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1 Introduction

The D1D5P system provides a very useful instance of an extremal black hole in string

theory [1–4]. The D1 and D5 branes form a bound state whose dynamics can be given as

an effective 1 + 1 dimensional conformal field theory. The momentum charge P is given by

the difference in energy between the left moving and right moving excitations in this CFT.

Our interest is in the extremal states of this CFT; i.e., those where the right moving sector

is in its ground state. Such states correspond to microstates of the extremal black hole,

and preserve 1/8 of the supersymmetries of the string theory.

The CFT has a ‘free point’ which is given by a 1 + 1 dimensional sigma model whose

target space is an orbifold [5–12]. The orbifold theory consists N copes of a c = 6 CFT,

joined up in different ‘twist sectors’. In each twist sector the excitations are just given

by free left and right moving bosons and fermions, with an overall symmetry condition

to enforce the orbifold symmetry. At this orbifold point, any state with no right moving

oscillator excitations is extremal.

The situation changes as we deform the theory away from the orbifold point. Sets

of extremal states can join up into larger multiplets and lift to higher energies, leaving a

smaller set of states that remain extremal. The latter set is the set of microstates of the

extremal black hole. Thus we are interested in finding the pattern of lifting. In other words,

we are interested in the following questions. Which of the extremal states at the orbifold

point remain extremal? For the states that lift, which ones join into long multiplets? For

these lifted states, how much is the lift in energy?

Let us first recall some results that are known in this direction. The count of states

that remain unlifted is given by an index. This index was computed in [1] for the case where

the compactification is K3 × S1 and in [13] for the compactification T 4 × S1. Looking at

the expression for the index in [13], one notes that if the numbers of D1, D5, P charges are

taken to be co-prime, then the index can be reproduced by assuming that all states in the

maximally twisted sector of the CFT are unlifted, and all states in the other twist sectors

are lifted. The actual unlifted states do not, of course, have to be in the maximally twisted

sector: the index gives a (weighted) count of unlifted states, without telling us what these

states look like. We will find that the lifted states form multiplets whose members lie in

sectors with different twists, including the sector with maximal twist. Understanding the

twist sectors is important for a physical picture of the extremal hole. States in highly

twisted sectors correspond to gravity states with deep throats, while states in sectors with

low twist describe shallow throats. (For constructions of fuzzballs see for example [14–18].)

In [19] the lift was computed, in an approximation scheme, for the situation where

most of the CFT copies are in the untwisted sector and one set is in a twisted sector.

Low energy excitations of this sector can be mapped, in the gravity dual, to strings in an

AdS3×S3×T 4 spacetime. Apart from a small set of states in the graviton multiplet, these

string states are all lifted. On the other hand we know from the index computation of [13]

that if we go to sufficiently high energies and twists to describe black hole states, then a

large number of states must remain unlifted : the index of [13] agrees with the Bekenstein

entropy of extremal holes for large charges. It would be very interesting to understand

better what properties of the highly excited states makes them remain ‘unlifted’.

– 1 –
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Our steps and results are as follows:

(i) We consider a CFT with N = 2; this means that the product of the number N1 of

D1 branes and N5 of D5 branes is n1n5 ≡ N = 2. Further, we consider the lowest

nontrivial amount of momentum charge: P = 1. Even with these choices, the number

of extremal states at this level in the orbifold CFT is 2688, which is a largish number.

Our goal is to find the pattern of lifting for all the states at this level in this N = 2

CFT.

(ii) First we organize the states in multiplets of symmetry charges at the orbifold point.

We note that states related by these symmetry charges will have the same lift. We

find the lowest weight states under these symmetries, and henceforth concentrate on

the lifting of these lowest weight states.

(iii) The deformation operator gives a supercharge that groups states into multiplets as

they lift off the orbifold point. We find there is one triplet of lifted multiplets. For

these multiplets, we find the lift is

δE = λ2π2 (1.1)

where λ is the coupling giving the deformation off the orbifold point.

Before proceeding, we note that there are many earlier works that study conformal

perturbation theory, the lifting of the states, the acquiring of anomalous dimensions, and

the issue of operator mixing, in particular in the context of the D1-D5 CFT; see for ex-

ample [20–34]. Also, for more computations in conformal perturbation theory in two and

higher dimensional CFTs see, e.g. [35–47].

2 The D1D5 CFT

In this section, we summarize some properties of the D1D5 CFT at the orbifold point and

the deformation operator that we will use to perturb away from the orbifold point. For

more details, see [20, 21].

Consider type IIB string theory, compactified as

M9,1 →M4,1 × S1 × T 4. (2.1)

Wrap N1 D1 branes on S1, and N5 D5 branes on S1×T 4. The bound state of these branes

is described by a field theory. We think of the S1 as being large compared to the T 4, so

that at low energies we look for excitations only in the direction S1. This low energy limit

gives a conformal field theory (CFT) on the circle S1.

It has been conjectured that we can move in the moduli space of couplings in the string

theory to a point called the ‘orbifold point’ where the CFT is particularly simple. At this

orbifold point the CFT is a 1+1 dimensional sigma model. We will work in the Euclidized

theory, where the base space is a cylinder spanned by the coordinates

τ, σ : 0 ≤ σ < 2π, −∞ < τ <∞ (2.2)

– 2 –
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The target space of the sigma model is the ‘symmetrized product’ of N1N5 copies of T 4,

(T 4)N1N5/SN1N5 , (2.3)

with each copy of T 4 giving 4 bosonic excitations X1, X2, X3, X4. It also gives 4 fermionic

excitations, which we call ψ1, ψ2, ψ3, ψ4 for the left movers, and ψ̄1, ψ̄2, ψ̄3, ψ̄4 for the right

movers. The fermions can be antiperiodic or periodic around the σ circle. If they are

antiperiodic on the S1 we are in the Neveu-Schwarz (NS) sector, and if they are periodic

on the S1 we are in the Ramond (R) sector. The central charge of the theory with fields

Xi, ψi, i = 1 . . . 4 is c = 6. The total central charge of the entire system is thus

c = 6N1N5 ≡ 6N . (2.4)

2.1 Symmetries of the CFT

The D1D5 CFT has (4, 4) supersymmetry, which means that we have N = 4 supersym-

metry in both the left and right moving sectors. This leads to a superconformal N = 4

symmetry in both the left and right sectors, generated by operators Ln, G
±
r , J

a
n for the left

movers and L̄n, Ḡ
±
r , J̄

a
n for the right movers. The full symmetry is actually larger; it is the

contracted large N = 4 superconformal symmetry [13, 48]. The algebra generators and

commutators are given in appendix A.

Each N = 4 algebra has an internal R symmetry group SU(2), so there is a global

symmetry group SU(2)L × SU(2)R. We denote the quantum numbers in these two SU(2)

groups as

SU(2)L : (j,m); SU(2)R : (j̄, m̄). (2.5)

In the geometrical setting of the CFT, this symmetry arises from the rotational symmetry

in the 4 space directions of M4,1: we have SO(4)E ' SU(2)L×SU(2)R. Here the subscript E

stands for ‘external’, which denotes that these rotations are in the noncompact directions.

We have another SO(4) symmetry in the four directions of the T 4. This symmetry we call

SO(4)I (where I stands for ‘internal’). This symmetry is broken by the compactification of

the torus, but at the orbifold point it still provides a useful organizing principle. We write

SO(4)I ' SU(2)1×SU(2)2. We use spinor indices α, ᾱ for SU(2)L and SU(2)R respectively.

We use spinor indices A, Ȧ for SU(2)1 and SU(2)2 respectively.

The 4 real fermions of the left sector can be grouped into complex fermions ψαA. The

right fermions have indices ψ̄ᾱA. The bosons Xi are a vector in the T 4. One can decompose

this vector into the ( 1
2 ,

1
2) representation of SU(2)1 × SU(2)2, which gives scalars XAȦ.

2.2 Deformation of the CFT

The deformation of the CFT off the orbifold point is given by adding a deformation operator

D to the action

S → S + λ

∫
d2zD(z, z̄) (2.6)

where D has conformal dimensions (h, h̄) = (1, 1). A choice of D which is a singlet under

all the symmetries at the orbifold point is

D =
1

4
εȦḂεαβεᾱβ̄G

α(0)

Ȧ,− 1
2

Ḡ
ᾱ(0)

Ḃ,− 1
2

σββ̄ (2.7)
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where σββ̄ is a twist operator of rank 2 in the orbifold theory. Here G(0) and Ḡ(0) are the

left and right moving supercharge operators at the orbifold point.

3 Computation of the lift using the Gava-Narain method

We are interested in finding states which have well defined scaling dimensions, and the

values of these dimensions, as we move away from the orbifold point. We will work in the

Ramond sector. We measure the dimensions from the Ramond groud state dimensions,

which are ( c
24 ,

c
24). At level n, we have a set of states with dimensions

(h, h̄) = (n, 0) . (3.1)

Let these states be labelled by indices a, b, . . . , and written as
∣∣O(0)

a

〉
etc. (We will be

interested in level n = 1 in this paper.)

It turns out that while such states receive corrections at first order in λ, the dimensions

get corrections only starting at O(λ2). The computation involves pulling down two copies

of the deformation operator D from the action, and then integrating the positions of these

two D operators. We first compute the matrix elements

Xba(T ) =
〈
O

(0)
b

(
T

2

) ∣∣∣(∫ d2w1D(w1, w̄1)

)(∫
d2w2D(w2, w̄2)

) ∣∣∣O(0)
a

(
−T

2

)〉
. (3.2)

Then we compute the matrix

E
(2)
ba = lim

T→∞
− λ

2

2T
eE

(0)TXba(T ) (3.3)

where E(0) is the energy of the states |O(0)
a 〉 at the orbifold point. The eigenstates of this

matrix then give the linear combinations of the |O(0)
a 〉 which have definite dimensions and

the eigenvalues give the lift in energy of the corresponding states.

Such O(λ2) corrections were computed for some simple states in [44, 45]. In general

the computation of a correlation functions with deformation operators involves going to

a covering space where the effect of the twists is undone, and one gets a correlator of

operators not involving twists on this covering space. But the covering space can be a

sphere in some cases, and a torus in other cases. While correlators on a sphere are easy

to compute, they can be difficult to find on a torus. (A central reason for this difficulty

is that the correlators on the covering space can involve spin fields. On a sphere we can

remove these spin fields by spectral flows, but it is not clear how to do this on a higher

genus surface.)

If we cannot explicitly compute the amplitudes (3.2), then how can we find the lifting?

In [19] Gava and Narain gave a method by which amplitudes like (3.2) could be written as

modulus squared of amplitudes involving just one twist. Computing these one-twist ampli-

tudes always gives a covering space that is a sphere, so the computation is straightforward.

In [49] this proposal of [19] was studied in detail. Let us recall the results of this study.

We find

εȦḂε
ᾱβ̄E

(2)
ba = 2λ2

〈
O

(0)
b

∣∣∣{Ḡᾱ(P )

Ȧ,0
, Ḡ

β̄(P )

Ḃ,0

}∣∣∣O(0)
a

〉
(3.4)

– 4 –
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The operators Ḡ
ᾱ(P )

Ȧ,0
will be explained below. We will refer to the matrix E

(2)
ba as the lifting

matrix E(2).

From the above relation we see that the lifting matrix (3.3) can be written using either

of the following two equivalent expressions

E
(2)
ba = 2λ2

〈
O

(0)
b

∣∣∣{Ḡ+(P )†
+,0 , Ḡ

+(P )
+,0

}∣∣∣O(0)
a

〉
= 2λ2

〈
O

(0)
b

∣∣∣{Ḡ+(P )†
−,0 , Ḡ

+(P )
−,0

}∣∣∣O(0)
a

〉
. (3.5)

Note that all operators in these expressions are at the same time τ . This is in contrast

to (3.2) where the operators are clearly at different times τ1, τ2. The operators Ḡ
ᾱ(P )

Ȧ,0
are

given by

Ḡ
ᾱ(P )

Ȧ,0
= P

∫ 2π

0

dσ

2π

(
πG+

Ȧ,− 1
2

σ−ᾱ(τ, σ)
)
P . (3.6)

Here the operator P is a projection operator, which projects any state to the subspace

spanned by the unperturbed states |O(0)
a 〉 which have the dimensions (3.1). The operator

P(πG+
Ȧ,− 1

2

σ−ᾱ(τ, σ))P (3.7)

does not depend on τ or σ, since the projection operators P ensures that it acts between

states of the same dimension. Thus (3.6) can be simplified to

Ḡ
ᾱ(P )

Ȧ,0
= πPG+

Ȧ,− 1
2

σ−ᾱP . (3.8)

Note that when we apply this operator to a state with dimension (3.1), we can drop the

projection operator P on the right since it will act as the identity.

Further, it was noted in [49], that the operators Ḡ
ᾱ(P )

Ȧ,0
give the supersymmetric struc-

ture of long multiplets. At the orbifold point the states can be grouped into short mul-

tiplets. As we deform away from the orbifold point, four of these short multiplets can

join into a long multiplet and lift. The structure of this long multiplet is indicated in the

following diagram:

φ+

φ φ+−

φ−

Ḡ
+(P )
−,0Ḡ

+(P )
+,0

Ḡ
+(P )
−,0 Ḡ

+(P )
+,0

φ+

φ φ+−

φ−

Ḡ
−(P )
−,0

Ḡ
−(P )
+,0

Ḡ
−(P )
−,0

Ḡ
−(P )
+,0

(3.9)

The state φ is at the bottom of this long multiplet. Note that φ is a member of a short

multiplet created by operators that are not depicted in the figure. The operators Ḡ
+(P )
+,0

and Ḡ
+(P )
−,0 play the role of the two raising operators which take us to states φ+, φ− which

are members of two other short multiplets. Acting with both these raising operators takes

us to the short multiplet represented by the state φ+−. We can move along this multiplet

in the reverse direction using the lowering operators Ḡ
−(P )
+,0 and Ḡ

−(P )
−,0 .

Suppose we have diagonalized the matrix E(2) given in eq. (3.5). Let |O(0)〉 be an

eigenstate of this matrix. Let the corresponding eigenvalue, which gives the lift of this

– 5 –
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operator, be called E
(2)
O . Then from (3.5) we find that E

(2)
O can be written as a sum of

modulus-squared terms

E
(2)
O = 2λ2

(∣∣∣Ḡ+(P )
+,0 |O

(0)〉
∣∣∣2 +

∣∣∣Ḡ−(P )
−,0 |O

(0)〉
∣∣∣2) = 2λ2

(∣∣∣Ḡ+(P )
−,0 |O

(0)〉
∣∣∣2 +

∣∣∣Ḡ−(P )
+,0 |O

(0)〉
∣∣∣2) .
(3.10)

In the long multiplet described in (3.9) each of the four states φ, φ+, φ− and φ+−
have the following property: if it can be raised by Ḡ

+(P )
+,0 , then it will be annihilated by the

Ḡ
−(P )
−,0 ; conversely, if it can be lowered by Ḡ

−(P )
−,0 then it will be annihilated by the Ḡ

+(P )
+,0 .

The same holds for the raising operators Ḡ
+(P )
−,0 and the lowering operators Ḡ

−(P )
+,0 . Thus

in each of the two expressions in (3.10), only one of the two terms is nonzero.

In summary, one can get the lifting and corresponding eigenstates by diagonalizing

the lifting matrix E(2) (3.5). Four short multiplets join into a long multiplet as shown in

eq. (3.9) and the lifting can be calculated from (3.10).

4 The global zero mode multiplets

The CFT has left and right moving symmetries generated by its chiral algebra. These

symmetries remain true for all values of the coupling. Thus states related by these symme-

tries will have the same lift E(2). We would like to group states that are related by these

symmetries, so that we may reduce the number of independent lifting computations that

we have to perform. We will call the operators giving these symmetries ‘global zero modes’

since they act on all the N copies of the c = 6 CFT.

In subsection 4.1, we introduce the subalgebra of global modes that we will use. We

will build characters from the representations of these subalgebras; this will help us count

all the states within a multiplet. In subsection 4.2, we count the number of multiplets by

taking the partition function of the orbifold theory and writing it in terms of the characters.

In subsection 4.3 and 4.4, we construct the lowest weight states of these multiplets explicitly

for the case of two singly wound copies of the c = 6 CFT and for the case of one doubly

wound copy.

4.1 The subalgebra and the characters of the multiplets

We consider the subalgebra formed by the following left and right moving global zero modes

dαA0 Ja0 Gα
Ȧ,0

d̄ᾱA0 (4.1)

where the expression for these modes are given in (A.10). We will now note that these

global modes commute with the operators Ḡ
ᾱ(P )

Ȧ,0
that act as raising and lowering operators

in the long multiplet.

First note that all these zero modes (4.1) commute with the projection operator P,

since zero modes do not change the dimension of an operator. Thus we must consider the

commutation of the modes (4.1) with G+
Ȧ,− 1

2

σ−ᾱ.

– 6 –
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First consider the left moving zero modes. Then we must consider their commutation

with G+
Ȧ,− 1

2

σ−. The relation (D.4) gives

{dαAn , G+
Ḃ,− 1

2

σ−} = 0 . (4.2)

Thus we find

{dαA0 , Ḡ
ᾱ(P )

Ȧ,0
} = 0 . (4.3)

Since G+
Ȧ,− 1

2

σ− carries no charge under Ja0 , we have

[Ja0 , G
+
Ḃ,− 1

2

σ−] = 0 . (4.4)

Thus we get

[Ja0 , Ḡ
ᾱ(P )

Ȧ,0
] = 0 . (4.5)

Now we note that

[Gα
Ȧ,0
, G+

Ḃ,− 1
2

σ−] = εȦḂ∂σ
α . (4.6)

Note that in (3.6) there is an integral over σ which will make any total derivative vanish.

Thus we get

[Gα
Ȧ,0
, Ḡ

ᾱ(P )

Ȧ,0
] = 0 . (4.7)

Now consider the right moving part of G+
Ȧ,− 1

2

σ−ᾱ, which is given by the operator σ̄ᾱ.

The relation (E.6) says

[d̄ᾱA0 , σ̄β̄(0)] = 0 . (4.8)

Thus we get

{d̄ᾱA0 , Ḡ
ᾱ(P )

Ȧ,0
} = 0 . (4.9)

Thus we find that the global modes (4.1) commute with the operators Ḡ
ᾱ(P )

Ȧ,0
.

We define a short multiplet as the multiplet generated by these modes in the space of

states with dimension (3.1). The reason to use these modes is following. We show that

these global modes commute with the raising and lowering operators Ḡ
ᾱ(P )

Ȧ,0
, which join

four states into a long multiplet and lift. Thus all the states in a short multiplet have the

same lift. Looking at the lowest weight state in a short multiplet will therefore suffice to

give us the lifting.

Since the operators Ḡ
ᾱ(P )

Ȧ,0
carry J̄3

0 charge, they do not commute with the J̄a0 . Thus

we do not include the J̄a0 operators in the subalgebra that we are using.

The relevant commutation relations for the left movers are

{G+
+,0,−G

−
−,0} = {G+

−,0, G
−
+,0} = L0 −

c

24

{d++
0 ,−d−−0 } = {d+−

0 , d−+
0 } = 1

[J3
0 , G

±
Ȧ,0

] = ±1

2
G±
Ȧ,0

[J3
0 , d
±A
0 ] = ±1

2
d±A0 (4.10)

– 7 –
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and for the right movers are

{d̄++
0 ,−d̄−−0 } = {d̄+−

0 , d̄−+
0 } = 1

[J̄3
0 , d̄
±A
0 ] = ±1

2
d̄±A0 . (4.11)

The lowest weight states of the irreducible representation of this subalgebra are defined by

d−A0 |φ〉 = G−
Ȧ,0
|φ〉 = J−0 |φ〉 = d̄−A0 |φ〉 = 0 (4.12)

with charges

J3
0 |φ〉 = −j|φ〉 J̄3

0 |φ〉 = j̄3|φ〉 . (4.13)

The characters are defined as follows:

χjj̄3(y, ȳ) = Trjj̄3(−1)2J3
0−2J̄3

0 y2J3
0 ȳ2J̄3

0 (4.14)

where the trace is over states in the irreducible representation. We compute these characters

in appendix C. The operators of the subalgebra act independently on the left and right, so

the characters have a factorized form

χjj̄3(y, ȳ) = χLj (y)χRj̄3(ȳ) . (4.15)

We find

χLj (y) = χj−1(−y)(y1/2 − y−1/2)4 (4.16)

and

χRj̄3(ȳ) = −(−ȳ)2j̄3+1(ȳ1/2 − ȳ−1/2)2 (4.17)

where

χj(y) = y2j + y2j−2 + . . .+ y−2j =
y2j+1 − y−2j−1

y − y−1
. (4.18)

4.2 The partition function and the counting of multiplets

In this subsection, we will recall the partition function of the orbifold CFT. We will then

express this partition function in terms of the characters found above. This will allow us

to find the number of multiplets of the subalgebra at our chosen level np = 1.

The partition function for a single c = 6 copy of the CFT is defined as

Z = Tr(−1)2J3
0−2J̄3

0 qL0−1/4q̄L̄0−1/4y2J3
0 ȳ2J̄3

0 ≡
∑

h,h̄,j3,j̄3

c(h, h̄, j3, j̄3)qhq̄h̄y2j3 ȳ2j̄3 . (4.19)

For the case where the target space is T 4, we consider states without U(1) charges com-

ing from the translational symmetries along the four directions of the T 4. For this case,

one finds

Z(T 4) =

(
θ1

η

)2 1

η4

(
θ1

η

)2 1

η4
(4.20)
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where

θ1 = i(y1/2 − y−1/2)q1/8
∞∏
n=1

(1− qn)(1− yqn)(1− y−1qn)

η = q1/24
∞∏
n=1

(1− qn) . (4.21)

Using the above we can find the partition function for the case where the target space of

the 1 + 1 dimensional CFT is the symmetric product Symk(T 4). The partition function

for a symmetric product target space Z(Symk(X)) is given by

Z(p, q, q̄, y, ȳ) =

∞∑
k=0

pkZ(Symk(X)) =

∞∏
n=1

′∏
h,h̄,j3,j̄3

1

(1− pnqh/nq̄h̄/ny2j3 ȳ2j̄3)c(h,h̄,j3,j̄3)

(4.22)

where
∏′
h,h̄,j3,j̄3

is restricted so that (h − h̄)/n is an integer. The c(h, h̄, j3, j̄3) are the

degeneracies appearing in the partition function for the CFT with a single copy of the

space X. We write

Z(p, q, q̄, y, ȳ) =
∑

N,h,h̄,j3,j̄3

c(N,h, h̄, j3, j̄3)pNqhq̄h̄y2j3 ȳ2j̄3 . (4.23)

This yields the degeneracies c(N,h, h̄, j3, j̄3) of the states with total winding of the effective

string N and quantum number h, h̄, j3, j̄3.

We will be working with the case N = 2. There are two different twist sectors for

this N : the case of two singly wound copies which we call N = (1, 1), and the case of a

single doubly wound copy which we call N = (2). The expression (4.23) gives the count

of states where the contribution of both these twist sectors have been added. We are

however interested in obtaining the count of states separately in these two different twist

sectors. It turns out that with a little effort we can separate the two contributions in the

expression (4.23). We will do that in what follows.

4.3 Global zero mode multiplets for two singly wound copies at level one

In this subsection, we will apply the counting procedure discussed above to get the number

of global zero mode multiplets at level 1 for the case N = (1, 1). We will also construct the

lowest weight states of these multiplets explicitly.

As noted above, from (4.23), we can get the count of multiplets for a given value of

N . We are however interested in the contribution to this count where the winding is given

by N = (1, 1). We can extract this contribution as follows. In (4.22), let us restrict the

product to terms with n = 1 and collect all the terms with dependence p2. In this way, we

get the contribution from states in the N = (1, 1) winding sector, and not from states in

the N = (2) winding sector. We find

Z(N = (1, 1);h = 1, h̄ = 0) = −2(y1/2 − y−1/2)6(ȳ1/2 − ȳ−1/2)4 (4.24)
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By looking at the characters derived above, we find by inspection that this function can

be expressed as

Z(N = (1, 1);h = 1, h̄ = 0)

=
(

2χLj=3/2(y) + 4χLj=1(y)
)(

χ̄Rj̄3=−1(ȳ) + 2χ̄Rj̄3=−1/2(ȳ) + χ̄Rj̄3=0(ȳ)
)

(4.25)

Note that such a Z does not in general have to have a form that is factorized between the

left and right sectors; this is because the symmetry requirements of the orbifold theory

apply to the full state and not separately to the left and right sectors. in the present case

Z just happens to have a factorized form.

Let us now look at the actual lowest weight states of the characters. By applying the

conditions for the three left sector operators in (4.12) we find that d
−A(1)
−1 |0−R〉|0

−
R〉 is a lowest

weight state for the left sector. The representation has j = 3/2. The two choices A = +,−
give us two such representations. It may seem that we can get another two representations

using the second copy of the CFT; i.e., from the states d
−A(2)
−1 |0−R〉|0

−
R〉, for a total of 4 left

representations with j = 3/2. But such is not the case. The orbifold symmetry condition

forces us to consider the symmetric and antisymmetric combinations

ψ+ = d
−A(1)
−1 |0−R〉|0

−
R〉+ d

−A(2)
−1 |0−R〉|0

−
R〉

ψ− = d
−A(1)
−1 |0−R〉|0

−
R〉 − d

−A(2)
−1 |0−R〉|0

−
R〉 (4.26)

The overall state must be symmetric under the interchange of copies (1) ↔ (2). Thus if

the right sector state is symmetric under this interchange then we must take ψ+ from the

above, while if the right sector state is antisymmetric then we must take ψ−. In either

case we just get two j = 3/2 representations, from the two values of the index A. This

corresponds to the term 2χLj=3/2(y) in the r.h.s. of (4.25).

Proceeding in this way, we find for the left sector the lowest weight states (4.12)

2χLj=3/2 : d
−A(1)
−1 |0−R〉|0

−
R〉

4χLj=1 : d
−A(1)
−1 (d

+B(1)
0 − d+B(2)

0 )|0−R〉|0
−
R〉 (4.27)

where we note that the symmetrization under (1)↔ (2) will be done later.

For the right sector, the lowest weight states are given by the condition d̄−A0 |φ〉 = 0

in (4.12)

χ̄Rj̄3=−1 : |0̄−R〉|0̄
−
R〉

2χ̄Rj̄3=−1/2 : (d̄
+A(1)
0 − d̄+A(2)

0 )|0̄−R〉|0̄
−
R〉

χ̄Rj̄3=0 : (d̄
++(1)
0 − d̄++(2)

0 )(d̄
+−(1)
0 − d̄+−(2)

0 )|0̄−R〉|0̄
−
R〉 (4.28)

For this sector the lowest weight states automatically have a definite symmetry under

(1)↔ (2).

Finally, as noted above we get the correctly symmetrized states of the orbifiold theory

by taking an appropriately symmetrized representation from the left and multiplying it with

a representation from the right, so that the overall state is symmetric under (1) ↔ (2). In

this way, we get the complete subspace of the lowest weight states of the global zero mode

subalgebra defined by the operators (4.1).
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4.4 Global zero mode multiplets for one doubly wound copy at level one

In this subsection, we repeat the above computation for the twist sector where we have

one doubly wound copy of the CFT; i.e., the sector N = (2).

This time in the expression (4.22) we keep only the contribution of terms with n = 2

and collect the terms with power p2. This gives the contribution from the winding sector

N = (2). Expressing the result in terms of characters, we find

Z(N = (2);h = 1, h̄ = 0) = (y − 8 + y−1)(y1/2 − y−1/2)4(ȳ1/2 − ȳ−1/2)2

=
(
χLj=3/2(y) + 8χLj=1(y)

)
χ̄Rj̄3=−1/2(ȳ) . (4.29)

The lowest weight states on the left satisfying (4.12) are

χLj=3/2 : d−+
−1/2d

−−
−1/2|0

2−
R 〉

8χLj=1 : d−A−1 |0
2−
R 〉

d−+
−1/2α−Ȧ,−1/2|0

2−
R 〉

d−−−1/2α+Ȧ,−1/2|0
2−
R 〉(

d−−−1/2α−Ȧ,−1/2 − d
−+
−1/2α+Ȧ,−1/2

)
|02−
R 〉 . (4.30)

The lowest weight states on the right are

χ̄Rj̄3=−1/2 : |0̄2−
R 〉 (4.31)

This time there is just one doubly wound copy of the CFT, so we do not have to symmetrize

or antisymmetrize the left and right sectors. Any of the above above left states can by

tensored any of the above right states to give a lowest weight states of the global zero mode

subalgebra defined by the operators (4.1).

5 The effect of twist operator

The deformation operator (2.7) contains a twist σ2. The action of this twist was studied

in [20, 21]. Here we recall some results about this action which will be of use to us later in

the computation of E(2).

We consider only the left sector. Start in the twist sector N = (1, 1) where we have

two singly wound copies of the CFT. Let the initial state be the Ramond ground state

|0−R〉|0
−
R〉. Let us apply the twist operator σ+

2 at the position w0 on the cylinder. This

action generates the state |χ〉 whose formal structure is as follows

|χ〉 = σ+
2 (w0)|0−R〉|0

−
R〉 = |02−

R 〉+ a2O−1|02−
R 〉+ a2O−2|02−

R 〉+ . . . (5.1)

where a = ew0/2 and the O−k are operators of dimension k. The full expression for |χ〉 was

found in closed form in [20, 21].

We can also start with an initial state which contains one oscillator excitation on the

vacuum |0−R〉|0
−
R〉. For a bosonic oscillator with mode number n < 0 which is placed on
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copy 1 we find

σ+
2 (w0)α

(1)

AȦ,n
|0−R〉|0

−
R〉

=

(
1

2
αAȦ,n +

∑
p′≤−1

i

π

Γ[1
2 − n]

Γ[−n]

Γ[−1
2 − p

′]

Γ[−p′]
a2(n−p′)−1

2n− 2p′ − 1
αAȦ,p′+1/2

)
|χ〉

≡
∑
p

fBa [n, p]αAȦ,p/2 |χ〉 (5.2)

where fBa [n, p] is defined by the coefficients in the second line. Here the αAȦ,p/2 are bosonic

oscillators acting on the twist sector N = (2) where we have one doubly wound copy of the

CFT. Note that we restrict the initial oscillator mode to n < 0 since we assume that the

zero mode of the bosonic oscillators annihilate the vacuum; this corresponds to working in

the sector where our states have no U(1) charges coming from the translational symmetries

along the four directions of the T 4.

If the initial oscillator is placed on copy 2 instead of copy 1, we get a similar result but

with the replacement a→ −a in (5.2)

σ+
2 (w0)α

(2)

AȦ,n
|0−R〉|0

−
R〉 =

∑
p

fB−a[n, p]αAȦ,p/2 |χ〉 . (5.3)

We can start with one fermionic oscillator instead of the bosonic oscillator. For the

fermionic excitation d+A
n on copy 1 with n ≤ 0 we get

σ+
2 (w0)d+A(1)

n |0−R〉|0
−
R〉

=

(
1

2
d+A
n +

∑
p′≤−1

i

π

Γ[1
2 − n]

Γ[1− n]

Γ[1
2 − p

′]

Γ[−p′]
a2(n−p′)−1

2n− 2p′ − 1
d+A
p′+1/2

)
|χ〉

=
∑
p

fF+
a [n, p]d+A

p/2|χ〉 . (5.4)

If this initial excitation is placed on copy 2, we replace a by −a

σ+
2 (w0)d+A(2)

n |0−R〉|0
−
R〉 =

∑
p

fF+
−a [n, p]d+A

p/2|χ〉 . (5.5)

For states with one fermionic excitation d−An on copy 1 with n ≤ 0

σ+
2 (w0)d−A(1)

n |0−R〉|0
−
R〉

=

(
1

2
d−An +

∑
p′≤−1

i

π

Γ[1
2 − n]

Γ[−n]

Γ[−1
2 − p

′]

Γ[−p′]
a2(n−p′)−1

2n− 2p′ − 1
d−Ap′+1/2

)
|χ〉

=
∑
p

fF−a [n, p]d−Ap/2|χ〉 . (5.6)

For this excitation on copy 2, we replace a by −a

σ+
2 (w0)d−A(2)

n |0−R〉|0
−
R〉 =

∑
p

fF−−a [n, p]d−Ap/2|χ〉 . (5.7)
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We can also start with initial states that have more than one oscillator excitation; i.e.,

we can compute

σ+
2 (w0)

∏
i

O
(ci)
i,−ni
|0−R〉|0

−
R〉, ci = 1, 2 (5.8)

where ci denoted the copy in which the oscillator Oi,−ni is placed. The general method

to compute the final state in this situation was given in [21]. There are terms where each

oscillator in the initial state is moved separately to the final state as indicated in the

relations (5.2)–(5.7) discussed above where we had only one initial operator. There are

additional terms that arise from the contractions between oscillator modes in the initial

state. It will turn out that for the cases we encounter below, there are no contractions

between the modes in the initial state. We will need a subset of the coefficients f in the

relations (5.2)–(5.7). We write them in the following form which will be of use to us:

∑
p

fF−a [−1, p]dp/2 = − i
2
a−1d−1/2 +

1

2
d−1 +O(a) (5.9)

∑
p

fF−a [0, p]dp/2 =
1

2
d0 (5.10)

∑
p

fF+
a [−1, p]dp/2 = − i

4
a−1d−1/2 +

1

2
d−1 +O(a) (5.11)

∑
p

fF+
a [0, p]dp/2 =

1

2
d0 +

i

2
ad−1/2 +O(a3) . (5.12)

The dependence of the above expressions on the parameter a is rather simple; the

power of a just keeps track of the dimension of the operator it multiplies. We will find two

uses of this parameter. First, by taking the limit a → 0 we can project onto states of a

certain dimension. Second, the replacement a → −a, interchanges an excitation between

copies 1 and 2; this will help us in making excitations that are symmetric or antisymmetric

between the two copies.

6 The lifting and the long multiplet at level 1

With the tools we have collected, we can now move on to the computation of lifting for

the level 1 states. In section 6.1, we discuss the part of the amplitudes involving the right

movers. In section 6.2, we will consider the left movers. In section 6.3, we will combine

these results to get the structure of the lifted multiplet and the value of the lifting.

6.1 The right sector of states having nozero lifting

The level 1 states we are studying have conformal dimensions (h, h̄) = (1, 0). Thus the

right movers are in the Ramond ground state. In section 4, we had organized all the right

moving ground states in terms of multiplets created by the global modes d̄ᾱA0 . For the
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winding sector N = (1, 1), the lowest weight states of these multiplets were given in (4.28):

|0̄−R〉|0̄
−
R〉

(d̄
+A(1)
0 − d̄+A(2)

0 )|0̄−R〉|0̄
−
R〉

(d̄
++(1)
0 − d̄++(2)

0 )(d̄
+−(1)
0 − d̄+−(2)

0 )|0̄−R〉|0̄
−
R〉 . (6.1)

For the winding sector N = (2) the lowest weight state was given in (4.31):

|0̄2−
R 〉 . (6.2)

The right mover of the operator (3.8) Ḡ
ᾱ(P )

Ȧ,0
is

Pσ̄ᾱ . (6.3)

where we drop the second projection operator since it is acting on states with dimen-

sion (3.1). Therefore in the long multiplet structure (3.9), the two ‘raising’ operators have

the same operator Pσ̄+ in the right sector. The two ‘lowering’ operators Ḡ−± have the same

operator Pσ̄− in the right sector. Thus the long multiplet structure (3.1) for the right

movers is as given in the following diagram:

φR+

φR φR+−

φR−

Pσ̄+Pσ̄+

Pσ̄+ Pσ̄+

φR+

φR φR+−

φR−

Pσ̄− Pσ̄−

Pσ̄−Pσ̄−

. (6.4)

In the appendix E.1, we will find the following results:

(i) The right moving sector of the states in the long multiplet in figure 6.4 are

|φR〉 = |0̄−R〉|0̄
−
R〉

|φR+〉 = |φR−〉 = |0̄2−
R 〉

|φR+−〉 =
1

2
(d̄

++(1)
0 − d̄++(2)

0 )(d̄
+−(1)
0 − d̄+−(2)

0 )|0̄−R〉|0̄
−
R〉 . (6.5)

(ii) States which have the right moving sector

(d̄
+A(1)
0 − d̄+A(2)

0 )|0̄−R〉|0̄
−
R〉 . (6.6)

have zero lift.

Let us summarize the structure we have found in appendix E.1 for the right sector

of the long multiplet. Consider figure (6.4), which shows the right moving part of the

long multiplet structure given in figure (3.9); these figures show how four short multiplets
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join into a long multiplet. We start with the state |φR〉 = |0̄−R〉|0̄
−
R〉 at the bottom of the

multiplet. From (E.3) we see that this state is annihilated by Pσ̄−

Pσ̄−|φR〉 = 0 (6.7)

so we cannot move along the multiplet by applying the Ḡ−±. We can apply the Ḡ+
± to |φR〉,

and we find from (E.4) that this will take us to a state where the right moving part is

|0̄2−
R 〉. Since the two raising operators Ḡ+

± have the same action on the right side, the two

states φ+ and φ− are the same on the right, and will differ only in their left part. Finally,

we see that a second application of the Ḡ+
± will give the right moving state φR+−.

From (E.14) we see that the state φR+− is annihilated by Pσ̄+

Pσ̄+|φR+−〉 = 0 (6.8)

so we cannot move further along the multiplet by applying the Ḡ+
±.

We observe that in the sector N = (1, 1) where we have two singly wound copies of the

CFT, the right moving ground states (6.5) are symmetric between the two copies. Since

the overall state must be symmetric, the left moving sector of these long multiplet states

must be symmetric as well.

6.2 The left sector of states with nozero lift

We now consider the left sector. In section 4, we had organized the states into representa-

tions generated by the global modes dαA0 , Ja0 , G
α
Ȧ,0

. The lowest weight states in the winding

sector N = (1, 1) were found in (4.27):

d
−A(1)
−1 |0−R〉|0

−
R〉

d
−A(1)
−1 (d

+B(1)
0 − d+B(2)

0 )|0−R〉|0
−
R〉 (6.9)

where it is understood that these states have to be appropriately sym-

metrized/antisymmetrized between the two copies. In the previous subsection, we

had noted that for states in a long multiplet the state on the right was symmetric between

the two copies. The overall orbifold symmetry then says that the left sector must be

symmetric as well. Thus if we are looking for long multiplets we must symmetrize the

states in (6.9). After this symmetrzation we find that the states in the first line of (6.9)

become global states. In appendix D we show that these global states are unlifted. The

states in the second line can be decomposed into a triplet and singlet of the SU(2) charge

A. The lowest weight state of the triplet is

(d
−−(1)
−1 − d−−(2)

−1 )(d
+−(1)
0 − d+−(2)

0 )|0−R〉|0
−
R〉 (6.10)

and for the singlet is[
(d
−+(1)
−1 − d−+(2)

−1 )(d
+−(1)
0 − d+−(2)

0 )− (d
−−(1)
−1 − d−−(2)

−1 )(d
++(1)
0 − d++(2)

0 )
]
|0−R〉|0

−
R〉 .
(6.11)
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The singlet has zero lift because it is given by global mode excitations on a Ramond ground

state[
(d
−+(1)
−1 − d−+(2)

−1 )(d
+−(1)
0 − d+−(2)

0 )− (d
−−(1)
−1 − d−−(2)

−1 )(d
++(1)
0 − d++(2)

0 )
]
|0−R〉|0

−
R〉

= J−−1(d
++(1)
0 − d++(2)

0 )(d
+−(1)
0 − d+−(2)

0 )|0−R〉|0
−
R〉 (6.12)

Thus the left sector of the states with nonzero lift must lie in the space of the triplet A

charge, given in (6.10). Since all members of the triplet must have the same lift (A charge

automorphism), we need to calculate the lift for only one of these states.

The lifting matrix (3.5) involves the operators Ḡ
ᾱ(P )

Ȧ,0
(3.8). Consider the left sector of

these operators.

πPG+
Ȧ,− 1

2

σ− (6.13)

We need to compute the action of the above operator on the left sector state whose lift we

are computing. For the triplet (6.10), we show in appendix E.2 that:

PG+
Ȧ,− 1

2

σ−(d
−−(1)
−1 − d−−(2)

−1 )(d
+−(1)
0 − d+−(2)

0 )|0−R〉|0
−
R〉 = −id−−−1/2α+Ȧ,−1/2|0

2−
R 〉 . (6.14)

Based on (6.14), define the following normalized left moving states

|φL〉 = |φL+−〉 =
1

2
(d
−−(1)
−1 − d−−(2)

−1 )(d
+−(1)
0 − d+−(2)

0 )|0−R〉|0
−
R〉

|φL+〉 =
1√
2
d−−−1/2α++,−1/2|02−

R 〉

|φL−〉 =
1√
2
d−−−1/2α+−,−1/2|02−

R 〉 (6.15)

Thus eq. (6.14) is

πPG+
Ȧ,− 1

2

σ−|φL〉 = − iπ√
2
|φL
Ȧ
〉; πPG+

Ȧ,− 1
2

σ−|φL+−〉 = − iπ√
2
|φL
Ȧ
〉 . (6.16)

The properties in (6.16) can be summarized into the following diagram

φL+

φL φL+−

φL−

πPG+
+,−1/2

σ−

πPG+
−,−1/2

σ−

πPG+
+,−1/2

σ−

πPG+
−,−1/2

σ−

. (6.17)

6.3 The long multiplet and its lifting

We have seen that the long multiplets at level 1 form a triplet of A charge. Thus we

have to compute just one independent lift. To find the lift we must combine the left and

right sectors.
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In section 6.1, we found that the right movers of the long multiplet were given by (6.5)

and in section 6.2 we defined the left parts of a set of states in (6.15). We will now combine

the right and left parts of these states in an appropriate fashion. The long multiplet contains

four short multiplets. The lowest weight states of these four short multiplets will be

|φ〉 =
1

2
(d
−−(1)
−1 − d−−(2)

−1 )(d
+−(1)
0 − d+−(2)

0 )|0−R〉|0
−
R〉|0̄

−
R〉|0̄

−
R〉

|φ+〉 =
1√
2
d−−−1/2α++,−1/2|02−

R 〉|0̄
2−
R 〉

|φ−〉 =
1√
2
d−−−1/2α+−,−1/2|02−

R 〉|0̄
2−
R 〉

|φ+−〉 =
1

4
(d
−−(1)
−1 − d−−(2)

−1 )(d
+−(1)
0 − d+−(2)

0 )(d̄
++(1)
0 − d̄++(2)

0 )

×(d̄
+−(1)
0 − d̄+−(2)

0 )|0−R〉|0
−
R〉|0̄

−
R〉|0̄

−
R〉 . (6.18)

From (6.4) and (6.17), one can see that the above states satisfy the following relations

φ+

φ φ+−

φ−

πPG+
+,−1/2

σ−σ̄+

πPG+
−,−1/2

σ−σ̄+

πPG+
+,−1/2

σ−σ̄−

πPG+
−,−1/2

σ−σ̄−

. (6.19)

Now we will prove that the four states (6.18) indeed form a long multiplet. Let’s first show

that φ is the bottom member of the long multiplet. We had noted in (6.5) that the right

mover of the bottom member of a long multiplet must be φR. Now let’s look for possible

left movers. From section 6.2, we know the only possible left movers for long multiplets are

the triplets with lowest weight state (6.10). Combining the three states from the triplets

with the right mover φR gives us three possible states as the bottom members of long

multiplets. We will thus get a triplet of long multiplets. The state φ listed above is the

member of this triplet with lowest A charge (A = −1).

In a similar way we can show that φ+− is the top member of a long multiplet. First

we note that the right mover of the top member of a long multiplet must be φR+− as

in (6.5). The only possible left movers are the triplets with lowest weight state (6.10).

Thus combining the left mover (6.10) and the right mover φR+− gives the top member φ+−
of a long multiplet.

To find the middle member φ+ of the multiplet, we can apply Ḡ
+(P )
+ = πPG+

+,−1/2σ
−σ̄+

to the bottom member φ or apply Ḡ
−(P )
+ = πPG+

+,−1/2σ
−σ̄− to the top member φ+−. These

two ways are verified in relations (6.19). Thus φ+ in (6.18) is indeed a middle member

of the long multiplet. Similarly, the two ways to find the middle member φ− are verified

in (6.18). Thus φ− in (6.18) is a correct middle member of the long multiplet.

Since all the members in a long multiplet must be eigenstates of the lifting matrix, we

can use the relation (3.10) to get the lifting. All the members have the same lift, so we only
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need to calculate the lift for the bottom member φ. Using the first expression in (3.10),

we have

E(2) = 2λ2
(∣∣∣Ḡ+(P )

+,0 |φ〉
∣∣∣2 +

∣∣∣Ḡ−(P )
−,0 |φ〉

∣∣∣2)
= 2λ2

(∣∣∣πPG+
+,−1/2σ

−σ̄+|φ〉
∣∣∣2 +

∣∣∣πPG+
−,−1/2σ

−σ̄−|φ〉
∣∣∣2) . (6.20)

For the first term, from (E.4) and (6.16), we have

πPG+
+,− 1

2

σ−σ̄+|φ〉 = − iπ√
2
|φ+〉 . (6.21)

The second term in the final expression in (6.20) is zero due to (6.7). Thus the lift is

E(2) = λ2π2 . (6.22)

To summarize, we find three long multiplets, which form a triplet of charge A. The

member of this triplet with lowest A charge (A = −1) is given in (6.18). All the states

joining into long multiplets have the same lift (6.22).

7 Unlifted states and the index

We have studied the states at level 1 and found states that are lifted and states that

remain unlifted. In this section we will count the number of states of each kind. We will

also examine what we can learn from an index type computation which provides a lower

bound on the number of unlifted states. We will find that at level 1 the lower bound is

actually saturated, and all these unlifted states are in fact global modes.

In section 7.1, we will count the total number of states at level 1. In section 7.2, we

will find all the global states. In section 7.3, we will find a lower bound of the unlifted

states from an index computation. In section 7.4, we will find that the number of unlifted

states from our perturbation calculation saturates that lower bound.

7.1 The number of states

In this subsection, we will count the number of states at level 1. One can see that if we

take y = ȳ = −1 in the character (4.14), we get the number of states. For the N = (1, 1)

sector (4.25), the number of states at level 1 is(
2χLj=3/2(y) + 4χLj=1(y)

)(
χ̄Rj̄3=−1(ȳ) + 2χ̄Rj̄3=−1/2(ȳ) + χ̄Rj̄3=0(ȳ)

) ∣∣∣
y=ȳ=−1

= 2048 . (7.1)

For the N = (2) sector (4.29), the number of states at level 1 is(
χLj=3/2(y) + 8χLj=1(y)

)
χ̄Rj̄3=−1/2(ȳ)

∣∣∣
y=ȳ=−1

= 640 . (7.2)

Thus the total number of states is

Number of states = 2688 . (7.3)
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7.2 The number of global states

In this subsection, we will count the number of global states.1 These states are unlifted

states due to the contracted large N = 4 superconformal symmetry.

The first class of unlifted states is in the (1, 1) sector

2χLj=3/2(y)(χ̄Rj̄3=−1(ȳ) + χ̄Rj̄3=0(ȳ)) (7.4)

where the states can be read from (4.27) and (4.28). In this class, the global excitation

d−A−1 acts on the Ramond ground states. Taking y = ȳ = −1 gives the number of states in

the class, which is 512.

The second class is in the (1, 1) sector

(1, 1) : 2χLj=3/2(y)2χ̄Rj̄3=−1/2(ȳ) . (7.5)

The states are

(d
−A(1)
−1 − d−A(2)

−1 )(d̄
+B(1)
0 − d̄+B(2)

0 )|0−R〉|0
−
R〉|0̄

−
R〉|0̄

−
R〉

= J−−1(d
+A(1)
0 − d+A(2)

0 )(d̄
+B(1)
0 − d̄+B(2)

0 )|0−R〉|0
−
R〉|0̄

−
R〉|0̄

−
R〉 . (7.6)

which can be written as a global excitation J−−1 acting on the Ramond ground state. The

number of states in the this class in 512.

The third class is in the (1, 1) sector

4χLj=1(y)2χ̄Rj̄3=−1/2(ȳ) (7.7)

where the states can be read from (4.27) and (4.28). In this class, the global excitation

d−A−1 acts on the Ramond ground states. The number of states is 512.

The fourth class is in the (1, 1) sector

χLj=1(y)(χ̄Rj̄3=−1(ȳ) + χ̄Rj̄3=0(ȳ)) (7.8)

where the left mover is given by (6.12) and right mover is given by (4.28). As we can see

from (6.12), these are global states. The number of states is 128.

The fifth class is in the (2) sector

χLj=3/2(y)χ̄Rj̄3=−1/2(ȳ) (7.9)

where the state can be read from (4.30) and (4.31); the state is d−+
−1/2d

−−
−1/2|0

2−
R 〉|0̄

2−
R 〉 =

−2J−−1|0
2−
R 〉|0̄

2−
R 〉. It is a global state. The number of states in this class is 128.

The last class is in the (2) sector

2χLj=1(y)χ̄Rj̄3=−1/2(ȳ) (7.10)

where state can be read from (4.30) and (4.31); it is d−A−1 |0
2−
R 〉|0̄

2−
R 〉. It is a global state.

The number of states in this class is 128.

Thus the total number of global states from the above six classes is

Number of global states = 512 + 512 + 512 + 128 + 128 + 128 = 1920 . (7.11)
1We thank Nathan Benjamin and Xinan Zhou for useful discussions on the characters created by global

modes.
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7.3 A lower bound on the number of unlifted states

We have already noted that global states will remain unlifted. A lower bound on the number

of unlifted states can be found from an index [1, 13, 51, 52]. The index computation may,

however tell us that there are additional (i.e., nonglobal) that will not lift. We will now

see that at level 1, there are no such additional unlifted states predicted by the index.

To see this, let us recall how the index computation is done. Consider the exact

supercharge operators Ḡ+
Ȧ

, Ȧ = +,− of the perturbed CFT. These operators are the ones

that join four short multiplets into a long multiplet. Let us see the structure of the set

of states that will join into a long multiplet. Each of these operators Ḡ+
Ȧ

increases the

SU(2)R charge by 1/2, while it does not change the SU(2)L charge. Thus the four short

multiplets joining into a long multiplet must have the same left moving character but their

right moving characters will be as follows:

χ̄Rj̄3 2χ̄Rj̄3+1/2 χ̄Rj̄3+1 . (7.12)

Whenever we can group states in the manner indicated by such a set of characters, then

we find a set of states that have the charges to join into a long multiplet. We therefore

exclude such sets of states from the index. If there are states left over that cannot group

into a set with characters (7.12), then we count those states in the index, since they cannot

possibly join into a long multiplet and lift.

We will now see that in our case all the states which are not global states actually fall

into sets having the characters (7.12), and so they will not be be counted in the index.

The set of all states at level 1 was counted in section 7.1. Let us exclude from this set

the global states counted in section 7.2. The remaining states (i.e., nonglobal states) are

described by the following characters:

(1, 1) : 3χLj=1(y)(χ̄Rj̄3=−1(ȳ) + χ̄Rj̄3=0(ȳ))

(2) : 6χLj=1(y)χ̄Rj̄3=−1/2(ȳ) . (7.13)

We find that these 12 characters can be grouped into three groups. Each group has four

characters whose left movers are χLj=1 and right movers are (7.12) with j3 = −1. Thus we

see that it is possible to combine all the nonglobal states in (7.13) into three long multiplets.

To summarize, the index argument does not require any unlifted states at level 1 in

addition to the global states. Thus the lower bound on the number of unlifted states

provided by the index is the same as the number of global states:

Number of unlifted states ≥ Number of global states = 1920 . (7.14)

7.4 Number of unlifted states at λ2

Now we note that our computation in section 6.3 shows that the states (7.13) which could

join into a long multiplet are actually lifted. Thus we find that as we perturb away from

the orbifold point

Number of unlifted states at order λ2 = 1920 . (7.15)
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Thus the number of unlifted states saturates the bound (7.14) found in section 7.3. To

summarize, for the perturbation calculation at order λ2 at level 1, we find that all the

unlifted states are global states and all the remaining states are lifted.

8 A larger set of deformations

In all our analysis so far we have consider the deformation of the orbifold CFT by the

deformation (2.7). This deformation is a singlet under all our global charges. One can

consider the more general set of deformations given by the operators

D̃ =
1

4
P ȦḂεαβεᾱβ̄G

α(0)

Ȧ,− 1
2

Ḡ
ᾱ(0)

Ḃ,− 1
2

σββ̄ . (8.1)

The deformation operator must be Hermitian. Some rules for Hermitian conjugation are

noted in appendix B. Using these we find that the matrix P can be parameterized by four

real parameters p0, p1, p2, p3

P = p0I +
3∑

k=1

ipkσk (8.2)

where σk are the Pauli matrices. Following the method in [49], one can generalize the

lifting matrix (3.5) for the set of deformations (8.1):

Ẽ
(2)
ba = P ȦḂP ĊḊεȦĊεḂḊλ

2
〈
O

(0)
b

∣∣∣{Ḡ+(P )†
+,0 , Ḡ

+(P )
+,0

}∣∣∣O(0)
a

〉
= P ȦḂP ĊḊεȦĊεḂḊλ

2
〈
O

(0)
b

∣∣∣{Ḡ+(P )†
−,0 , Ḡ

+(P )
−,0

}∣∣∣O(0)
a

〉
. (8.3)

Using the parameters in (8.2), we have

P ȦḂP ĊḊεȦĊεḂḊ = 2(p2
0 + p2

1 + p2
2 + p2

3) ≡ 2p2 . (8.4)

Comparing the lifting matrices (3.5) and (8.3), one finds that they are proportional to

each other:

Ẽ(2) = p2E(2) . (8.5)

The eigenstates with definite energy and their lift are given by eigenstates and eigenvalues

of the lifting matrix. Thus we find that the states which are lifted do not depend on the

parameters p0, pi, and the value of their lift is just given through the invariant p2. The

structure of the long multiplets also does not depend on the choice of P ȦḂ.

9 Discussion

The D1D5 CFT is a very useful tool in the study of black holes in string theory. However,

several aspects of its supersymmetric states remain mysterious. In this paper we have

analyzed the supermultiplet structure and lifting of states at level 1, at second order in

the deformation off the orbifold point. We now mention some of the questions about the

D1D5 system that we hope to address by our computations and its extensions to higher

level states.

– 21 –



J
H
E
P
0
3
(
2
0
2
0
)
0
2
8

The black hole threshold: the NS sector of the CFT is dual to global AdS3×S3×T 4.

At low energies we expect that most states that are extremal at the orbifold point will

be lifted as we perturb away from the orbifold point. This is because in the dual gravity

theory there are relatively few supergravity states at low energies, and stringy excitations

will be lifted in general. In [19] the lift of stringy states in the pp-wave approximation was

computed in the dual CFT and agreement was found.

But at energies higher than the black hole threshold we expect a large class of unlifted

states which will account for the entropy of the extremal hole. In the Ramond sector these

are states with dimensions (h, h̄) = ( c
24 + n, c24). The index computations of [1, 13] indeed

imply such a large number of unlifted states.

Now consider the perturbative computation of the lift, say at second order. There

should be some feature of this computation that explains the small number of unlifted

states in the NS sector computation mentioned above but leads to a large number of

unlifted states when we consider levels that describe black hole states. It would be very

interesting to identify this feature, as it would tell us something about the origin of the

large value of black hole entropy. Finding this feature is one of our goals in studying the

detailed pattern of lifting.

Twist sectors for lifted and unlifted states: consider the index computation of [13].

If we take the D1, D5, P charges to be coprime, then we see that the index equals the

count of all states in the maximally twisted sector. This does not of course mean that it is

the states in the maximally twisted sector that will remain unlifted. In our computation at

level 1 we found that the lifted multiplets have half their states in the maximally twisted

sector and half in the untwisted sector.

What will be the pattern of lifting in general? For n1n5 = N large, will the super-

symmetric states have support in the highly twisted sectors with twist ∼ N? Or will the

support be in sectors with intermediate twists ∼
√
N? Or perhaps the support would lie

in sectors with low twists ∼ 1? The index computation cannot distinguish between these

possibilities. Extending our computations of lift to higher levels may shed light on this

question. The question is of direct physical relevance to the structure of black holes in the

fuzzball paradigm as sectors with low twists correspond to gravity solutions with shallow

throats and sectors with high twists correspond to gravity solutions with deep throats.

More generally we would like to ask: given the set of extremal states at a given level n

at the orbifold point, is there an elegant prescription which will tell us which of these states

will group together into long multiplets and lift, and what will be the value of the lift?

Separating global modes: at any point in the moduli space the CFT has a set of raising

operators given by elements of the chiral algebra; we have called these ‘global modes’ since

they act on all copies of the c = 6 CFT rather than on just one individual copy. The

‘global states’ obtained by applying these global excitations on Ramond ground states will

always remain unlifted. In [50] it was shown that the action of global modes is mapped, in

the dual gravity theory, to excitations at the ‘neck’ region of the geometry where the outer

boundary of the AdS joins flat spacetime. Thus global modes therefore do not modify the
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structure of a black hole microstate whose nontrivial fuzzball structure is at the bottom of

a deep throat.

In an index computation, one attempts to group states with character sets of the

type (7.12) in order to identify how many sets of states can join into long multiplets and

lift. Some of the states that might appear to join into long multiplets in this analysis

might actually be global states. Such states will not lift, but this fact will not be obvious

by looking at the characters representing these states. Thus it is useful to first separate out

the global states from the set of all states, and then to use the character grouping (7.12)

to develop an index count. We have indeed separated global states first in our analysis

of level 1 states. A general analysis of the index after separating global states has been

carried out in [51, 52].

More generally, it would be useful to be able to identify all states that are global

descendants of states at lower levels. In other words, we would like to have a simple

prescription for identifying all the primaries of the large N = 4 superalgebra; the analysis

of lifting can then be confined to these primaries.

We hope to return to these issues elsewhere, when we consider the lifting at states at

higher levels and with larger values of n1n5 = N .
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A Contracted large N = 4 superconformal algebra

We follow the notation in the appendix of [45]. The indices α = (+,−) and ᾱ = (+,−)

correspond to the subgroups SU(2)L and SU(2)R arising from rotations on S3. The indices

A = (+,−) and Ȧ = (+,−) correspond to the subgroups SU(2)1 and SU(2)2 arising from

rotations in T 4. We use the convention

ε+− = 1, ε+− = −1 (A.1)

The commutation relations for the contracted large N = 4 superconformal algebra are

[αAȦ,m, αBḂ,n] = − c

6
mεABεȦḂδm+n,0

{dαAr , dβBs } = − c

6
εαβεABδr+s,0 (A.2)

[Lm, αAȦ,n] = − nαAȦ,m+n [Lm, d
αA
r ] = −

(
m

2
+ r

)
dαAm+r

{Gα
Ȧ,r
, dβBs } = iεαβεABαAȦ,r+s [Gα

Ȧ,r
, αBḂ,m] = − imεABεȦḂd

αA
r+m

[Jam, d
αA
r ] =

1

2
(σTa)αβd

βA
m+r (A.3)
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[Lm, Ln] =
c

12
m(m2 − 1)δm+n,0 + (m− n)Lm+n

[Jam, J
b
n] =

c

12
mδabδm+n,0 + iεabcJ

c
m+n

{Gα
Ȧ,r
, Gβ

Ḃ,s
} = εȦḂ

[
εαβ

c

6

(
r2 − 1

4

)
δr+s,0 + (σaT )αγ ε

γβ(r − s)Jar+s + εαβLr+s

]
[Jam, G

α
Ȧ,r

] =
1

2
(σaT )αβG

β

Ȧ,m+r

[Lm, J
a
n ] = − nJam+n

[Lm, G
α
Ȧ,r

] =

(
m

2
− r
)
Gα
Ȧ,m+r

. (A.4)

We define J+
n , J

−
n as

J+
n = J1

n + iJ2
n

J−n = J1
n − iJ2

n . (A.5)

From (A.3), one can see that dαAn with α = +,− is a SU(2)L charge doublet. We have

[J+
m, d

+A
r ] = 0, [J−m, d

+A
r ] = d−Am+r

[J−m, d
+A
r ] = d−Am+r, [J+

m, d
+A
r ] = 0 . (A.6)

From (A.4), one can see that Gα
Ȧ,r

with α = +,− is also a SU(2)L charge doublet. We have

[J+
m, G

+
Ȧ,r

] = 0, [J−m, G
+
Ȧ,r

] = G−
Ȧ,m+r

[J+
m, G

−
Ȧ,r

] = G+
Ȧ,m+r

, [J−m, G
−
Ȧ,r

] = 0 (A.7)

It is believed that the contracted large N = 4 superconformal algebra is an exact symmetry

at any point of the moduli space.

Now let’s consider the orbifold point. Look at the winding sector N = (n1, n2, . . . ,

ni, . . .) with the total winding n =
∑

i ni. For the ith twisted set of copies with winding

number ni, we have following mode expansions on the cylinder.

α
(i)

AȦ,n
=

1

2π

∫ 2πni

σ=0
∂wX

(i)

AȦ
(w)enwdw

dαA(i)
n =

1

2πi

∫ 2πni

σ=0
ψαA(i)(w)enwdw . (A.8)

In terms of α and d modes, the J , G and L modes can be written as

Ja(i)
m =

1

4ni

∑
r

εABd
γB(i)
r εαγ(σaT )αβd

βA(i)
m−r , a = 1, 2, 3

J3(i)
m = − 1

2ni

∑
r

d++(i)
r d

−−(i)
m−r −

1

2ni

∑
r

d−+(i)
r d

+−(i)
m−r

J+(i)
m =

1

ni

∑
r

d++(i)
r d

+−(i)
m−r , J−(i)

m =
1

ni

∑
r

d−−(i)
r d

−+(i)
m−r
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G
α(i)

Ȧ,r
= − i

ni

∑
n

d
αA(i)
r−n α

(i)

AȦ,n
(A.9)

L(i)
m = − 1

2ni

∑
n

εABεȦḂα
(i)

AȦ,n
α

(i)

BḂ,m−n −
1

2ni

∑
r

(
m− r +

1

2

)
εαβεABd

αA(i)
r d

βB(i)
m−r .

Let k be an integer. The mode numbers for α,L, J are n = k/ni. In the R sector, the

mode numbers for d and G are n = k/ni. In the NS sector, the mode numbers for d and

G are n = (k + 1
2)/ni. The modes (A.8) and (A.9) satisfy the contracted large N = 4

superconformal algebra (A.2)(A.3)(A.4) with c = 6ni.

We define the global modes Ogn by summing the terms from each copy

Ogn =
∑
i

O(i)
n (A.10)

where the modes O can be modes of α d L J G. The global modes satisfy the contracted

large N = 4 superconformal algebra (A.2)(A.3)(A.4) with c = 6n. It is believed that global

modes satisfy the algebra at any point in the moduli space.

B Hermitian conjugation

We use the following Hermitian conjugation rules

(G+
+(τ, σ))† = −G−−(−τ, σ) (G+

−(τ, σ))† = G−+(−τ, σ)

(Ḡ+
+(τ, σ))† = −Ḡ−−(−τ, σ) (Ḡ+

−(τ, σ))† = Ḡ−+(−τ, σ) (B.1)

and

(σ−−(τ, σ))† = −σ++(−τ, σ) (σ−+(τ, σ))† = σ+−(−τ, σ) . (B.2)

In this convention, the deformation operator is a Hermitian operator

(D(τ, σ))† = D(−τ, σ) . (B.3)

From the definition of Ḡ(P ) (3.6), we find

Ḡ
+(P )†
+,0 = −Ḡ−(P )

−,0 Ḡ
+(P )†
−,0 = Ḡ

−(P )
+,0 (B.4)

We also have the useful relations

G
+(0)

Ȧ,− 1
2

σ+ᾱ = 0 G
−(0)

Ȧ,− 1
2

σ−ᾱ = 0

Ḡ
+(0)

Ȧ,− 1
2

σα+ = 0 Ḡ
−(0)

Ȧ,− 1
2

σα− = 0 (B.5)

and

G
−(0)

Ȧ,− 1
2

σ+ᾱ = −G+(0)

Ȧ,− 1
2

σ−ᾱ Ḡ
−(0)

Ȧ,− 1
2

σα+ = −Ḡ+(0)

Ȧ,− 1
2

σα− . (B.6)

C Global zero mode characters

In this appendix, we will find the characters for the left moving subalgebra formed by dαA0 ,

Ja0 and Gα
Ȧ

. We will also find the characters for right moving subalgebra formed by d̄ᾱA0 .
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C.1 Left sector

Consider the subalgebra formed by the dαA0 , Ja0 and Gα
Ȧ

. The lowest weight states φ of the

irreducible representations are defined by

d−A0 |φ〉 = G−
Ȧ,0
|φ〉 = J−0 |φ〉 = 0 (C.1)

φ carries the charge

J3
0 |φ〉 = −j|φ〉 . (C.2)

To find the irreducible representations of the subalgebra, we use the Racah-Speiser

algorithm [53, 54]. Start with a lowest weight state defined by (C.1), with charge −j. The

modes d+A
0 and G+

Ȧ,0
are four fermionic raising operators. Applying these raising operators

generates a set of states with charges j3 = −j, j + 1/2, . . . ,−j + 2. One may now try to

apply J+
0 to each of these states, filling out the Ja0 representations. Such a Ja0 multiplet

with highest weight j will be denoted by [j]. Thus formally, we get multiplets of the type

[j], [j − 1/2], . . . , [j − 2].

The Racah-Speiser algorithm says the following. For j ≥ 0 we can indeed have such

a multiplet [j]. But there cannot be multiplets [j] with j < 0. For the SU(2) algebra, we

have the following rules. The multiplet [−1/2] does not correspond to an actual multiplet.

A multiplet [j] with j ≤ −1 cancels a multiplet [−j − 1]. For example, a [−1] cancels a [0]

and a [−3/2] cancels a [1/2].

The character is defined by a trace over the irreducible representation

χLj (y) = Tr(−1)2J3
0 y2J3

0 . (C.3)

Let’s find the characters for the irreducible representations with j ≥ 2. There are four pairs

of fermionic raising and lowering operators, thus an irreducible representation contains the

following SU(2) multiplets

[j]→ 4[j − 1/2]→ 6[j − 1]→ 4[j − 3/2]→ [j − 2] (C.4)

where → corresponds to one of the fermionic raising operators and n[j] means there are n

of [j] multiplets. Thus the character of such a left sector multiplet is

χLj (y) = χj(−y) + 4χj−1/2(−y) + 6χj−1(−y) + 4χj−3/2(−y) + χj−2(−y)

= χj−1(−y)(y1/2 − y−1/2)4 (C.5)

where χj(−y) is the character for a SU(2) multiplet [j]

χj(−y) = (−1)2j(y2j + y2j−2 + . . .+ y−2j) = (−1)2j y
2j+1 − y−2j−1

y − y−1
. (C.6)

We now check the special cases j = 3/2 and j = 1. We will see that they also yield

the expression (C.5). For j = 1, by applying the four fermion operators, we get

[1]→ 4[1/2]→ 6[0]→ 4[−1/2]→ [−1] . (C.7)
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Follow the Racah-Speiser algorithm, we exclude the 4[−1/2] and the [−1] cancels one of

the [0] multiplets. Thus we left with

[1], 4[1/2], 5[0] . (C.8)

The character is

χL1 (y) = χ1(−y) + 4χ1/2(−y) + 5χ0(−y) = (y1/2 − y−1/2)4 (C.9)

which agrees with the expression (C.5). For j = 3/2, applying the four fermion raising

operators gives

[3/2]→ 4[1]→ 6[1/2]→ 4[0]→ [−1/2] . (C.10)

Follow the Racah-Speiser algorithm, we exclude the [−1/2]. Thus we are left with

[3/2], 4[1], 6[1/2], 4[0] . (C.11)

The character is

χL3/2(y) = χ3/2(−y)+4χ1(−y)+6χ1/2(−y)+4χ0(−y) = −(y+y−1)(y1/2−y−1/2)4 . (C.12)

This again satisfies (C.5). Thus (C.5) is correct for all j ≥ 1 which are the cases that we

will need.

C.2 Right sector

For the right movers, we consider the sub-algebra formed by d̄ᾱA0 . The lowest weight states

are defined by

d̄−A0 |φ〉 = 0 (C.13)

with charge

J̄3
0 |φ〉 = j̄3|φ〉 . (C.14)

There are two fermionic raising operators. Application of these to a lowest weight state

with charge j̄3 gives states with charges

j̄3 → 2(j̄3 + 1/2)→ j̄3 + 1 . (C.15)

The character is defined by the trace over the irreducible representation. We find

χRj̄3(ȳ) = Tr(−1)−2J̄3
0 ȳ2J̄3

0 = −(−ȳ)2j̄3+1(ȳ1/2 − ȳ−1/2)2 . (C.16)

D Global states are unlifted

In this appendix, we will show that global states from the contracted large N = 4 super-

conformal algebra are unlifted. Global states are states with global modes acting on the

Ramond ground states.

The deformation operator (2.7) preserves the N = 4 superconformal symmetry. The

generators of the N = 4 superconformal symmetry are global modes Jan , Gα
Ȧ,r

and Ln. Thus
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these global modes do not change the lift. Since the Ramond ground states are unlifted,

global states obtained by acting with global modes Jan , Gα
Ȧ,r

and Ln to the Ramond ground

states are unlifted.

The global modes αAȦ,n and dαAr are extra generators in the contracted large N = 4

superconformal algebra. It is not obvious that the global modes αAȦ,n and dαAr do not

change the lift. In the following we will show that global modes αAȦ,n and dαAr commute

with the deformation operator (2.7). Thus they also do not contribute to the lift. Hence

all the global states from the contracted large N = 4 algebra are unlifted.

The deformation operator (2.7) has the left moving part G+
Ḃ,− 1

2

σ−. Let us consider

{dαAn , G+
Ḃ,− 1

2

σ−(0)} =

∮
C0

dw

2πi
ψαA(w)enwG+

Ḃ,− 1
2

σ−(0)

=

∮
C0

dw

2πi
ψαA(w)(1 + nw + . . . )G+

Ḃ,− 1
2

σ−(0)

= dαA1
2

G+
Ḃ,− 1

2

σ−(0) (D.1)

where higher terms in the expansion vanish. From the commutator in appendix A, we have

{dαA1
2

, G+
Ḃ,− 1

2

} = iε+αεBAαBḂ,0 . (D.2)

Thus the last expression in (D.1) becomes

dαA1
2

G+
Ḃ,− 1

2

σ−(0) = iε+αεBAαBḂ,0σ
−(0)−G+

Ḃ,− 1
2

dαA1
2

σ−(0) . (D.3)

Note that αBḂ,0σ
−(0) = 0 since σ−(0) has no momentum along T 4. Also, the operator

dαA1
2

σ−(0) must vanish as it has dimension 0 but carries a nontrivial charge. Thus we find

{dαAn , G+
Ḃ,− 1

2

σ−(0)} = 0 . (D.4)

In a similar manner, we have

[αAȦ,n, G
+
Ḃ,− 1

2

σ−(0)] = αAȦ,0G
+
Ḃ,− 1

2

σ−(0) + nαAȦ,1G
+
Ḃ,− 1

2

σ−(0) . (D.5)

The first term is zero since the operator G+
Ḃ,− 1

2

σ−(0) has no momentum along T 4. The

second term is zero since it has dimension 0 but carries a nonzero charge A. Thus we find

[αAȦ,n, G
+
Ḃ,− 1

2

σ−(0)] = 0 (D.6)

E Some properties of left and right movers

In this appendix, we will note some properties which will be of use to constructing the long

multiplets in section 6.
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E.1 Right moving sector

In this appendix, we will find some properties of right moving states discussed in section 6.1.

First let us show that having the right moving sector state (6.6) leads to zero lift.

Applying Pσ̄+ to (6.6) and using the relations in section 5, we find

Pσ̄+(d̄
+A(1)
0 − d̄+A(2)

0 )|0̄−R〉|0̄
−
R〉

= P

(∑
p

fF+
a [0, p]d̄+A

p/2 −
∑
p

fF+
−a [0, p]d̄+A

p/2

)
|χ̄〉

= P
[(

1

2
d̄+A

0 +
i

2
ad̄+A
−1/2 +O(a3)

)
−
(

1

2
d̄+A

0 − i

2
ad̄+A
−1/2 +O(a3)

)] (
|0̄2−
R 〉+O(a)

)
= 0 . (E.1)

In the last step, we have used the observation after eq. (5.12) that taking the projection

onto the right moving Ramond ground state is equivalent to taking the limit a → 0.

Applying Pσ̄− to the same state (6.6), we find

Pσ̄−(d̄
+A(1)
0 − d̄+A(2)

0 )|0̄−R〉|0̄
−
R〉

= [J̄−0 ,Pσ̄
+](d̄

+A(1)
0 − d̄+A(2)

0 )|0̄−R〉|0̄
−
R〉

= J̄−0 Pσ̄
+(d̄

+A(1)
0 − d̄+A(2)

0 )|0̄−R〉|0̄
−
R〉 − Pσ̄

+J̄−0 (d̄
+A(1)
0 − d̄+A(2)

0 )|0̄−R〉|0̄
−
R〉

= 0 . (E.2)

Thus any state of the system which has the state (6.6) as its right moving component will

have zero lift.

Now let us check the long multiplet structure (6.5). First we note that

Pσ̄−|0̄−R〉|0̄
−
R〉 = 0 (E.3)

since there is no right Ramond ground state in doubly wound sector with j̄ < −1/2. From

the second diagram in 3.9 we see that φR should be the right moving state for the bottom

member of the long multiplet. (There were only 4 states in the right sector and we have

already seen that (6.6) cannot be the right state for a state in the long multiplet. In the

following we can see that the other states in (6.5) are not annihilated by Pσ̄−, so φR is the

unique choice for the bottom member of the multiplet.)

Next, using (5.1) for the right sector we find

Pσ̄+|0̄−R〉|0̄
−
R〉 = |0̄2−

R 〉 . (E.4)

This shows that φR+ and φR− in (6.5) are the right sector states for the middle members of

the long multiplet.

Finally, we will show that

Pσ̄+|0̄2−
R 〉 =

1

2
(d̄

++(1)
0 − d̄++(2)

0 )(d̄
+−(1)
0 − d̄+−(2)

0 )|0̄−R〉|0̄
−
R〉 . (E.5)
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This will confirm that φR+− in (6.5) is indeed the right moving state for the top member of

the long multiplet. First we note that the global modes d̄ᾱA0 commute with the operator σ̄β̄

[d̄ᾱA0 , σ̄β̄(0)] =

∮
C0

dw̄

2πi
ψ̄ᾱA(w̄)σ̄β̄(0) = d̄ᾱA−1/2σ̄

β̄(0) = 0 . (E.6)

The last equality follows because there is no operator that has dimension h̄ = 0 and a

nonzero charge A. Then we have

d̄++
0 d̄+−

0 Pσ̄
+|0̄2−

R 〉 = Pσ̄+d̄++
0 d̄+−

0 |0̄
2−
R 〉 (E.7)

where d̄ᾱA0 is the global mode. Using

d̄++
0 d̄+−

0 |0̄
2−
R 〉 = 2|0̄2+

R 〉 (E.8)

and

Pσ̄+|0̄2+
R 〉 = |0̄+

R〉|0̄
+
R〉 . (E.9)

Eq. (E.7) becomes

d̄++
0 d̄+−

0 Pσ̄
+|0̄2−

R 〉 = 2|0̄+
R〉|0̄

+
R〉 . (E.10)

Since the global modes d̄−A0 commute with the Pσ̄+, we have

d̄−A0 Pσ̄
+|0̄2−

R 〉 = Pσ̄+d̄−A0 |0̄
2−
R 〉 = 0 . (E.11)

We now apply d̄−−0 d̄−+
0 to both sides of (E.10). This gives

|φR+−〉 = Pσ̄+|0̄2−
R 〉 =

1

2
d̄−−0 d̄−+

0 |0̄
+
R〉|0̄

+
R〉 . (E.12)

Now we write

|0̄+
R〉|0̄

+
R〉 = d̄

++(1)
0 d̄

+−(1)
0 d̄

++(2)
0 d̄

+−(2)
0 |0̄−R〉|0̄

−
R〉 . (E.13)

Using this on the r.h.s. of (E.12) we get (E.5). Since there is no right Ramond ground state

in doubly wound sector with j̄ > 1/2, we have

Pσ̄+|0̄+
R〉|0̄

+
R〉 = 0 . (E.14)

We can see that (E.12) cannot be raised by Pσ̄+

Pσ̄+|φR+−〉 =
1

2
Pσ̄+d̄−−0 d̄−+

0 |0̄
+
R〉|0̄

+
R〉 =

1

2
d̄−−0 d̄−+

0 Pσ̄
+|0̄+

R〉|0̄
+
R〉 = 0 . (E.15)

Thus |φR+−〉 is indeed the top member of the long multiplet.

Now let us establish the properties given in the right diagram in (6.4). Starting

from (E.12), applying Pσ̄− gives

Pσ̄−|φR+−〉 =
1

2
Pσ̄−d̄−−0 d̄−+

0 |0̄
+
R〉|0̄

+
R〉 =

1

2
d̄−−0 d̄−+

0 Pσ̄
−|0̄+

R〉|0̄
+
R〉 =

1

2
d̄−−0 d̄−+

0 |0̄
2+
R 〉 = |0̄2−

R 〉 .
(E.16)

Apply Pσ̄− again we have

Pσ̄−|0̄2−
R 〉 = |0̄−R〉|0̄

−
R〉 . (E.17)

These relations verify the relations in the right diagram of (6.4).
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E.2 Left mover

In this appendix, we will verify the relation (6.14) used in section 6.2.

Using property (B.6) in appendix B, the left part of the operator Ḡ
ᾱ(P )

Ȧ,0
(3.8) can be

written as

πPG+
Ȧ,− 1

2

σ− = −πPG−
Ȧ,− 1

2

σ+ . (E.18)

Thus (6.14) is equivalent to

PG−
Ȧ,− 1

2

σ+(d
−−(1)
−1 − d−−(2)

−1 )(d
+−(1)
0 − d+−(2)

0 )|0−R〉|0
−
R〉 = id−−−1/2α+Ȧ,−1/2|0

2−
R 〉 . (E.19)

This relation (E.19) is obtained as follows. Using the relations in section 5, we have

σ+d
−−(1)
−1 d

+−(1)
0 |0−R〉|0

−
R〉

=

(∑
p

fF−a [−1, p]d−−p/2

)(∑
q

fF+
a [0, q]d+−

q/2

)
|χ〉

=

(
− i

2
a−1d−−−1/2 +

1

2
d−−−1 +O(a)

)(
1

2
d+−

0 +
i

2
ad+−
−1/2 +O(a3)

)
|χ〉 (E.20)

and

σ+d
−−(1)
−1 d

+−(2)
0 |0−R〉|0

−
R〉

=

(∑
p

fF−a [−1, p]d−−p/2

)(∑
q

fF+
−a [0, q]d+−

q/2

)
|χ〉

=

(
− i

2
a−1d−−−1/2 +

1

2
d−−−1 +O(a)

)(
1

2
d+−

0 − i

2
ad+−
−1/2 +O(a3)

)
|χ〉 . (E.21)

Then we get

Pσ+d
−−(1)
−1 (d

+−(1)
0 − d+−(2)

0 )|0−R〉|0
−
R〉

= P
(
− i

2
a−1d−−−1/2 +

1

2
d−−−1 +O(a)

)(
iad+−
−1/2 +O(a3)

)
|χ〉

=
1

2
d−−−1/2d

+−
−1/2|0

2−
R 〉 . (E.22)

By using the commutators in appendix A

[G−
Ȧ,0
, d+−
n ] = −iα+Ȧ,n [G−

Ȧ,0
, d−−n ] = 0 (E.23)

we have

PG−
Ȧ,0
σ+d

−−(1)
−1 (d

+−(1)
0 − d+−(2)

0 )|0−R〉|0
−
R〉 = G−

Ȧ,0

1

2
d−−−1/2d

+−
−1/2|0

2−
R 〉

=
i

2
d−−−1/2α+Ȧ,−1/2|0

2−
R 〉 . (E.24)

From (E.23) and that G−
Ȧ,0

annihilates all the Ramond ground states including (d
+−(1)
0 −

d
+−(2)
0 )|0−R〉|0

−
R〉, we have

G−
Ȧ,0
d
−−(1)
−1 (d

+−(1)
0 − d+−(2)

0 )|0−R〉|0
−
R〉 = 0 . (E.25)
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To get (E.19), writing G−
Ȧ,− 1

2

as a contour operator surrounding σ+ and breaking the

contour into two zero modes wrapping the cylinder, one above and one below the point w:

G−
Ȧ,− 1

2

σ+(w) =

∮
cw

dw′

2πi
G−
Ȧ

(w′)σ+(w)

=

∫ 2π

0

dσ

2π
G−
Ȧ

(τ > τw, σ)σ+(w)− σ+(w)

∫ 2π

0

dσ

2π
G−
Ȧ

(τ < τw, σ)

= G−
Ȧ,0

(τ > τw)σ+(w)− σ+(w)G−
Ȧ,0

(τ < τw) . (E.26)

Then we get

PG−
Ȧ,− 1

2

σ+d
−−(1)
−1 (d

+−(1)
0 − d+−(2)

0 )|0−R〉|0
−
R〉

= P
[
G−
Ȧ,0
σ+d

−−(1)
−1 (d

+−(1)
0 − d+−(2)

0 )− σ+G−
Ȧ,0
d
−−(1)
−1 (d

+−(1)
0 − d+−(2)

0 )
]
|0−R〉|0

−
R〉

=
i

2
d−−−1/2α+Ȧ,−1/2|0

2−
R 〉 (E.27)

where in the last step we use (E.24) and (E.25). By replacing a → −a, we can exchange

the excitations on copy 1 and copy 2. Since (E.27) doesn’t depend on a, we have

PG−
Ȧ,− 1

2

σ+d
−−(2)
−1 (d

+−(2)
0 − d+−(1)

0 )|0−R〉|0
−
R〉 =

i

2
d−−−1/2α+Ȧ,−1/2|0

2−
R 〉 . (E.28)

Adding (E.27) and (E.28) gives (E.19).
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