration uncertainties.

where the function fh→hh accounts for the phase space factor mapping from the single

Higgs production to the Higgs pair production,

fh→hh =

√
m2
hh − 4m2

h

16π2v2
, (2.11)

and σh denotes the cross section for the single Higgs boson production. The replacement

mh → mhh in eq. (2.10) means that the cross section is calculated with the Higgs mass mhh.

In the first parentheses of the right-hand side of eq. (2.10), Chh
Ch

accounts for the Wilson

coefficient difference in figure 1c, while the second term takes into account the propagator

of the off-shell Higgs and the Higgs self-coupling in figure 1d. Such a method has already

been used in the previous NNLO calculation of the ggF di-Higgs production in ref. [44].

We have compared the results with the above two independent approaches for NNLO

class-a cross sections shown in the left panel of figure 4. The calculation with qT -subtraction

matches the result by using eq. (2.10) and iHixs2 within the Monte Carlo integration

errors when pveto
T ≤ 16 GeV. Thus, we have validated eq. (2.10). After inclusion of class-b

and class-c contributions (σNNLO
hh = σa,NNLO

hh + σb,NLO
hh + σc,LO

hh ), we can compare our two

calculations with the previous NNLO di-Higgs calculation in ref. [46]. As shown in the

right panel of figure 4, we have obtained perfect agreement with ref. [46].

In order to compute the N3LO class-a cross section, we need to know the N3LO cross

section of σh. Since σh is only known inclusively (i.e. total cross section) at N3LO, we only

perform the exact N3LO calculations for the total inclusive cross sections and the invariant

mass distributions of the class-a part. In the present paper, we will use the public code

iHixs2 [114] to compute the N3LO cross section σh.

2.3.2 The class-b part

In order to achieve the N3LO accuracy for the di-Higgs cross sections in the infinite top-

quark mass limit, we have to calculate the NNLO QCD corrections to the class-b part. The

– 8 –
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Figure 4. The comparisons of the NNLO class-a cross sections from two different approaches

(left panel) and of the NNLO hh cross sections from three different calculations (right panel) at√
s = 13 TeV LHC. The error bars denote the Monte Carlo integration uncertainties. In the right

panel, the band represents the Monte Carlo integration error quoted in ref. [46].

NNLO cross sections for the class-b part were computed with the qT -subtraction method

similarly as described in the previous section, i.e. the differential cross section is decom-

posed into

dσbhh = dσbhh

∣∣∣
phhT <pvetoT

+ dσbhh

∣∣∣
phhT >pvetoT

, (2.12)

The two pieces dσbhh

∣∣
phhT <pvetoT

and dσbhh

∣∣
phhT >pvetoT

in eq. (2.12) can be computed using the

method described above in the class-a part. Therefore, we will refrain ourselves from

describing them again except the hard function Hb in the following equation

dσbhh
dphhT

= Hb ⊗Bg ⊗Bg ⊗ S ×

(
1 +O

((
phhT
)2

Q2

))
. (2.13)

The explicit expression of Hb is shown in appendix A.

The pveto
T independence of dσbhh after summing the two pieces is explicitly verified in

figure 5. As opposed to NNLO cross section of the class-a part, we do not have a second

independent cross section calculation for this part. The NLO cross section σb,NLO
hh however

can be easily checked with MG5 aMC as shown in figure 6. The perfect agreement below

permille level is achieved when pveto
T ≤ 8 GeV.

At N3LO, the renormalisation scale cancellation is guaranteed only when combining

the class-a and class-b parts, which will be detailed in appendix C. It can serve as another

powerful check to the NNLO class-b cross section. The class-a (differential) cross section

can be decomposed into

dσahh = dσ
(a,1)
hh + dσ

(a,2)
hh ,

dσ
(a,1)
hh ≡ dσahh

∣∣∣
Chh→Ch

,

dσ
(a,2)
hh ≡ dσahh − dσ

(a,1)
hh , (2.14)
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Figure 5. The pvetoT dependence of the total NNLO cross section for the class-b at
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Figure 6. The comparisons of the NLO class-b cross sections from the qT -subtraction method

(error bars) and MG5 aMC (red band) at
√
s = 13 TeV LHC. The error bars and the band denote

the Monte Carlo integration errors.

where Chh → Ch means that we have replaced the Wilson coefficient Chh with Ch. The

remaining renormalisation scale dependence in dσb,NNLO
hh can only be cancelled after com-

bining with dσ
(a,2),N3LO
hh . In figure 7, we have shown the class-b cross sections multiplied

by a factor of -1 from
√
s = 7 TeV to

√
s = 100 TeV in the upper panel. The relative scale

uncertainties are displayed in the lower panel. We have indeed seen that the inclusion of

dσ
(a,2),N3LO
hh in the NNLO class-b cross sections (the blue hatched) can further reduce the

scale uncertainties.
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Figure 7. The energy
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s dependence of the class-b cross sections. They are LO (red), NLO

(green), NNLO (brown hatched) and NNLO plus σ
(a,2),N3LO
hh (blue hatched). The bands represent

the scale uncertainties. In the lower panel, we have also shown their relative scale uncertainties.

2.3.3 The class-c part

We only need the NLO QCD corrections to the class-c part in order to give N3LO di-Higgs

cross sections. The computations can be achieved with the full-fledged NLO techniques.

We have compared the NLO cross sections for the class-c part between the qT -subtraction

approach and the automated calculation by MG5 aMC in figure 8. The perfect agreement

is found when pveto
T ≤ 6 GeV.

We have summarised the independent calculations we have performed with different

approaches for the three classes contributing to various orders in table 2.

2.4 Results

2.4.1 Calculational setup

In our numerical calculations, we take v = 246.2 GeV and the Higgs boson mass mh =

125 GeV. The top-quark pole mass, which enters only into the Wilson coefficients, is mt =

173 GeV. Unless it is explicitly specified, the trilinear Higgs coupling λhhh is taken to be

the SM value. We use the PDF4LHC15 nnlo 30 PDF [115–118] available in the programme

LHAPDF6 [119], and the associated αs. The default central scale is chosen to be the

invariant mass of the Higgs boson pair divided by 2, i.e. µ0 = mhh/2, and the scale

uncertainty is evaluated through the 9-point variation of the factorisation scale µF and the

renormalisation scale µR in the form of µR,F = ξR,F µ0 with ξR, ξF ∈ {0.5, 1, 2}. In the
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NLO NNLO N3LO

order O(α3
s) O(α4

s) O(α5
s)

a

iHixs2 iHixs2 iHixs2

qT -subtraction qT -subtraction

MG5 aMC

b —
qT -subtraction qT -subtraction

MG5 aMC

c — —
qT -subtraction

MG5 aMC

Table 2. A summary of independent calculations we have performed at different orders and for

different classes.

parts of ultilising the qT -subtraction method, we will use pveto
T = 6 GeV if

√
s < 27 TeV and

pveto
T = 10 GeV if

√
s ≥ 27 TeV. We have verified that the uncertainties due to the missing

power-suppressed terms of
(pvetoT
µ0

)2
are well below the Monte-Carlo integration errors.

2.4.2 Inclusive total cross sections

We present the inclusive total cross sections from LO to N3LO at different centre-of-mass

energies
√
s = 13, 14, 27, 100 TeV in table 3, where the scale uncertainties are also shown.

These particular energies are either the LHC energies (13 and 14 TeV) or the nominated

energies for the future hadron colliders [18, 21]. The cross sections from
√
s = 7 TeV to√

s = 100 TeV are also displayed in the left panel of figure 9, where the bands represent the

scale uncertainties. Similarly to the case of single Higgs production, the QCD corrections

in the di-Higgs process are very prominent. The NLO QCD corrections increase the LO
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√
s 13 TeV 14 TeV 27 TeV 100 TeV

LO 13.80+31%
−22% 17.06+31%

−22% 98.22+26%
−19% 2015+19%

−15%

NLO 25.81+18%
−15% 31.89+18%

−15% 183.0+16%
−14% 3724+13%

−11%

NNLO 30.41+5.3%
−7.8% 37.55+5.2%

−7.6% 214.2+4.8%
−6.7% 4322+4.2%

−5.3%

N3LO 31.31+0.66%
−2.8% 38.65+0.65%

−2.7% 220.2+0.53%
−2.4% 4439+0.51%

−1.8%

Table 3. The inclusive total cross sections (in unit of fb) of Higgs boson pair production in the

infinite top-quark mass limit at different centre-of-mass energies
√
s from LO to N3LO. The quoted

relative uncertainties are from the 9-point scale variations. The errors due to the numerical Monte

Carlo integration are well below 1h.

cross sections by 87% (85%) at
√
s = 13 (100) TeV. The NNLO QCD corrections improve

the NLO cross sections further by 18% (16%), reducing the scale uncertainties by a factor

of two to three to be below 8%. The N3LO QCD corrections enhance the NNLO cross

section by 3.0% (2.7%). The cross sections lie well within the scale uncertainty bands

of the NNLO results, and the N3LO scale uncertainties are less than 3% and 2% at 13

and 100 TeV respectively. In addition, the PDF parameterisation uncertainties are almost

independent of the QCD corrections. Their relative sizes amount to ±3.3%,±3.1%,±2.2%

and ±1.4% with respect to the central values at 13, 14, 27 and 100 TeV, overwhelming

the remaining N3LO scale uncertainties. We have also shown the contribution from three

different classes separately in the right panel of figure 9, where the class-b contribution has

been multiplied by a factor of -1 in order to make it visible in the frame. There is a strong

hierarchy among the three classes. Typically, the class-b part is only a few percent of the

class-a, while the class-c is a few percent of the class-b. Such a behaviour can be understood

from the effective Lagrangian eq. (2.1). One more effective vertex in the squared amplitude

results in one more factor of αs
3π ∼ 1% suppression instead of the usual αs suppression.

It was proposed in ref. [120] to use the ratios of cross sections with the same final state

between different centre-of-mass energies to perform precision studies (e.g. determining

PDFs) and to improve the BSM sensitivities.3 The success of such a programme relies on

the large cancellations of theoretical systematic uncertainties in the ratios. In particular,

the usually dominant scale uncertainties in the cross sections can be significantly reduced

by fully correlating the renormalisation and factorisation scales between numerators and

denominators. Such a reasonable working assumption, however, should be carefully checked

when higher-order calculations become available. With the N3LO calculations we have

done, we can readily check such a hypothesis in the double-Higgs process. In figure 10, we

have plotted the cross section ratios in six different
√
s pairs from LO to N3LO. The scale

correlation assumption in the cross section ratios is indeed verified in this process.

Apart from the dependence on the collision energy, it is also very interesting to know

how total cross sections vary when λhhh deviates from the SM value. At four different

centre-of-mass energies
√
s = 13, 14, 27, 100 TeV, we have varied κλ = λhhh/λ

SM
hhh from −4

3A similar idea but using different final states instead of different
√
s was also introduced in ref. [121].
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to 8 in figure 11. The largest deconstruction between the λhhh-independent amplitude (e.g.

from figure 1c) and the λhhh-dependent amplitude (e.g. from figure 1d) occurs when κλ is

close to 2. The N3LO corrections only marginally distort the NNLO predictions around

κλ = 2. This can be understood because the QCD radiative corrections to the above

two kinds of different amplitudes are not very different due to the same Lorentz structure

shared between figure 1c and figure 1d.

2.4.3 Invariant mass distributions

Besides the total cross sections, we are also able to calculate the exact N3LO results for the

invariant mass mhh distributions, which are shown in figure 12 with the 4 different energies√
s = 13, 14, 27, 100 TeV. Due to the larger phase space, the mhh spectrum becomes harder

when
√
s increases. The inclusion of the N3LO QCD corrections dramatically stabilises

the perturbative calculations of the invariant mass differential distributions. The N3LO

corrections only marginally change the shapes, and the N3LO results, which have very small

scale uncertainties, are completely enclosed within the NNLO uncertainty bands. Such a

feature consolidates that the perturbative expansions of the invariant mass differential cross

sections are converging in αs up to the fourth order.

It is also very interesting to investigate how the invariant mass distribution changes

with respect to the value of κλ = λhhh/λ
SM
hhh. We have shown the LO to N3LO distributions

with κλ = −1 (upper left), 3 (upper right) and 5 (lower left) in figure 13. In addition, the

comparison of N3LO mhh distributions with four values κλ = −1, 1, 3, 5 is given in the lower

right panel of figure 13. The differential distribution dramatically changes when κλ varies.

This feature can be understood qualitatively by looking at eq. (2.10). σh|mh→mhh decreases

monotonically when increasing mhh, which explains the behaviour in the large invariant

mass regime. At small mhh (i.e. mhh → 2mh), the distribution is governed by the prefactors

fh→hh ∝
√
m2
hh − 4m2

h and
(
Chh
Ch
− 6λhhhv

2

m2
hh−m

2
h

)2
'
(

1− κλ
3m2

h

m2
hh−m

2
h

)2
. Given the phase space

boundary mhh ≥ 2mh, the second prefactor is a monotonically decreasing (increasing)

function of mhh when κλ < 0 (0 < κλ ≤ 1). If κλ > 1,
(

1− κλ
3m2

h

m2
hh−m

2
h

)2
monotonically

decreases in the region mhh ∈ [2mh,
√

1 + 3κλmh] and then monotonically increases when

mhh >
√

1 + 3κλmh. This explains the fact that the suppression at threshold mhh → 2mh

is more dramatic in the SM case κλ = 1 than others. On the other hand, when mhh

approaches
√

1 + 3κλmh (395 GeV for κλ = 3 and 500 GeV for κλ = 5), a cancellation

happens in
(

1− κλ
3m2

h

m2
hh−m

2
h

)2
, which results in the dip structures in figure 13 for the

κλ > 1 cases. These interesting features can be definitely used in the BSM searches via

the di-Higgs final states [20].

2.4.4 Other differential distributions

In order to carry out N3LO calculations for other differential distribution, we have to take

some approximations, because the fully-differential N3LO corrections to single Higgs pro-

duction are still unknown. Therefore, at the moment, we have to approximate the N3LO

class-a corrections for other differential cross sections. As we already mentioned in sec-

tion 2.3.2, the class-a differential cross sections can be divided into two pieces given in
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Figure 11. The λhhh dependencies of the total inclusive cross sections for the Higgs boson pair

production in proton-proton collisions with
√
s = 13, 14, 27, 100 TeV. The bands represent the scale

uncertainties. The red, green, brown and blue bands correspond to the LO, NLO, NNLO and N3LO

predictions, respectively. The bottom panel shows the ratios to the N3LO distribution.
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Figure 12. Invariant mass distributions for the Higgs boson pair production in proton-proton

collisions with
√
s = 13, 14, 27, 100 TeV. The bands represent the scale uncertainties. The red, green,

brown and blue bands correspond to the LO, NLO, NNLO and N3LO predictions, respectively. The

bottom panel shows the ratios to the N3LO distribution.
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Figure 13. Invariant mass distributions for the Higgs boson pair production in proton-proton

collisions at
√
s = 13 TeV with different κλ = λhhh/λ

SM
hhh.
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eq. (2.14). The second piece dσ
(a,2),N3LO
hh is essential to cancel the remaining renormalisa-

tion scale dependence in dσb,NNLO
hh . Both of them are in fact known fully differentially. For

the first piece dσ
(a,1),N3LO
hh (i.e. the class-a cross sections by setting Chh = Ch), we have the

fully differential calculations for the NNLO class-a cross sections with the qT -subtraction

method. Therefore, in our paper, we can define the approximated N3LO (AN3LO) differ-

ential distributions for other observable O as

dσAN3LO
hh

dO
=

dσ
(a,1),NNLO
hh

dO

σ
(a,1),N3LO
hh

σ
(a,1),NNLO
hh

+
dσ

(a,2),N3LO
hh

dO
+
dσb,NNLO

hh

dO
+
dσc,NLO

hh

dO
. (2.15)

The (a, 1) piece is simply multiplying a global K factor
σ
(a,1),N3LO
hh

σ
(a,1),NNLO
hh

assuming no kinematic

dependence. Such an assumption is more-or-less justified given the extremely flat K factor

found in the rapidity distributions of the single Higgs process [122]. In contrast, the exact

fully-differential predictions are achievable for other three pieces at O(α5
s). Our calculations

can certainly be improved as long as the fully-differential N3LO calculation of the single-

Higgs process is available.

We have shown 6 differential distributions in figure 14 from LO to AN3LO at
√
s =

14 TeV, while the same distributions at other energies can be found in appendix D. They are

the rapidity distribution of the Higgs boson pair (O = yhh, up left), the rapidity distribution

of a randomly selected Higgs boson4 (O = yh, up right), the transverse momenta of leading-

pT (O = pT (h1), middle left) and subleading-pT (O = pT (h2), middle right) of the two

Higgs bosons, the absolute rapidity difference (O = |∆y|, low left) and the azimuthal angle

difference (O = ∆φ, low right) between the Higgs pair. In all cases, AN3LO corrections

significantly reduce the scale uncertainties with respect to NNLO distributions, except

pT (h1) → 0 and ∆φ → π. Like the dijet hadroproduction case [123, 124], the region

of pT (h1) → 0 is largely populated by IR quanta radiations, which makes fixed-order

perturbative calculations problematic. In addition, the ∆φ distribution is quite special

as all the LO events locate at ∆φ = π, i.e. back-to-back of the Higgs boson pair in the

transverse plane. For all the ∆φ 6= π bins, an NkLO calculation only gives the Nk−1LO

accuracy. On the contrast, the NkLO accuracy can be achieved by a complete NkLO

calculation in the end point ∆φ = π. The region is however sensitive to the soft gluon

emissions, which yields large logarithms to spoil the fixed-order perturbative calculations.

Such a feature can be deduced from the fact that the scale uncertainty bands do not shrink

from LO to AN3LO. The pathological behaviour should be cured after performing the

soft-gluon resummation in the region.

3 N3LO corrections with top-quark mass effects

3.1 Top-quark mass approximations at N3LO

It is well known that the top-quark mass effects are important in the Higgs boson pair

production. Therefore, any relevant phenomenology studies should take into account these

4Such a distribution is equivalent to the average of the two histograms, where each histogram represents

a rapidity distribution of one labelled Higgs boson in the di-Higgs events.
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Figure 14. Various distributions [yhh (up left), yh (up right), pT (h1) (middle left), pT (h2) (middle

right), ∆y (low left), and ∆φ (low right)] for the Higgs boson pair production in proton-proton

collisions at
√
s = 14 TeV.
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effects. However, the direct improvements of perturbative calculations with full top-quark

mass dependence are technically very challenging because the lowest order is already loop-

induced. The state-of-the-art calculation without performing 1/m2
t expansion is NLO in

αs. A standard way to improve the perturbative calculations is to combine the NLO full

top-quark mass calculations (denote as NLOmt) with the higher-order infinite top-quark

mass calculations. The combination of the two different calculations is not unique, and

therefore relies on various approximations.

There are several approximations to combine the differential cross sections in the infi-

nite top-quark mass limit dσNkLO
mt→∞ and those with full top-quark mass dependence dσNlLO

mt

(l < k). In our case, we have k = 0, 1, 2, 3 and l = 0, 1. They are:

• NkLO⊕NlLOmt : this approximation simply improves the leading mt expansion term

in dσNkLO
mt − dσNlLO

mt , i.e.

dσN
kLO⊕NlLOmt = dσNlLO

mt + ∆σk,lmt→∞, (3.1)

where we have defined ∆σk,lmt→∞ = dσNkLO
mt→∞ − dσ

NlLO
mt→∞.

• NkLOB−i⊕NlLOmt : the correction part ∆σk,lmt→∞ is simply improved by
dσLO
mt

dσLO
mt→∞

, i.e.

dσN
kLOB−i⊕NlLOmt = dσNlLO

mt + ∆σk,lmt→∞
dσLO

mt

dσLO
mt→∞

. (3.2)

• NkLO⊗NlLOmt : this assumes that the QCD K factor
dσNkLO
mt→∞

dσNlLO
mt→∞

in the infinite top-

quark mass limit also applies to the other top-quark mass dependent terms. It is

defined as

dσN
kLO⊗NlLOmt = dσNlLO

mt

dσNkLO
mt→∞

dσNlLO
mt→∞

= dσNlLO
mt + ∆σk,lmt→∞

dσNlLO
mt

dσNlLO
mt→∞

. (3.3)

Other approximations are of course still possible (e.g. those introduced in refs. [25, 54]).

However, they require the knowledge of the fully-differential distributions, which is not

known at N3LO. In particular, the “FT approximation”5 introduced in refs. [25, 54] is

considered as the most advanced predictions. We leave the FT approximation at N3LO for

a future study. Here, we decide to restrict ourselves with the above three approximations.

Among them, NkLO⊗NlLOmt is expected to be the most accurate predictions, while

NkLO⊕NlLOmt is the worst approximation because the finite top-quark mass effects are

missing in the correction ∆σk,lmt→∞. In the following, we will present the results under three

approximations for comparison.

5In the so-called FT approximation, the matrix elements in the infinite top-quark mass limit for each

partonic subprocess are improved/reweighted by the ratios of the one-loop full top-quark mass squared

amplitudes over the tree-level mt → +∞ squared amplitudes.
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3.2 Results

With the same setup as described in the section 2.4.1, the full mt-dependent NLO (differ-

ential) cross sections can be obtained by the public code [39, 41] available in the Powheg-

Box [125–127]. The scale uncertainties for each approximation in the present paper are

estimated by taking the envelope of 9-point variations ξR = µR/µ0, ξF = µF /µ0 with

µ0 = mhh/2, ξR, ξF ∈ {0.5, 1, 2}. The (differential) cross sections at each point are de-

fined as

dσN
kLO⊕NlLOmt (ξR, ξF ) = dσNlLO

mt (ξR, ξF ) + ∆σk,lmt→∞(ξR, ξF ),

dσN
kLOB−i⊕NlLOmt (ξR, ξF ) = dσNlLO

mt (ξR, ξF ) + ∆σk,lmt→∞(ξR, ξF )
dσLO

mt (1, 1)

dσLO
mt→∞(1, 1)

,

dσN
kLO⊗NlLOmt (ξR, ξF ) = dσNkLO

mt→∞(ξR, ξF )
dσNlLO

mt (1, 1)

dσNlLO
mt→∞(1, 1)

. (3.4)

3.2.1 Inclusive total cross sections

The inclusive total cross sections after taking into account the top-quark mass effects are

tabulated in table 4. The NLO cross section with full top-quark mass dependence (denoted

by NLOmt) is 27.56 fb at
√
s = 13 TeV,6 which is 6.8% larger than the result in the infinite

top-quark mass limit (denoted by NLO) shown in table 3. However, at 100 TeV, the NLOmt

cross section7 is more than 3 times smaller than the NLO result. This indicates that the

large top-quark mass approximation is not valid any more at a very high energy collider.

The remaining scale uncertainties in NLOmt cross sections are beyond 10%. Such

theoretical uncertainties are expected to be reduced by including higher-order QCD cor-

rections. We evaluated the NNLO and N3LO cross sections by using three approximations

defined in the previous section based on the NLOmt results. The central values as well

as the scale uncertainties are presented in table 4. Because the finite mt corrections in

∆σk,1mt→∞, k = 2, 3 are still missing, the NkLO⊕NLOmt approximation is least accurate

and even not reliable at 100 TeV, which is also implied in the shown pathological scale un-

certainties. In contrast, both NkLOB−i⊕NLOmt and NkLO⊗NLOmt approximations have

partially captured the finite top mass effects in the higher-order QCD correction pieces

∆σk,1mt→∞. The differences between the two different approximations can be viewed as a

way of estimating the remaining 1/m2
t uncertainties, which are around 2-3%. In particular,

we take N3LO⊗NLOmt predictions as the state-of-the-art. The relative scale uncertainties

in NkLO⊗NLOmt are identical to those in NkLO.

3.2.2 Invariant mass distributions

The invariant mass mhh distributions at 4 different energies
√
s are shown in both figure 15

and figure 16. In figure 15, we have computed three different mt approximations at N3LO.

6We have verified that the slight offsets between our NLOmt results and those in ref. [54] at
√
s =

13, 14 TeV can be attributed to the different PDFs. In our calculations, we always use the same NNLO

PDF, while ref. [54] used a NLO PDF for the NLO calculations and a NNLO PDF in the NNLO calculations.
7A caveat for using the Powheg-Box code to evaluate NLOmt is the presence of numerical errors

because of the limitation of the two-loop numerical grid at large mhh and at high pT (h) [34]. Such errors

are negligible at 13 and 14 TeV and insignificant at 27 TeV, but may result in 1% deviation at 100 TeV.
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√
s 13 TeV 14 TeV 27 TeV 100 TeV

NLOmt
27.56+14%

−13% 32.64+14%
−12% 126.2+12%

−10% 1119+13%
−13%

NNLO⊕NLOmt
32.16+5.9%

−5.9% 38.29+5.6%
−5.5% 157.3+3.0%

−4.7% 1717+5.8%
−12%

NNLOB−i⊕NLOmt
33.08+5.0%

−4.9% 39.16+4.9%
−5.0% 150.8+4.6%

−5.7% 1330+4.0%
−7.2%

NNLO⊗NLOmt 32.47+5.3%
−7.8% 38.42+5.2%

−7.6% 147.6+4.8%
−6.7% 1298+4.2%

−5.3%

N3LO⊕NLOmt
33.06+2.1%

−2.9% 39.40+1.7%
−2.8% 163.3+4.0%

−8.3% 1833+14%
−20%

N3LOB−i⊕NLOmt
34.17+1.9%

−4.6% 40.44+1.9%
−4.7% 155.5+2.3%

−5.0% 1372+2.8%
−5.0%

N3LO⊗NLOmt 33.43+0.66%
−2.8% 39.56+0.64%

−2.7% 151.7+0.53%
−2.4% 1333+0.51%

−1.8%

Table 4. The inclusive total cross sections (in unit of fb) of Higgs boson pair production at different

centre-of-mass energies
√
s within the considered approximations. The quoted relative uncertainties

are from the 9-point scale variations.

They are N3LO⊕NLOmt (red lines), N3LOB−i⊕NLOmt (green bands) and N3LO⊗NLOmt

(blue bands) together with the pure NLOmt predictions (black bands). The N3LO⊕NLOmt

predictions significantly overshoot the other predictions when mhh > 600 GeV. Besides,

the theoretical accuracy estimated via the scale variations in the N3LOB−i⊕NLOmt pre-

dictions is degraded to NLO accuracy when mhh becomes larger than two times of the

top-quark mass where the scale cancellations are not guaranteed. For N3LO⊗NLOmt , be-

cause of the manner of varying ξR, ξF in differential cross sections eq. (3.4), their relative

scale uncertainties are exactly the same as N3LO in section 2.4.3. Comparisons between

NNLO⊗NLOmt and N3LO⊗NLOmt predictions are given in figure 16. Similar to what has

been found at NNLO in ref. [54], the higher-order QCD corrections are quite small near

the threshold region mhh ' 2mh. The K factors
N3LO⊗NLOmt

NLOmt
are almost constants (around

1.2) at larger mhh. A lesson from NNLO tells us that the NNLO⊗NLOmt predictions

feature different shapes as the FT approximation. Therefore, it would be quite desirable

to carry out the latter approximation at N3LO, which is however beyond the scope of the

present paper.

3.2.3 Other differential distributions

With the approximation eq. (2.15) used at N3LO in other observables, we are able to report

our predictions for fully differential distributions of the Higgs boson pair production. We

have shown 6 differential kinematic distributions at
√
s = 14 TeV in figure 17 as our

illustrative examples, while the same differential cross sections at
√
s = 13, 27, 100 TeV

can be found in appendix D. These kinematics are the rapidity of the Higgs pair (up left

panel of figure 17), the rapidity of a random Higgs boson (up right panel of figure 17), the

transverse momenta pT of the harder (middle left panel of figure 17) and the softer Higgs

(middle right panel of figure 17), the absolute rapidity difference |∆y| (low left panel of

figure 17) and the azimuthal angle difference ∆φ (low right panel of figure 17) between the

two Higgs particles. For the sake of clarity, we will only show the results of NLOmt (black),
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Figure 15. Invariant mass distributions of the Higgs boson pair under three top-quark mass

approximations at
√
s = 13, 14, 27, 100 TeV. The bands represent the scale uncertainties. The

red, green, blue and black curves are the N3LO⊕NLOmt
, N3LOB−i⊕NLOmt

, N3LO⊗NLOmt
and

NLOmt predictions, respectively. The bottom panel shows the ratios to the NLOmt distribution.
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Figure 16. Comparisons of invariant mass distributions under N3LO⊗NLOmt
and NNLO⊗NLOmt

approximations at
√
s = 13, 14, 27, 100 TeV. The bands represent the scale uncertainties. The dark-

orange, blue and black curves are the NNLO⊗NLOmt , N3LO⊗NLOmt and NLOmt predictions,

respectively. The bottom panel shows the ratios to the NLOmt
distribution.
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NNLO⊗NLOmt (dark-orange) and AN3LO⊗NLOmt (blue), where we have adopted the

AN3LO calculations to approximate the N3LO differential cross sections.

The rapidity distribution of the Higgs boson pair reported in the up-left panel of

figure 17 receives approximately a uniform K factor
AN3LO⊗NLOmt

NLOmt
' 1.2. The shape of the

distribution is mainly driven by the partonic luminosity encoded in the PDF. The scale

uncertainty band is reduced from NNLO⊗NLOmt to AN3LO⊗NLOmt by a factor of four.

Because the rapidity distributions of the leading-pT and subleading-pT Higgs bosons

are sensitive to soft-gluon radiations, i.e. not IR safe at fixed orders, we instead show the

rapidity distribution of a random Higgs boson. The latter histogram is equivalent to the

arithmetic mean of the former two histograms. Similar to the yhh distribution, the higher-

order QCD corrections only change the shape slightly. The central region has a bit larger

radiative corrections than the forward and backward regions. The difference is however

quite insignificant, which is only at 1-2 percent level. The importance of the inclusion of

O(α5
s) corrections is evident from the obvious reduction of theoretical uncertainties.

The differential cross sections in the transverse momenta of the leading-pT (harder)

and the subleading-pT (softer) Higgs bosons can be found in the middle panels of figure 17.

These two transverse momenta are identical at LO. Beyond LO, due to the presence of

extra real radiations, the difference between the two emerges. It is quite often that the

Higgs boson will pick up a larger pT if it recoils against the hardest real radiation. For

this reason, the real emission topologies are dominant in the tail of the pT (h1) distribu-

tion, which results in the growth of the scale uncertainties in the high pT (h1) bins. The

AN3LO⊗NLOmt scale uncertainty is +2%
−5% at the bin pT (h1) ∈ [800, 900] GeV, while those of

NNLO⊗NLOmt and NLOmt are +7%
−10% and +25%

−19% respectively in the same bin. At low pT (h1),

the QCD radiative corrections become perturbatively unstable8 due to the large logarithms

of (pT (h1)− pT (h2)) /µ0 < pT (h1)/µ0 → 0. The scale uncertainties of AN3LO⊗NLOmt are

larger than NNLO⊗NLOmt in the first three bins. Such a pathological behaviour reflects

the fact that more large logarithms due to the soft-gluon radiations appear in the higher

order αs calculation. On the other hand, the subleading pT distribution receives quite

uniform K factors at NNLO and AN3LO except the first bin, where the K factors are lower

in the first bin than others. It has been shown in ref. [32] that the NLO QCD corrections

are vanishing in the tail of the pT (h2) distribution. This makes the NLOmt scale variation

very small. However, we do not have an understanding in depth for such a behaviour at

the moment. In the tail, we find that only AN3LO⊗NLOmt has the comparable size of the

scale variation with NLOmt .

Finally, we are in the position to discuss the two kinematic correlation distributions

between the Higgs boson pair. They are the rapidity difference ∆y and the azimuthal

angle difference ∆φ in the low two panels of figure 17. The significance of the higher-

order QCD corrections is slowly reduced from the two near Higgs boson (|∆y| ∼ 0) region

to the region where the two Higgs particles are far away (i.e. |∆y| is large). This is

because a large |∆y| usually corresponds to a large invariant mass of the Higgs pair mhh,

where the latter is proportional to our hard scale. In particular, in Born kinematics, we

8It can be clearly seen from the fact that the scale uncertainties in the NLOmt result blow up in the

first bin.
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have mhh = 2
√
m2
h + p2

T cosh ∆y
2 , where pT is the transverse momentum of an arbitrary

Higgs boson.

The radiative corrections are dramatic in the ∆φ distribution. All the Born-like 2→ 2

events locate at ∆φ = π, as the two Higgs bosons are always in the back-to-back configura-

tion in the transverse plane. All the contributions to the ∆φ < π regime must be from the

events with at least one additional jet in the final states. In the bins of ∆φ < π, NLOmt ,

NNLO⊗NLOmt and AN3LO⊗NLOmt results correspond to the true LO, NLO and NNLO

accuracy in αs. The K factor
AN3LO⊗NLOmt

NLOmt
increases slightly from ∆φ = 0 to ∆φ = 0.8π

and then drops quickly from ∆φ = 0.8π to ∆φ = π. The 9-point scale variations shift their

central values by +45%
−29%, +15%

−17% and +10%
−13% respectively in the first bin ∆φ ∈ [0, 0.05]π. The

uncertainty reduction from NNLO to AN3LO is not as immense as in other cases. Since a

small kick by soft gluon radiations will make the two Higgs bosons not being back-to-back

anymore, a reliable prediction for the region ∆φ ∼ π can only be achieved after performing

a resummation calculation.

3.2.4 Assessment of the top-quark mass approximations

Before we close the section, we will discuss how good are our top-quark mass approxima-

tions. Since the full NNLO and N3LO calculations with the full mt dependence are absent,

the way of estimating the remaining mt uncertainties is not unique.

One obvious way is to assess the missing mt uncertainties by trying different approx-

imations. This has been taken at NNLO in ref. [54] even with the most advanced one —

the FT approximation. In the inclusive cross sections, the FT approximation gives smaller

predictions than other approximations, including the NNLO⊗NLOmt approximation, be-

cause of the additional mt contributions in the former. The difference is amplified a bit

with the increasing of
√
s. At NNLO, the difference between the FT approximation and

the NNLO⊗NLOmt approximation is 5% at 13 TeV to 9% at 100 TeV. This is not surpris-

ing since the mt corrections become more important at larger energies. Given that the mt

corrections are more-or-less orthogonal to the αs corrections, we expect the N3LO⊗NLOmt

numbers in table 4 should be lowered by a similar amount after we applied the FT approx-

imation at N3LO. Besides this normalisation, the shapes of NNLO⊗NLOmt and the FT

approximation at NNLO are very close for yhh, pT (h1), pT (h2) and ∆φ distributions, while

those for mhh are quite distinct. The deviation between the N3LO FT approximation and

the N3LO⊗NLOmt scheme can be viewed as a way to assign the theoretical uncertainties

from the missing top mass corrections. Such a difference is expected to be similar to what

has been found at NNLO [54].

We can also follow the NLO discussions in ref. [32] to assess the goodness of our

top-quark mass approximations in the differential distributions, where both the NLOmt

(the results with the notation “NLO” in ref. [32]) and the NLO⊗LOmt (those with the

notation “B-i, NLO HEFT” in ref. [32]) cross sections were computed. However, since

we have already used the full NLOmt in our calculations, the remaining mt uncertainties

are expected to be at least αs suppressed with respect to the estimations from NLO ver-

sus NLO⊗LOmt . The total cross sections are lowered by 14% (24%) at
√
s = 14 (100)
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Figure 17. Various distributions [yhh (up left), yh (up right), pT (h1) (middle left), pT (h2) (middle

right), |∆y| (low left), and ∆φ (low right)] with top-quark mass effects for the Higgs boson pair

production in proton-proton collisions at
√
s = 14 TeV.
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TeV from the NLO⊗LOmt approximation to the complete NLOmt calculations. Both the

FT approximation at NLO and the NLO⊗LOmt results overestimate the true NLO QCD

corrections at large mhh, pT (h1), pT (h2). On the other hand, the shapes of the rapidity

distributions are quite similar between NLO⊗LOmt and NLOmt . In the former cases, the

missing mt correction uncertainties will be underestimated by using the first approach de-

scribed in the previous paragraph. Instead, a better way to assess the top mass corrections

in N3LO⊗NLOmt is to multiply (dσNLO
mt − dσ

NLO⊗LOmt ) with αs.

4 Summary

In the paper, we first carried out the N3LO QCD corrections to the Higgs boson pair

production via ggF at high-energy hadron colliders in the infinite top-quark mass limit.

We have shown that the corrections at this order are essential and quite remarkable due to

the huge reduction of the scale uncertainties, which amount to a factor of four with respect

to the known NNLO results. It paves the way for the precision theoretical studies of the

Higgs potential at the percent level. Besides the total cross sections, we are also able to

predict the various differential distributions at N3LO, where an approximation is used in

the distributions other than the Higgs pair invariant mass distributions. In general, we have

shown very good perturbative convergences in all distributions, and the scale uncertainties

are in good control. Besides the SM case, we have also studied the N3LO impacts on the

(differential) cross sections by varying the trilinear Higgs coupling λhhh alone. The shapes

are again found to be stable at N3LO with respect to those at NNLO.

Based on these N3LO results, we include the important top-quark mass effects at

O(α4
s) and O(α5

s) via three different approximations, where the full mt-dependent NLO

calculations are taken from the public code [39, 41]. The mt effects are indispensable for

the realistic phenomenological applications. We take the (A)N3LO⊗NLOmt approximation

as our best predictions in this paper. The most advanced FT approximation for the process,

requiring the full differential knowledge, will be left for our future studies. The theoretical

uncertainties are further improved by the inclusion of both the N3LO corrections and

the finite mt corrections. The missing mt corrections are larger than the remaining scale

uncertainties. Besides, there are several other additional uncertainty sources worthwhile

being considered in order to improve the theoretical predictions further. They are the

top-quark mass scheme dependence [33], electroweak corrections, bottom quark effects and

the parametric uncertainties (e.g. mt, αs and PDF).

As a follow-up paper of our previous short letter ref. [47], we have the opportunity to

document all the technical details and validation materials here. In particular, we write

down the analytic expressions of the one-loop amplitude and the new R2 Feynman rules in

the appendices. The NLO UFO model ready to be used in MG5 aMC is publically available

and can be downloaded from http://feynrules.irmp.ucl.ac.be/wiki/HEFT_DH.
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A Hard functions

The amplitudes for the Higgs boson pair production in the effective theory, g(p1)+g(p2)→
h(p3) +h(p4), can be decomposed into two topologically distinct classes: Class-A with one

effective vertex and Class-B with two effective vertices,9 i.e.

Mab(gg → hh) =
i

v2
εµ(p1)εν(p2)

(
MA,µν

ab +MB,µν
ab

)
, (A.1)

where εµ(p1) and εµ(p2) are the polarisation vectors of the two initial gluons. The prefactor
i
v2

in the above equation is chosen in order to recycle the same notations used in ref. [128].

The amplitudes for Class-A and Class-B can be decomposed into two Lorentz covariant

and gauge invariant terms [29]

MA/B,µν
ab = δab

(
T µν1 M

A/B
1 + T µν2 M

A/B
2

)
(A.2)

where the tensors are given by

T µν1 = gµν − 1

p1 · p2
pν1p

µ
2 , (A.3)

T µν2 = gµν +
1

p1 · p2 p2
T

(
m2
h p

µ
2p

ν
1 − 2p1 · p3 p

µ
2p

ν
3 − 2p2 · p3 p

µ
3p

ν
1 + 2p1 · p2 p

µ
3p

ν
3

)
.

with p2
T = (t̂û−m4

h)/ŝ. The Mandelstam variables are defined as

ŝ = (p1 + p2)2, t̂ = (p1 − p3)2, û = (p2 − p3)2. (A.4)

For Class-A, after performing renormalisation in the MS scheme, we have

MA
1 = i

ŝ

2

(
Chh − Ch

6λhhhv
2

ŝ−m2
h

)
Cg ,

MA
2 = 0 , (A.5)

where Cg is the gluon structure function which has been calculated up to three

loops [129, 130].

9See figure 1 and figure 2 of ref. [128].
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For N3LO QCD corrections, we need the two-loop virtual correction to Class-B am-

plitudes. This was computed in [128], where the finite two-loop four-point amplitudes are

obtained by subtracting the IR divergences following the method in ref. [131]. In our frame-

work, a different subtraction method, namely the MS subtraction, is applied, and thus we

have reconstructed the full amplitudes with IR poles in Class-B and then performed the

renormalisation procedure according to the method in refs. [132, 133]. As a result, we

obtain the finite part

MB
i =MB,(0)

i +
αs
4π

[
MB,(1),fin

i +MB,(0)
i

(
−3L2

s −
23

3
Ls +

π2

2

)]
(A.6)

+

(
αs
4π

)2 [
MB,(2),fin

i +MB,(1)
i

(
−3L2

s −
23

3
Ls +

π2

2

)
+MB,(0)

i

(
9

2
L4
s +

46

3
L3
s

+

(
3π2

2
− 151

3

)
L2
s +

(
18ζ3 +

23π2

6
− 1316

9

)
Ls −

23ζ3

2
− 19π2

54

)]
+O(α5

s),

with Ls = ln(− µ2R
ŝ+i0). The Born amplitudes are given by

MB,(0)
1 = i

α2
s

18π2
ŝ,

MB,(0)
2 = i

α2
s

36π2

(t̂+ û)(t̂û−m4
h)

t̂û
. (A.7)

MB,(j),fin
i is the finite j-loop amplitude defined in eq. (2.24) of ref. [128]. The one-loop

amplitudes MB,(1),fin
i including the real and imaginary contributions are needed in this

paper. However, the explicit analytical results can not be found in the literature. In

this work we calculated the one-loop amplitudes using FeynArts [134] and FIRE [135]

packages, and the results read

MB,(1),fin
1

MB,(0)
1

= − CA
(

1 + 2
m4
h

ŝ2

)[
Li2

(
1−

m4
h

t̂û

)
+ 2Li2

(
m2
h

t̂

)
+ 2Li2

(
m2
h

û

)
− 1

2
ln2

(
t̂

û

)
− 2π2

3
+2 ln

(
1−

m2
h

t̂

)
ln

(
−
m2
h

t̂

)
+2 ln

(
1−

m2
h

û

)
ln

(
−
m2
h

û

)
− 2iπ ln

(
(m2

h − t̂)(m2
h − û)

t̂û−m4
h

)]
+ CA

(
2m2

h

ŝ
+

58

9

)
− 10

9
nf

−
11CA − 2nf

6

(
ln

(
t̂ûŝ2

µ8
R

)
− 2iπ

)
+ 2C

(1)
h , (A.8)

MB,(1),fin
2

MB,(0)
2

= − CA
t̂û(t̂2 + û2 − 2m4

h)((t̂+ û)2 − 2m4
h)

(t̂+ û)(t̂û−m4
h)2
√
ŝ(ŝ− 4m2

h)

(
4Li2(y) + ln2(−y) +

π2

3

)

− 2π2CA
t̂û(t̂2 + û2)− 2m4

ht̂û+ 2m8
h

3(t̂û−m4
h)2

+
67

9
CA −

10

9
nf

+
11CA − 2nf

3

− ln

(
ŝ

µ2
R

)
+ iπ −

t̂ ln
(
− û
µ2R

)
+ û ln

(
− t̂
µ2R

)
t̂+ û


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+ CA

[
û(t̂4 + t̂2û2 − 2m4

ht̂û+ 2m8
h)

(t̂+ û)(t̂û−m4
h)2

(
−4Li2

(
m2
h

t̂

)
− 2 ln

(
− t̂

m2
h

)
ln

(
ŝ

m2
h

)
+ ln2

(
− t̂

m2
h

)
+ 4 ln

(
1−

m2
h

t̂

)
ln

(
− t̂

m2
h

)
+
π2

3
+ 2iπ

(
ln

(
− t̂

m2
h

)
+2 ln

(
1−

m2
h

t̂

)
− ln

(
ŝ

m2
h

)))
+ t̂↔ û

]
+ 2C

(1)
h . (A.9)

The dimensionless parameter y is defined as y = −
√
ŝ−
√
ŝ−4m2

h√
ŝ+
√
ŝ−4m2

h

. These analytical expres-

sions have been cross-checked against MadLoop [105, 106] and the scale-dependent terms

in MB,(2),fin
i [128]. The analytic results of the two-loop amplitudes have been obtained in

ref. [128] and are expressed in terms of the multiple polylogarithms, which can be evaluated

numerically by the public Mathematica package PolyLogTools [136].

The hard functions of class-a, -b and -c are given by

Ha =
1

32v4
|MA

1 |2 ,

Hb =
1

16v4
<[MA

1MB∗
1 ] ,

Hc =
1

32v4

(
|MB

1 |2 + |MB
2 |2
)
, (A.10)

where we have averaged over the spins and colours of the two initial gluons and taken

into account the symmetry factor 1
2 for the two identical Higgs bosons. Note that the

renormalisation is performed at the amplitude level and there is no interference between

the two Lorentz structures.

B The NLO model and Feynman rules for the rational R2 terms

The NLO simulations in the MG5 aMC framework require the derivations of two necessary

ingredients from the effective Lagrangian Leff in eq. (2.1) and the SM Lagrangian LSM on

top of the information provided in a LO UFO model [112]. They are the UV counterterms to

perform the one-loop renormalisation and the rational R2 terms [137] originating from the

integration of the (d− 4) parts of the loop integrands after decomposing their numerators

into 4-dimensional and (d−4)-dimensional pieces, where d is the dimension of the spacetime

in the dimensional regularisation.

The QCD UV renormalisation counterterms in the theory can be related to the renor-

malisations of the strong coupling αs and the wavefunctions of gluons and massless quarks.

They are however identical to the QCD theory in the SM. Therefore, we will refrain from

presenting them in the paper.

Similarly to the UV renormalisation, the computations of R2 are also equivalent to

those of tree-level amplitudes with a universal set of theory-dependent Feynman rules (see

refs. [138–142] for QCD and electroweak corrections in the SM and refs. [143, 144] for

the beyond the SM cases10). They can be derived once and for all (for each model) by

10A collection of NLO-ready UFO models can be found at: http://feynrules.irmp.ucl.ac.be/wiki/

NLOModels.
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just considering the one-particle irreducible one-loop Feynman diagrams. For di-Higgs

production in the theory Leff + LSM, we have rederived the analytical expressions of R2

Feynman rules for zero Higgs and one Higgs vertices by using an in-house Mathematica

programme with the aid of FeynRules [145] and FeynArts [134] packages. They have

been successfully validated against those in the literature [138, 144]. Besides, the results

for vertices involving two Higgs bosons are new. The nonzero R2 vertices involving two

Higgs bosons are:

hh hhgg hhggg hhgggg hhqq̄ hhqq̄g

They read

h h
=R2(hh),

p2, µ2, a2

p1, µ1, a1

q1 q2
= R2(hhgg),

p3, µ3, a3

p2, µ2, a2p1, µ1, a1

= R2(hhggg),

µ3, a3

µ2, a2µ1, a1

µ4, a4

=R2(hhgggg),

p1, i1

p2, i2

= R2(hhqq̄),

µ, a

i1 i2

= R2(hhqq̄g)

with the expressions:

R2(hh) = −
iC2

h

1920π2v2

(
N2
c − 1

)
(30λHV + 17)

(
q2
)2
, (B.1)

R2(hhgg) = − iChhg
2
s

384π2v2
Ncδa1a2 [pµ11 pµ22 + 89pµ21 pµ12 + 14 (pµ11 pµ21 + pµ12 pµ22 ) (B.2)

−gµ1µ2
(
17p2

1 + 17p2
2 + 93p1 · p2

)]
−

iC2
hg

2
s

3840π2v2
Ncδa1a2 [12pµ11 pµ22 + 1152pµ21 pµ12 + 266 (pµ11 pµ21 + pµ12 pµ22 )

−gµ1µ2
(
305p2

1 + 305p2
2 + 1200p1 · p2

)
−44 (qµ11 qµ22 + qµ21 qµ12 ) + 70gµ1µ2q1 · q2] ,

R2(hhggg) = −
(

15Chhg
3
s

128π2v2
+

151C2
hg

3
s

1280π2v2

)
Ncfa1a2a3V

µ1µ2µ3 (p1, p2, p3) , (B.3)

R2(hhgggg) = − iChhg
4
s

128π2v2
Xµ1µ2µ3µ4
a1a2a3a4 −

iC2
hg

4
s

1920π2v2
Y µ1µ2µ3µ4
a1a2a3a4 , (B.4)

R2(hhqq̄) = −
[
iChhg

2
s

32π2v2
λHV +

iC2
hg

2
s

128π2v2
(8λHV + 1)

]
CF δi1i2 (p/1 − p/2) , (B.5)

R2(hhqq̄g) =
iChhg

3
s

64π2v2
γµtai2i1

[
2λHV + 1

Nc
−Nc (2λHV + 3)

]
(B.6)

+
iC2

hg
3
s

32π2v2
γµtai2i1

[
2λHV + 1

Nc
−Nc (2λHV + 4)

]
.
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We have used the colour factors Nc = 3, CF = N2
c−1

2Nc
= 4

3 , the Gell-Mann matrices ta in the

fundamental representation of SU(Nc) group, the asymmetric structure constants fa1a2a3
of SU(Nc), the colour charge gs =

√
4παs, the parameter λHV = 1(0) corresponding to

dimensional regularisation (reduction) and the shorthand functions

V µ1µ2µ3 (p1, p2, p3) (B.7)

= gµ1µ2 (p2 − p1)µ3 + gµ2µ3 (p3 − p2)µ1 + gµ3µ1 (p1 − p3)µ2 ,

Xµ1µ2µ3µ4
a1a2a3a4

= Tr (T a1T a2T a3T a4) (+21gµ1µ2gµ3µ4 − 41gµ1µ3gµ2µ4 + 21gµ1µ4gµ2µ3)

+Tr (T a1T a2T a4T a3) (+21gµ1µ2gµ3µ4 + 21gµ1µ3gµ2µ4 − 41gµ1µ4gµ2µ3)

+Tr (T a1T a3T a2T a4) (−41gµ1µ2gµ3µ4 + 21gµ1µ3gµ2µ4 + 21gµ1µ4gµ2µ3) ,

Y µ1µ2µ3µ4
a1a2a3a4

= Tr (T a1T a2T a3T a4) (+323gµ1µ2gµ3µ4 − 625gµ1µ3gµ2µ4 + 323gµ1µ4gµ2µ3)

+Tr (T a1T a2T a4T a3) (+323gµ1µ2gµ3µ4 + 323gµ1µ3gµ2µ4 − 625gµ1µ4gµ2µ3)

+Tr (T a1T a3T a2T a4) (−625gµ1µ2gµ3µ4 + 323gµ1µ3gµ2µ4 + 323gµ1µ4gµ2µ3) ,

where T a is the colour matrix in the adjoint representation with its elements (T a)bc = −ifabc
and the trace of T a into the trace of the Gell-Mann matrices are

Tr
(
T aT bT cT d

)
= Nc

(
Tr
(
tatbtctd

)
+ Tr

(
tdtctbta

))
+

1

2
(δabδcd + δacδbd + δadδbc) . (B.8)

All the momenta pi, qj are treated as incoming vectors.

Our NLO UFO model can be downloaded from

http://feynrules.irmp.ucl.ac.be/wiki/HEFT_DH .

C Renormalisation scale dependence

In the framework of SCET, the typical scales are hard, jet and soft scales in addition to

a factorisation scale. In order to reproduce the fixed-order results from the resummation

formula, all these scales are usually set to be equal (to the factorisation scale), i.e., there is

only one scale in the expanded result. Since we want to investigate the scale uncertainties

by varying factorisation and renormalisation scales independently, we must reconstruct the

individual µR and µF dependence separately. In this appendix, we present details about

the method we used to obtain the µR dependence in the expanded results from transverse

momentum resummation formula. As a by-product, we find a close relation between the

contributions from class-a and class-b.

Given that the NkLO cross section is scale (µR = µF = µ) invariant, we have

d

d lnµ
σNkLO
hh (µ, µ) =

(
∂

∂ lnµR
σNkLO
hh (µR, µF ) +

∂

∂ lnµF
σNkLO
hh (µR, µF )

) ∣∣∣∣
µR=µF=µ

= 0 +O(α3+k
s ). (C.1)
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The individual renormalisation and factorisation scale dependence is rebuilt from the evo-

lution equation

σNkLO
hh (µR, µF ) = σNkLO

hh (µF , µF ) +

∫ µR

µF

dµ̄

(
∂

∂µ̄
σNkLO
hh (µ̄, µF )

)
, (C.2)

where the first term on the right hand is derived by expanding the transverse momentum

resummation formula in the framework of SCET and the second term is given below. Since

we use qT -subtraction to calculate the NNLO correction to the class-b diagrams, we focus

on the scale dependence in this class.

Firstly, we know that the total N3LO cross section is independent of the renormalisation

scale at each fixed order, i.e.,

∂

∂ lnµR
σN3LO
hh (µR, µF ) =

∂

∂ lnµR
σa,N

3LO
hh (µR, µF ) +

∂

∂ lnµR
σb,NNLO
hh (µR, µF )

+
∂

∂ lnµR
σc,NLO
hh (µR, µF ) = 0 +O(α6

s) . (C.3)

We have only calculated explicitly the results up to O(α5
s), so we omit higher-order terms.

The first contribution on the right hand is known,

∂

∂ lnµR
σa,N

3LO
hh (µR, µF ) (C.4)

=

∫
dmhhfh→hh

[
σN3LO
h (µR, µF )

∣∣∣∣
mh→mhh

]
× d

d lnµR

(
Chh(µR)

Ch(µR)
− 6λhhhv

2

m2
hh −m2

h

)2

.

where σh has the expansion σN3LO
h =

∑3
i=0 σ

(i)
h with σ

(i)
h ∝ α

2+i
s . The class-c cross section

up to NLO QCD is scale invariant,

∂

∂ lnµR
σc,NLO
hh (µR, µF ) = 0 +O(α6

s) . (C.5)

As a consequence, the renormalisation group equation for class-b is derived,

∂

∂ lnµR
σb,NNLO
hh (µR, µF ) = − 2

∫
dmhhfh→hh

[
σN3LO
h (µR, µF )

∣∣∣∣
mh→mhh

]
×
(
Chh(µR)

Ch(µR)
− 6λhhhv

2

m2
hh −m2

h

)(
d

d lnµR

Chh(µR)

Ch(µR)

)
. (C.6)

The ratio of Chh(µR) over Ch(µR) can be expanded in terms of as ≡ αs(µR)/4π,

Chh(µR)

Ch(µR)
= 1 + δ2a

2
s + δ3(µR)a3

s +O(a4
s) (C.7)

with the coefficient δ2 = 2
3 (16nf + 35) being scale independent and

δ3(µR) =
2

27

[
Lt
(
192n2

f − 2292nf − 10602
)
− 77n2

f − 578nf + 799
]
. (C.8)
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Therefore, we have

d

d lnµR

Chh(µR)

Ch(µR)
=

(
das

d lnµR

∂

∂as
+

∂

∂ lnµR

)
Chh(µR)

Ch(µR)

= − 4β0δ2a
3
s + a3

s

dδ3(µR)

d lnµR
+O(a4

s) ≡ a3
sχ+O(a4

s) (C.9)

with β0 = (11CA − 2nf )/3 and

χ =
16

9

(
32n2

f − 420nf − 1461
)
. (C.10)

Then, eq. (C.6) turns out to be

∂

∂ lnµR
σbhh(µR, µF )

= − 2a3
sχ

∫
dmhhfh→hh

[
σ

(0)
h (µR, µF )

∣∣∣∣
mh→mhh

](
1− 6λhhhv

2

m2
hh −m2

h

)
+O(a6

s)

= − 3

4
a2
s χ σ

b(1)
hh (µR, µF ) +O(a6

s) . (C.11)

In the above equation, we have decomposed the class-b cross section as σbhh =
∑

i=1 σ
b(i)
hh

with σ
b(i)
hh ∝ a

2+i
s and

σ
b(1)
hh (µR, µF ) =

8

3
as

∫
dmhhfh→hh

[
σ

(0)
h (µR, µF )

∣∣∣∣
mh→mhh

](
1− 6λhhhv

2

m2
hh −m2

h

)
. (C.12)

Notice that σ
b(1)
hh is the LO class-b cross section but has a close relation with the class-a

cross section; see eq. (C.6). So eq. (C.11) indicates that the class-b cross section has a

non-vanishing dependence on µR only from two-loops. This is actually a consequence of

the operator mixing as studied in ref. [146].

D Additional plots

We collect additional plots of 6 differential distributions from LO to AN3LO in the infinite

top-quark mass limit and with top-quark mass effects in this appendix. The distributions

without finite mt corrections at
√
s = 13 TeV (27 TeV, 100 TeV) can be found in figure 18

(figure 19, figure 20), while those with the NNLO⊗ NLOmt and AN3LO⊗NLOmt approx-

imations for finite mt corrections can be found in figures 21, 22, 23.
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Figure 18. Same as in figure 14 but at
√
s = 13 TeV.
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Figure 19. Same as in figure 14 but at
√
s = 27 TeV.
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Figure 20. Same as in figure 14 but at
√
s = 100 TeV.
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Figure 21. Same as in figure 17 but at
√
s = 13 TeV.
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Figure 22. Same as in figure 17 but at
√
s = 27 TeV.
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Figure 23. Same as in figure 17 but at
√
s = 100 TeV.
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