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E Superadditivity of CA(|TFD〉) at general times 112

1 Introduction

Quantum information concepts and their embedding in gravitational holography [1] have

proved very useful for developing our understanding of the bulk-boundary map, e.g., see [2–

5]. One particular notion, which has captured increasing attention, is computational com-

plexity. The complexity of a quantum state is defined as the minimal number of simple

operations required in order to construct the state starting from a simple unentangled prod-

uct state [6, 7]. There exist several proposals for the holographic dual of computational

complexity [8–13], however, at the moment, we can only test them at a phenomenological

level due to the absence of a well-posed definition for the complexity for quantum field

theory states. One front, in which progress has been made is that of Gaussian and nearly

Gaussian states, e.g., [14–18]. Most of those studies, however, focused on pure states, and

very little is known about the complexity of mixed states. Several proposals were made

to define mixed-state complexity in [19] and our goal here is to examine one of these, the

purification complexity, in detail for mixed Gaussian states. Let us also mention that in

holography, several proposals have been made for the gravitational dual of the complexity

of mixed states associated with reduced density matrices on subregions of the boundary of

asymptotically AdS spaces [20, 21] and we will also compare our QFT results with those

coming from holography, at least at the qualitative level.

– 1 –



J
H
E
P
0
3
(
2
0
2
0
)
0
1
2

〉Rψ| 〉Tψ|

} }. . . . . .

1g 2g 3g 4g 1−ng ng

Aρ̂

cAρ̂
cATrA

cAAncillae:

Figure 1. Circuit with the ancillary degrees of freedom. The mixed state ρ̂A that we want to

prepare is obtained at the final step after tracing out the ancillae.

Circuits with ancillae and purification complexity. Preparing a mixed state ρ̂A
on some Hilbert space A, starting from a pure reference state, cannot be achieved using

only unitary gates. Instead, we should think of preparing the state using a set of allowed

universal (non-unitary) gates, which consist of completely positive trace-preserving maps

acting on the reference state. However, this approach is equivalent to extending the Hilbert

space to include ancillary degrees of freedom and working with unitary gates acting on this

extended Hilbert space, e.g., see [6, 22, 23] and chapter 8 in [24]. One can think that the

set of unitary gates is extended to include ancillary gates, which introduce a new ancillary

degree of freedom (in some simple product state) as needed, and erasure gates, which erase

or trace out a single degree of freedom whenever is convenient. Alternatively, as illustrated

in figure 1, we can think that the reference state is an unentangled product state on all

of the needed or available auxiliary degrees of freedom, as well as the physical degrees of

freedom, i.e. the reference state (and all of the intermediate pure states) live on an extended

Hilbert space A ⊗ Ac. Then after applying a unitary circuit to this extended state, the

ancillae are all traced out of the final pure state to produce the desired mixed state on the

physical Hilbert space A alone.

Following this discussion, we can define the complexity of mixed states by considering

the complexity of pure states which purify them. Obviously, the purifications of a given

mixed state are not unique. However, a natural definition of mixed state complexity —

the so-called purification complexity [19] is defined as the minimal pure state complexity

among all possible purifications of our mixed state, i.e. as usual, we are optimizing over

the circuits which take the reference state to a target state |ΨAAc〉, which is a purification

of the desired mixed state ρ̂A, but we must also optimized over the possible purifications

of ρ̂A, i.e.

C (ρ̂A) ≡ minAc C (|ΨAAc〉) , such that ρ̂A = TrAc |ΨAAc〉 〈ΨAAc | . (1.1)

Recall that we are applying this analysis to study mixed Gaussian states. A simplifying

assumption in our analysis will be that the purified states are also Gaussian. This allows us

to use the prescription of [14] for evaluating the complexity of the possible purifications,1

and we then minimize over the parameters of the purifications, as in eq. (1.1) above.2

1The results of [14] used a GL(N,R) subgroup of the group Sp(2N,R) of transformations between the

Gaussian states and our results below are restricted to this case.
2We might mention that this assumption also appeared in a recent discussion [25] of the entanglement

of purification [25–27] for Gaussian states.
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Completing our complexity model requires specifying the cost function.3 A variety of

cost-functions have been considered in the literature for the complexity of pure Gaussian

states (e.g., see [14–16, 28]). As was pointed out in [14, 15], the F1 cost function (see

eq. (2.11)) seems most closely related to complexity in holography because the structures

of the UV divergences match. Hence we will focus our analysis on this choice in the

following. However, the precise results are also found to depend on the basis chosen for

the fundamental gates. For example, a recent study of the complexity of the thermofield

double (TFD) state [29] has shown the importance of choosing a basis which is not entirely

diagonal when two systems are involved.4 Hence, we also explore the possibility of working

in a basis which distinguishes the ancillary degrees of freedom from the physical degrees

of freedom of the original reduced density matrix. We refer to such basis as the physical

basis, as opposed to the diagonal basis which mixes the two sets of degrees of freedom.

At this point, let us add that it is natural to think of the auxiliary degrees of freedom

as a resource in the preparation of the desired mixed states and hence in differentiating

possible purifications, one would assign an additional cost for including more ancillae,

i.e. we can assign an extra cost for the ancillary and erasure gates commented on above.

However, we will not consider the effect of such an additional cost for the bulk of our

analysis, but we return to this issue briefly in the discussion section 7.

Outline and summary of main results. We start in section 2, by exploring the pu-

rification complexity for mixed states with a single harmonic oscillator, purified by the

addition of a single extra ancillary degree of freedom. In the diagonal basis, we can obtain

an analytic result which is given by eq. (2.50), while the physical basis complexity requires

some numerical treatment. We prove that the diagonal basis complexity is smaller than

the physical basis complexity for these small systems.

We proceed in section 3, by exploring the optimal purifications of multi-mode Gaussian

states. We generalize the various notions of diagonal and physical basis complexities to the

case of mixed states of more than one mode. In this section, we also explore the optimality

of essential and mode-by-mode purifications. Essential purifications are purifications with

the minimal number of new degrees of freedom needed to purify the state. For the case of a

single oscillator, we compare purifications with a single additional degree of freedom to pu-

rifications with two additional degrees of freedom and show that the optimal purifications

are obtained without the use of the extra ancilla. This motivates us to make a conjecture

that optimal purifications will be essential purifications, even for a larger number of oscil-

lators. This conclusion holds both in the diagonal and in the physical basis. We explain

how to bring a general mixed state to the form of a tensor product of one mode mixed

states and define the concept of mode-by-mode purifications where each mode is purified

separately. We demonstrate that this subset of purifications is optimal when the original

3The cost functions assign a cost to different trajectories in the space of unitary transformations between

the different states — see section 2.1 for further details.
4The TFD state is a purification of the thermal density matrix on a given QFTL (the “Left” copy) in

terms of another identical QFTR (the “Right” copy). When studying the complexity of this state, it is

important to work with a basis which distinguishes the “Left” and “Right” degrees of freedom to reproduce

qualitative features of the holographic complexity of the double-sided AdS black hole.
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state is simply a product of one mode mixed states. For a general mixed state, we show

that these purifications are not optimal, but that they give a good approximation for the

complexity. Some technical details and extensions related to the topics of this section have

been left for appendices A and B.

In sections 4 and 5, we examine the purification complexity for mixed states for two

examples in a free scalar field theory: a thermal density matrix and the reduced density

matrix for a subregion of the vacuum.5 In both cases, we examine a quantity denoted

by the mutual complexity. The latter is defined by beginning with a pure state |ΨAB〉 on

an extended Hilbert space.6 Now tracing over the B degrees of freedom yields the mixed

state ρA, whereas integrating out the A degrees of freedom yields ρB. Then the mutual

complexity is given by comparing the complexities of these three states with

∆C = C(ρA) + C(ρB)− C(|ΨAB〉) . (1.2)

The complexity is said to be subadditive when ∆C > 0 and superadditive when ∆C < 0.

That is, subadditivity indicates that the complexity of the state on the full system is less

than the sum of the complexities for the states on the two subsystems (and vice versa for

superadditivity).

We start in section 4, by applying our previous results to the case of a thermal state

in the free scalar field theory. We show that the result for the purification complexity is

simply the sum of the results for the complexities of the various momentum space modes.

We ask the question of whether the thermofield double state (TFD) provides an optimal

purification of the thermal state. For the individual modes, we find that this is the case

only for a very small range of frequencies, and so the TFD state does not correspond to the

optimal purification for the thermal state in the field theory. Further, the UV divergences

associated with the optimal purification are less (by a factor of 2) than those of the TFD.

This turns out to be essential in order to recover the same structure of divergences as in

holography. In this case, we can evaluate the mutual complexity for the TFD state as

∆C = 2 C(ρ̂th(β))− C(|TFD〉) , (1.3)

where ρ̂th(β) is the thermal density matrix. Given the previous comment, we find that ∆C
is UV finite and further that it is always positive in the diagonal basis, i.e. the complexity

is subadditive with this choice. In the physical basis, we find that the mutual complexity

can be either positive and negative, depending on the reference state frequency and the

temperature of thermal state.

In section 5, we study the complexity of subregions of the vacuum in a two-dimensional

free scalar QFT. We study the dependence of the purification complexity on the UV cutoff

in the diagonal and physical bases. We find that in either case, the leading divergence

scales with the volume of the subsystem and depends on the cutoff and reference state

frequency in a manner that is similar to that observed in holography, once the relevant

5All the results in these sections are obtained using a mode-by-mode purification ansatz.
6Mutual complexity could just as easily be defined with an initially mixed state ρAB (see discussion in

section 7). However, the initial state is a pure state in the two examples that we consider here.

– 4 –



J
H
E
P
0
3
(
2
0
2
0
)
0
1
2

parameters are identified. We also find that the subleading divergence of the complexity

of subregions of the vacuum in the diagonal basis is logarithmic, similarly to what is

found for holographic complexity using the subregion-CA and subregion-CV2.0 proposals.

We also study the mutual complexity in both the diagonal basis and the physical basis.

The mutual complexity in the physical basis has two possible definitions, which we state

in eq. (5.19), depending on what the interpretation of the physical basis complexity of

the vacuum should be. Evaluating the mutual complexity (1.2) for the vacuum state,

we observe that it is positive and logarithmically divergent in the diagonal basis, as well

as for one of the physical basis definitions. For the other physical basis definition, it is

negative and linearly divergent. Further, it reaches a broad maximum (minimum) when

the subsystem size equals to half of the system for all cases, and is symmetric about that

point. The distinction between the various bases is highlighted in appendix C with a simple

example of mixed states in subregions of a free field theory on a lattice with four sites, i.e.

of a system of four coupled harmonic oscillators.

Section 6 reviews and extends various results from the holographic literature regarding

the complexity of mixed states. We review the two holographic proposals for subregion

complexity using volume and action [20, 21] of bulk regions naturally associated with the

Ryu-Takayanagi surface [30, 31] and the entanglement wedge [32–34] of the subregion. In

addition, we propose a natural extension of the CV2.0 of [13] for subregions. We then

present the results for the holographic complexity of a thermal state living on a single

boundary of a two-sided black hole, as well as results for subregions of the vacuum in

various dimensions and for various boundary geometries. The relevant calculations for this

section are found in appendix D.

The results obtained for the mutual complexity, which determine the additivity prop-

erties of the complexity in the various cases, which we studied both in the free scalar QFT

and in holography, are summarized here in table 1. Generally, we found that the com-

plexity is superadditive in the holographic setting, while in contrast, we found that it is

subadditive in the setting of the free scalar theory using the diagonal basis. However, for

the QFT complexity in the physical basis, we found that the complexity is superadditive for

the thermal state for reference frequencies that are very far from the other physical scales

of the problem, i.e. when µ is a deep IR or a deep UV scale. Further, for subregions of

the vacuum, the physical basis complexity is superadditive if the complexity of the vacuum

is considered in a basis where the degrees of freedom on either side of the partition are

distinguished. However, if we remove that constraint, the resulting mutual complexity is

positive, and the complexity is instead subadditive.

We conclude with a brief review and discussion of our results in section 7. This dis-

cussion includes a review of other possible definitions for the complexity of mixed states,

and exploring the possibility of using different cost functions in evaluating the purification

complexity. Further, we examine the relation between mixed state complexity and entan-

glement entropy, and consider what additional information is contained in the purification

complexity beyond that contained in the entanglement entropy. We also make a detailed

comparison between our results for mixed state complexity in the free scalar QFT and

those determined with the various holographic proposals. In the context of AdS3/CFT2,

– 5 –
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Thermal state Subregions of the vacuum

QFT (diagonal basis) ∆C > 0 ∆C > 0

QFT (physical basis) ∆C < 0 for βµ� 1 or βµ� 1 ∆C < 0, ∆C̃ > 0 �

Holography (CV) ∆CV ≤ 0 § ∆CV ≤ 0 §

Holography (CA) ∆CA < 0 † ∆CA < 0 ‡

Holography (CV2.0) ∆CV 2.0 < 0 † ∆CV 2.0 < 0 ‡

� There are two possible definitions for mutual complexity in the physical basis for subregions of

the vacuum, see discussion around eq. (5.19) for more details;
§ the inequality is saturated (i.e. ∆CV = 0) when evaluated for tL = 0 = tR for the TFD state and

for t = 0 for the vacuum state, as was done in the preceding QFT calculations;
† in both cases, ∆C was proportional to the entropy of the thermal state;
‡ in both cases, the leading contribution to ∆C had the same form as the leading divergence in the

entanglement entropy of the subregions.

Table 1. Comparison of the mutual complexity in field theory and in holography for the various

cases studied in this paper. Above, µ is the characteristic frequency of the reference state while β

is the inverse temperature.

we numerically identify an exact formula for the subleading divergences in holographic com-

plexity of a subregion of the vacuum on a finite circle. The latter is inspired by the close

relation between the mutual complexity and the entanglement entropy, and by the formula

for entanglement entropy of an interval in CFT2 on a finite circle [35, 36]. This result also

motivates using the same formula to numerically fit our results for the mutual complexity

(as a function of the subregion size) in the diagonal basis for the free scalar QFT.

Before proceeding further, we must acknowledge that the purification complexity of

a single oscillator is briefly considered using the F2 cost function (see eq. (2.11)) in [37].

This overlaps somewhat with the discussion in section 2, where we consider the purification

complexity for the same system but focus on the F1 cost function.

2 Purification complexity of a single harmonic oscillator

Our aim in this paper is to explore the complexity of mixed states. In particular, we will

examine the so-called “purification complexity” [19], defined as the minimal complexity of a

pure state which purifies our mixed state, see eq. (1.1). Our analysis will focus on Gaussian

mixed states and so before we plunge into the details of the purification complexity, we

begin with a brief review of the construction in [14] to evaluate the complexity of pure

Gaussian states — see also discussions in [16, 28].

2.1 Complexity of pure Gaussian states

The authors of [14] proposed a framework for evaluating the complexity of Gaussian states

of bosonic field theories. The idea was to discretize the field theory on a spatial lattice

such that one obtains a chain of coupled harmonic oscillators with position operators x̂a
and momentum operators p̂b satisfying usual commutation relations [x̂a, p̂b] = iδab, where

– 6 –
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a, b = 1, . . . , N indicate the positions on the lattice. The wavefunction of a pure Gaussian

state with vanishing first moments (i.e. 〈x̂a〉 = 0 = 〈p̂a〉) which will serve as our target

state takes the following form in the position-space representation

〈xa|ψT〉 ≡ ψT(xa) = NT exp

−1

2

N∑
a,b=1

Mab
T xa xb

 . (2.1)

The normalization constant is given by NT
4 = det

(
MT
π

)
. For simplicity, we will focus

on cases where the matrix Mab is real (and of course, symmetric).7 The matrix Mab

can be diagonalized by an orthogonal transformation in terms of a set of “normal mode”

coordinates x̃k and characteristic frequencies ωk,
8

〈x̃k|ψT〉 = ψT(x̃k) = NT exp

[
−1

2

N∑
k=1

ωk x̃
2
k

]
. (2.2)

The latter can be viewed as the Gaussian wavefunction

ψT(x̃k) = NT exp

−1

2

N∑
k,k′=1

M̃kk′
T x̃k x̃k′

 with M̃T = OTMT O = diag(ω1, · · · , ωN ) ,

(2.3)

and where the orthogonal matrix O produces the change of basis xa = Oa
kx̃k which diag-

onalizes the matrix MT. As an example, one might think of the ground state of a chain of

coupled harmonic oscillators with normal mode frequencies ωk, where the mass of the har-

monic oscillators has been set to one. In fact, to be consistent with dimensional analysis,

we have assumed that all the equations above also contain a characteristic mass which we

will set to one from now on.

A natural reference state is the factorized Gaussian state9

〈xa|ψR〉 ≡ ψR(xa) = NR exp

[
−1

2

N∑
a=1

µx2
a

]
, (2.4)

where the degrees of freedom are completely disentangled in the position basis. Note that

we are choosing the same reference frequency µ for each xa so that the degrees of freedom

are all on the same footing, i.e.

MR = µ diag(1, 1, · · · , 1). (2.5)

7We will describe below how to evaluate the complexity of such states according to [14]. For cases where

Mab is complex, a more general treatment is needed where the GL(N,R) group of gates, appearing below

in eq. (2.7), must be extended to Sp(2N,R), e.g., see [29].
8In the following, we are taking the normal modes x̃k to be real linear combinations of the position basis

modes xa. Later we will find that for applications in QFT it is easier to consider complex normal modes

xk (see, e.g., eqs. (4.6) and (C.2)). In this case we should replace x̃2
k → |xk|2 in eq. (2.2).

9The normalization constant of the reference state is given by N 4
R = det

(
MR
π

)
=
(
µ
π

)N
.
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Hence for the example of a chain of oscillators, the reference state is translation invariant.10

With this simple reference state, the change of basis introduced in eq. (2.3) yields

〈x̃k|ψR〉 = ψR(x̃k) = NR exp

[
−1

2

N∑
k=1

µ x̃2
k

]
. (2.6)

That is, in the diagonal basis, the reference state remains a factorized Gaussian with

M̃R = MR.

Now, the target state (2.2) can be produced by acting with a unitary transformation

on this reference state (2.6), i.e. |ψT〉 = UTR |ψR〉 where UTR is constructed as a string of

fundamental gates,

gab = ei
ε
2

(x̂ap̂b+p̂bx̂a) . (2.7)

These gates produce a GL(N,R) group of transformations. Those with a 6= b introduce

entanglement between the different oscillators, while with a = b, the gates scale the coeffi-

cients of the corresponding coordinate — see [14] for further details. Generally, there will

be an infinite number of such “circuits,” i.e. sequences of fundamental gates, which will

accomplish the desired transformation. The complexity is defined as the minimum number

of gates needed to construct the desired target state (2.2) from the reference state (2.6).

To identify the optimal circuit, Nielsen and his collaborators [38–40] developed a geo-

metric method, which was adapted to evaluate the complexity of QFT states in [14]. This

construction is based on a continuum representation of the unitary transformations

U(σ) = ~P exp

[
−i
∫ σ

0
dsH(s)

]
, where H(s) =

∑
I

Y I(s)OI (2.8)

where s parametrizes the circuit and ~P signifies a path ordering along s from right to

left. The “Hamiltonian” H(s) is constructed from the (Hermitian) generators OI of the

fundamental gates, e.g., Oab = −1
2(x̂ap̂b + p̂bx̂a) in eq. (2.7). The coefficients Y I(s) are

control functions specifying which gates (and how many times they) are applied at any

particular point s in the circuit. In eq. (2.8), we have actually specified a path U(σ)

through the space of unitaries, or through the space of states with |ψ(σ)〉 = U(σ) |ψR〉. We

then fix the boundary conditions for the circuits of interest, with 0 ≤ σ ≤ 1, as

U(σ = 0) = 1 , U(σ = 1) = UTR , (2.9)

where UTR is the desired unitary producing |ψT〉 = UTR |ψR〉. From this perspective, the

Y I(s) can also be interpreted as the components of the tangent vector to this trajectory.

Nielsen’s approach identifies the optimal circuit by minimizing the cost defined as

D(U(σ)) ≡
∫ 1

0
ds F

(
U(s), Y I(s)

)
, (2.10)

10Similarly, the ground state of any translation invariant Hamiltonian will be translation invariant. This

would be reflected in the entries of the parameter matrix Mab in eq. (2.1) which will be a function of a− b.
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where F is a local functional of the position U(s) and the tangent vector Y I(s) along the

trajectory.11 Two simple examples of such cost functions are

F1(U, Y ) =
∑
I

∣∣Y I
∣∣ , F2(U, Y ) =

√∑
I

(Y I)2 . (2.11)

With the F2 measure, the cost (2.10) is simply the proper distance in a Riemannian geom-

etry, and hence identifying the optimal circuit is equivalent to finding the shortest geodesic

connecting the reference and target states in this geometry. With the F1 measure, the cost

essentially counts the number of gates, and so this choice comes closest to the original con-

cept of complexity. However, in contrast with the F2 measure, a disadvantage of the F1 cost

function is that it is not “covariant”, i.e. the corresponding complexity C1 depends on the

choice of the basis for the generators OI .12 However, the structure of the UV divergences

for the C1 complexity was found to be similar to that for holographic complexity [14, 15].

Further, the basis dependence played an important role in [29], which studied the complex-

ity of thermofield double (TFD) states for a free scalar. In particular, the complexity of

formation was found to match that for holographic systems [43], i.e. ∆̃Cformation ∝ Sth in

the massless limit,13 when the gates were chosen to act on the physical degrees of freedom

corresponding to the two separate copies of the field theory, i.e. the Left-Right basis [29].

In contrast, if the basis of gates were chosen to act on the diagonal modes (with which

the TFD state could be expressed as a simple product state), the C1 complexity produced

∆̃Cformation ' 0 to leading order.

We reviewed the results above to motivate that in this paper, we will focus entirely

on studying the purification complexity of mixed states using the F1 measure. Further, we

will test the sensitivity of our C1 complexity to the choice of basis. In particular, in each

case, we will examine the results for the physical basis and the diagonal basis. As a further

review of key results, let us add the following:

For a broad variety of cost functions including those in eq. (2.11), the optimal circuit

taking eq. (2.6) to eq. (2.2) is simply a straight-line path which only applies the scaling

gates (2.7) (with a = b) to each of the corresponding normal modes x̃k [14]. In fact, [14]

recasts the discussion of circuits in terms of a matrix representation. In particular, the

trajectory through the space of states is described by

M̃(σ) = U(σ) M̃R U
T (σ) , (2.12)

where the M̃ab define Gaussian wavefunctions in terms of the normal modes, as in eq. (2.3).

For the case in hand, the optimal trajectory is simply

U(σ) = eH̃σ, with H̃ =
1

2
diag(ln(ω1/µ), · · · , ln(ωN/µ)) . (2.13)

11When this functional only depends on Y I(s) as in eq. (2.11), the cost (and the underlying geometry)

is right invariant, e.g., [41, 42].
12In [16, 28], a basis-independent alternative was proposed using the Schatten norm. For Gaussian states

with vanishing first moments, i.e. 〈xa〉 = 0 = 〈pa〉, the complexity found using the (p = 1) Schatten cost

function is identical with C1, as shown in eq. (2.14). However, we note that this Schatten complexity does

not yield the desired complexity of formation for the TFD states studied in [29].
13Here, Sth is the thermal entropy of the thermal mixed state living on either side of the TFD, or

equivalently the entanglement entropy between the two copies of the field theory.
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For this linear trajectory, the complexity is given in terms of the elements of H̃, and in

particular, the C1 complexity becomes

Cdiag

1 =
1

2

N∑
k=1

∣∣∣∣ln ωkµ
∣∣∣∣ . (2.14)

We make repeated use of this result in the following and so the interested reader is invited

to see [14] for a detailed derivation. As we noted above, the C1 complexity is sensitive to

the choice of basis for the gates (or generators), and the superscript ‘diag’ above is added

to indicate that the complexity was evaluated using gates acting on the normal-mode

coordinates x̃k.

However, as noted in the previous discussion, it is interesting to consider different

choices of basis in certain cases. This is simply done by rotating the generator H̃ to the

relevant basis and summing over (the absolute values of) its elements

H = O H̃ OT and C1 =

N∑
a,b=1

|Hab| . (2.15)

Implicitly, we have assumed here that the straight-line circuit (2.13) remains optimal in the

new basis. However, in general (and for our examples below), it is difficult to prove that this

simple trajectory is still optimal. Nevertheless, evaluating the cost of the trajectory (2.13)

provides a bound on the C1 complexity for the new basis. In examining mixed state

complexity below, we will consider the physical basis which distinguishes between the two

classes of oscillators in purifications of a mixed state, i.e. the original physical oscillators

and the auxiliary degrees of freedom. We will indicate when our calculations refer to this

basis by using the superscript ‘phys’. More details on different interesting bases and the

distinction between them can be found in section 3.3 and appendix C.

In closing here, let us add that an alternative approach to the complexity of QFT

states based on the Fubini-Study metric was developed in [15]. For Gaussian states with

vanishing first moments and an appropriate definition of the measure, this alternative

approach produces precisely the same complexity as in eq. (2.14). Hence we expect that

many of our results for the purification complexity of mixed states in the following can be

easily extended to the Fubini-Study approach.

2.2 Gaussian purifications of one-mode mixed states

Turning to the purification complexity of mixed states, we begin by considering Gaussian

density matrices for a single oscillator and explore their purifications. Consider a single

harmonic oscillator in a mixed state ρ̂, such that

ρ(x, x′) ≡ 〈x| ρ̂
∣∣x′〉 =

(
a− b
π

)1/2

e−
1
2(ax2+ax′2−2bxx′) (2.16)

where we will assume that a and b are real. Note that this is compatible with ρ being a

Hermitian operator, i.e. ρ† = ρ or ρ∗(x′, x) = ρ(x, x′). The overall normalization constant

was chosen to ensure Tr[ρ] =
∫
dx ρ(x, x) = 1. In order for the Gaussian integral in

– 10 –



J
H
E
P
0
3
(
2
0
2
0
)
0
1
2

this norm to be well defined, we need a > b. Further, in order that the density matrix be

positive semi-definite (i.e. 〈ψ| ρ̂ |ψ〉 > 0 for arbitrary wavefunctions ψ(x)) we should require

that b > 0.14

Next, we consider purifications of the density matrix (2.16) by pure Gaussian states

with two degrees of freedom

ψ12(x, y) ≡ 〈x, y|ψ〉 =

(
ω1ω2 − k2

π2

)1/4

e−
1
2(ω1x2+ω2y2+2k xy) (2.17)

where again we will assume for simplicity that ω1,2 and k are all real. For this wavefunction

to be normalizable, i.e. 1 =
∫
dx dy |ψ(x, y)|2, we need ω2 > 0 and ω1 ω2 − k2 > 0. The

density matrix corresponding to |ψ〉 is simply given by

ρ12(x, y, x′, y′) =

(
ω1ω2 − k2

π2

)1/2

e−
1
2(ω1x′2+ω2y′2+2kx′y′)e−

1
2(ω1x2+ω2y2+2kxy) . (2.18)

Tracing out the auxiliary oscillator, we find

ρ1(x′, x) =

∫
dy ρ12(x, y, x′, y) =

√
ω1ω2 − k2

√
π ω2

e
− 1

2

[(
ω1− k2

2ω2

)
(x2+x′2)− k

2

ω2
xx′
]
. (2.19)

Therefore comparing the above density matrix to eq. (2.16), we find

a = ω1 −
k2

2ω2
, b =

k2

2ω2
. (2.20)

From the second equation, we see that b ≥ 0 ensures a real purification. Note that for

b = 0, we simply get

a = ω1 , k = 0 (2.21)

and ω2 is unconstrained. That is, for the density matrix (2.16) of an already pure state

(i.e. ρ(x, x′) = ψ1(x)ψ†1(x′)), the purification in eq. (2.17) is itself simply the product of

two decoupled wavefunctions (i.e. ψ12(x, y) = ψ1(x)ψ2(y)). For non-zero b, we may solve

for ω1 and ω2 in terms of a, b and k to find

ω1 = a+ b , ω2 =
k2

2b
. (2.22)

Hence we arrive at the one-parameter family of wavefunctions

ψ12(x, y) =

(
(a− b)

2b

k2

π2

)1/4

e
− 1

2

[
(a+b)x2+ k2

2b
y2+2kxy

]
, (2.23)

all of which produce the same density matrix (2.16) upon tracing out the auxiliary position

y. The purification complexity is then found by optimizing the usual pure state complexity

over the free parameter k distinguishing these different purifications.

14Since probabilities are all either zero or positive, the density matrix is positive semidefinite, e.g., see

section III of [44]. We will see below that b > 0 ensures that the purifying wavefunction also has real pa-

rameters.
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2.3 Alternative description of the purifications

Before we evaluate the purification complexity of the density matrix in eq. (2.16), it will be

convenient to introduce a second representation of the Gaussian states in order to simplify

the optimization and to make clear the role of the ancillae for our Gaussian examples.

Hence let us work in terms of the energy eigenstates of a given Hamiltonian

H =
1

2
p̂2 +

1

2
ω2x̂2 = ω

(
a†a+

1

2

)
, (2.24)

where we have set the mass to one.15 The annihilation and creation operators are defined

as usual with

a ≡
√
ω

2

(
x̂+ i

p̂

ω

)
, a† ≡

√
ω

2

(
x̂− i p̂

ω

)
(2.25)

and satisfy the commutation relations [a, a†] = 1. The corresponding energy eigenstates

can be written as

|n〉 =
(a†)n√
n!
|0〉 (2.26)

where |0〉 is the vacuum state of the Hamiltonian (2.24).

It is well known in the literature of quantum information, e.g., see [45–47], that Gaus-

sian states can be decomposed in terms of standard operators defined using these creation

and annihilation operators. In particular, the most general real density matrix of a one-

mode Gaussian state can be decomposed according to16

ρ̂1 = Ŝ1(r) υ̂th(β, ω) Ŝ†1(r) . (2.27)

The operator Ŝ1(r) is the one-mode squeezing operator, acting on our oscillator which

we denote by the subscript 1 (in anticipation for introducing a second oscillator for the

purification, which we will denote by a subscript 2), which for real values of r reads17

Ŝ1(r) ≡ e−
r
2

(
a†1

2−a2
1

)
= ei

r
2

(x̂1p̂1+p̂1x̂1) . (2.28)

This squeezing operator acts on the wavefunction ψ(x) ≡ 〈x|ψ〉 by rescaling the coordinate

x according to 〈x|Ŝ1(r)|ψ〉 = er/2 ψ(erx). The remaining operator υ̂th(β, ω) is a thermal

density matrix for the canonical ensemble with temperature 1/β, i.e.

υ̂th(β, ω) ≡ e−βω a
†a

Tr(e−βω a†a)
=
(

1− e−βω
) ∞∑
n=0

e−βω n |n〉〈n| . (2.29)

15The frequency ω of the oscillator is an arbitrary choice here, but of course, the result of our analysis

will only depend on this choice through the parameters of the density matrix (2.16).
16In this paper, we only consider Gaussian states with 〈x〉 = 0 = 〈p〉, which implies that the exponent of

the Gaussian wavefunction does not contain a term linear in x. If such terms were present, we would have

to extend eq. (2.27) by conjugating with the displacement operator, e.g., see the discussion of complexity

of coherent states in [28].
17Note that the frequency ω from the definition of a, a† in eq. (2.25) does not appear here. The infinites-

imal version of this squeezing operator is simply the scaling gate (with a = b) in eq. (2.7).
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We can evaluate the position space representation of the density matrix ρ̂ in eq. (2.27),

i.e. 〈x|ρ̂|x′〉, using Mehler’s formula [48], e.g.,

∞∑
n=0

un

2nn!
Hn(x)Hn(y) =

1√
1− u2

exp

(
−u

2(x2 + y2)− 2uxy

1− u2

)
. (2.30)

Of course, this yields a Gaussian density matrix of the form in eq. (2.16) with the following

parameters

a =
e2r ω coshβω

sinhβω
> 0 , b =

e2r ω

sinhβω
> 0 ,

a

b
= coshβω ≥ 1 . (2.31)

Demanding that the temperature and frequency are positive is then equivalent to the

previous restrictions, a > b > 0, discussed around eq. (2.16). We note that while the

parameter ω was introduced as a dimensional scale here, our result for the complexity will

only depend on the dimensionless combinations βω and µ/ω, as well as the (dimensionless)

squeezing parameter r.18 However, the parameter ω will still play an important role later

on when considering different modes of a free QFT on the lattice in sections 4 and 5.19

When the temperature is set to zero, i.e. βω →∞, eq. (2.27) reduces to a pure state. From

eq. (2.31), we see that this corresponds to the limit b/a→ 0.

The decomposition (2.27) suggests that in order to purify this mixed state, one must

purify the thermal part υ̂th of the density matrix.20 This can be done in terms of the

thermofield double state, e.g., see [29]

|TFD〉12 ≡ S12(α) |0〉1 |0〉2 =
(

1− e−βω
)1/2

∞∑
n=0

e−
1
2
βω n |n〉1 |n〉2 (2.32)

where we have introduced the two-mode squeezing operator which entangles the two degrees

of freedom,

S12(α) ≡ eα
(
a†1a
†
2−a1a2

)
= e−iα(x̂1p̂2+p̂1x̂2) . (2.33)

The (real) squeezing parameter α for eq. (2.32) is given by

tanhα = e−βω/2 , α =
1

2
ln

1 + e−βω/2

1− e−βω/2
. (2.34)

18Below, we will see that the complexity only depends on two parameters, namely βω and a particular

combination of µ/ω and r. The latter reduction can be traced back to a symmetry of complexity, i.e.

the ‘distance’ between the reference state and target state is left unchanged if we rescale µ and shift

r simultaneously.
19As we noted above, ω does not appear in the squeezing operator and further, ω only appears in the

dimensionless combination βω in the thermal density matrix (2.29) (and implicitly in the definition of |n〉 in

that same equation). However, from eq. (2.31), we see that it sets the scale of the dimensionful parameters,

a and b, in eq. (2.16). Further, it will set the scale of the dimensionful parameters in the purified state (2.17)

— see eq. (2.38) below.
20In section 7.4, we explicitly demonstrate that the thermal part of eq. (2.27) is also the component which

determines the (entanglement) entropy of the mixed Gaussian state.

– 13 –



J
H
E
P
0
3
(
2
0
2
0
)
0
1
2

The thermal density matrix υ̂th in eq. (2.29) is then produced by tracing out the auxiliary

degree of freedom

Tr2(|TFD〉12 〈TFD|12) =
(

1− e−βω
) ∞∑

n

e−βω n |n〉1〈n|1 = υ̂th(β, ω) . (2.35)

However, we may also act with any unitary operator on the second oscillator in eq. (2.32)

and then this trace would yield an identical thermal density matrix. Hence we can write

the most general two-mode purification of eq. (2.27) as

|ψ〉12 = S1(r)S2(s)S12(α) |0〉1 |0〉2 , (2.36)

where we have introduced a second one-mode squeezing operator S2(s) to account for the

freedom noted above in defining the purification of υ̂th(β, ω). Eq. (2.36) is the most general

two-mode purification using Gaussian states with real parameters. This can be seen by

writing the position-space wavefunction

ψ12(x, y) ≡ 〈x, y |ψ〉12

=

√
ω

π
e
r+s

2 exp
[
−ω

2

(
cosh 2α (e2rx2 + e2sy2)− 2 er+sx y sinh 2α

)]
.

(2.37)

This wavefunction has precisely the same form as given in eq. (2.17), and we identify the

parameters as

ω1 = ω e2r cosh 2α , ω2 = ω e2s cosh 2α , k = −ω er+s sinh 2α . (2.38)

Of course, substituting these relations into eq. (2.20) yields the same values for a, b as

shown in eq. (2.31), where we have used the following identities following from eq. (2.34)

cosh 2α =
1

tanh(βω/2)
, sinh 2α =

1

sinh(βω/2)
, tanh2α = e−βω . (2.39)

In the representation (2.37), the squeezing parameter s encodes the freedom in defining the

purification, which was previously captured by k in eq. (2.23). Hence with this description,

the purification complexity will be found by optimizing the usual pure state complexity

over s.

To close here, we note that the expressions in eqs. (2.37) and (2.38), as well as through-

out the next section, can easily be written in terms of the parameter βω, which appears in

the thermal density matrix (2.29) using the relations (2.39). However, we continue to write

our results in terms of the squeezing parameter α appearing in the purification (2.36). One

reason for this is that it simplifies the expressions for the limits of validity of the different

regimes in our final result for the purification complexity — see eq. (2.50). Further, α will

also be a convenient parameter in our discussion of the purification complexity of a thermal

density matrix (and in comparing it to the complexity of the thermofield double state [29])

in section 4.
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2.4 Purification complexity in the diagonal basis

According to the definition of purification complexity [19], see also eq. (1.1), we evaluate

the complexity of the mixed state by optimizing the purification to have the minimal

circuit complexity as a pure state. We emphasize that we are simplifying this problem

here by focusing on Gaussian mixed states and constraining ourselves to only considering

Gaussian purifications. As mentioned in section 2.1, throughout the following, we focus

on the complexity defined with the F1 cost function (2.11). Recall that the C1 complexity

for Gaussian states was found to replicate the behaviours of holographic complexity most

closely [14, 15, 29]. However, as was also mentioned above, the F1 cost function is basis

dependent, and so we must specify that in this subsection, we evaluate the C1 complexity

in the diagonal basis. We will explore the results using the physical basis, which does not

mix the original degree of freedom with the ancilla, in the next subsection.

The coefficient matrix Mab
T in eq. (2.1) for the purifying wavefunction |ψ12〉 in eq. (2.37)

is given by

Mab
T = ω

(
e2r cosh 2α −er+s sinh 2α

−er+s sinh 2α e2s cosh 2α

)
. (2.40)

Again, the free parameter s specifies a family of purifications of the same mixed state ρ̂1 in

eq. (2.27). The prescription for evaluating the complexity of pure states was briefly reviewed

in section 2.1, and the C1 complexity was given in eq. (2.14). Hence, the complexity of the

Gaussian state (2.36) becomes21

Cdiag
1 (|ψ〉12) =

1

2

∣∣∣∣ln ω+

µ

∣∣∣∣+
1

2

∣∣∣∣ln ω−µ
∣∣∣∣ , (2.41)

where ω± are the eigenvalues of the matrix Mab, i.e.

ω± = ω er+s
(

cosh2α cosh(r − s)±
√

cosh2 2α cosh2(r − s)− 1

)
. (2.42)

Now according to the definition of purification complexity (1.1), the complexity of the

corresponding mixed state (2.27) is given by22

Cdiag
1 (ρ̂1) = mins Cdiag

1 (|ψ〉12) , (2.43)

where the dependence on the squeezing parameter s is hidden in the eigenfrequencies ω±
in eq. (2.42).

21We note again that the superscript ‘diag’ indicates that we are working with the diagonal basis, i.e.

with gates acting on the eigenmodes which mix the physical and auxiliary degrees of freedom.
22Note that we only optimize over the purification of the target state. We assume that the reference state

is fixed as a factorized Gaussian, where both the physical and auxiliary degrees of freedom appear with the

same reference frequency.
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Before proceeding, we must consider that there are three possibilities in eq. (2.41)

depending on the relative magnitudes of the frequencies,

case 1: Cdiag
1 =

1

2
ln

µ2

ω+ω−
= −(r̄ + s̄) , µ ≥ ω± ,

case 2: Cdiag
1 =

1

2
ln
ω+

ω−
= cosh−1

[
cosh 2α cosh(r̄ − s̄)

]
, ω− ≤ µ ≤ ω+,

case 3: Cdiag
1 =

1

2
ln
ω+ω−
µ2

= r̄ + s̄ , µ ≤ ω± .

(2.44)

These results have been simplified by the introduction of the shifted squeezing parameters,

r̄ ≡ r +
1

2
ln
ω

µ
and s̄ ≡ s+

1

2
ln
ω

µ
. (2.45)

Now in order to perform the minimization in eq. (2.43), we must identify the different

regimes in eq. (2.44) in terms of the parameters of the purifying wavefunction,23

case 1: tanh2α ≤ tanh r̄ tanh s̄ and r̄ + s̄ ≤ 0 ,

case 2: tanh2α ≥ tanh r̄ tanh s̄ ,

case 3: tanh2α ≤ tanh r̄ tanh s̄ and r̄ + s̄ ≥ 0 .

(2.46)

We see immediately that for case 1, both r̄ and s̄ will be negative, while for case 3, both will

be positive. Let us next identify the value of s̄ which yields a minimal complexity within

each regime. For case 1, the complexity in eq. (2.44) is monotonically decreasing as a

function of s̄, and hence the minimal complexity is obtain by the maximal allowed value of

s̄, which can be found from eq. (2.46). Similarly for case 3, the complexity is monotonically

increasing with s̄, and so the minimal complexity is associated with the minimal value of s̄

allowed according to the inequalities in eq. (2.46).24 Incidentally, these two critical values

of s̄ coincide and are given by25

case 1,3: s̄crit = tanh−1

(
tanh2 α

tanh r̄

)
=

1

2
ln

(
e2r̄ cosh 2α− 1

e2r̄ − cosh 2α

)
. (2.47)

Hence the minimal complexity in these two regimes is given by

case 1,3: Cdiag
1 = ±1

2
ln

(
1− e−2r̄ cosh 2α

e2r̄ cosh 2α− 1

)
. (2.48)

For case 2, the minimal complexity is obtained by minimizing the function in eq. (2.44),

which leads to

case 2: s̄min = r̄ −→ Cdiag
1 = 2α . (2.49)

23This is done by analyzing the functional dependence of
ω±
µ

on cosh(2α) cosh(r̄− s̄) separately for each

sign of r̄ + s̄.
24Recall that the boundary of the allowed values for s̄ in each of these cases are precisely those for which

ω+ = µ or ω− = µ for case 1 and 3 respectively. Thus, the optimal purification in case 1 will have ω+ = µ,

and similarly the optimal purification in case 3 will have ω− = µ.
25Let us note that when r̄ < 0 and e2r̄ cosh(2α) > 1, s̄crit is pushed to minus infinity. Therefore case 1

is not valid for any value of s̄ and we are left with case 2 only. Similarly, for r̄ > 0 and e−2r̄ cosh(2α) > 1,

s̄crit is pushed to infinity, case 3 is not valid for any value of s̄ and we are once again left with case 2 only.
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Now the final step is to clarify which one of these minimal complexities is the relevant

one for given values of r̄ and α. If r̄ < 0 for instance, both cases 1 and 2 could be in

principle relevant, as long as e2r̄ cosh(2α) < 1. However for 0 > r̄ > −α, the lowest

complexity is that in case 2 and hence the final answer for the purification complexity is

given by eq. (2.49). A similar argument can be given in the overlapping regime of cases 2

and 3. We finally arrive at the purification complexity (2.43) for the one-mode Gaussian

mixed states (2.27),

Cdiag
1 (ρ̂1) =


1
2 ln

(
e−2r̄ cosh 2α−1
1−e2r̄ cosh 2α

)
, 0 ≤ α ≤ −r̄ ,

2α, α ≥ |r̄| ,
1
2 ln

(
e2r̄ cosh 2α−1

1−e−2r̄ cosh 2α

)
, 0 ≤ α ≤ r̄ .

(2.50)

One interesting point about this result is that the complexity of the mixed state ρ̂1 generally

depends on both the thermal parameter βω (or alternatively, α), and the shifted squeezing

parameter r̄ (which has absorbed the ratio µ/ω), whereas the (entanglement) entropy of

this state only depends on the combination βω. We return to this point in section 7.4.

At this point, we can also point out the various benefits of the parametrization intro-

duced in subsection 2.3. First, α and r are natural dimensionless parameters associated

with the thermal state and its squeezing. The state described by those parameters is always

physical, which means we do not need to impose extra constraints on those parameters. In

particular, the density matrix is automatically positive semi-definitive and hermitian for

any positive temperature and frequency. For r = 0, the density matrix corresponds to a

thermal state at temperature 1/β for a single harmonic oscillator of frequency ω. More

generally, for non-zero r, one can think of it as the thermal density matrix with an inverse

temperature β′ = e−2rβ for a harmonic oscillator of frequency ω′ = e2rω. That is, using

eq. (2.31), one can easily show that

ρ̂1 = Ŝ1(r) υ̂th(β, ω) Ŝ†1(r) = υ̂th(e−2rβ, e2rω) . (2.51)

In addition, these parameters simplify the analytical analysis of the minimization, and

bring the final result for the complexity and, in particular, the limits of validity of each

regime into a (much more) compact form. Further, the physical meaning of the purification

becomes clear — in order to purify the Gaussian state, we only need to purify its thermal

component, and the extra freedom in the optimization comes from the squeezing operator

S2(s) on the ancilla. Finally, the parametrization is closely related to the thermofield

double state at temperature 1/β which is defined by r = s = 0; and for r = s 6= 0, it is the

thermofield double at temperature 1/β′ of a harmonic oscillator of frequency ω′ (where β′

and ω′ are the same as defined above).

2.5 Purification complexity in the physical basis

Next, we explore the sensitivity of our previous results to the choice of the basis. In

particular, we re-examine the purification complexity of the one-mode mixed Gaussian

state, defined in eq. (2.16) or (2.27), with the F1 cost function but using the physical
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basis. That is, here the gates implicitly act directly on the original and auxiliary degrees

of freedom, rather than on the linear combinations comprising the eigenmodes of MT

describing the purification. This change of basis is accomplished with the orthogonal

transformation described in eq. (2.15).

To begin, we re-express the wavefunction matrix (2.40) for the purification |ψ12〉 in

terms of the shifted squeezing parameters in eq. (2.45) as follows

Mab
T = µ

(
e2r̄ cosh 2α −er̄+s̄ sinh 2α

−er̄+s̄ sinh 2α e2s̄ cosh 2α

)
. (2.52)

Similarly, the eigenvalues (2.42) become

ω± = µ er̄+s̄
(

cosh2α cosh(r̄ − s̄)±
√

cosh2 2α cosh2(r̄ − s̄)− 1

)
. (2.53)

Now, in order to evaluate the Cphys

1 complexity as in eq. (2.15), we need to determine the

orthogonal transformation which brings the matrix (2.52) to its diagonal form, see eq. (2.3).

That is,

M̃T =

(
ω− 0

0 ω+

)
= OT MT O with O ≡

(
cos θ − sin θ

sin θ cos θ

)
, (2.54)

where θ ∈ [0, π2 ] and

sin θ =
1√

X2 + 1
, cos θ =

X√
X2 + 1

,

X ≡ 1

sinh 2α

(√
cosh2 2α cosh2(r̄ − s̄)− 1− cosh 2α sinh(r̄ − s̄)

)
≥ 0 .

(2.55)

The next step is to rotate the generator H̃ in eq. (2.13), i.e.

H̃ =
1

2

(
ln ω−

µ 0

0 ln ω+

µ

)
, (2.56)

as in eq. (2.15), which defines the circuit generator in the physical basis26

H = O H̃ OT =
1

2

(
cos2 θ ln ω−

µ + sin2 θ ln ω+

µ − sin θ cos θ ln ω+

ω−

− sin θ cos θ ln ω+

ω−
cos2 θ ln ω+

µ + sin2 θ ln ω−
µ

)
. (2.57)

Again using eq. (2.15), C1 for the purified state corresponding to the wavefunction ma-

trix (2.52) in the physical basis becomes

Cphys

1 (|ψ12〉) =
1

4

(
2 sin 2θ ln

ω+

ω−
+

∣∣∣∣ln ω+ω−
µ2

− cos 2θ ln
ω+

ω−

∣∣∣∣
+

∣∣∣∣ln ω+ω−
µ2

+ cos 2θ ln
ω+

ω−

∣∣∣∣ ) . (2.58)

26As an aside, we note that the circuit generator H is easily expressed in terms of the “relative wave-

function” matrix MTM
−1
R directly in the physical basis as H = 1

2
ln
(
MTM

−1
R

)
.
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It will be convenient to optimize the purification by varying the angle θ rather than

working with the squeezing parameter s. Hence we use eq. (2.55) to replace

sinh(r̄ − s̄) = − tanh 2α cot 2θ . (2.59)

Note that the sign of sinh(r̄ − s̄) will be positive for θ > π/4 and negative for θ < π/4.

Combining this expression with eqs. (2.53) and (2.55), we can also express the other factors

in eq. (2.58) in terms of θ as follows

1

2
ln
ω+

ω−
= cosh−1(cosh 2α cosh(r̄ − s̄)) = sinh−1(sinh 2α csc 2θ) ,

1

2
ln
ω+ω−
µ2

= r̄ + s̄ = 2r̄ + sinh−1(tanh 2α cot 2θ) .

(2.60)

Using these expressions and examining eq. (2.58) according to the different possible signs

in the absolute values, we obtain

(a) −− : Cphys

1 = −2r̄ + sin 2θ sinh−1

(
sinh 2α

sin 2θ

)
− sinh−1(tanh 2α cot 2θ)

(b) +− : Cphys

1 =
√

2 sin
(

2θ − π

4

)
sinh−1

(
sinh 2α

sin 2θ

)
(2.61)

(c) −+ : Cphys

1 =
√

2 sin
(

2θ +
π

4

)
sinh−1

(
sinh 2α

sin 2θ

)
(d) + + : Cphys

1 = 2r̄ + sin 2θ sinh−1

(
sinh 2α

sin 2θ

)
+ sinh−1(tanh 2α cot 2θ)

where for instance +− indicates that the sign of the expression inside the first absolute

value in eq. (2.58) is positive and the sign of the expression inside the second absolute

value is negative. Finally, the purification complexity in the physical basis for the one-

mode Gaussian mixed state is given by minimizing this expression with respect to the free

parameter θ

Cphys

1 (ρ̂1) = minθ Cphys

1 (|ψ〉12) . (2.62)

Unfortunately, the exact analytical minimization of eq. (2.62) is not possible since it

would require solving a transcendental equation. Hence, in order to develop some intuition,

let us consider the simple case µ = ωe2r, i.e. r̄ = 0 where the purification complexity

reduces to

Cphys

1 =

{√
2 sin

(
2θ − π

4

)
sinh−1

(
sinh 2α
sin 2θ

)
: +− ,

√
2 sin

(
2θ + π

4

)
sinh−1

(
sinh 2α
sin 2θ

)
: −+ .

(2.63)

That is, Cphys

1 is given be either cases (b) or (c) in eq. (2.61). We are able to rule out cases

(a) and (d) (i.e. ++ and −−) by verifying that the product of the terms in the absolute

values in eq. (2.58) is negative using the identity27

sinh−1 (tanh 2α | cot 2θ | )− | cos 2θ | sinh−1 (sinh 2α | csc 2θ | ) < 0 . (2.64)

27This identity can be verified separately in each region 0 < θ < π/4 and π/4 < θ < π/2 by using the

fact that for α = 0 we obtain an equality together with the fact that the derivative of the left hand side

with respect to α has a definite sign in each region, namely, it is negative for 0 < θ < π/4 and positive for

π/4 < θ < π/2.
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To proceed further, let us point out an interesting way to identify which set of signs

of the terms in the absolute values is relevant for the evaluation of complexity. We can

regard the expressions for each of the cases in eq. (2.61) as evaluating the expression in

eq. (2.58), but without the absolute values, rather we are inserting the specified signs in

front of the last two terms. Hence for a given value of θ, we can evaluate all four of these

expressions. However, the correct result will correspond to the largest value because in

this case with the specified signs, both of the second and third terms must be making a

positive contribution to the complexity, as required by the absolute values in eq. (2.58).

Using this reasoning in eq. (2.63) with r̄ = 0, we can see that when θ < π/4, case (c) is

the correct choice, while for θ > π/4, the relevant case is (b). This fact will also be useful

when performing the numerical analysis of more general cases later on. We may also use

the identity a sinh−1(x) > sinh−1(ax) for a > 1, x > 0,28 with a = sin(2θ)±cos(2θ) > 1 for

0 < θ < π/4 and π/4 < θ < π/2 respectively, as well as the monotonicity of sinh−1(x), in

order to demonstrate that the minimal value for the complexity is obtained for θ = π
4 (which

corresponds to s̄ = r̄ = 0), see eq. (2.59). This yields the following purification complexity

Cphys

1 (ρ̂1(r̄ = 0)) = minθ Cphys

1 (|ψ〉12) = 2α . (2.65)

We may also point out, that for r = 0, this is simply the TFD purification of a state with

temperature β and frequency ω = µ. The addition of the squeezing parameter r leads to the

TFD purification of a state with temperature β′ = e−2rβ and frequency ω′ = ωe2r which

is equal to the reference frequency µ, according to the logic described around eq. (2.51).

Next, we return to the general case for which we examine the optimization (2.62)

numerically. Without loss of generality, let us assume that µ ≥ ωe2r, or equivalently

r̄ < 0.29 We will try to use the same logic as above in order to identify the ranges of θ

in which the different sets of signs in eq. (2.61) are valid. It is useful to start by looking

at a plot of all possible sign combinations given by the four cases (a)–(d), for all values

of 0 < θ < π/2 — see figure 2. As noted before, the relevant sign combination for

the complexity will always be the highest of the four lines, since that possibility takes into

account the correct (positive) signs for all the absolute values. Therefore, we must minimize

the complexity over the uppermost envelope of the plots in figure 2. Let us proceed with

this graphical understanding in mind. For a non-zero value of r̄ < 0, the different cases in

eq. (2.61) are shifted up (case (a)), down (case (d)) or not modified (cases (b) and (c)).

Using the same inequalities mentioned above, it is straightforward to see that case (d)

becomes irrelevant and is smaller than at least one of the other cases for all values of θ.

Therefore, in each region of θ, we should consider two competing sign combinations:

Cphys

1 (|ψ〉12) =


case (a) or (b) for π

4 ≤ θ ≤
π
2 ,

case (a) or (c) for 0 ≤ θ ≤ π
4 .

(2.66)

28This is due to the fact that sinh−1(x) is concave down.
29Note that the system is symmetric under the exchange r̄ → −r̄, θ → π

2
− θ, and (a)↔(d), (b)↔(c). As

a consequence, though the details of the analysis will slightly vary, the value of the complexity obtained by

minimizing (2.58) will only depend on the absolute value of r̄.
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Figure 2. Possible values for the pure state complexity Cphys
1 (|ψ12〉) in the physical basis as a

function of θ, for all possible sign combinations according to eq. (2.61) for fixed values of r̄ and α.

The complexity of the mixed state purified by |ψ12〉 is obtained by minimizing over the uppermost

envelope of each of these plots.

We have examined these cases numerically, see figure 2. The minimal purification

complexity is obtained for a value of θ that either lies at minimal points of the curves (a),

(b) or (c) or at the intersections of the curves (a) and (c) or of the curves (a) and (b)

depending on the values of r̄ and α considered. These values can be identified by solving

transcendental equations. For example, in the regime where α is small or −r̄ is large, the

minimal complexity is obtained at the point where the curves for cases (a) and (c) intersect,

which corresponds to solving the equation

−2r̄ = sinh−1(tanh 2α cot 2θc) + cos 2θc sinh−1

(
sinh 2α

sin 2θc

)
, (2.67)

and the purification complexity reads

Cphys

1,c (ρ̂1) = (sin 2θc + cos 2θc) sinh−1

(
sinh 2α

sin 2θc

)
. (2.68)

When the parameter α is large enough, we can find that the minimal complexity

corresponds to the minimal point along the curve (c) rather than to the intersection of

curves (c) and (a). This is illustrated in figure 3 which plots the difference Cphys

1,c − C
phys

1 .

The non-zero values in the middle of this plot mean that the minimization is obtained at
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Figure 3. The difference between the complexity obtained for θc at the intersection of cases (a)

and (c) and the exact purification complexity of one-mode Gaussian states in the physical basis

Cphys
1,c (ρ̂1) − Cphys

1 (ρ̂1) as a function of r̄ for some fixed values of α. We see that the complexity

obtained at the intersection between cases (a) and (c) with Cphys
1,c (ρ̂1) in eq. (2.68) ceases to be

optimal for some region of the parameter r̄ for large enough values of α.

the local minimal point of curve (c) where the complexity is given by

Cphys

1 (ρ̂1) =
√

2 sin
(

2θmin +
π

4

)
sinh−1

(
sinh 2α

sin 2θmin

)
(2.69)

where

∂θ

(
sin
(

2θ +
π

4

)
sinh−1

(
sinh 2α

sin 2θ

)) ∣∣∣∣
θmin

= 0, 0 ≤ θmin ≤ θc . (2.70)

Although we cannot solve for θc or θmin analytically, we may evaluate them numerically.

Similar equations can be written for other possible positions of the minimum. Figure 4

contains results for Cphys

1 (ρ̂1) from numerical minimization with fixed value of r̄.

2.5.1 Differences between the two bases

We must stress again that with the physical basis, the gates act directly on the original and

auxiliary degrees of freedom. This contrasts with the diagonal basis where the gates act on

the linear combinations comprising the eigenmodes of MT describing the purification. In

particular, then, one of the diagonal generators is precisely aligned with the generator H̃ of

the optimal circuit in eq. (2.13). As a consequence, one expects that with other choices of

basis, the purification complexity of mixed states (as well as the complexity of pure states)

will not be smaller than in the diagonal basis.

Comparing our results for of the one-mode Gaussian mixed states in the physical

basis (2.58) to those in the diagonal basis (2.44), we can show

Cphys

1 =
1

2

(
sin 2θ ln

ω+

ω−
+

∣∣∣∣cos 2θ
1

2
ln
ω+

ω−
− 1

2
ln
ω+ω−
µ2

∣∣∣∣+

∣∣∣∣12 ln
ω+ω−
µ2

+ cos 2θ
1

2
ln
ω+

ω−

∣∣∣∣) ,

≥ (sin 2θ + | cos 2θ|) 1

2
ln
ω+

ω−
≥ Cdiag

1 (case 2) , (2.71)
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Figure 4. Purification complexity of one-mode Gaussian states in the physical basis Cphys
1 (ρ̂1) as a

function of α for some fixed values of r̄. The fact that the curves with r̄ = −6 and r̄ = −10 coincide

after a certain value of α is due to the fact that this minimization is obtained at the minimum of

case (c) which is r̄ independent.

and

Cphys

1 =
1

2

(
sin 2θ ln

ω+

ω−
+

∣∣∣∣12 ln
ω+ω−
µ2

− cos 2θ
1

2
ln
ω+

ω−

∣∣∣∣+

∣∣∣∣12 ln
ω+ω−
µ2

+ cos 2θ
1

2
ln
ω+

ω−

∣∣∣∣) ,

≥ sin 2θ
1

2
ln
ω+

ω−
+

1

2

∣∣∣∣ln ω+ω−
µ2

∣∣∣∣ ≥ Cdiag

1 (case 1,3) , (2.72)

where we used the inequality |a− c|+ |c− b| ≥ |a− b|. Hence, we conclude

Cphys

1 (|ψ12〉) ≥ Cdiag

1 (|ψ12〉) , Cphys

1 (ρ̂1) ≥ Cdiag

1 (ρ̂1) , (2.73)

as expected. It is also easy to demonstrate that the latter inequality holds in various

examples by numerical minimization.

3 Optimal purification of mixed Gaussian states

In this section, we generalize the discussion of Gaussian mixed states to systems with an

arbitrary number of (bosonic) modes. We also examine some fundamental issues related to

the purification of such mixed states. The definition of purification complexity (1.1) sug-

gests that we should optimize the cost over all possible purifications, however, the procedure

that we adopted in the previous section is only to optimize over Gaussian purifications.30

We maintain this same approach here and throughout the following, and leave it to a future

project to test whether more general purifications yield a lower complexity.

In the previous section, our mixed state (2.16) described a single physical degree of

freedom, and it was purified by introducing a single ancilla. When trying to evaluate the

30Further as in footnote 22, we will assume that the reference state is a fixed factorized Gaussian, where

both the physical degrees of freedom and the ancillae appear with the same reference frequency.
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purification complexity for a mixed state with many modes, one must ask the question

of how many ancillae are needed to produce the minimal complexity. In subsection 3.1,

we begin by identifying the minimum number of extra degrees of freedom that are needed

to purify a given mixed state. We will refer to such purifications with only the essential

number of ancillae as essential purifications. Note that as we introduce additional ancillae,

the number of free parameters over which one would optimize increases, and so one might

expect that this will also reduce the corresponding purification complexity. However, we

will argue that this intuition is incorrect for Gaussian mixed states and that the optimal

purification should be an essential purification. Further, in identifying the minimum num-

ber of ancillae, our approach is to construct a ‘diagonal’ basis in which the density matrix

takes a canonical form where each eigenmode is separately either in a mixed or pure state.

Each of the mixed state modes can then be purified by a single ancilla in a purification,

which we refer to as a mode-by-mode purification. We identify the circumstances in which

these mode-by-mode purifications are optimal and also find that they still give a good

approximation to the true optimal purification in certain situations.

Our discussion is divided into two parts: In subsection 3.2, we analyze the complexity

in the diagonal basis, and in subsection 3.3, we repeat the same analysis in the physical

basis. This last discussion also includes a precise definition of what we mean by physical

basis complexity in systems with an arbitrary number of modes. The conclusions about

optimality are similar in both bases. Some technical details and extensions related to the

topics of this section appear in two appendices: appendix A explains how to extend the

alternative parametrization of section 2.3 to the case of multi-mode Gaussian states and

appendix B contains a numerical check of the analytic results of section 3.2.2.

This section then provides useful background for section 4 and 5 where we consider

the purification complexity in some examples of Gaussian mixed states in quantum field

theory. In particular, the purifications over which we optimize there will be both essential

and mode-by-mode purifications. However, let us add that the reader might simply read

section 3.1 as well as the introduction for section 3.3. These sections will introduce the

indispensable elements of our notation, which will be needed to read sections 4 and 5,

where we discuss applications to a free scalar field theory.

3.1 Purifying general gaussian states

In this subsection, we study Gaussian purifications of Gaussian density matrices with an

arbitrary number of modes. The discussion will follow closely the one in [25], and as before,

we will focus on density matrices and wavefunctions with real parameters for simplicity.

We start with the wavefunction of a pure Gaussian state

ΨAAc = NAAc exp

[
−1

2
(~qA, ~qAc)

(
Γ K

KT Ω

)(
~qA
~qAc

)]
, (3.1)

where the degrees of freedom were divided into the “inside” region A containing the NA
coordinates ~qA, and the “outside” region Ac containing the NAc coordinates ~qAc . The

wavefunction matrix in eq. (3.1) has to be positive definite in order for the wavefunction to
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be normalizable. The square matrices Γ and Ω are real, symmetric and positive definite.31

Further, the rectangular NA × NAc matrix K is also real32 and NAAc is the normaliza-

tion factor (ensuring that the wavefunction has unit norm). The reduced density matrix

describing the mixed state on the subsystem A is obtained by tracing out the degrees of

freedom in the outside region Ac, as follows

ρ̂A = TrAc
(
|ΨAAc〉 〈ΨAAc |

)
. (3.2)

This amounts to the Gaussian integral

ρA
(
~qA, ~q

′
A
)

=

∫
d qAc ΨAAc(~qA, ~qAc) Ψ†AAc(~q

′
A, ~qAc)

= NA exp

[
−1

2
(~qA, ~q

′
A)

(
Γ− 1

2KΩ−1KT −1
2KΩ−1KT

−1
2KΩ−1KT Γ− 1

2KΩ−1KT

)(
~qA
~q ′A

)]
.

(3.3)

Following the reverse logic, let us start with a general mixed Gaussian state of NA modes

with the (real) density matrix

ρA
(
~qA, ~q

′
A
)

= NA exp

[
−1

2
(~qA, ~q

′
A)

(
A −B
−B A

)(
~qA
~q ′A

)]
, (3.4)

where the NA ×NA matrices A and B are both real and symmetric. Further, we must

require B to be positive semi-definite to ensure that the density matrix is non-negative, and

A−B to be a strictly positive matrix to ensure that the density matrix can be normalized.33

In this case, a wavefunction of the form (3.1) will purify ρA if the two following constraints

are satisfied

Γ = A+B ,
1

2
KΩ−1KT = B . (3.5)

In this situation, the ~qA are the physical degrees of freedom while the ~qAc are now auxiliary

degrees of freedom. While Γ is completely fixed by the first constraint above, it should be

clear that the second constraint leaves a great deal of freedom in the choice of Ω and K.

Assuming K has a left inverse (and B is invertible),34 we can rewrite the constraints (3.5) as

Γ = A+B , Ω =
1

2
KTB−1K , (3.6)

31Note that sub-matrices of positive definite matrices are also positive definite. It will also be important

that positive definite matrices are invertible.
32The restriction to real matrices here and above are a choice that we impose to simplify our analysis.

In contrast, the positivity of Γ and Ω is required to ensure that the wavefunction is normalizable.
33This also implies that A is a strictly positive matrix, since the sum of two positive definite matrices is

also positive definite.
34We stress that these conditions are not achieved for generic purifications. For example, a linear trans-

formation K : Ac → A has left inverse if and only if it is injective (i.e. one-to-one). This immediately

implies that NAc = dim(Ac) ≤ dim(A) = NA. This constraint does not hold in general since we can

introduce as many ancillae as we wish in purifying a given mixed state. However, it does hold for essential

mode-by-mode purifications, which will be the focus of our analysis in the following. Similar comments

apply for the conditions under which B is invertible.
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where Ω is completely determined by B and K. Hence we can think of the freedom in

choosing the purification as being parameterized by the choice of the NANAc components

of K. Of course, this is the multi-mode generalization of the freedom found in eq. (2.23),

where the single parameter k parameterized the purifications of the density matrix (2.16)

for a single degree of freedom. Hence with many modes (and ancillae), the purification

complexity will be found by optimizing the usual complexity of the purification (3.1) over

the freedom in choosing the matrix K.

However, it is natural to first ask what is the minimum number of ancillae NAc required

to purify the mixed state ρA. A priori, we cannot be sure that such purifications, with only

the essential number of additional modes, will lead to the minimal value of the purification

complexity, however, we will provide evidence for this later in this section. In order to count

the degrees of freedom needed for the purification, we start by bringing the matrices A and

B in eq. (3.4) to a canonical form by performing a sequence of coordinate transformations:

First, we find an orthogonal matrix OA that diagonalizes A, i.e. DA = OTA ·A ·OA. We then

rescale the coordinates ~qA such that A becomes the unit matrix. Finally, we diagonalize

the transformed B matrix with a second orthogonal transformation OB. The complete

coordinate transformation reads

~qA = OA ·D−1/2
A ·OB · ~̃qA , (3.7)

and of course, the same equation holds for ~q ′A. In this basis,35 the quadratic form describing

the density matrix (3.4) is given in terms of matrices Ã and B̃ which read

Ã = INA , B̃ = OTB ·D
−1/2
A ·OTA ·B ·OA ·D

−1/2
A ·OB = DB . (3.10)

In this canonical form, the matrix B has become

B̃ = DB =



b1
b2

. . .

bnB
0

. . .

0


, (3.11)

35As an aside, we note that eq. (3.7) is not an orthogonal transformation and as a consequence, the

reference state (2.6), which we are implicitly choosing for the purified AAc system,

ΨR (~qA, ~qAc) = NR exp

[
−µ

2
(~qA, ~qAc)

(
INA 0

0 INAc

)(
~qA
~qAc

)]
, (3.8)

transforms nontrivially. The transformed reference state becomes

ΨR

(
~̃qA, ~qAc

)
= NR det(DA) exp

[
−µ

2
(~̃qA, ~qAc)

(
OTB ·D−1

A ·OB 0

0 INAc

)(
~̃qA
~qAc

)]
, (3.9)

which is no longer an unentangled product state. However, this point is irrelevant for our argument

determining the minimal value of degrees of freedom NAc required for the purification.
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with nB = rank(B̃) = rank(B) non-zero components. Therefore written in terms of the

transformed coordinates ~̃qA, the density matrix ρA has been decomposed into nB two-by-

two blocks describing modes in a mixed state, i.e.(
1 bi
bi 1

)
, (3.12)

and NA−nB two-by-two unit matrices describing modes in a pure state. Now it is possible

to follow the procedure in section 2.2 to purify each of the mixed-state modes with a

single ancilla, and finally transform back with eq. (3.7) to obtain a purification of the

density matrix ρA in the original ~qA basis. We refer to such purifications as mode-by-

mode purifications.

It is also straightforward to show that we cannot purify ρA with less than nB additional

degrees of freedom, namely NAc ≥ nB. Towards this goal, we consider the following

theorem regarding the rank of the product of two matrices

rank(M ·N) ≤ min(rank(M), rank(N)) . (3.13)

Hence applying this theorem to the second constraint in eq. (3.5), i.e. 1
2K Ω−1KT = B, we

see that if a solution exists then we must have rank(B) ≤ min(rank(Ω−1), rank(K)). Next

we observe that since the NAc ×NAc matrix Ω is invertible, rank(Ω−1) = rank(Ω) = NAc .

Furthermore, rank(K) ≤ min(NA, NAc) ≤ NAc since K is an NA ×NAc matrix. Hence we

arrive at

NAc ≥ nB , (3.14)

where nB ≡ rank(B). That is, we will need at least nB ancillae in the Ac system in

order to purify the mixed Gaussian state ρA. However, having explicitly constructed a

purification with NAc = nB above, we know that it is possible to saturate this bound and

we may conclude that this is the minimum number of extra degrees of freedom needed for

the purification.

We refer to these purifications containing only the essential number of ancillae as

essential purifications.36

3.2 Optimal purification in the diagonal basis

In the previous subsection, we found the minimum number of ancillae required to purify

a mixed Gaussian state (with a Gaussian pure state). However, we still need to find

the optimal purification for the mixed state ρA according to the definition of purification

complexity (1.1), a question which we examine in the diagonal basis here. While we do

not have a general solution for this question, we will argue that the optimal purification

has a relatively simple form at least in certain interesting cases. First, we demonstrate

that the optimal purification is, in fact, the essential purification for the case of a single

physical degree of freedom. It would become very cumbersome to extend our proof to

36We chose this name to distinguish this class of purifications from the optimal purifications, which are

defined to be the purifications yielding the minimal complexity.
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higher numbers of physical modes, but we believe that our result suggests that the same

should hold more generally.

On the other hand, as we demonstrated above, even if we fix the number of ancillae,

there are many ways to purify ρA when the system A contains many modes. Finally, we

argue that at least for some simple but interesting Gaussian states in physical problems,

the optimal purification can be found by optimizing the purifications of the individual

diagonals. However, before proceeding with these questions, we begin by showing that

there is a symmetry amongst the Gaussian purifications, which leads to same purification

complexity from a family of distinct purifications all of which produce the same mixed state.

3.2.1 Degenerate purifications

Here, we will demonstrate that there is a degeneracy amongst the purifications (3.1) defined

by eq. (3.5). That is, we will show that for a fixed mixed state, there are many distinct

purifications, all of which have the same diagonal spectra and hence, they have the same

complexity using eq. (2.14). This introduces a symmetry which will be useful to simplify

our analysis in the following.

Beginning with a purification described by eq. (3.1), we can perform a coordinate

transformation on the ancillae(
~qA
~̂qAc

)
=

(
INA 0

0 R−1
Ac

)(
~qA
~qAc

)
, (3.15)

where in general, RAc ∈ GL(NAc ,R). Of course, the transformed wavefunction is charac-

terized by the matrix (
Γ̂ K̂

K̂T Ω̂

)
=

(
Γ KRAc

RTAc K
T RTAc ΩRAc

)
. (3.16)

Integrating out the ~̂qAc still yield precisely the same density matrix. Now in consider-

ing complexity, we may require that the reference state (3.8) remains unchanged by the

transformation (3.15), which imposes the constraint

RTAc RAc = INAc , (3.17)

i.e. RAc ∈ SO(NAc). That is, restricting eq. (3.15) to be an orthogonal transformation

leaves the reference state unchanged, but further, such a transformation will also leave the

diagonal spectrum, i.e. the eigenvalues of eq. (3.16), unchanged. Hence, evaluating the

complexity with the expressions in eq. (2.14), we would find that all of these distinct pu-

rifications yield precisely the same complexity, and hence the same purification complexity

for the corresponding mixed state. This degeneracy will allow us to reduce the number of

parameters in searching for the optimal purification below.

Perhaps we should add that since the complexity is a scalar function on the NANAc-

dimensional space of purifications, we expect that for a generic value of the complexity, a

(NANAc − 1)-dimensional subspace will be degenerate, i.e. have the same complexity. Of

course, this is a much larger subspace than that defined by the SO(NAc) transformations
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above, i.e. the latter defines a subspace of dimension 1
2NAc(NAc−1). The key feature distin-

guishing these purifications is that the diagonal spectrum is left invariant by the SO(NAc)

transformations. In contrast, for a typical purification on the degenerate subspace, the

spectrum will be different even though the complexity C1 is unchanged.

3.2.2 Essential purifications

In general, one would expect that increasing the number of ancillae might help in reducing

the complexity of the corresponding purifications for a fixed density matrix. In this section,

we will demonstrate that this is not the case for the Gaussian states in which we are

interested. More precisely, we will consider the mixed state (2.16) for a single harmonic

oscillator and show that purifying this Gaussian state with two ancillae does not improve

the purification complexity over the previous complexity (2.50) found with a single ancilla.

Further, we will take this result for a single oscillator as an indication that adding extra

ancillae does not improve the purification complexity for Gaussian mixed states in general.

We begin with the following Gaussian state for three modes,

ψ123(x, y, z) = 〈x, y, z |ψ123〉 =

(
det

M3

π

)1/4

exp

[
−1

2
~xT ·M3·~x

]
, (3.18)

where as before, M3 is chosen to be real, and ~xT = (x, y, z), where x corresponds to the

physical degree of freedom while y and z are the ancillae. In order for this state to be a

purification of the single-mode density matrix in eq. (2.16), i.e.

ρ̂1(x) = Try,z
(
|ψ123〉 〈ψ123|

)
, (3.19)

we must constrain the parameters in M3 appropriately. To understand these constraints,

we write

M3 =
(
Rφ13

)T (
Rθ12

)T λ1 0 0

0 λ2 0

0 0 λ3

Rθ12R
φ
13 , (3.20)

where

Rθ12 =

 cosθ sinθ 0

−sinθ cosθ 0

0 0 1

 and Rφ13 =

 cosφ 0 sinφ

0 1 0

−sinφ 0 cosφ

 . (3.21)

That is, we have parameterized the matrix M3 in terms of the three eigenvalues, λi with

i = 1, 2, 3, and two angles, θ and φ. In principle, M3 should be described by six indepen-

dent parameters, but we have discarded the last rotation angle because of the degeneracy

described in the previous subsection. Now eq. (3.19) imposes two constraints (cf. eq. (3.5)

with A = a and B = b) with which we can solve for the angles as

sin2 φ =
λ3

(λ3 − λ1)(λ3 − λ2)

(
a+ b− (λ1 + λ2) +

λ1λ2

a− b

)
, (3.22)

sin2θ = λ2
λ1 − λ3

λ1 − λ2

a+ b− (λ1 + λ3) + λ1λ3
a−b

(a+ b− λ3)λ3 − λ1λ2 + λ1λ2λ3
a−b

(3.23)

=
λ2

λ3

λ1 − λ3

λ1 − λ2

(
1 +

(a− b− λ3)λ1(λ2 − λ3)

(a− b)((a+ b− λ3)λ3 − λ1λ2) + λ1λ2λ3

)
.
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Note that these expressions restrict the three eigenvalues to lie within an allowed space

where eqs. (3.22) and (3.23) yield 0 ≤ sin2 φ ≤ 1 and 0 ≤ sin2 θ ≤ 1.

Now using the F1 cost function, the complexity of the Gaussian state (3.18) becomes

Cdiag
1 (|ψ〉123) =

1

2

(∣∣∣∣lnλ1

µ

∣∣∣∣+

∣∣∣∣lnλ2

µ

∣∣∣∣+

∣∣∣∣lnλ3

µ

∣∣∣∣) , (3.24)

where µ is the frequency characterizing the corresponding reference state (2.6). Of course,

because of the absolute values, the form of C1 will depend on whether the ratios λi/µ are

bigger or smaller than one (similar to what was found in eq. (2.44) with a single ancilla).

Hence, there are eight distinct branches and we note that they intersect at the three planes

defined by λi = µ. That is, C1 = ln f where f is any of eight combinations of products

of the ratios λi/µ or their inverses (whichever is greater than one), e.g., f = λ1λ2
µλ3

in the

octant where λ1, λ2 > µ > λ3.

Given eq. (3.24), the purification complexity is given by optimizing the eigenvalues

to minimize the result. One can argue that this minimum will not appear at some point

inside one of the octants as follows: Firstly, we recall that the eigenvalues λi, as well as

the reference frequency µ, are all positive quantities. Now within any of the branches (or

octants), f has a simple functional dependence on the eigenvalues. In particular, when

λi < µ, f contains a factor of 1/λi and so ∂λiC1 = −1/λi < 0. Now, naively, the minimum

along this direction would appear at λi → ∞, but this is inconsistent with the constraint

that λi < µ. Therefore there are no local extrema within the corresponding octants.

Similarly, with λi > µ, f contains a factor of λi and ∂λiC1 = 1/λi > 0. In this case,

the derivative again vanishes with λ3 → ∞, but the corresponding extrema would be a

maximum of the complexity. Again, we conclude that no local extrema appear within these

octants. Therefore, we are led to conclude that the minima for the complexity (3.24) must

appear either (1) on the planes where the branches intersect or (2) at the boundaries of

the allowed parameter space for the λi.

Next, we consider the boundaries of the allowed parameter space. The latter arise

where either of the expressions in eqs. (3.22) and (3.23) reaches zero or one, i.e. sin2θ = 0

or 1, or sin2φ = 0 or 1. At these boundaries, we find that only two of the degrees of freedom

are entangled:

M3|sin θ=0 =

λ1 cos2 φ+ λ3 sin2 φ 0 (λ1 − λ3) cosφ sinφ

0 λ2 0

(λ1 − λ3) cosφ sinφ 0 λ3 cos2 φ+ λ1 sin2 φ

 ,

M3|sin2 θ=1 =

λ2 cos2 φ+ λ3 sin2 φ 0 (λ2 − λ3) cosφ sinφ

0 λ1 0

(λ2 − λ3) cosφ sinφ 0 λ3 cos2 φ+ λ2 sin2 φ

 , (3.25)

M3|sinφ=0 =

λ1 cos2 θ + λ2 sin2 θ (λ1 − λ2) cos θ sin θ 0

(λ1 − λ2) cos θ sin θ λ2 cos2 θ + λ1 sin2 θ 0

0 0 λ3

 ,

M3|sin2 φ=1 =

λ3 0 0

0 λ2 cos2 θ + λ1 sin2 θ (λ1 − λ2) cos θ sin θ

0 (λ1 − λ2) cos θ sin θ λ1 cos2 θ + λ3 sin2 θ

 .
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We may discard the last case (i.e. sin2 φ = 1) because the corresponding purification (3.18)

only involves entanglement between the two ancillae. Hence this will always leave the

physical oscillator in a pure state when tracing out the two ancillae. In the other three

cases, the physical oscillator couples to one of the two ancillae. In any of these situations,

the complexity will be minimized by setting the eigenvalue for the unentangled degree

of freedom to the reference frequency, i.e. λi = µ, in which case its contribution to the

complexity vanishes. Hence with this choice, we can discard the second ancilla, and the

problem reduces to determining the purification complexity with a single ancilla. That is,

the minimum complexity on any of these three edges will be precisely the same as that

found with a single ancilla in section 2.37

This leaves us to consider the intersection planes between the various branches of

eq. (3.24). Of course, on any of these intersections, one of the eigenvalues is again set to the

reference frequency, e.g., λ3 = µ. Hence we note that the minima identified above arise at

the intersection of one of the intersection planes with one of the boundaries of the allowed

parameter space. However, on the ‘interior’ of the intersection plane, we still have the

freedom to optimize two independent eigenvalues (rather than just one on the boundary),

and so one might wonder if the complexity finds a lower minimum in the interior. However,

one may use analogous arguments to those above examining ∂λiC1 to argue that again on

any of the intersection planes the minimum must be where this plane meets the boundary

or one of the other planes where another eigenvalue reaches µ. Hence the first possibility is

already covered by the previous analysis of the complexity on the boundary of the allowed

parameter space. Repeating the derivative argument for the intersection of two planes, one

is lead to the possibility that the minimum may lie at the intersection of all three planes,

i.e. at λ1 = λ2 = λ3 = µ. However, this possibility is ruled out since eq. (3.22) makes clear

that this point is not within the allowed parameter space.38

Therefore we conclude that the complexity is optimized on the boundary of the allowed

parameter space. However, there we found that one of the two ancillae decoupled and the

optimal purification reduced to that found with a single ancilla in section 2. That is, with

two ancillae, the minimum complexity in the diagonal basis is achieved with a purification

where the physical degree of freedom is only entangled with one of the ancillae, and the

second ancilla remains unentangled. We provide an additional numerical check of this

result in appendix B.

We might note that it appears that the first three cases in eq. (3.25) yield three

distinct minima. However, we should note that the first two cases, i.e. sin2 θ = 0 and 1,

37Following the results of section 2, to find the optimal two harmonic oscillator purification of our den-

sity matrix, we would find three cases again depending on the relation of the parameters of the density

matrix. For cases 1 and 3 of section 2.4, one of the eigenmodes of the optimal two harmonic oscillator

purification is equal to the reference frequency. The fact that the unentangled eigenmode of the optimal

three harmonic oscillator purification is also equal to the reference frequency implies that the optimal three

harmonic oscillator purification has a degenerate eigenvalue. This makes one of the angles in the polar

decomposition (3.20) degenerate in the same way that the angles of radial coordinates are degenerate at

the origin of the coordinate system.
38Actually, if the three eigenvalues are identical, then the rotations in eq. (3.20) act trivially. As a

result, M3 ∝ I which implies that the original state was actually pure, and hence this case is not really of

interest here.
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differ only in the labelling of the eigenvalues and are in fact describing the same purifying

states (3.18), where x and z are entangled while y remains unentangled. The only difference

in the third case, i.e. sin φ = 0 is that the purification entangles x and y while z remains

unentangled. Of course, both purifications yield the same optimal complexity. We might

add that this degeneracy is a remnant of the SO(2) symmetry implied by the discussion in

subsection 3.2.1.

While our analysis yields a clear result for a single physical oscillator, it would be

difficult to extend this analysis to a mixed state with many degrees of freedom. Still, we

are emboldened to interpret this result as an indication that adding extra ancillae will

not improve the purification complexity for Gaussian mixed states in general. That is,

throughout the following, we will assume that the optimal purification for a Gaussian

mixed state for many oscillators is an essential purification, i.e. the number of ancillae

saturates eq. (3.14) with NAc = nB.

3.2.3 Mode-by-mode purifications

In section 3.1, we identified the minimum number of ancillae required to purify a Gaussian

mixed state (3.4). Our approach involved finding a ‘diagonal’ basis in which the density

matrix ρA took a canonical form where each mode was separately either in a mixed or

pure state. Each of the mixed state modes could then be purified by a single ancilla, using

the construction presented in section 2.2 for one-mode mixed states. We will refer to these

purifications as mode-by-mode purifications. Certainly, there are many ways to purify a

mixed state on many degrees of freedom, as illustrated in figure 5. The top panel indicates

a simple mode-by-mode purification while the lower panel illustrates a general purification

for a multi-mode Gaussian state. Implicitly, the general purification will have many more

free parameters to optimize and so one would expect that this would allow for a smaller

purification complexity for the corresponding mixed state. In this subsection, we will

examine this question and identify the conditions for which a mode-by-mode purification

provides the optimal purification for a Gaussian mixed state. To make our analysis both

explicit and tractable, we focus on Gaussian mixed states for two degrees of freedom.

Hence, considering the two-mode system as an example, we can purify the two modes

individually or together, as illustrated in the figure 5. The corresponding pure states can

be written as

|Ψ〉 = |Ψ11c〉 ⊗ |Ψ22c〉 or |Ψ̃〉 =
∣∣Ψ12(12)c

〉
. (3.26)

That is, we have a mode-by-mode purification on the left and a general purification on

the right.

To proceed with explicit calculations, let us begin with Gaussian mixed states (for two

modes) taking a simple product form,

ρA(~qA, ~q
′
A) = ρ1(x1, x

′
1) ρ2(x2, x

′
2) (3.27)

= NA exp

[
−1

2
(~qA, ~q

′
A)

(
AD −BD
−BD AD

)(
~qA
~q ′A

)]
,
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ρA

ρAc

⋯

⋯

ρA

ρAc

⋯

⋯
ψAAc

ψ11c ψ22c ψ33c ψNNc⊗ ⊗ ⊗ ⋯

Figure 5. Illustration of the different ways to purify a multi-mode Gaussian state ρ̂A. We refer to

the purifications of the form Ψ11c ⊗Ψ22c ⊗ · · · ⊗ΨNNc as mode-by-mode purifications.

where ~qA = (x1, x2),

AD =

(
a1 0

0 a2

)
and BD =

(
b1 0

0 b2

)
. (3.28)

Borrowing from the analysis in section 2.2, the mode-by-mode purification can be written as

Ψ⊗AAc = N⊗AAc exp

[
−1

2
(~qA, ~qAc)

(
ΓD KD

KT
D ΩD

)(
~qA
~qAc

)]
(3.29)

where ~qAc = (y1, y2),

ΓD =

(
a1 + b1 0

0 a2 + b2

)
, ΩD =

(
k2

1
2b1

0

0
k2

2
2b2

)
and KD =

(
k1 0

0 k2

)
. (3.30)

We then translate the above purification to the parameters introduced in section 2.3 using

eq. (2.38), i.e.39

a1 + b1 = ωe2r1 cosh 2α1 ,
k2

1

2b1
= ωe2s1 cosh 2α1 , k1 = −ωer1+s1 sinh 2α1 ,

a2 + b2 = ωe2r2 cosh 2α2 ,
k2

2

2b2
= ωe2s2 cosh 2α2 , k2 = −ωer2+s2 sinh 2α2 .

(3.31)

For this kind of purification, we only need to minimize two free parameters s1, s2 and the

final complexity is given by the sum of the one-mode complexities of purification

Cdiag
⊗AAc = Cdiag

1 [ρ̂1(r1, α1)] + Cdiag
1 [ρ̂2(r2, α2)] , (3.32)

where Cdiag
1 is given in eq. (2.50).

39Note that we have set ω1 = ω2 = ω for both oscillators. Choosing different frequencies can be absorbed

by redefining the squeezing parameters, r1,2 and s1,2.
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We can also consider the most general purification of eq. (3.27). The latter takes the

form given in eq. (3.1), which we write here as

ΨAAc = NAAc exp

[
−1

2
(~qA, ~qAc)

(
Γ K

KT Ω

)(
~qA
~qAc

)]
(3.33)

with

Γ = ΓD , Ω =
1

2

(
f2
2
b2

+
k2

1
b1

f2k2

b2
+ f1k1

b1
f1k1

b1
+ f2k2

b2

f2
1
b1

+
k2

2
b2

)
and K =

(
k1 f1

f2 k2

)
. (3.34)

Here we have used eq. (3.6) to constrain the pure state, but we do not demand that Ω or

K are diagonal as in eq. (3.30). For this purification (3.33), we have four free parameters

(k1, k2, f1, f2) and thus, the purification complexity is defined as

Cdiag
A = mink1,k2,f1,f2

(
Cdiag
AAc

)
. (3.35)

However, as discussed in subsection 3.2.1, there is degeneracy amongst the possible optimal

purifications. In particular, the purification complexity will be unchanged by the following

SO(2) transformation40

K̂ =

(
k1 f1

f2 k2

)
·

(
cos θ − sin θ

sin θ cos θ

)
=

(
k̂1 f̂1

f̂2 k̂2

)
. (3.36)

Hence we can simplify the optimization by eliminating one of the parameters (k1, k2, f1, f2),

e.g., we can choose tan θ = f1/k1 to set f̂1 = 0. That is, we know there will be an optimal

purification in which f1 = 0 and hence we can reduce eq. (3.35) to

Cdiag
A = mink1,k2,f1=0,f2

(
Cdiag
AAc

)
. (3.37)

However, performing the minimization numerically using Mathematica, we found that the

optimal purification coincided with the mode-by-mode purification (3.30) (i.e. f2 = 0). To

be precise, we determined optimal purifications for mixed states described by αi ∈ [0, 5] and

ri ∈ [−10, 10],41 and were able to show that
Cdiag
⊗AAc−C

diag
A

Cdiag
A

. 10−10. Hence the general purifi-

cation complexity (3.37) reduces to the expression in eq. (3.32). This demonstrates that

the mode-by-mode purification is indeed the optimal purification for two-mode Gaussian

mixed states which factorize as in eqs. (3.27)–(3.28).

However, the previous conclusion does not apply for the most general two-mode Gaus-

sian mixed states, as we will now demonstrate. Let us replace the previous example (3.27)-

(3.28) with a general two-mode density matrix (3.4) where

A =

(
a1 0

0 a2

)
and B =

(
b1 g

g b2

)
. (3.38)

40We note that this rotation only acts on the ancillae and so leaves Γ = ΓD unchanged — see eq. (3.16).
41Note that this corresponds to an exponentially large range for the parameters, ai and bi, using eqs. (2.31)

and (2.34).
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Comparing to the factorized case (i.e. with eq. (3.28)), one may also expect the off-diagonal

components of A to be nonvanishing in general. However, we can always perform an SO(2)

transformation to diagonalize A leaving us with the expressions given above. In section 3.1,

we showed that any Gaussian state can be decomposed into a product state using a general

(i.e. non-orthogonal) transformation as in eq. (3.7). One may then naively expect that the

optimal purification of ρA will be a simple mode-by-mode purification in this new ‘diagonal’

basis, i.e. the simplest solutions found in section 3.1. However, a more careful analysis is

required since, as we stressed in eq. (3.9), this general transformation modifies the reference

state so that it is no longer a product state in the new basis.

To test the hypothesis that the optimal purification takes the form of a mode-by-mode

purification in the diagonal basis, we examined a variety of examples using similar nu-

merical methods to those employed above. The purification takes the same form as in

eq. (3.33) where Γ, Ω and K are constrained by eq. (3.5) using the A and B matrices given

in eq. (3.38). Let us parameterize K as in eq. (3.34) and then as in the previous example,

we can use a rotation acting on the ancillary directions ~qAc = (y1, y2) to set f1 = 0. Then as

above, we found the optimal purification numerically for a variety of examples by minimiz-

ing over the three remaining free parameters (k1, k2, f2). Given the optimal purification,

we can examine its form in the diagonal basis produced by the transformation in eq. (3.7).

Since we have already diagonalized A in eq. (3.38), this transformation reduces to

~qA = A−1/2 ·OB · ~̃qA . (3.39)

For a mode-by-mode purification, all three matrices, Γ, Ω and K, should be simul-

taneously diagonal in the new basis. The transformation (3.39) is chosen to make sure

that A and B in the density matrix (3.4) are diagonal and hence with Γ = A + B from

eq. (3.5), the Γ matrix is automatically diagonal in the new basis. Hence the question

reduces to determining whether or not Ω and K are both diagonal or rather simultane-

ously diagonalizable in the new basis. The latter refers to the fact that there are still the

SO(2) transformations (3.16) which map amongst the optimal purifications. For example,

let us begin with the original coordinates in eq. (3.1), and the optimal Kop is found by the

minimization among the three free parameters in the matrix

K =

(
k1 0

f2 k2

)
. (3.40)

Now applying the (inverse of the) transformation in eq. (3.39), it becomes

K̃ = OTB ·A−1/2 ·Kop =

(
k̃1 f̃1

f̃2 k̃2

)
. (3.41)

But then we would employ eq. (3.16) to see if we can find a rotation such that K̃ becomes

diagonal, i.e.

K̂ =

(
k̂1 0

0 k̂2

)
?
= K̃ RAc (3.42)
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Figure 6. δK̃ (see eq. (3.43)) as a function of g (the off-diagonal component of B). In this

example, a1/µ = 4, a2/µ = 2, b1/µ = 2 and b2/µ = 3
2 . The red vertical line indicates the upper

bound g/µ = 1 for the parameter g, which is constrained by the positivity of the matrix A − B.

Along the top axis, ∆ is a measure which quantifies the deviation of A and B from being commuting

— see eq. (3.44).

with RAc ∈ SO(2). This is a nontrivial constraint since RAc rotates each of the rows of

K̃ as a vector separately, and hence if K̃ is diagonalizable, then these row vectors must

already be orthogonal in K̃. Therefore a necessary condition to have a mode-by-mode

purification is that

δK̃ = k̃1f̃2 + k̃2f̃1 = 0 . (3.43)

In fact, δK̃ = 0 is a necessary and sufficient condition. Since we have put B in a diagonal

form with the transformation (3.39), the second constraint in eq. (3.6) shows that if K is

also diagonal then Ω will also be diagonal in the same basis. Therefore we can see that

when δK̃ = 0, the optimal purification is indeed a mode-by-mode purification. On the

other hand, if δK̃ 6= 0, the optimal purification must still have a more complicated form in

the diagonal basis.

A typical plot for δK̃ is shown in figure 6. Recall that the optimal purification, i.e.

the optimal K̃, was found numerically following the scheme in eq. (3.37). Our numerical

results support the hypothesis that the mode-by-mode purification is optimal when the

A,B matrices commute, or equivalently, when the density matrix can be factorized, as in

eqs. (3.27)–(3.28).42 This result is not surprising because when [A,B] = 0, it is always

possible to find an orthogonal transformation that acts on the ~qA and brings the target

state (explicitly) to the form of a factorized product of one-mode Gaussian states. In this

case, our numerical results support the previous conjecture about the optimal purification

for such product states.

42For commuting A,B, we explored two possibilities numerically: a1 = a2 or g = 0. The latter is the

same as with the mode-by-mode purification. For the former, we considered the parameters in the ranges:

a1 = a2 ∈ [2, 6] , b1, b2 ∈ [1, 3] , g ∈ [0, 0.5]. We found that δK̃ was fluctuating within the range 10−6 to 10−9.
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While we found in general that a mode-by-mode purification is not optimal, we would

still like to show that such purifications (in the diagonal basis) produce a very good ap-

proximation to the optimal one in certain circumstances. In particular, for a variety of

examples, as we detail below, we found the optimal purification numerically, but found

that the associated complexity did not improve very much the complexity found by only

optimizing over mode-by-mode purifications, i.e. by restricting the purification to have the

form in eqs. (3.29)–(3.30) in the ~̃qA basis of eq. (3.39) and minimizing the complexity of

the two free parameters k̂1,2.43 In order to quantitatively measure the deviation of the A

and B matrices from being commuting, we define

∆ =
√
N
‖[A,B]‖F

‖A‖F ‖B‖F

, (3.44)

where ‖A‖F denotes the Frobenius norm, i.e.

‖A‖F≡
√

Tr (A†A) =

√√√√ m∑
i=1

n∑
j=1

|Aij |2 , (3.45)

for an m × n matrix. We have chosen this definition (3.44) so that it does not change if

we rescale the matrices A and B by an overall constant. Note that we have also included

an overall factor of
√
N in eq. (3.44) where N is the number of oscillators in the original

mixed state (i.e. both A and B are N × N matrices). This ensures that if the matrices

are chosen at random (i.e. with all elements of order one), then ∆ does not scale with N

(i.e. it does not becomes arbitrarily small or large as the number of degrees of freedom

becomes large, as in our QFT calculations).44 These features eliminate any trivial effects

from our measure of noncommutativity, assuring that we can still use it when dealing with

a very large number of oscillators in the QFT calculations. For example, applying the

definition (3.44) to the two-mode case with the matrices A and B as defined in eq. (3.38),

one finds

∆ =
2 | (a1 − a2) g |√(

a2
1 + a2

2

) (
b21 + b22 + 2g2

) < |a1 − a2|√(
a2

1 + a2
2

) < 1 , (3.46)

where the constrains are due to the positivity of the matrices A and B.45

43That is, we define a two-parameter family of purifications with

K =
√
AOB K̂ where K̂ =

(
k̂1 0

0 k̂2

)
,

and then optimize the complexity in the diagonal basis Cdiag
1 , i.e. (2.14) with the forms of K,Γ,Ω matrices in

the original basis over the two free parameters k̂i. That is, the complexity is still defined in the regular way

but our approximation is that C̃ is derived by limiting the optimization to only varying these two parameters.

When the matrix A is not diagonal, the mode-by-mode purification takes the form K = OA ·D−1/2
A ·OB ·K̂,

where OA is the matrix that brings A to the diagonal form DA, see eq. (3.7).
44When all elements are taken to be of order one, the Frobenius norm of a random matrix scales like N ,

but that of a commutator scales like N3/2. This is because every element in the commutator is roughly

speaking the sum of N random variables whose variance σ2 ∼ 1. Hence, the variance of the sum is σ2 ∼ N .
45In particular, the first inequality follows from b21 + b22 + 2g2 = 4g2 + (b1 − b2)2 + 2(b1b2 − g2) > 4g2,

where b1b2 − g2 > 0 comes from the positivity of the matrix B.
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Figure 7. The relative difference between the mode-by-mode ‘complexity’ C̃diag
1 and the optimal

complexity Cdiag
1 for nearly commuting A and B. Left panel: a2/µ = 3, b1/µ = 1, b2/µ = 1.5, g1/µ =

0.5 and a1/µ ∈ (1, 6). The vertical red line indicates the lower bound a1/µ = 7/6, which is fixed by

requiring that the matrix A−B is positive. Right panel: a1/µ = 5, a2/µ = 2, b1/µ = 1, b2/µ = 1.5

and g/µ ∈ (0,
√

3
2 ). The vertical blue line indicates the upper bound g/µ =

√
3
2 , which is determined

by requiring the positivity of the matrix B. At the upper bound g/µ =
√

3
2 , one of the eigenvalues

of the matrix B vanishes and we see that the relative complexity difference vanishes too. This

is because in this case, the state ρ̂A is mixed for only one of the two modes and its essential

purifications will be by definition mode-by-mode purifications.

Our numerical tests of the optimality of the mode-by-mode purifications compared to

the complete minimization can be found in figures 7 and 8. Figure 7, demonstrates that

the difference between the two complexities (mode-by-mode versus exact minimization) is

very small when the matrices A and B are nearly commuting. Figure 8 explores a wider

range of parameters, to include not nearly commuting matrices, i.e. larger values of ∆. We

have scanned a1, a2,∈ [1, 5] , b1, b2 ∈ [0.001, 3] and g ∈ [0, 0.5] numerically, and found that

with a large ∆, the relative difference of complexity can rise up to about 5%, as shown in

the figure 8. We therefore see that at least in these cases, the mode-by-mode purifications

provide a good approximation for the complexity.

To conclude this section, we are motivated by our numerical results for two-mode

Gaussian states to make the second conjecture that for the general NA-mode Gaussian

state ρA whose density matrix elements satisfy

[A,B] = 0 , (3.47)

the optimal purification will be a mode-by-mode purification (in the diagonal basis). Fur-

ther, when [A,B] 6= 0 but these matrices are still close to commuting in the sense that

∆ � 1, the mode-by-mode purification will still be a good approximation to the true

optimal purification.

3.3 Optimal purification in the physical basis

As we pointed out in section 2.1, the C1 complexity is basis dependent. In the previous

subsection, we focused on the diagonal basis, and so here we would like to explore the
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Figure 8. The relative difference between the mode-by-mode ‘complexity’ C̃diag
1 and the optimal

complexity Cdiag
1 for A and B with larger ∆. Here we take a1/µ ∈ ( 181

1000 , 5) as the free parameter

with fixed a2/µ = 1
5 , b1/µ = b2/µ = 1

10 , g/µ = 9
100 . As a1/µ→∞, ∆ approaches the upper bound,

i.e. 1 coming from the positivity of A − B and B matrices as shown in (3.46). The vertical red

line indicates the lower bound a1/µ = 181
1000 constrained by the positivity of A−B. The maximum

relative difference with these parameter is 4.718% at a1/µ = 1.585. Note that at a1/µ = 0.785 the

value of the relative difference of the complexity essentially vanishes (i.e.
C̃diag1 −Cdiag1

Cdiag1

= 6.583×10−8).

This means that the mode-by-mode purification is optimal in this case, even though A and B do

not commute and ρA is mixed in both modes. We might expect such “coincidences” from counting

arguments similar to those that appear in the last paragraph of section 3.2.1 since the complexity

is a scalar function of many parameters.

sensitivity of our results to this choice. In particular, we will evaluate the purification

complexity using, what we call, the physical basis. Recall that the diagonal modes are

generally linear combinations of the physical degrees of freedom (in A in eq. (3.1)) and

the auxiliary degrees of freedom (in Ac) and further, these linear combinations are tuned

in a way which depends on the state in question. Another natural basis would be one

that separates the action of the fundamental gates (2.7) on the physical and ancillary

degrees of freedom. More precisely, the generators might contain x̂a (p̂b) which are linear

combinations of positions (momenta) of physical oscillators or ancillae separately, but not

both. Of course, we still require entangling gates which introduce entanglement between the

two subsystems, e.g., where x̂a acts on A and p̂b, on Ac. We denote this set of elementary

gates, the physical basis.

In evaluating the C1 complexity in the physical basis, we begin with the purification

in eq. (3.1). We then find the orthogonal transformation OAAc = OA ⊗ OAc (with OA ∈
O(NA), OAc ∈ O(NAc)) which diagonalizes the blocks Γ and Ω,

Γ′ = OA ΓOTA , and Ω′ = OAc ΩOTAc . (3.48)

The key difference from the diagonal basis is that this transformation leaves us with a

nonvanishing off-diagonal matrix K, which captures the entanglement between the physical
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and ancillary subsystems. That is,

K ′ = OAKOTAc 6= 0 , (3.49)

and thus the purification takes the form

ΨAAc = NAAc exp

[
−1

2
(~qA
′ , ~qAc

′ )

(
Γ′ K ′

K ′T Ω′

)(
~qA
′

~qAc
′

)]
, (3.50)

which has diagonal blocks Γ′ and Ω′ but nonvanishing off-diagonal blocks K ′ and K ′T . The

physical basis complexity Cphys

1 is then given by eq. (2.15)

Cphys

1 =

NA+NAc∑
a,b=1

|Hab| , (3.51)

where H is the generator (2.13) producing the optimal trajectory in the physical basis.46

The generator matrix can be found by taking the matrix logarithm of the parameter matrix

in eq. (3.50), i.e.

H =
1

2
ln

(
MT

µ

)
where MT =

(
Γ′ K ′

K ′T Ω′

)
. (3.52)

We would like to stress that the original calculation of the pure state complexity was not

optimized in this basis and so strictly speaking what we provide here is a bound on the

physical basis complexity.

We now summarize how the results in section 3.2 change for the physical basis.

3.3.1 Degenerate purifications

In section 3.2.1, we discussed the SO(NAc) degeneracy of the purifications yielding equal

complexities for any given mixed state. This degeneracy was characterized by orthogonal

transformations RAc ∈ SO(NAc) of the ancillary degrees of freedom (3.15). This degen-

eracy was due to the fact that a rotation of the degrees of freedom does not change the

spectrum of the parameter matrix (3.16), and the diagonal-basis complexity depends only

on this spectrum and the reference scale µ. Revisiting this question for the physical-basis

complexity, we emphasize that this degeneracy is built into the definition of Cphys

1 . Indeed,

while the definition of physical-basis complexity (3.51) might not seem invariant under

SO(NAc) transformations of the ancillary degrees of freedom at first sight, it is important

to remember that the prescription to define the physical-basis complexity of any purifi-

cation will give identical parameter matrix MT after the canonical rotation required to

diagonalize the blocks Γ and Ω. Consider any two purifications

MT,1 =

(
Γ1 K1

KT
1 Ω1

)
, MT,2 =

(
Γ2 K2

KT
2 Ω2

)
, (3.53)

46It is important to keep in mind that the generator matrix H is not diagonal in the physical basis. This

matrix is diagonal only in the diagonal basis.
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related by the transformation in eq. (3.15)(
Γ1 K1

KT
1 Ω1

)
=

(
Γ2 K2RAc

RTAcK
T
2 RTAcΩ2RAc

)
. (3.54)

Then the canonical transformations (3.48) diagonalizing the blocks Γi and Ωi will be re-

lated by

O1,A = O2,A , O1,Ac = O2,AcRAc . (3.55)

The resulting physical-basis parameter matrix M ′T will be the same for both purifications,

and consequently they will both have the same physical-basis complexity.

3.3.2 Essential purifications

In section 3.2.2 using the diagonal basis, we showed that purifying a Gaussian mixed

state (2.16) for a single harmonic oscillator with two ancillae does not improve the purifi-

cation complexity over the one found with a single ancilla. In the physical basis, we were

not able to produce an analytical proof of the same result; however, our numerical results

showed that again adding an extra ancillary degree of freedom did not improve the purifi-

cation complexity for a wide range of single harmonic oscillator mixed states. In particular,

we found that the purification complexity of the optimal purification with one ancilla and

with two ancillae differed by ∆C
C . 10−13 for a wide range of mixed states.47 Moreover,

when looking at the precise value of the parameters that minimize the complexity in the

general case, we found that the purifications correspond to those which only entangle one

ancilla to the physical oscillator, and the eigenvalue of the unentangled ancilla is simply the

reference state scale µ. These results seem to indicate that the conclusion of section 3.2.2

applies to the physical-basis complexity as well. That is, we will assume that the optimal

purification in the physical basis for a Gaussian mixed state with many degrees of freedom

is again an essential purification.

3.3.3 Mode-by-mode purifications

Using more numerics, we examined the questions addressed in section 3.2.3 but here for

the physical-basis complexity. In particular, we considered the conditions for the optimal

purification of a mixed state of many degrees of freedom to be a mode-by-mode purifica-

tion, and we found that the results are similar to those for the diagonal-basis complexity:

the optimal purification of a Gaussian density matrix ρ̂ for many modes is mode-by-mode

when the density matrix is a product of single-mode density matrices (i.e. ρ̂ = ⊗ρ̂i). More

precisely, for a range of mixed states (3.3) of two harmonic oscillators characterized by com-

muting parameter matrices A and B,48 we compared the complexity found by optimizing

mode-by-mode purifications (3.29) with that found from more general purifications (3.34).

Our numerical results showed essentially no difference, i.e. ∆C
C . 10−12.

47The states considered numerically were of the form (2.16) with a ∈ [2µ, 10µ] and b ∈ [µ, a− µ].
48We considered states with parameter matrices of the form (3.29)–(3.30) with a1 ∈ [2µ, 4µ], a2 ∈ [2µ, 3µ],

b1 ∈ [µ, a1 − µ] and b2 ∈ [µ, a2 − µ].
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Figure 9. The relative difference between the mode-by-mode physical-basis ‘complexity’ C̃phys
1 and

the optimal physical-basis complexity Cphys
1 . In the left panel, we are focusing on nearly commuting

A and B matrices with parameters: ā1 = 5µ, b̄1 = µ, ā2 = 3µ b̄2 = 1.5µ and ḡ ∈ [0, 1.22µ]. In the

right panel, we explore larger values of ∆ with parameters: ā1 = 15µ, b̄1 = 0.5µ, ā2 = 1.5µ b̄2 = µ

and ḡ ∈ [0, 0.7µ]. The plots extend to the maximum allowed value for ḡ, which is determined by

demanding B > 0.

For non-product density matrices (i.e. where the parameter matrices A and B no longer

commute), we compared the complexity found with general purifications to that found

by only optimizing over mode-by-mode purifications. We used the following convenient

parametrization of the matrices A and B of the density matrix (3.4) in the physical basis49

A =

(
ā1 −ḡ
−ḡ ā2

)
and B =

(
b̄1 ḡ

ḡ b̄2

)
. (3.56)

We again found that the difference is quite small — see figures 9. The maximal difference

obtained in these cases is about 3.5%. Note that in the cases examined there, we are fixing

the parameters āi and b̄i while ḡ varies. In this situation, there will be an upper bound on

ḡ which comes from requiring positivity of the parameter matrix B > 0. As ḡ reaches its

maximum allowed value (i.e. ḡ → 0.7µ on the right), one of the eigenvalues of the B matrix

approaches zero. Hence at this point, we are dealing with the purification of only one mode

and as a result, the relative difference in complexity approaches zero. In the left panel of

figure 9, the relative difference in complexity decreases earlier and gets close to zero across

the entire range ḡ ∈ [0.725µ, 1.22µ]. At present, we do not understand the reason for this

usual behaviour,50 but it may be related to the fact that one of the eigenvalues of A − B
also vanishes as ḡ → 1.22µ.

Let us add that the relative difference will not necessarily increase as ∆ increases. In

particular, it is also possible that the relative difference is very small, even for relatively

large values of ∆. As before, such “coincidences” could result from counting arguments

similar to those that appear in the last paragraph of section 3.2.1 since the complexity is

a scalar function of many parameters.

49Note that this parametrization is not the same as in section 3.2.3, since A is not diagonal here.
50We note that the left panel of figure 7 seems to hint at similar behaviour.
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4 Complexity of thermal states in QFT

Now we wish to apply the techniques developed in the previous sections in order to evalu-

ate the purification complexity for examples in quantum field theory (QFT). In particular,

we start in this section with a thermal mixed state for a free scalar field theory. As a

simple exercise, we begin by considering the thermal state of a single harmonic oscillator.

One question we ask here is while the thermofield-double (TFD) state for two harmonic

oscillators provides a natural purification of the thermal state, is it ever the optimal pu-

rification for this state. Next, we briefly review the lattice regularization of a free scalar

field theory, which reduces to a family of coupled harmonic oscillators. We then apply our

results for the single oscillator case to examine the purification complexity for a thermal

mixed state in the free scalar QFT, both in the diagonal basis and in the physical basis.

In section 6, we follow up with a comparison of our results here with the analogous results

from holographic complexity.

4.1 Exercise: one-mode thermal states

For simplicity, we start by analyzing the purification complexity of the thermal state for a

single oscillator, i.e. υ̂th(β, ω) in eq. (2.29). For this exercise, we limit ourselves to consid-

ering the diagonal basis. In fact, this is a simple case of the one-mode mixed states (2.27)

studied in section 2.4, where we set the squeezing parameter r = 0. Hence the purification

complexity is given by simply substituting r = 0 into eq. (2.50),

Cdiag

1,th(β, ω, µ) =


1
2 ln µ

ω + 1
2 ln

( µ
ω

coth(βω/2)−1
µ
ω
−coth(βω/2)

)
, for coth(βω4 ) ≤ µ

ω ,

ln coth
(
βω
4

)
, for tanh(βω4 ) ≤ µ

ω ≤ coth(βω4 ) ,

1
2 ln ω

µ + 1
2 ln

(
ω
µ

coth(βω/2)−1
ω
µ
−coth(βω/2)

)
, for µ

ω ≤ tanh(βω4 ) .

(4.1)

Here we have substituted r̄ = 1
2 ln ω

µ from setting r = 0 in eq. (2.45), and we have used the

definition of α given in eq. (2.34). The interplay between the different regimes of eq. (4.1)

is explored in figure 10.

Of course, one well-known purification of the thermal state (2.29) is the TFD state,

see eq. (2.35). However, this is not necessarily the optimal purification which leads to a

minimal complexity. Examining eq. (4.1), it turns out that the optimal purification is in

fact the TFD state for the intermediate regime, i.e. tanh(βω/4) ≤ µ
ω ≤ coth(βω/4). This

can be seen by observing that eqs. (2.49) and (2.45) yield s = 0 when r = 0 in this case

and therefore the purification (2.36) reduces to the TFD state in eq. (2.32). For example,

this case will be of relevance when the reference frequency µ and the oscillator frequency

ω are equal.

We may also consider two other interesting limits: First, for ω coth βω
4 � µ, the first

line in eq. (4.1) applies and this limit yields

Cdiag

1,th '
1

2
ln

(
µ

ω
coth

βω

2

)
with s ' 1

2
ln

(
µ

ω
tanh

βω

2

)
, (4.2)
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Figure 10. Different regimes of eq. (4.1): values of βµ above the blue curve, i.e. βω coth(βω/4),

correspond to the first regime in this equation; below the red curve i.e. βω tanh(βω/4), correspond

to the third regime; while between the blue and red curves correspond to the second regime. We

observe that when βµ � 1, there is a very narrow range of frequencies βω between the blue and

red lines (since both curves converge towards βω) for which the intermediate regime applies.

see eq. (2.47) and (2.45). Hence the optimal purification is far from being the TFD state,

for which s = 0. Next, in the opposite limit with µ� ω tanh βω
4 , the third case in eq. (4.1)

applies. This limit then yields

Cdiag

1,th ≈
1

2
ln

(
ω

µ
coth

βω

2

)
with s ' 1

2
ln

(
µ

ω
coth

βω

2

)
. (4.3)

Hence, the optimal purification is again far from the TFD state.

While we have limited our attention to the diagonal basis here, the analogous results

for the physical basis can be found by using r = 0 in section 2.5.

4.2 Discretization of the free scalar

In order to apply our results from the last several sections to a QFT, we follow [14] and

consider a free massive scalar theory with Hamiltonian

H =
1

2

∫
dd−1x

[
π(x)2 + (~∇φ(x))2 +m2 φ(x)2

]
. (4.4)

We start by regulating the theory by placing it on a periodic ‘square’ lattice with lattice

spacing δ and where each side has a linear length L. Therefore the total number of sites

is given by Nd−1 ≡ (L/δ)d−1. The lattice Hamiltonian is then the Hamiltonian for Nd−1

coupled harmonic oscillators, which can be written as51

H =
∑
~n

{
p̄(~n)2

2M
+

1

2
M

[
ω̄2x̄(~n)2 + Ω2

∑
i

(x̄(~n)− x̄(~n− x̂i))2

]}
, (4.5)

51The lattice sites are designated with ~n = ni x̂
i, where x̂i are unit normals along the spatial axes.
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where in the second line, we have defined x̄(~n) = δd/2φ(~n), p̄(~n) = δ(d−2)/2π(~n), ω̄ = m

and Ω = 1/δ = M , see, e.g., [14]. Further, periodic boundary conditions are imposed with

x̄(~n+Nx̂i) ≡ x̄(~n) for any i. Next we rewrite the Hamiltonian in terms of the normal modes

x~k ≡
1

N
d−1

2

∑
~n

exp

(
2πi~k · ~n
N

)
x̄(~n) , ω2

~k
= m2 + 4Ω2

∑
i

sin2 πki
N

, (4.6)

where ~k = (k1, · · · , kd−1) with ki = 1, 2, · · ·N . The Hamiltonian then becomes

H =
1

2M

∑
~k

(
|p~k|

2 +M2ω2
~k
|x~k|

2
)
, (4.7)

where we have used that x†~k
= x−~k. This means that we can think of the system as a system

of Nd−1 decoupled real harmonic oscillators with frequencies as indicated by eq. (4.6) and

with masses 1/δ. Of course, the diagonalization process can also be performed directly for

the continuum Hamiltonian and in the infinite volume limit,52 in which case one obtains

the eigenfrequencies ω~k =
√
~k2 +m2 and the sum over the (dimensionless) ki is replaced by

the (dimensionful) momentum integral Vd−1

∫
dd−1k

(2π)d−1 . Here Vd−1 = Ld−1 was introduced

as an IR regulator for the spatial volume of the system.

It is natural to interpret the reference state as the ground state of an ultralocal Hamil-

tonian of the form

H =
1

2

∫
dd−1x

[
π(x)2 + µ2 φ(x)2

]
. (4.8)

That is, we have dropped the usual term with spatial derivatives here and so in the ground

state, the field is not correlated at different spatial points. On the lattice, this Hamilto-

nian (4.8) becomes

H =
1

2M

∑
~k

(
|p~k|

2 +M2µ2 |x~k|
2
)
. (4.9)

Finally, recall that we have implicitly set the mass parameter M to one in all our

previous expressions, e.g., in eqs. (2.2) and (2.6). It is easy to restore the dependence on

the mass by merely multiplying the frequencies by M . This does not influence the various

expressions for the complexity since those were given in terms of ratios of frequencies.

4.3 Purification complexity in the diagonal basis

As we noted above, the Hamiltonian (4.7) consists of a sum of decoupled harmonic oscilla-

tors. As a consequence, the corresponding thermal density matrix for the QFT factorizes

52Recall that there are two independent limits here. The continuum limit refers to taking the lattice

spacing δ small compared to the other physical parameters in the problem, e.g., δm → 0 and δ/L → 0.

In that case, the sum over lattice points becomes an integral over positions on a square torus, given the

boundary conditions under eq. (4.5). The infinite volume takes the limit L = Nδ → ∞ while holding δ

fixed. Hence in this limit, L is large compared to the other dimensionful parameters, e.g., mL → ∞ and

L/δ → ∞. Recall that the difference between adjacent values of the dimensionful momenta in eq. (4.6) is

∆k = 2π
Nδ

= 2π
L

, and hence the momentum sums are replaced with integrals in the infinite volume limit.

The results of this section will all involve both the continuum and infinite volume limits, while those of

section 5 are given on the circle (i.e. d = 2) with finite L.
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into a product of thermal density matrices, one for each mode. In other words, one can

find the simple mixed state

ρ̂th(β) =
⊗
~k

υ̂th(β, ω~k) , (4.10)

where υ̂th denotes the thermal density matrix of a single oscillator with frequency ω~k and

inverse temperature β, as defined in eq. (2.29). In proceeding with our evaluation of the

purification complexity, we will focus here on the diagonal basis and save a discussion of

the physical-basis complexity for section 4.4. Given a mixed state with a product structure

as in eq. (4.10), we recall from section 3.2 that we expect the optimal purification will be

both an essential purification and a mode-by-mode purification.53 Hence we expect that

the final result for the purification complexity eq. (4.10) is simply obtained by summing

the complexities for the individual modes,

Cdiag,tot

1,th (β, µ) =
∑
~k

Cdiag

1,th(β, ω~k, µ) , (4.11)

where Cdiag

1,th(β, ω~k, µ) is given in eq. (4.1). Alternatively, in the continuum formulation,

we have

Cdiag,tot

1,th (β, µ) = Vd−1

∫
|~k|<Λ

dd−1k

(2π)d−1
Cdiag

1,th(β, ω~k, µ) , (4.12)

where the momentum cutoff Λ was introduced to regulate the system in the UV.54

To proceed, we define two critical frequencies with

ωc,1 : βµ = βωc,1 coth

(
βωc,1

4

)
, ωc,2 : βµ = βωc,2 tanh

(
βωc,2

4

)
. (4.13)

These correspond to the frequencies where there is a transition between the three different

regimes in eq. (4.1) — see the blue and red points indicated in figure 10. The critical

frequencies are functions of β and µ, and of course, they can be converted to a corresponding

momentum with k2
c,1 = ω2

c,1−m2 and k2
c,2 = ω2

c,1−m2. Now we will evaluate eq. (4.12) for

the three cases distinguished by the relation between the critical frequencies and the cutoff

frequency ωΛ ≡
√

Λ2 +m2:

1. ωΛ < ωc,1:

Cdiag,tot

1,th (β, µ) =
Ωd−2Vd−1

2

∫ Λ

0

kd−2 dk

(2π)d−1

[
ln

µ

ω~k
+ ln

(
µ coth(βω~k/2)− ω~k
µ− ω~k coth(βω~k/2)

)]
(4.14)

53To connect directly to the discussion in section 3, we can write the thermal density matrix in the form

given in eq. (3.4) using the expressions in eq. (2.31) with r = 0. In this form, we would find that A and B

are commuting matrices with A = diag(ω~k cothβω~k) and B = diag(ω~k cschβω~k).
54This regulator is different than the lattice regularization introduced above in that the momentum

integration bound is a sphere, while the edge of the momentum integration of the lattice regularization is

a cube given by the edges of the first Brillouin zone. The continuum limit corresponds to Λ being much

greater than any dimensionful parameter in the problem, e.g., βΛ→∞.
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2. ωc,1 < ωΛ < ωc,2:

Cdiag,tot

1,th (β,µ) =
Ωd−2Vd−1

2

∫ kc,1

0

kd−2 dk

(2π)d−1

[
ln
µ

ω~k
+ln

(
µ coth(βω~k/2)−ω~k
µ−ω~k coth(βω~k/2)

)]
+Ωd−2Vd−1

∫ Λ

kc,1

kd−2dk

(2π)d−1
lncoth

(
βω~k

4

) (4.15)

3. ωc,2 < ωΛ:

Cdiag,tot

1,th (β,µ) =
Ωd−2Vd−1

2

∫ kc,1

0

kd−2 dk

(2π)d−1

[
ln
µ

ω~k
+ln

(
µ coth(βω~k/2)−ω~k
µ−ω~k coth(βω~k/2)

)]
+Ωd−2Vd−1

∫ kc,2

kc,1

kd−2dk

(2π)d−1
lncoth

(
βω~k

4

)
+

Ωd−2Vd−1

2

∫ Λ

kc,2

kd−2dk

(2π)d−1

[
ln
ω~k
µ

+ln

(
ω~k coth(βω~k/2)−µ
ωk−µ coth(βω~k/2)

)]
,

(4.16)

where Ωd−2 ≡ 2π
d−1

2 /Γ(d−1
2 ) is the volume of a unit (d− 2)-sphere.

These results can be simplified in certain limits. In particular, here we will focus

on the case of a massless scalar, i.e. m = 0, in which case, the critical frequencies and

momenta are equal to one another, i.e. kc,1 = ωc,1 and kc,2 = ωc,2. We also focus on

the case where the reference frequency is much larger than the temperature, i.e. βµ � 1.

Working in this regime, eq. (4.13) can be solved for the critical momenta in a perturbative

expansion yielding

kc,1 = µ
(

1− 2e−
βµ
2 + · · ·

)
, kc,2 = µ

(
1 + 2e−

βµ
2 + · · ·

)
. (4.17)

Hence we see that only the first case is relevant when µ & Λ and that the third case becomes

relevant as well when µ . Λ. Further, since kc,2 − kc,1 = 4µe−
βµ
2 + · · · , we see that the

range of the integration in the second lines of eqs. (4.15) and (4.16) is extremely small and

the corresponding contributions are exponentially suppressed for βµ� 1. Therefore, it is

reasonable to ignore the contribution of these integrals to the complexity in the following.

Let us also comment on the behaviour of the various integrals near their limits of

integration. First, near k = 0, the integrands have at worst a logarithmic divergence

in d = 2, while this is suppressed by the factor of kd−2 in higher dimensions, and so

the integrals converge there. Logarithmic divergences also appear at kc,1 and kc,2, i.e.

ln(kc,1 − k) and ln(k − kc,2), and so the integrals are well behaved there. This leaves us

with a UV divergence due to the terms proportional to | lnµ/ω~k|. In fact, this contribution

is identical to that for the vacuum state of the free scalar Hamiltonian (4.4), e.g., see [14],

and hence the UV divergence in the complexity is identical to that in the complexity of

the vacuum state.

We note that the latter result is different from what happens for the TFD state for the

same Hamiltonian (4.4), where the UV divergence is precisely double that of the vacuum,

e.g., see [29]. This doubling is natural if we think of the TFD state as an entangled state

of two copies of the underlying QFT. In this case, the circuit constructing the state is

– 47 –



J
H
E
P
0
3
(
2
0
2
0
)
0
1
2

introducing entanglement at short distance (i.e. UV) scales in both copies of the QFT,

which produces the UV divergences in the complexity. For the thermal mixed state, this

short distance entanglement must be introduced for the physical degrees of freedom, but

there is no need to do the same for the auxiliary degrees of freedom. Hence it is natural

that the UV divergence in the purification complexity of the thermal state matches that

in the complexity of the vacuum state. We return to comment on this point and explicitly

evaluate eqs. (4.14)–(4.16) in section 4.5.

To close here, we note that the final result for the purification complexity (with m = 0)

can be shown to be proportional to Vd−1 T
d−1, or equivalently to the thermal entropy, where

the proportionality factor is a function of βΛ and βµ. For later convenience, let us quote

the result for the entropy of the thermal state for the massless theory,

S (ρ̂th)
∣∣
m=0

=
Ωd−2

(2π)d−1

ζ(d)Γ(d+ 1)

d− 1
Vd−1 T

d−1 . (4.18)

We recall that ref. [29] showed that the complexity of formation for the TFD state is also

proportional to the entropy when m = 0.

4.4 Purification complexity in the physical basis

Recall from sections 2.4 and 2.5 that the complexity typically shows different properties in

the diagonal and physical bases. Hence we investigate the purification complexity for the

thermal mixed state in the physical basis in this section. However, for the free scalar field

theory where the density matrix takes the simple product form shown in eq. (4.10), we still

expect that in the physical basis, the optimal purification will be an essential purification

and also a mode-by-mode purification. So the final result for the purification complexity

is again obtained by summing the complexities for the individual modes, i.e.

Cphys,tot

1,th (β, µ) =
∑
~k

Cphys

1,th(β, ω~k, µ) , (4.19)

where Cphys

1,th(β, ω~k, µ) is the purification complexity of the one-mode thermal density matrix,

i.e. of eq. (2.27) with r = 0. Alternatively, in the continuum formulation, we have

Cphys,tot

1,th (β, µ) = Vd−1

∫
|~k|<Λ

dd−1k

(2π)d−1
Cphys

1,th(β, ω~k, µ) , (4.20)

where the momentum cutoff Λ regulates the UV portion of the integral.

Let us begin by examining Cphys

1,th(β, ω, µ), which is simply determined by setting r = 0

or r̄ = 1
2 ln(ω/µ) in the results of section 2.5.55 As shown in that section, we cannot find the

full analytical results for the purification complexity in the physical basis. However, we can

consider certain limits where the results are simplified. In particular, we now investigate the

limit of small α, which corresponds either to a low-temperature limit or a high-frequency

limit, i.e. βω � 1. In this limit, eq. (2.34) yields α ' e−βω/2 � 1. Further, for small α, the

55We have dropped the subscript ~k on the frequency here to reduce the clutter in our formulae for the

time being. Further recall that the result for r̄ follows from eq. (2.45).
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diagonal and physical bases are very close, i.e. the orthogonal transformation in eq. (2.54)

is close to the identity. The latter follows from evaluating the expressions in eq. (2.55) with

α→ 0 and assuming sinh(r̄ − s̄) = − sinh s < 0, which yields56

θ ' α/ sinh s+O(α3) . (4.21)

Now since we want to expand our expressions for small α, it is easiest to use s as the

optimization parameter in evaluating the purification complexity, in analogy to eq. (2.43).57

In the physical basis, the single mode purification complexity is given by minimizing

eq. (2.58). Hence we must evaluate the expressions there in terms of s and in a small α

expansion using eqs. (2.60) and (4.21) as well as r = 0. We find58

1

2
ln
ω+ω−
µ2

= 2r̄ + s ,
1

2
ln
ω+

ω−
= s+O(α2) . (4.22)

Now we see that eq. (2.58) reduces to

Cphys

1,th (|ψ〉12) = |r̄|+ |r̄ + s|+ 2α s

sinh s
+O(α2) . (4.23)

At the leading order in α, this is minimized when the second absolute value vanishes, which

fixes s = −r̄ = 1
2 ln(µ/ω) (which implies s̄ = 0). Further, we note that consistency with

our assumption that s > 0 requires that we are in the regime µ > ω.59 Hence in the region

βω � 1, we find that the purification complexity becomes60

Cphys

1,th(υ̂th) =
1

2

∣∣∣ln µ
ω

∣∣∣+
2α ln µ

ω√
µ/ω −

√
ω/µ

+O(α2) . (4.24)

This result is very close to the complexity for the (pure) vacuum state of a single harmonic

oscillator at frequency ω, as expected. Now let us turn to the purification complexity of

the mixed thermal state for the free scalar field theory. As noted above, we expect that it

takes the simple form given in eq. (4.19) or (4.20) given the simple product structure of

56That is, we are assuming that the auxiliary squeezing parameter is positive, i.e. s > 0. Later, we see

that this corresponds to µ > ω. Footnote 59 comments on the regime s < 0, which corresponds to µ < ω.
57This contrasts with section 2.5, where we optimized with respect to θ as in eq. (2.62).
58Note that the first equation is exact because r̄ + s̄ = 2r̄ + s with r = 0.
59Let us add that if we assume s < 0, we are lead to the following approximation

θ =
π

2
− α

sinh |s| +O(α3) , with

1

2
ln
ω+ω−
µ2

= 2r̄ + s ,
1

2
ln
ω+

ω−
= |s|+O(α2) .

The expression for the complexity in eq. (4.23) remains unchanged, and it is again minimized by setting

the second term to zero. Hence, we find s = −r̄ = 1
2

ln(µ/ω) as before, but consistency with s < 0 now

requires that we are in the regime µ < ω. The final expression for the purification complexity (4.24) also

remains unchanged in this regime.
60Note that the ω → µ limit of this expression agrees with the complexity of the thermofield double

Cphys
1,th → 2α, as expected from the results of section 2: namely, that the optimal purification for states with

ω = µ is the thermofield double.
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the thermal state (4.10). At this point, let us recall the definitions of our parameters for

the thermal state

α =
1

2
ln

(
coth

βω~k
4

)
, r̄ =

1

2
ln
ω~k
µ
. (4.25)

As the combination βω~k grows, the value of α rapidly decreases, e.g., 1
2 ln

(
coth

(
10−2

))
≈

2.3, 1
2 ln

(
coth(102)

)
≈ 10−87. Now the momentum integral in eq. (4.20) is dominated by

the phase space near the UV cutoff |~k| ∼ Λ and hence with βΛ � 1, α will be very small

over a majority of this integration. Further, if the reference frequency µ is large enough,

e.g., near the cutoff Λ, we will have −r̄ very large over the complementary part of the

momentum integral. Hence, we can expect in a physically interesting setting that, over

the entire integral, either α is small or |r̄| is large, and this is precisely the regime where

the single-mode purification complexity in the physical basis is given by the simplified

expression in eq. (2.68). Hence we can simplify eq. (4.20) to the following

Cphys,tot

1,th (β, µ) = Ωd−2Vd−1

∫ Λ

0

kd−2dk

(2π)d−1
(sin 2θc + cos 2θc) sinh−1

(
sinh 2α

sin 2θc

)
, (4.26)

where both θc and α are implicitly functions of k — see eqs. (2.67) and (4.25). However, it

is still hard to explicitly do the remaining integral without any further assumptions. If we

assume the small α limit is valid over most of the momentum integral, we can use eq. (4.24)

to simplify the purification complexity to

Cphys,tot

1,th (β, µ) ' Ωd−2Vd−1

∫ Λ

0

kd−2dk

(2π)d−1

1

2

∣∣∣∣ln µ

ωk

∣∣∣∣+
ln
(

cothβωk4

)
ln µ

ωk√
µ/ωk −

√
ωk/µ

 , (4.27)

where we use the notation ωk =
√
k2 +m2 and where we have only dropped the higher or-

der terms in the α expansion. Note that this approximation of the integrand is valid in the

UV portion of the integration. In this case, the first term simply reproduces the vacuum

complexity (i.e. the zero temperature complexity) and hence the purification complexity

has precisely the same UV divergences as the vacuum complexity (for one copy of the un-

derlying QFT). Of course, this feature is identical to what we found for the diagonal basis.

Further, this approximation is valid more generally in the full range of integration in the

situation where βm� 1. In this case, the second term gives the leading finite temperature

corrections to the vacuum complexity, which are suppressed by factors of e−βm/2.

4.5 Mutual complexity of TFD states

In this section, we compare the purification complexity of a thermal mixed state with

the complexity of the corresponding TFD state, using a quantity known as the mutual

complexity. We follow the nomenclature introduced by [49] in considering the holographic

complexity of subregions.

Consider a pure state |ΨAB〉 on a collection of degrees of freedom comprised of two

subsystems, A and B. There are two mixed states that are naturally constructed here,

namely, the reduced density matrices,

ρ̂A = TrB(|ΨAB〉 〈ΨAB|) , ρ̂B = TrA(|ΨAB〉 〈ΨAB|) . (4.28)
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Figure 11. Illustration of the optimal purification of two mixed states in two complementary

subsystems A and B of an original pure state |Ψ〉AB. The state in the subsystem A is purified by a

state |Ψ〉AAc and the one in the subsystem B is purified by |Ψ〉BBc . Even though the direct product

of the purifying systems |Ψ〉AAc ⊗ |Ψ〉BBc generally has a larger number of degrees of freedom than

the original state |Ψ〉AB, the mutual complexity eq. (4.30) can have either sign.

It is clear that each of the purification complexities for ρ̂A and ρ̂B is less than the complexity

of the original pure state. That is, since |ΨAB〉 provides one particular purification of ρ̂A,

it is unlikely to be the optimal purification and so we have the inequality

C(ρ̂A) = min C(|ΨAAc〉) ≤ C(|ΨAB〉) , (4.29)

as well as the analogous inequality for ρ̂B. Implicitly, we chose the same cost function and

basis to define the circuit complexity of the pure state |ΨAB〉.61

As illustrated in figure 11, it is also obvious that in building the pure state, e.g.,

|ΨAAc〉, from the corresponding unentangled reference state, the circuit should only work

hard enough to establish the correlations found in ρ̂A amongst the physical degrees of

freedom. However, it need not establish an analogous set of correlations (in particular,

analogous UV correlations) amongst the ancillary degrees of freedom. Similarly, the cor-

relations between A and Ac in |ΨAAc〉 need not precisely mirror those between A and

B in |ΨAB〉. As discussed in the introduction, the mutual complexity is constructed to

quantify the additional correlations in the original pure state with the following difference

of complexities,

∆C = C(ρ̂A) + C(ρ̂B)− C(|ΨAB〉) . (4.30)

This quantity was introduced in [49], where it was studied for subregions in the context

of holographic complexity. The structure in eq. (4.30) was chosen to parallel that of the

mutual information, which can be defined by a similar difference of entanglement entropies.

However, whereas the mutual information is always positive (or zero), we cannot prove that

∆C is always positive or negative from the basic definitions of complexity and purification

complexity. Hence the sign of the mutual complexity is nontrivial.

61Note the choice of basis is important in establishing the inequality for the F1 cost function, which we

are implicitly using here. For example, in eq. (4.29), we are not claiming that Cphys
1 (ρ̂A) ≤ Cdiag

1 (|ΨAB〉),
even though Cdiag

1 (|ΨAB〉) may seem the natural definition for the complexity of the pure state. Of course,

the basis choice does not play a role for covariant cost functions such as F2.
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In the present case, the pure state of interest will be a TFD state, i.e. |ΨAB〉 = |TFD〉,
which can be regarded as an entangled state of two copies, i.e. the left and right copies, of

the underlying QFT. The corresponding mixed states will both be the thermal state (4.10),

which is produced by tracing over either the left or right degrees of freedom, i.e. ρ̂A = ρ̂B =

ρ̂th(β). That is, we will consider

∆C = 2 C(ρ̂th(β))− C(|TFD〉) . (4.31)

Again, while the TFD state provides one purification of the thermal mixed state, it will

not generally be the optimal purification.62

Another noteworthy feature of the mutual complexity (4.31) is that we expect it to

be UV finite for the TFD state. This expectation arises from our previous observation

that the UV divergences in the purification complexity of ρ̂th(β) precisely matched those

found in the vacuum state of one copy of the QFT, while the TFD state doubles the

prefactors in those UV divergences. Hence we will see that these divergences cancel in our

calculations below.

We refer to complexity models with the property that the mutual complexity is always

positive as satisfying subadditivity since in these cases the complexity of the combined state

ΨAB is less than the sum of the complexities of the two reduced density matrices, ρ̂A, and

ρ̂B [19] — see also the discussion in [50]. In the same way, we refer to complexity models

as satisfying superadditivity if ∆C is always negative. Further, in section 6, we will also see

that the mutual complexity plays a role in distinguishing different holographic conjectures

for the complexity of mixed states.

4.5.1 Mutual complexity in the diagonal basis

Let us begin with the TFD state entangling two modes. Eq. (2.32) shows that |TFD〉12

is the two-mode squeezed state with r = s = 0, and from eq. (2.44), we can see that its

circuit complexity with the F1 cost function in the diagonal basis reads [29]

Cdiag

1 (|TFD〉12) =

∣∣∣∣12 ln
ω

µ
+ α

∣∣∣∣+

∣∣∣∣12 ln
ω

µ
− α

∣∣∣∣ ,
=


ln µ

ω for coth(βω4 ) ≤ µ
ω ,

ln coth
(
βω
4

)
for tanh(βω4 ) ≤ µ

ω ≤ coth(βω4 ) ,

ln ω
µ for µ

ω ≤ tanh(βω4 ) .

(4.32)

Here we have expressed the three parameter regimes in the same way as they appears in

eq. (4.1) for the purification complexity of the thermal mixed state. Obviously, the results in

the intermediate regime are the same in both cases because the optimal purification for the

thermal state in this region coincides with the TFD state, as shown in section 4.1. As noted

62Let us point out that by examining figure 10, we find that there exist situations for which the TFD

state is the optimal purification, but this requires βΛ to be an order one number. However, we regard such

a situation where the temperature is of the same order as the UV cutoff as unphysical.
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Figure 12. The integrated mutual complexity in the diagonal basis, i.e. ∆Cdiag1 (|TFD〉) defined in

eq. (4.36) for a massless field theory in different dimensions.

in eq. (4.31), the two subsystems are described by the same mixed state, i.e. ρ̂1,2 = υ̂th,

and hence the mutual complexity of this TFD state in the diagonal basis becomes

∆Cdiag

1 (|TFD〉12) = 2 Cdiag

1 (υ̂th)− Cdiag

1 (|TFD〉12) . (4.33)

Combining eqs. (4.1) and (4.32), we find

∆Cdiag

1 (|TFD〉12) =


ln
(
µ coth(βω/2)−ω
µ−ω coth(βω/2)

)
for ω coth(βω4 ) ≤ µ ,

ln coth(βω/4) for ω tanh(βω4 ) ≤ µ ≤ ω coth(βω4 ) ,

ln
(
ω coth(βω/2)−µ
ω−µ coth(βω/2)

)
for µ ≤ ω tanh(βω4 ) .

(4.34)

It is straightforward to show that this result for ∆Cdiag

1 (|TFD〉12) is positive and decays

exponentially with increasing frequency (yielding zero in the limit βω → ∞). Using the

nomenclature introduced above, we have found that in the diagonal basis, the C1 complexity

is subadditive for these thermal states. In order to be able to compare with the equivalent

results in the physical basis which will appear in section 4.5.2, we plot ∆Cdiag

1 (|TFD〉12) in

figure 12.

Now let us evaluate the mutual complexity (4.31) of the TFD state in the free scalar

theory. Because of the product form of the TFD state and the corresponding thermal

density matrices (4.10), the mutual complexity simply requires summing eq. (4.34) over all

of the modes, i.e.

∆Cdiag
1 (|TFD〉 ;β, µ) = Ωd−2Vd−1

∫
|~k|<Λ

kd−2dk

(2π)d−1
∆Cdiag

1

(
|TFD〉12 ;β, ω~k, µ

)
. (4.35)

Using our previous results, it is easy to show that there are three possible expressions

depending on the relation between the cutoff frequency ωΛ and the critical frequencies,
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ωc,1 and ωc,2, defined in eq. (4.13). We find

∆Cdiag
1 (|TFD〉) (β,µ) = Ωd−2Vd−1

∫ Λ

0

kd−2dk

(2π)d−1
lncoth

(
βω~k

2

)

+


Ωd−2Vd−1

∫ Λ
0
kd−2dk
(2π)d−1 I1 for ωΛ ≤ ωc,1 ,

Ωd−2Vd−1

(∫ kc,1
0

kd−2dk
(2π)d−1 I1 +

∫ Λ
kc,1

kd−2dk
(2π)d−1 I2

)
for ωc,1 ≤ ωΛ ≤ ωc,2 ,

Ωd−2Vd−1

(∫ kc,1
0

kd−2dk
(2π)d−1 I1 +

∫ kc,2
kc,1

kd−2dk
(2π)d−1 I2 +

∫ Λ
kc,2

kd−2dk
(2π)d−1 I3

)
for ωc,2 ≤ ωΛ .

(4.36)

The first line is a “universal contribution,” which is common to all three cases, and the

expression on the second line is determined by the relationship between the cut-off and the

critical frequencies, with

I1 = ln

(
µ− ω~k tanh(βω~k/2)

µ− ω~k coth(βω~k/2)

)
, I2 = ln

(
coth(βω~k/4)

coth(βω~k/2)

)
,

I3 = ln

(
ω~k − µ tanh(βω~k/2)

ω~k − µ coth(βω~k/2)

)
. (4.37)

First, let us observe that as expected the mutual complexity ∆diag
1 (|TFD〉) is finite. In

particular, the terms which could potentially produce UV divergences, i.e. | ln µ
ω~k
|, and

which would appear in the complexity of the TFD state and the thermal state (as well as

the vacuum state) separately, have been fully canceled in the mutual complexity.

In order to produce explicit results, let us focus on the massless field theory. For

simplicity, we also assume that µ� Λ (as well as µβ � 1), which assures us that we are in

the first regime, i.e. ωΛ < ωc,1, in eq. (4.36). Further, this assumption allows us to use k/µ

as an expansion parameter in the second integral below. Now the universal contribution

coming from the first line of eq. (4.36) yields63

∆Cdiag,(0)
1 (|TFD〉)

∣∣
m=0

= Ωd−2Vd−1

∫ Λ

0

kd−2dk

(2π)d−1
ln coth(βk/2)

=
Ωd−2

(4π)d−1
(2d − 1)ζ(d)Γ(d− 1)Vd−1T

d−1

=
2d − 1

2d−1d
S (ρ̂th)

∣∣
m=0

,

(4.38)

where the expression for the thermal entropy was given in eq. (4.18). Note that because the

integral is UV finite, we have taken the upper limit of the integration to infinity. Turning

63Certain integrals relevant for the complexity can be evaluated analytically with m = 0, e.g.,∫ ∞
0

kn ln coth(βk/2) dk =
(2n+2 − 1)Γ(n+ 2)ζ(n+ 2)

(n+ 1)(2β)n+1
, for n ≥ 0 ,∫ ∞

0

kn

sinhβk
dk =

(2n+1 − 1)Γ(n+ 1)ζ(n+ 1)

2nβn+1
, for n ≥ 1 .
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to the second contribution, we find64

∆Cdiag,(1)
1 (|TFD〉)

∣∣
m=0

= Ωd−2Vd−1

∫ Λ

0

kd−2dk

(2π)d−1
ln

(
µ− k tanh(βk/2)

µ− k coth(βk/2)

)
' Ωd−2Vd−1

∫ Λ

0

kd−2dk

(2π)d−1

[
k

µ

2

sinhβk
+O

(
k2/µ2

)]
(4.39)

= ∆Cdiag,(0)
1 (|TFD〉)

∣∣
m=0

[
2(d− 1)

T

µ
+O

(
T 2/µ2

)]
.

Hence for the massless theory, the universal contribution (4.38) is proportional to the

thermal entropy, while the second integral modifies this result with a series of corrections

suppressed by powers of T/µ. Note that both eq. (4.38) and the leading correction in

eq. (4.39) are positive, and hence the mutual complexity of the thermofield double state

exhibits subadditivity, for the massless scalar in the diagonal basis. Of course, this had to

be the case since eq. (4.34) is always positive.

For a small mass, we can also evaluate the integrals for the massive theory to find

additional corrections suppressed by powers of m/T . The leading contribution comes from

the universal correction, which can be rewritten as

∆Cdiag,(0)
1 (|TFD〉) = Ωd−2Vd−1

∫
kd−2dk

(2π)d−1
ln
eβωk + 1

eβωk − 1
,

=
Ωd−2

(2π)d−1
Vd−1T

d−1

∫ ∞
βm

dx x
(
x2 − β2m2

) d−3
2 ln coth(x/2) ,

(4.40)

where as usual, ω2
k = k2 +m2, and in the second line, we defined x ≡ βωk. For d = 3, the

integral yields a relatively simple analytical answer

∆Cdiag,(0)
1 (|TFD〉)

∣∣
d=3

=
V2T

2

2π

[
−β2m2

(
1

3
βm+i

π

2

)
−βm

[
Li2

(
eβm

)
+Li2

(
−e−βm

)
+Li3

(
eβm

)
−Li3

(
−e−βm

)]]
' V2T

2

8π

[
7ζ(3)+

m2

T 2

(
2 ln
( m

2T

)
−1
)

+O
(
m3/T 3

)]
, (4.41)

where Lin denotes the polylogarithm function. For d > 3 (and m/T � 1 again), one finds

∆Cdiag,(0)
1 (|TFD〉)

∣∣
d
' Ωd−2 Vd−1T

d−1

(2π)d−1

∫ ∞
mβ

dx

[
xd−2 − d− 3

2
β2m2 xd−4

]
ln coth(x/2)

' Ωd−2 Vd−1T
d−1

(4π)d−1

[
(2d − 1)ζ(d)Γ(d− 1) (4.42)

− (2d−1 − 2)ζ(d− 2)Γ(d− 2)
m2

T 2
+O(m3/T 3)

]
.

64The term we have neglected in the second line, i.e. O
(
k2/µ2

)
, is also proportional to e−kβ when the

momentum is large with respect to the temperature, which makes it convergent.
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Of course, the leading contribution above (and in eq. (4.41)) matches the universal result

for m = 0 in eq. (4.38). Note that the m2/T 2 correction to the integrand in eq. (4.42)

vanishes for d = 3. Hence in eq. (4.41), the correction at this order comes entirely from

the modification to the lower limit of the range of integration. In contrast for d > 3, the

change in the lower limit of integration yields a higher order correction of order (βm)d−1,

i.e. this contribution is higher order than the (βm)2 term retained in eq. (4.42). We also

note that for both d = 3 and d > 3, the leading correction is always negative. However,

in this regime with m/T � 1, the mutual complexity is still dominated by the leading

term (4.38), which is positive. Hence the complexity of the TFD state remains subadditive

in this limit. Of course, this had to be the case given the positivity of eq. (4.34).

4.5.2 Mutual complexity in the physical basis

We now turn to evaluating the mutual complexity of the TFD state in the physical basis.

For a single mode, the TFD state (2.32) is obtained from the general purification (2.36) by

setting r = s = 0. Using eqs. (2.45) and (2.54), we can demonstrate that this corresponds to

X− = 1 , θ =
π

4
, ω± = ωe±2α,

1

2
ln
ω+

ω−
= 2α, H =

1

2

(
ln ω

µ −2α

−2α ln ω
µ

)
. (4.43)

It is then straightforward to show that the complexity of the TFD state (2.32) is given by

Cphys

1 (|TFD〉12) =

∣∣∣∣ln ωµ
∣∣∣∣+ 2α =

 ln µ
ω + ln coth

(
βω
4

)
, ω ≤ µ ,

ln ω
µ + ln coth

(
βω
4

)
, ω ≥ µ .

(4.44)

This result is consistent with the complexity derived in [29] using the F1 cost function —

see eq. (138) in [29] with CLR
1 = | lnλ|+ 2|α| and note that the physical basis was denoted

as the LR basis there.

As before, the two reduced density matrices are ρ̂1,2 = υ̂th, and we wish to evaluate

the mutual complexity of the TFD state but now in the physical basis:

∆Cphys

1 (|TFD〉12) = 2 Cphys

1 (υ̂th)− Cphys

1 (|TFD〉12) . (4.45)

The purification complexity Cphys

1 (υ̂th) is defined using eq. (2.62) and Cphys

1 (|TFD〉12) is given

in eq. (4.44). This expression is evaluated numerically in figure 13, and we note that in the

physical basis, ∆Cphys

1 (|TFD〉12) does not have a definite sign. That is, eq. (4.45) may be

positive or negative depending on the parameters, which contrasts with the corresponding

expression for the mutual complexity always being positive in the diagonal basis.

One can gain some analytical insight into the above result by focusing on the limit of

small α, i.e. large βω. Combining eqs. (4.24) and (4.44), the single-mode mutual complex-

ity (4.45) becomes

∆Cphys

1 (|TFD〉12) = 2 Cphys

1 (υ̂th)− Cphys

1 (|TFD〉12)

= 2α

(
2 ln µ

ω√
µ/ω −

√
ω/µ

− 1

)
+O(α2) .

(4.46)
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Figure 13. The mutual complexity ∆Cphys
1 (|TFD〉12) as defined in eq. (4.45) with fixed r̄ =

1
2 ln ω

µ < 0 as a function of α. We find that the quantity ∆Cphys
1 can be either positive or negative.

The right plot is the region with r̄ near the transition point r̄ = −2.177.

Comparing to figure 13, we see that this leading expression captures the linear behaviour in

the vicinity of α = 0, and that the sign of the slope determines whether the corresponding

mutual complexity will be negative over some range. Further, eq. (4.46) shows that the

slope is determined by the ratio µ/ω (or alternatively by r̄ = 1
2 ln(ω/µ)). We also observe

that this slope (i.e. the function multiplying 2α) is invariant under µ
ω →

ω
µ . The transition

between positive and negative values of the slope occurs at

2 |r̄c| =
∣∣∣∣ln ωcµ

∣∣∣∣ ' 4.35464 · · · . (4.47)

That is, ∆Cphys

1 (|TFD〉12) is entirely positive (for all values of α) in the region 0.01285 .
ω/µ . 77.84, or alternatively |r̄| . 2.177, and it has negative contributions (for small

values of α) outside of this range. Of course, these results precisely match those found

numerically, as shown in figure 13.

Now because of the factorization of the thermal state in free field theory, the corre-

sponding mutual complexity is given by simply summing eq. (4.45) over each of the modes,

∆Cphys

1 (|TFD〉) = Vd−1

∫
dd−1k

(2π)d−1

[
2 Cphys

1 (υ̂th)− Cphys

1 (|TFD〉12)
]
. (4.48)

It is possible to demonstrate that this expression for the mutual complexity in the physical

basis is finite by considering the small α limit in eq. (4.46) which demonstrates that the

mutual complexity is exponentially suppressed for large momentum, hence resulting in

a convergent integral. Although evaluating this expression analytically is a challenge, it

is straightforward to evaluate this mutual complexity numerically. Figure 14 shows the
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Figure 14. The integrated mutual complexity in the physical basis ∆Cphys
1 (|TFD〉) in eq. (4.48)

for a massless free scalar field theory in d = 2 as a function of βµ. The two plots show different

regimes of the parameter βµ. The integrated mutual complexity is negative when βµ is very small

or very large.

mutual complexity ∆Cphys

1 (|TFD〉) for a massless free scalar in d = 2, as an example.

Varying the reference frequency from IR scales to UV scales, we see that mutual complexity

begins with negative values for βµ � 1, then rises to positive values at intermediate

scales with βµ ∼ 1, and finally becomes negative again for βµ � 1. In other words,

the mutual complexity ∆Cphys

1 (|TFD〉) can be negative when the reference frequency is

very large or extremely small. This again stands in contrast with the diagonal basis,

where the corresponding mutual complexity was found to be positive for all values of the

reference frequency.

Using a change of variables k̃ = βk in the integral in eq. (4.48), it is possible to

extract an overall coefficient proportional to the entropy (4.18) of the massless theory,

i.e. Vd−1T
d−1 ∼ Sth. The remaining integral is a function of the dimensionless parameter

βµ. Finiteness of the result in the limit βµ � 1 requires that this function will approach

a constant.65 Hence, the resulting mutual complexity is proportional to the entropy in

this limit.

5 Complexity of vacuum subregions in QFT

In the previous section, we considered the purification complexity for thermal states of a

free scalar QFT. In this section, we proceed with the QFT applications by considering

mixed states on finite subregions of the vacuum state of a free scalar QFT. As in sec-

tion 4.2, we regulate our field theory on a spatial lattice in order to obtain a finite result

for the purification complexity. We evaluate the complexity and the mutual complexity

both in the diagonal basis, and also in the physical basis, and comment on the sign of the

mutual complexity in both cases. Our results are primarily evaluated numerically, and so

we limit ourselves to considering the free scalar in two dimensions on a circular lattice.

To illustrate the different bases relevant to this problem, in appendix C, we study analyti-

65Though it is not immediately obvious from the plot in the right panel of figure 14, we were able to

confirm that in the limit of large βµ, the result approaches a constant.
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cally examples of small lattices with two and four coupled oscillators and reduced density

matrices associated with subregions consisting of half of the oscillators.

5.1 Purification complexity in the diagonal basis

Here we study the diagonal basis complexity and mutual complexity of density matrices of

different subregions of the vacuum state of a discretized free scalar theory in two dimensions.

We focus on a circular lattice of oscillators.66 We state the problem in terms of matrices

on this lattice, and then describe the algorithm we used in order to find the complexity

numerically. We then present our results for the complexity and the mutual complexity.

Further, in discussing our results, we focus on the case of a very small mass in order that

the results might mimic those of a holographic CFT.

5.1.1 Set-up

We begin with the lattice of harmonic oscillators (4.5) realizing a regularization of a free

quantum field theory (4.4) on a one-dimensional circle of length L with N oscillators and

lattice spacing δ = L/N . The various oscillators are located at sites x̄a where a = 1, . . . , N

and we impose periodic boundary conditions x̄N+1 := x̄1. The Hamiltonian in normal

mode coordinates xk defined in eq. (4.6) is given by eq. (4.9) and the complex coordinates

are related according to x†k = xN−k.

The ground state wavefunction of this system of harmonic oscillators is straightforward

to find in normal mode basis67

Ψ0(xk) =

N∏
k=1

(ωk
π

)1/4
exp

(
−1

2
ωk|xk|2

)
. (5.1)

This can be explicitly written in the physical basis using the transformation (4.6)

Ψ0(x̄a) =

(
det

(
M

π

))1/4

exp

[
−1

2
Mabx̄ax̄b

]
, (5.2)

where

Mab =
1

N

N∑
k=1

ωk exp

[
−2πik

N
(a− b)

]
. (5.3)

Next, we partition the system into two subregions A = {x̄1, x̄2, · · · , x̄J} and B =

{x̄J+1, · · · , x̄N} and decompose the matrix M as in eq. (3.1)

M =

(
Γ K

K† Ω

)
(5.4)

66See footnote 52 on the distinction between a circular lattice and the line.
67Note that eq. (5.1) differs from (2.2) in that we have the magnitude squared of xk instead of simply

the squared of each x̃k. This is because while we assumed x̃k is real, the transformation (4.6) defining xk
is complex. It is possible to use instead the real Fourier transformations involving trigonometric functions

in which case we would find real normal modes x̃k and the ground state would be given by (2.2), but we

opt instead to use the simpler transformation (4.6) at the cost of having complex xk.
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where Γ links the oscillators in the subregion A while Ω links the oscillators in subregion

B. The K matrices link the two subregions and are responsible for the entanglement

between A and B. Tracing out the oscillators in B then gives us a density matrix of the

form (3.3)–(3.4), where the matrices A and B are related to M by (3.5)

A = Γ− 1

2
KΩ−1K† , B =

1

2
KΩ−1K† . (5.5)

If K = 0 then B = 0 and we have a pure state. This is to be expected since without

K there is no entanglement between the two regions and both wave-functions are pure:

ΨAB = ΨA ⊗ΨB.

In this section, our goal is to calculate the purification complexity of the density ma-

trix (3.3) obtained by the procedure above. Although the numerical minimization for

purification complexity is always possible in principle, the number of free parameters will

increase rapidly with the size of the subsystem, which means that we will need much more

time in order to perform the numerical minimization for a larger lattice. Instead, we have

claimed in section 3.2.3 that even for density matrices which are not simple products of

single modes, mode-by-mode purifications can be used to provide a good approximation

of the optimal purifications. Hence, here we have taken the strategy to focus on mode-by-

mode purifications in the numerical minimization for the complexity of the mixed state in

a given subregion ρ̂A. We expect our results presented later will approximate the purifi-

cation complexity Cdiag
1 for subregions of the vacuum. We comment on the quality of this

approximation in section 5.3.

In order to find the purification complexity using a mode-by-mode approximation, we

have followed the following algorithm. We begin by computing the parameter matrix Mab in

eq. (5.3). Next, given a partition of our system A∪B, we compute A and B using (5.5). We

then diagonalize A with an orthogonal transformation OA byDA = OAAO
T
A, and proceed to

rescale the entries of A by D
−1/2
A . We then diagonalize the B̃ = D

1/2
A OABO

T
AD

1/2
A matrix in

this new non-orthogonal basis68 with an orthogonal transformation OB by DB = OBB̃O
T
B.

The density matrix in the non-orthogonal basis x̃ = OBD
1/2
A OAx̄ ≡ Rx̄ now takes the

following form

ρA(x̃i, x̃
′
i) = |detR|−1

√
det

(
A−B
π

)∏
i

exp

[
−1

2
(x̃2
i + (x̃′i)

2) + bix̃ix̃
′
i

]
,

where the number of non-zero eigenvalues bi indicates the number of ancillary oscillators

which are necessary in order to purify the density matrix. We proceed to purify the mixed

state ρ̂A with a mode-by-mode purification in this non-orthogonal basis, i.e.

ρ̂A = TrAc ρ̂AAc , ρ̂AAc = |ΨAAc〉〈ΨAAc | , (5.6)

with

ΨAAc(x̃i, yi) = N
∏
i

exp

[
−1

2
(1 + bi)x̃

2
i −

k2
i

4bi
y2
i − kix̃iyi

]
. (5.7)

68The basis is non-orthogonal for non-commuting A and B because of the rescaling by DA between the

two orthogonal transformations OA and OB .
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Figure 15. Purification complexity in the diagonal basis for subregions of the vacuum as a function

of the subregion size. The cutoff was set to N = L/δ = 1000 and the mass to mL = 0.01. The

purification complexity for the subregion with `→ L agrees with the complexity of the ground state

in diagonal basis.

We return to the orthogonal basis x̄ = R−1x̃ with

ΨAAc(x̄i, yi) = N ′exp

[
−1

2
(x̄, y)·MA·

(
x̄

y

)]
, (5.8)

and find the eigenvalues λi of MA. Finally, we minimize the complexity Cdiag
1 = 1

2

∑
i |ln

λi
µ |

over the free parameters ki. For some of the subregions considered, this minimization has

to be done over an O(102) number of parameters. Fortunately, in our problem at hand,

dividing this minimization into a sequence of minimizations over O(1) parameters indeed

reaches the global minima of the function to be optimized.69

Obviously, we can follow the same process to derive the purification complexity for

the complementary subregion ρ̂B. Following the analysis in section 4.5, we can define the

mutual complexity for subregions in the diagonal basis as

∆Cdiag
1 ≡ Cdiag

1 (ρA) + Cdiag
1 (ρB)− Cdiag

1 (|Ψ0〉) . (5.9)

5.1.2 Numerical results in the diagonal basis

Throughout the following discussion, we have set the mass to mL = 0.01. Again, our aim

is that by setting the mass to such a small value, our QFT results might resemble those

found in holography where the boundary theory is conformal. A comparison of the results

for the free scalar theory and for holography is considered in section 7.

Dependence on the size of the subregion. First, we find the subregion complexity as

a function of the subregion size for a lattice of 1000 harmonic oscillators for different values

of the reference frequency and plot the results in figure 15. For all cases, the complexity

grows linearly with the subregion size up to the expected complexity of the vacuum. The

slope of the plot decreases with increasing reference frequency.

69Indeed, even taking the minimization over one parameter at a time gives the global minima most of

the time. We found that minimizing over 2 or 3 parameters at a time gave accurate enough results without

requiring too much more computational power.
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Figure 16. Purification complexity in the diagonal basis for subregions of the vacuum as a function

of the lattice cutoff. The mass was set to mL = 0.01. The different plots correspond to different

subregion sizes `/L = 0.05, 0.1, 0.9 and 0.95 as indicated and each plot contains five different

reference frequencies of µL = 100, 200, 300, 400 and 500 respectively.

Structure of divergences in purification complexity. For subregions with fixed size,

we plot the cutoff dependence of the purification complexity in figure 16. The large N (or

equivalently, the small δ) behavior of the subregion complexity with `/L = 1/20, 1/10, 9/10

and 19/20 is given by

Cdiag
1 (`/L= 0.05,µL,δ/L)≈ `

2δ
ln

1

µδ
+0.232 ln

L

δ
+0.307µ`+2.08 ,

Cdiag
1 (`/L= 0.10,µL,δ/L)≈ `

2δ
ln

1

µδ
+0.241 ln

L

δ
+0.312µ`+2.11 ,

Cdiag
1 (`/L= 0.90,µL,δ/L)≈ `

2δ
ln

1

µδ
+(0.542−0.304µ`) ln

L

δ
+0.340µ`−0.308 ,

Cdiag
1 (`/L= 0.95,µL,δ/L)≈ `

2δ
ln

1

µδ
+(0.383−0.147µ`) ln

L

δ
+0.329µ`+0.688 .

(5.10)

These suggest a divergence structure of the form70

Cdiag
1 (`/L, µL, δ/L) ≈ `

2 δ

∣∣∣∣ln 1

µδ

∣∣∣∣+ f1(µL, `/L) ln
L

δ
+ f2(µL, `/L) (5.11)

70Note that the fits in eq. (5.10) were obtained using the data for large values of L/δ, i.e. L/δ > 300 in

figure 16. Furthermore, we kept µL fixed in these fits (and plots). Therefore, the fits correspond to a region

where µδ is small. More generally, one could consider reference frequencies of the order of the cutoff, or

even larger. The intuition from the pure state results (see footnote 71) leads to the conclusion that there

should be an absolute value on the logarithmic factor, as we write in eq. (5.11).
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where f1 and f2 are dimensionless functions, which are independent of the cutoff scale δ.

We note that the leading divergence matches the results found in [14, 15] for the full system

with `→ L.

In eq. (5.11), we have found the structure of divergences for our system with mL = 0.01,

which was chosen to emulate a massless field theory. In the case of a massive theory, i.e.

mL & 1, we expect that the divergence structure is again as in eq. (5.11), except that

the coefficients f1 and f2 would now also depend on the additional mass parameter, e.g.,

f1 = f1(µL, `/L,mL) and f2 = f2(µL, `/L,mL). On the other hand, we expect that the

UV divergence in the first term is a universal volume term, as in the massless theory. This

contribution represents the cost required to prepare the ground state entanglement at very

short scales, while the other terms depend on the details of the QFT (e.g., the mass).71

The structure of UV divergences is similar for holographic complexity, as we examine in

section 6. A detailed comparison of the QFT and holographic results is also discussed in

section 7.3.

Mutual complexity in the diagonal basis for subregions. The numerical results

for the mutual complexity (5.9) are shown in figures 17 and 18. We observe that the

mutual complexity in the diagonal basis is positive for all of the subregion sizes shown

there. However, we do not have an analytic argument which proves that this should be

the case in general. The mutual complexity rises dramatically for small subregion sizes in

figure (5.9), and then it continues to increase as the subregion size grows until the subregion

reaches half of the system. Further, ∆C is symmetric under ` → L − `. It has a positive

logarithmic dependence on the cutoff which comes from the subleading divergence in the

complexities. Looking at eq. (5.10), we observe that while f1(µ`) + f1(µ(L − `)) becomes

negative for large enough reference frequency, this contribution is offset by the negative

coefficient of the logarithmic term in the vacuum complexity (see footnote 71) to produce

an overall positive cutoff dependence in the mutual complexity, as can be seen in figure 18.

5.2 Purification complexity in the physical basis

We introduced the physical basis purification complexity Cphys
1 in section 2.5 and further

investigated some of its properties in section 3.3. In this subsection, we investigate the

behaviour of Cphys
1 for subregions of the vacuum for a two-dimensional free scalar QFT on

71In particular, we found that the complexity of the full ground state is, using eqs. (2.14) and (4.6),

Cdiag
1 (ρ̂0) =

L

2δ
ln (µδ) +

1

2
ln

(
1

mL

)
− m2L2

48
+O(m4,m2δ2) ,

where here we assumed µ ≥
√

4
δ2

+m2 in order to obtain this simple analytic form. Alternatively, for

µ < m, the same result is obtained up to an overall minus sign. For the values we chose, 1
2
ln
(

1
mL

)
− m2L2

48
≈

1
2
ln
(

1
mL

)
≈ 2.30, although this zero mode contribution would diverge in the m→ 0 limit. For intermediate

values of the reference frequency m < µ <
√

4
δ2

+m2, numerical fitting show the same leading divergence

and a subleading logarithmic divergence Cdiag
1 (ρ̂0) = L

2δ
|ln (µδ) | − f̃(µL)| ln(µδ)| + finite, with f̃(µL) ≈

4.10× 10−7(µL)1.85 > 0. We used the parameters mL = 0.01, µL = 20, 40, 60, 80, 100, 200, 300, 400, 500

for data with L/δ = 1 to 104, and found fits for the large L/δ behaviour.
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Figure 17. Subregion size dependence of the mutual complexity in the diagonal basis ∆Cdiag1 for

different reference frequencies µL = 100, 200 and 300. The cutoff was set to δ/L = 1/N = 1/1000

and the mass to mL = 0.01.

0 500 1000 1500
2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 200 400 600 800 1000 1200
2.0

2.5

3.0

3.5

4.0

4.5

5.0

Figure 18. Cutoff dependence of the mutual complexity in the diagonal basis ∆Cdiag1 for different

reference frequencies µL = 100, 200, 300, 400 and 500. The subregion sizes were fixed to `/L = 0.1

and 0.05 and the mass to mL = 0.01.

a circular lattice. The procedure to do this is very similar to the algorithm introduced in

the previous section. In fact, the only difference comes after finding the purification matrix

in the position basis in eq. (5.8). From the purification matrix in the position basis

MA =

(
Γpos Kpos

(Kpos)T Ωpos

)
, (5.12)

we rotate the physical modes and the ancilla modes independently to diagonalize Γpos and

Ωpos according to

MA →Mphys
A = RphysMAR

T
phys , Rphys =

(
RA 0

0 RAc

)
, (5.13)

where RA ∈ SO(NA,R) and RAc ∈ SO(NAc ,R) such that Γphys = RAΓposRTA and Ωphys =

RAcΩ
posRTAc are diagonal. Finally, the generator matrix Hphys can be found by taking the

matrix logarithm of the parameter matrix in this basis as in (3.52)

Hphys =
1

2
ln

(
Mphys
A
µ

)
. (5.14)
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The physical basis complexity of these purifications is defined as in eq. (3.51)72

Cphys

1 (ρ̂A) = min

NA+NAc∑
a,b=1

|Hphys
ab | , (5.15)

where we need to minimize the purification complexity over the free parameters ki which

were introduced in eq. (5.7).

5.2.1 Numerical results in the physical basis

Again, we set mL = 0.01 throughout the following. By setting the mass to such a small

value, we expect that our QFT results might behave similar to those found for a holo-

graphic CFT.

Dependence on the size of the subregion. We plot the purification complexity in the

physical basis as a function of the subregion size for a lattice of 100 harmonic oscillators for

different values of the reference frequency in figure 19. Unlike the diagonal basis complexity,

we find that for subregions approaching the full system, the physical basis purification

complexity can increase beyond the complexity of the full system before decreasing rapidly

to the full system complexity. At first sight, this might seem contradictory, since the

ground state is one of the possible purifications over which the purification complexity is

minimized. However, the complexity of the ground state in the physical basis partitioned

by A and Ac can be greater than the complexity of the ground state itself. In fact,

the purification complexity in the physical basis should be less than the complexity of the

ground state in that same basis. In the right panel of figure 19, we compare the purification

complexity in the physical basis Cphys
1 (ρA) to the complexity of the ground state CAB1 (|Ψ0〉)

in the basis which does not mix the degrees of freedom in the subsystem A with the

modes in the complementary region B. Indeed, we find that Cphys
1 (ρA) ≤ CAB1 (|Ψ0〉) for all

subregions A and the inequality is only saturated when A encompasses the entire system

(i.e. `/L = 1). Note that comparing Cphys
1 (ρA) with the complexity of the ground state

Cdiag
1 (|Ψ0〉) in the diagonal basis, we find that the above bound does not hold. In particular,

the figure shows that for large subregions (i.e. `/L & 0.6), the subregion complexity exceeds

that of the ground state in diagonal basis (but, of course, they coincide at `/L = 1).

There is no contradiction in finding Cphys
1 (ρA) > Cdiag

1 (|Ψ0〉) for some subregions since

the two complexities are evaluated using different gate sets. As noted above, when the

complexities are evaluated using the same basis, the subregion complexity is smaller than

that of the vacuum.

Structure of divergences in purification complexity. For subregions with fixed size,

we plot the cutoff dependence of the purification complexity in figure 20. The large N (or

72Notice that eq. (3.51) does not have a minimization, while eq. (5.14) includes a minimization over

purifications. This is because (3.51) is the complexity in physical basis of one particular purification,

while (5.14) is the purification complexity of the density matrix ρA, defined as the minimal complexity over

all purifications of ρA.
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Figure 19. Left panel: subregion complexity as a function of the subregion size in physical basis

for reference frequencies µL = 0.1, 1, 10, 100, 1000. Right panel: comparison of the subregion

complexity to the complexity of the ground state in the physical basis for µL = 100. In both plots,

the cutoff was set to L/δ = N = 100 and the mass to mL = 0.01.

equivalently, the small δ) behavior of the subregion complexity with `/L = 1/10, 9/10, 1/20

and 19/20 is

Cphys
1 (`/L = 0.05, µL, δ/L) ≈ `

2 δ
ln

1

µδ
+ 3.31 ln

L

δ
+ 0.149µ`− 6.54 ,

Cphys
1 (`/L = 0.10, µL, δ/L) ≈ `

2 δ
ln

1

µδ
+ 3.60 ln

L

δ
+ 0.253µ`− 5.79 ,

Cphys
1 (`/L = 0.90, µL, δ/L) ≈ `

2 δ
ln

1

µδ
+ 4.74 ln

L

δ
+ 0.343µ`− 13.1 ,

Cphys
1 (`/L = 0.95, µL, δ/L) ≈ `

2 δ
ln

1

µδ
+ 5.04 ln

L

δ
+ 0.333µ`− 14.5 .

(5.16)

These fits suggest a divergence structure for the subregion complexities in the physical

basis of the form73

Cphys
1 (µL, δ/L) ≈ `

2 δ

∣∣∣∣ln 1

µδ

∣∣∣∣+ f1(µL, `/L) ln
L

δ
+ f2(µL, `/L) . (5.17)

Similarly to the discussion for the diagonal basis, we expect the structure of divergences in

the physical basis to be the same as in eq. (5.17) for more general cases, except that the

coefficients f1 and f2 will depend on the other parameters of the system. For example, for

a massive scalar QFT, we expect fi = fi(µL, `/L,mL).

Mutual complexity in physical basis. We plot the mutual complexity in the physical

basis

∆Cphys
1 ≡ Cphys

1 (ρA) + Cphys
1 (ρB)− Cphys

1 (|Ψ0〉) , (5.18)

in figures 21 and 22, which we observe to be negative for all of the subregion sizes shown

there. However, some explanation is required here. The mutual complexity (5.18) will be

different depending on whether the physical basis for the three states considered is fixed to

73As mentioned in footnote 70, our fits were made for small δ/L with µL fixed. In general, we expect the

leading term to be the absolute value of the logarithmic term. Our resolution in the physical basis fits was

not high enough to rule out a term of the form f0(µL, `/L) `
δ

where f0(µL, `/L) . O(10−2).
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Figure 20. Subregion complexity in the physical basis as a function of the cutoff N = L/δ for

`/L = 0.05, 0.1, 0.9 and 0.95. The mass was set to mL = 0.01.

be one which separates A and/or B from the rest of the degrees of freedom, or if the physical

basis is considered for each state independently. More precisely, the physical basis for ρA
(and ρB) will be a basis in which the A and Ac (and the B and Bc, respectively) degrees of

freedom are kept separate. However, for the ground state, there is no natural partition of

the system into A ∪ B independently of the density matrices ρA and ρB. Therefore, if the

physical basis in the evaluation of the complexity of the ground state were to be considered

independently of the other two complexities, we would find that the physical basis for the

ground state corresponds to all of the degrees of freedom in the system, and the physical

basis would coincide with the diagonal basis. Therefore, to be more explicit, we define two

mutual complexities in the physical basis

∆Cphys
1 ≡ CAA

c

1 (ρA) + CBB
c

1 (ρB)− CAB1 (|Ψ0〉) ,

∆C̃phys
1 ≡ CAA

c

1 (ρA) + CBB
c

1 (ρB)− Cdiag
1 (|Ψ0〉) ,

(5.19)

where CAB denotes the physical basis complexity of a state given a partition of the system

into A∪ B. It is natural to expect that ∆Cphys
1 < ∆C̃phys

1 , since the difference between the

two definitions in eq. (5.19) is the subtraction of the vacuum complexity in two different

bases. More precisely, the CAB1 (|Ψ0〉) evaluates the complexity of the ground state sub-

ject to the additional constraint that the A and B degrees of freedom remain separated.

Being a minimization with additional constraints compared to Cdiag
1 (|Ψ0〉), it follows that

CAB1 (|Ψ0〉) > Cdiag
1 (|Ψ0〉) from which the above conclusion follows.

Just like the mutual complexity in the diagonal basis, we observe that both of the

mutual complexities in the physical basis increase in magnitude as a function of the sub-
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Figure 21. The two definitions of mutual complexity in the physical basis ∆Cphys1 and ∆C̃phys1 as a

function of the subregion size for various reference frequencies. The cutoff was set to L/δ = N = 100

and the mass to mL = 0.01. Note the small discontinuity at `/L = 1/4 for larger values of µδ. The

discontinuity is very small for µδ = 1 and becomes quite noticeable for µδ = 10 where reference

frequency becomes larger than cutoff. We associate this effect with the discrete nature of our

regularization. In the continuum limit, for reference frequencies around or below the cutoff, we

expect this discontinuity to disappear as we take the limit δ → 0.

region size, reaching maximum at `/L = 1/2, and are symmetric about this point. The

∆C̃phys
1 shows similar behaviour to the diagonal basis mutual complexity: it is positive and

depends logarithmically on the cutoff. Again, this logarithmic dependence comes from the

subleading logarithmic divergence of the complexities. The subleading divergence in the

subregion complexities in the physical basis are positive, while the subleading divergence of

the complexity of the ground state is negative for all cases studied here (see footnote 71).

On the other hand, the ∆Cphys
1 is negative and decreases linearly as a function of the cut-

off. This contrasts with the logarithmic cutoff dependence of the mutual complexity in the

diagonal basis in figure 18. The negative linear dependence of ∆Cphys
1 on the cutoff is due

to the vacuum complexity in the AB basis having a subleading positive linear divergence,

which is not present for the diagonal basis.

Lastly, we mention that our numerics show a small discontinuity in both of the defini-

tions of the mutual complexity in the physical basis (5.19) at `/L = 1/4. This discontinuity

becomes more apparent for larger values of µδ. In the continuum limit δ → 0, we expect

that this discontinuity will disappear for reference frequencies not much larger than the

inverse cutoff length, i.e. µδ = O(1).

5.3 Comment on the approximation

Lastly, we comment on the accuracy of our approximation. As mentioned above, strictly

speaking, the algorithms presented are only an upper bound for the complexity of subre-

gions of the ground state of our QFT in the different bases. The reason for this is that we

only minimized over possible mode-by-mode purifications (see section 3.2.3), assuming that

the complexity of the optimal mode-by-mode purification would be close to the optimal

complexity obtained by exploring most general purifications. In section 3.2.3, we found

that the optimal purification is indeed a mode-by-mode purification when the target den-

sity matrix is a product density matrix (ρ̂ = ⊗iρ̂i). For Gaussian density matrices of the

– 68 –



J
H
E
P
0
3
(
2
0
2
0
)
0
1
2

0 200 400 600 800 1000

-250

-200

-150

-100

-50

0

500 1000 1500

-300

-200

-100

0

0 200 400 600 800 1000
0

10

20

30

40

500 1000 1500
0

10

20

30

40

Figure 22. The two definitions of mutual complexity in the physical basis ∆Cphys1 and ∆C̃phys1 as a

function of the cutoff for various reference frequencies µL = 100, 200, 300, 400 and 500. The mass

was set to mL = 0.01.

form (3.4), this is the case when [A,B] = 0, and we introduced a measure of how close a

matrix was to being a product state in (3.44). For the subregions of the vacuum studied in

this section, we find ∆ = 0.5 for ` > `c with `c = O(δ). In contrast, for random matrices

A and B, we find ∆ ≈
√

2 for large N .

6 Holographic complexity for mixed states

In the previous two sections, we investigated the purification complexity for Gaussian mixed

states in free scalar quantum field theory. In particular, we focused on two examples: the

complexity of thermal states and the complexity of subregions in the vacuum state. The

purpose of this section is to review and compare some general features of these results to

those obtained using the proposals for holographic complexity.

In holography, there have been two different proposals for the gravitational dual of sub-

region complexity. These proposals are extensions of the complexity=volume (CV) [8, 9]

and complexity=action proposals [11, 12], and they were motivated by entanglement wedge

reconstruction, i.e. the understanding that the reduced density matrix of a boundary sub-

region encodes the dual entanglement wedge in the bulk [32–34].74 We denote the two

proposals as the subregion complexity=volume (subregion-CV) [20, 21] and the subregion

complexity=action (subregion-CA) [21] conjectures. A third approach for holographic com-

plexity was also proposed with the complexity = spacetime volume (CV2.0) conjecture [13].

74The latter can be proven with the assumption that the bulk and boundary relative entropies are exactly

equal [51, 52].
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Hence in the following, we also discuss the natural extension of this proposal for the case

of subregions, which we designate the subregion-CV2.0 conjecture. Note that all three

approaches for subregion complexity recover the corresponding original proposal for the

holographic complexity of a pure state in the limit in which the subregion becomes the

whole boundary.

Let us add that subregion complexity in holography has been widely explored. The

studies include, to name only a few, general studies of the structure of divergences [20, 21],

multiple subregions [53], subregions whose boundary includes kinks/corners [54, 55], subre-

gions of systems with defects [56], subregion complexity in eternal black hole backgrounds

for subregions consisting of a single boundary [19], the opposite limit of small subregions

in eternal black hole geometry [57]. We begin below with a brief review of the different

approaches described above and their main properties. We will then review the results of

evaluating these proposals for two examples, which are relevant for the comparison to the

QFT results in the two previous sections: a subregion consisting of a single boundary of

the TFD state (eternal black hole), where we are evaluating the complexity associated to

the thermal state; and a boundary subregion of the CFT vacuum state (empty AdS).

6.1 Review of the holographic proposals

The subregion-CV conjecture [20, 21] suggests that the complexity associated to a bound-

ary subregion A on a given time slice is given by the maximal spatial volume of

a codimension-one surface, RA bounded by the boundary subregion and its Hubeny-

Rangamani-Takayanagi (HRT) surface EA [30, 31, 58, 59]:

CV (A) = max
∂RA=A∪EA

[
V(RA)

GN `bulk

]
. (6.1)

The appearance of an arbitrary bulk length scale, `bulk, is a somewhat undesirable feature.

In the following, we assume that `bulk = L, the AdS curvature radius. Note that while a

more sophisticated prescription to define `bulk for black hole geometries was given in [60],

it still yields `bulk ∼ L for the planar AdS black holes which we consider below, i.e. see

eq. (6.8).

A second proposal is the subregion-CA conjecture [21], which suggests that the sub-

region complexity is given by the on-shell gravitational action on a particular bulk region

W̃A, which is defined as the intersection of the Wheeler-DeWitt (WDW) patch and the

entanglement wedge of the boundary region A [32–34]:

CA(A) =
Igrav(W̃A)

π
. (6.2)

The gravitational action on regions with boundaries includes surface terms in addition to

the usual bulk contribution. These surface terms include the Gibbons-Hawking-York (GHY)

term [61, 62] for space-like or time-like boundaries, and an analogous contribution for null

boundaries [63, 64]. For null boundaries, one must also include the null counterterm intro-

duced in [63] to restore reparametrization invariance along the null generators. In addition
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to the codimension-one boundary surfaces, the boundary of W̃ also contains codimension-

two joints at the intersection of the boundary surfaces. Their contributions have been

addressed in [65, 66] for joints which do not involve null surfaces, and in [63] for joints

which involve at least one null surface. The full prescription can be found in [63], or in

appendix A of [21]. Hence, in order to calculate CA(A), we must evaluate

Igrav = Ibulk + IGHY + Inull + Ict + Ijoints . (6.3)

Let us add that defining the counterterm Ict requires introducing a new arbitrary length

scale `ct and the choice of this length scale influences various properties of the complexity.

Comparing the structure of the UV singularities in holographic and QFT calculations of

complexity leads to the suggestion that the choice of this length scale may be related to the

choice of microscopic scales in defining the reference state and the gates in the complexity

model of the boundary theory (e.g., µ in our QFT construction) [14, 15, 67].

The complexity = spacetime volume (CV2.0)75 conjecture [13] simplifies the CA con-

jecture by proposing that the complexity can be determined by evaluating the spacetime

volume of the WDW patch. The simplification still displays all of the properties expected

of holographic complexity. Our subregion-CV2.0 conjecture is the natural generalization

of this proposal to boundary subregions. That is, the complexity of a subregion A is given

by the spacetime volume of the region appearing in eq. (6.2), i.e. the intersection of the

WDW patch and the entanglement wedge,76

CV 2.0(A) =
V(W̃A)

GN L2
. (6.4)

As a pragmatic point, we note that in our calculations below, the integrand of the bulk

action, i.e. the Einstein-Hilbert term, is simply constant with R − 2Λ = − 2d
L2 . Hence, the

complexity in eq. (6.4) and the bulk action evaluated for eq. (6.2) are simply related by

CV 2.0(A) = −8π

d
Ibulk(W̃A) . (6.5)

Additivity properties. The various holographic proposals for subregion complexity dif-

fer in several important respects. CV is superadditive — see section 2.1 of [19]. That is,

let σ be the Cauchy slice on which a pure state is defined, and divide this surface into

a subregion A and its complement B. Then the corresponding holographic complexities

evaluated satisfy,

CV (A) + CV (B) ≤ CV (σ = A ∪ B) , (6.6)

i.e. the mutual complexity (4.30) is negative. Intuitively, superadditivity in CV is the result

of dealing with positive definite volumes and the fact that the requirement to pass through

75An update to the complexity = spacetime volume conjecture, denoted ‘CA2.0’, was proposed in [68].

However, for Einstein-Hilbert gravity with minimally coupled matter, this approach simply reduces to the

CV2.0 proposal. As such, we will not consider it further here.
76The units are naturally absorbed by the AdS curvature scale in the definition here following [60]. Their

approach uses the relation C ∼ P VWDW where P = − Λ
8πGN

∼ 1/(GNL
2) is the ‘bulk’ pressure [69]. Note

that the application of these arguments is not straightforward for solutions with nontrivial scalar hair [68].
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the HRT surface adds an additional constraint in maximizing the volume. Let us add that

this inequality is saturated in simple examples where the boundary Cauchy slice defines

a time-reversal symmetric state (for which the HRT surface for A and B lies within the

corresponding extremal bulk surface).

Similarly, the subregion-CV2.0 conjecture yields superadditive results. This follows

because the spacetime volume is always positive and further the intersection of the entan-

glement wedge and the WDW patch is a subregion within the WDW patch of σ. Hence

it becomes evident that the mutual complexity (4.30) will always be negative using this

proposal. Let us emphasize that there are no obvious simple examples where the corre-

sponding inequality would be saturated, i.e. we cannot easily achieve ∆CV 2.0 = 0, unless

one of the subregions vanishes.

On the other hand, recall that the calculation of CA in eq. (6.2) involves the length

scale `ct associated with the null boundary counterterm. Different values of this length scale

result in CA being subadditive or superadditive in different situations [19] — see also [50].

However, one should expect that the complexity, and hence the leading divergence, is

positive, which partially fixes this ambiguity and further results in CA being superadditive.

Structure of divergences. All three proposals have a leading UV divergence propor-

tional to the volume of the boundary subregion, i.e. V (A)/δd−1 but the subleading diver-

gences are quite different. The subregion-CA conjecture yields subleading divergences with

any power of δ. In particular, in [21], a class of subleading divergences associated with the

boundary of the subregion were identified for the subregion-CA approach, e.g., V (∂A)/δd−2.

Similarly, subleading divergences with any power of delta appear for subregion-CV2.0, as

is easily inferred from the results of [21] and the relation in eq. (6.5). In contrast, it was

shown that the subregion-CV approach yields power-law divergences involving only odd or

even powers of the cutoff δ for an even- or odd-dimensional boundary theory, respectively.

Hence the V (∂A)/δd−2 term does not appear with the subregion-CV approach.

Before closing let us add that one could easily modify the three proposals in eqs. (6.1),

(6.2) and (6.4) by including additional surface terms on the boundaries associated with the

entanglement wedge. Because these bulk boundaries vanish when the subregion expands to

fill the entire Cauchy slice on the holographic boundary, these surface contributions would

disappear, and one would still recover the original proposal for holographic complexity of

a pure state. For example, in the subregion-CV conjecture, one could add an extra term

proportional to the volume of HRT surface EA to produce the revised conjecture,

C′V (A) = CV (A) + η
V(EA)

4GN
, (6.7)

where CV (A) is the maximal volume expression in eq. (6.1) and η is a (dimensionless) con-

stant which remains to be determined. Our normalization of the second term makes clear

that we are simply adding a term proportional to the entanglement entropy of the subre-

gion A, i.e. C′V (A) = CV (A) + η SEE(A). With this revised proposal, the form of the UV

divergences becomes closer to that found with the subregion-CA and the subregion-CV2.0

approaches, i.e. new subleading divergences associated with the boundary of A appear.
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Further, choosing a negative η will ensure that the inequality in eq. (6.6) is never saturated

with C′V (A). On the other hand, if η is chosen to be positive, this revised proposal (6.7)

will typically be superadditive (because the mutual complexity will be dominated by the

subleading divergence associated with the SEE(A) contribution). We reiterate that similar

boundary terms could also be introduced to modify the subregion-CA and subregion-CV2.0

proposals, but the effect would be less important. We discuss this proposal (6.7) further

in section 7.3.

6.2 Complexity of thermal states

Here, we apply these holographic prescriptions to evaluate the complexity of the thermal

state, i.e. where the subregion is taken to be one boundary of an (uncharged) eternal black

hole, and to evaluate the mutual complexity of the corresponding thermofield double state.

This system was already studied in [19] and we review their results here.77 The holographic

calculation is performed for a two-sided AdSd+1 black hole with the boundary dimension

d ≥ 2 and with metric

ds2 =
L2

z2

(
−f(z) dt2 +

dz2

f(z)
+ d~x 2

)
, where f(z) = 1−

(
z

z0

)d
. (6.8)

Note that the boundary and horizon geometries are taken to be flat in this geometry. This

eternal black hole in the bulk is dual to a thermofield double state in the boundary theory

with temperature T = d
4πz0

. As noted above, we choose the subregion to be a constant

time slice on one of the boundaries and so the corresponding reduced state in the boundary

theory is the thermal mixed state with the same temperature. With this choice, the HRT

surface is simply the bifurcation surface on the horizon (which is reached with z → z0

holding t fixed), and the entanglement wedge is simply the static patch outside of the

horizon, i.e. z ≥ z0.

Subregion-CV. The result for subregion-CV (6.1), obtained in eq. (2.16) of [19], is

CV (A) =
Ld−1

(d− 1)GN

L

`bulk

V (A)

δd−1
+ b(d)

L

`bulk
S , (6.9)

where `bulk is the extra length scale appearing in eq. (6.1), and V (A) is the spatial volume

of the boundary theory. Further, b(d) is a positive dimension-dependent coefficient given by

b(d) = 2
√
π
d− 2

d− 1

Γ(d+1
d )

Γ(d+2
2d )

. (6.10)

Hence the finite term in eq. (6.9) is positive and proportional to S = Ld−1

4GN zd−1
0

V (B), the

black hole entropy. Of course, S can also be interpreted as the entropy of the thermal state

in the boundary theory.

77Note that our notation, e.g., in eqs. (6.9) and (6.12), is not identical to that in [19], however, our results

are in complete agreement with theirs. The only exception is that we have accounted for a factor of 4 typo

in the second term in eq. (2.17) of [19].
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In the simplest situation where tL = tR = 0,78 the mutual complexity (4.30) vanishes,

i.e.

∆CV ≡ CV (L) + CV (R)− CV (L ∪R) = 0 , (6.11)

because of the symmetry of the two-sided geometry. Hence, in this case, the inequality (6.6)

is exactly saturated. More generally, the same result arises if we choose tL + tR = 0,

which ensures that the full boundary state is still the TFD state without any additional

time evolution. On the other hand, if we allow for some time evolution with tL, tR >

0, then CV (L) and CV (R) remain invariant while CV (L ∪ R) increases. Therefore the

mutual complexity becomes negative, and the complexity of the time-evolved TFD state

is superadditive.

Subregion-CA. The final result for subregion-CA (6.2) is79

CA(A) = a(d)
Ld−1

16π2GN

V (A)

δd−1
− a(d) + g0

4π2
S (6.12)

where the constants, a(d) and g0, are given by

a(d) = 4 ln

[
`ct

L
(d− 1)

]
,

g0 = 2

[
ψ0(1)− ψ0

(
1

d

)]
, (6.13)

with ψ0(z) = Γ′(z)/Γ(z). Note that g0 is positive for d > 1 (while, of course, it vanishes

for d = 1). The constant a(d) involves the scale `ct appearing in the boundary counterterm

in the gravitational action (6.3) — see also eq. (D.5). Note that we must choose that

`ct > L/(d−1) to ensure that a(d), and hence the complexity CA(B), is positive. Therefore,

the finite contribution in eq. (6.12) is negative and proportional to the entropy of the

thermal state.

Using the subregion-CA approach, the mutual complexity (1.3) for the TFD state with

tL = tR = 0 becomes80

∆CA ≡ CA(L) + CA(R)− CA(L ∪R) = − gd
2π2

S (6.14)

where

gd = a(d) + g0 + 4π
d− 1

d
. (6.15)

Since each of the terms contributing to gd is itself positive, the mutual complexity is

negative and hence the complexity of the TFD state is superadditive. If we evolve the

system forward in time with tL, tR > 0, then CA(L) and CA(R) are again invariant while

generally CA(L∪R) increases. A detailed analysis [70] shows that the complexity remains

constant up to a critical time, at which point it briefly dips down slightly before beginning

to grow linearly. We show in appendix E that the mutual complexity will remain negative

even in this short time period where CA(L ∪ R) decreases from its value at t = 0 and

therefore the complexity of the time-evolved TFD state is always superadditive as well.

78Here, tL and tR denote the times on the left and right boundaries, respectively.
79Compare to eq. (2.14) of [19].
80Again, we may choose tL + tR = 0 more generally. This result appears in eqs. (2.7)-(2.8) of [19].
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Subregion-CV2.0. It is easy to extract the results for the subregion-CV2.0 using

eq. (6.5). Some results for the bulk portion of the gravitational action appear in eqs. (2.26),

(B.10) and (B.16) of [19]. After accounting for the relevant proportionality factor, we obtain

CV 2.0(A) =
2V (A)Ld−1

d(d− 1)GN

(
1

δd−1
− 1

zd−1
0

)
, (6.16)

for the complexity of the thermal state, and

∆CV 2.0 = −16

d

(
1

d− 1
+
π

d
cot

π

d

)
S , (6.17)

for the mutual complexity. This result for the mutual complexity is once again negative for

d ≥ 2, and this means that the complexity of the TFD state according to the subregion-

CV2.0 proposal is again superadditive. We also note that, as with the other proposals, the

mutual complexity is proportional to the entropy.

6.3 Complexity of vacuum subregions

Below we summarize the results from all three approaches for a subregion of the CFT vac-

uum in two dimensions, i.e. an interval in the boundary of AdS3. These are the holographic

results which are most relevant for the comparison with the QFT results in section 5. We

also consider a disk-shaped subregion in the CFT vacuum in three dimensions, i.e. on the

boundary of AdS4, to gain some intuition about the behaviour with an odd number of

boundary dimensions. The general formulae for an arbitrary d appear in appendix D.

Subregion-CV. With the subregion-CV approach for the case of AdS3, both in global

coordinates and in the Poincaré patch, we have

AdS3,G/P : CV (A) =
2c

3

(
`

δ
− π

)
(6.18)

where c = 3L/(2GN) is the central charge of the two-dimensional boundary CFT [71], ` is

the size of the interval and δ is the UV cutoff. For global coordinates in AdS3, this result

comes from [53], and for the Poincaré patch, it was found in [20]. The relevant formulae

for the derivation in the Poincaré patch are summarized in appendix D, see eq. (D.2). The

constant term (i.e. −π) is a topological term studied in [53].

For a ball-shaped subregion with radius R on the boundary of AdSd+1, the calculation

of CV is outlined in eqs. (5) and (7) of [20] — see also eq. (4.9) of [21] and our eq. (D.2).

For example, for the case of a disk on the boundary of AdS4, one obtains

AdS4,P : CV (A) =
π4cT

3

(
R2

2δ2
− ln

(
R

δ

)
− 1

2

)
(6.19)

where cT = 3L2/(π3GN) is the central charge appearing in the OPE of two stress tensors

in the boundary theory, e.g., see [72].
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Subregion-CA. Next, we turn to the subregion-CA results. For the case of a flat bound-

ary (in the Poincaré patch), the divergence structure of the subregion complexity in vacuum

AdS was studied in [21]. However, these results did not include the boundary counterterms

Ict, which restores the reparametrization invariance on the null surfaces. We evaluate the

contribution of Ict in our calculations in appendix D. We have also corrected a number of

typos in the original calculation of [21], and explicitly demonstrated the cancellation of the

normalization constants of the null normals. Combining eqs. (D.7), (D.14) and (D.15) for

the case of AdS3 yields

AdS3,P : CA(A) =
c

3π2

(
`

2δ
ln

(
`ct

L

)
− ln

(
2`ct

L

)
ln

(
`

δ

)
+
π2

8

)
, (6.20)

where ` is again the size of the boundary interval. Further, we note that the UV divergences

were regulated in the above calculation by anchoring the WDW patch at the UV cutoff

surface. Repeating these calculations in global coordinates [56, 73], we find81

AdS3,G : CA(A) =
c

3π2

(
`

2δ
ln

(
`ct

L

)
− ln

(
2`ct

L

)
ln

(
C

δ

))
+ f(`/C) , (6.21)

where C is the circumference of a time slice on the boundary. Here, f(`/C) is some finite

contribution, whose precise form we did not determine analytically. However, we do know

that in the limit `/C → 0, eq. (6.21) should reduce to the previous expression in eq. (6.20)

and hence

`

C
� 1 : f(`/C) ' c

3π2

(
ln

(
2`ct

L

)
ln

(
C

`

)
+
π2

8

)
+O(`/C) . (6.22)

We return to examine this finite part in more detail in section 7.3.

For a disk-shaped region (of radius R) on the boundary of AdS4 using Poincaré coor-

dinates, we obtain

AdS4,P : CA(A) =
π2cT
12

(
R2

δ2
ln

(
2`ct

L

)
− 2R

δ
ln

(
4`ct

L

)
+ 2 ln

R

δ
+ ln

(
`ct

2L

))
. (6.23)

This calculation can also be seen as the smooth limit of the result obtained in [55] for

subregions with kinks/corners, i.e. compare with eq. (5.8) of [55].

Subregion-CV2.0. Again, it is straightforward to extract the results for the subregion-

CV2.0 proposal using eq. (6.5). We have the results for the bulk portion of the gravitational

action in eq. (D.7) for AdS3 in Poincaré coordinates (i.e. d = 2) and so after accounting

for the relevant proportionality factor we obtain

AdS3,P : CV 2.0(A) =
4 c

3

(
`

2δ
− ln

`

δ
− π2

8

)
. (6.24)

81We note that this result can be obtained either by anchoring the WDW patch at the cutoff surface, or

by anchoring it at the boundary of AdS3 (as in [56]) but adding the usual counterterms of the kind often

used in holographic renormalization (e.g., see [74]) on the cutoff surface. We return to the idea of adding

holographic counterterms in regulating holographic complexity in [73].
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Further the analogous result for AdS3 in global coordinates [56, 73],82

AdS3,G : CV 2.0(A) =
4 c

3

(
`

2δ
− ln

C

δ

)
+ f̃(`/C) , (6.25)

where C is again the circumference of a time slice on the boundary and f̃(`/C) is a finite

contribution. We return to examine this contribution in more detail in section 7.3. However,

let us observe here that in the limit `/C → 0, eq. (6.25) must reduce to the previous

expression in eq. (6.24) and hence we expect to find

`

C
� 1 : f̃(`/C) ' 4 c

3

(
ln

(
C

`

)
− π2

8

)
+O(`/C) . (6.26)

We can also use eq. (D.7) to evaluate the complexity for a disk-shaped region on the

boundary of AdS4 in Poincaré coordinates,

AdS4,P : CV 2.0(A) =
π4cT

9

(
R2

δ2
− 2R

δ
− 4 ln

R

4δ
+ 1

)
. (6.27)

With all three proposals, the leading divergence is proportional to the volume of the

boundary region V (A), i.e. V (A) = ` with d = 2 while V (A) = πR2 with d = 3. However,

the subleading divergences are quite different for subregion-CV compared to subregion-

CA and subregion-CV2.0. With either of the latter two, the subleading contribution is

a negative term proportional to the area of the boundary of A, e.g., V (∂A) = 2πR with

d = 3. In contrast, no comparable contribution appears in the subregion-CV results.

Similar boundary contributions with a negative sign were found in [55] for subregion-CA.

Such subleading divergences appear to be a generic feature of both the subregion-CA and

subregion-CV2.0 approaches, and can be understood as a contribution to the complexity

proportional to the entanglement entropy [75] — see also the discussion around eq. (6.7).83

Mutual complexity. Now we can use the previous results together with the results for

the complexity of the full boundary time slice to evaluate the mutual complexity. The

first observation is that in our examples here, we are considering the vacuum state and

subregions of the vacuum for the boundary CFT on a constant time slice. Hence for the

CV and subregion-CV proposals, the maximal volume slices also all lie in the constant

time slice in the bulk. Hence the two bulk volumes corresponding to a subregion and its

complement precisely add up to equal the volume for the full vacuum state. That is, we

82This result was obtained by anchoring the WDW patch at the cutoff surface, as we will describe in [73].

The result for another regularization scheme where the WDW patch is anchored at the boundary of AdS3

can be read from eq. (B.18) of [56]

AdS3,G : CV 2.0(A) =
4

3
c

(
`

δ
− ln

`

δ
+ finite

)
,

where we notice that the leading divergence has changed by a factor of 2, however, the universal logarithmic

piece remains unchanged.
83We should also mention that additional relations between the entanglement entropy and complexity for

AdS3/CFT2 using the complexity=volume proposal have been developed in the context of the kinematic

space in [53, 76], see, e.g., eqs. (46) and (4.6), respectively.
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are in a situation where we saturate the inequality in eq. (6.6) and the mutual complexity

vanishes.84 Of course, if we choose to examine the vacuum state on a more general Cauchy

slice in the boundary, we expect the mutual complexity to be negative, i.e. the complexity

would be superadditive. It would be interesting to understand the precise form of ∆CV in

these situations.

The results are more interesting for the CA and CV2.0 proposals. Here we will focus

our discussion on the case of a flat boundary, i.e. with Poincaré coordinates in the bulk,

since they are easily generalized to higher dimensions. We illustrate the discussion with the

example of AdS4, where we begin by evaluating the complexity of the full vacuum state,

using eqs. (D.19) and (D.16),

AdS4,P : CA(vac) =
π cT
12

V (Σ)

δ2
ln

2`ct

L
,

AdS4,P : CV 2.0(vac) =
π3cT

9

V (Σ)

δ2
, (6.28)

where V (Σ) is the spatial volume of the entire time slice in the boundary.85 Next, we gave

the results for a disk-shaped region in eqs. (6.23) and (6.27) for the subregion-CA and

subregion-CV2.0, respectively, which we re-express here as

AdS4,P : CA(A) =
π cT
12

(
V (A)

δ2
ln

(
2`ct

L

)
− V (∂A)

δ
ln

(
4`ct

L

)
+ 2π ln

L

δ
+ finite

)
,

AdS4,P : CV 2.0(A) =
π3cT

9

(
V (A)

δ2
− V (∂A)

δ
− 4π ln

L

δ
+ finite

)
, (6.29)

where V (A) = πR2 is the area of the disk and V (∂A) = 2πR is the circumference of

the boundary of the disk. This leaves us to evaluate the complexity of the exterior of

the disk, which we denote B. While this calculation may seem more formidable because

B has an infinite extent in this flat boundary geometry, the geometric interpretation of

the two leading singularities would be precisely as in eq. (6.29). Further, we would have

V (A) + V (B) = V (Σ) and V (∂A) = V (∂B) and hence the mutual complexity becomes

AdS4,P : ∆CA = −π cT
6

ln

(
4`ct

L

)
V (∂A)

δ
+ · · · ,

AdS4,P : ∆CV 2.0 = −2π3cT
9

V (∂A)

δ
+ · · · . (6.30)

In fact, this result can be extended to any (smooth) bipartition of the two-dimensional time

slice in the boundary theory, and V (∂A) will denote the length of the boundary between

the subregion A and its complement B. Given the sign of the results above, we see that

the complexity of the vacuum is superadditive for both the subregion-CA and subregion-

CV2.0 approaches. We might also note that the leading singularity in eq. (6.30) has the

same form as that in the entanglement entropy for the same bipartition. Hence, at least

to leading order here, the mutual complexity is again proportional to the entanglement

entropy between the two subregions.

84As for the previous discussion of the CV proposal for the TFD state with tL = 0 = tR.
85In fact, the time slice is two-dimensional and so V (Σ) is an area in this specific example.
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Using the results of appendix D and of [21], these calculations are easily extended to

higher dimensions, where we find for d > 2

AdSd+1,P : ∆CA = − Ld−1

2π2(d− 2)GN
ln

(
2(d− 1)`ct

L

)
V (∂A)

δd−2
+ · · · ,

AdSd+1,P : ∆CV 2.0 = − 4Ld−1

d(d− 1)(d− 2)GN

V (∂A)

δd−2
+ · · · . (6.31)

Of course, using our previous results for subregions on the boundary of AdS3, these cal-

culations are easily extended to d = 2. In this case, we find that the mutual complexity

becomes

AdS3,P : ∆CA = − 2 c

3π2
ln

(
2`ct

L

)
ln
`

δ
+ · · · ,

AdS3,P : ∆CV 2.0 = − 8 c

3
ln
`

δ
+ · · · .

(6.32)

Hence these general results again show that the mutual complexity is negative and hence

that the complexity of the vacuum state is superadditive. We may also note that to leading

order, the mutual complexity is proportional to the entanglement entropy of the subregions.

7 Discussion

In this paper, we focused on the mixed-state complexity of Gaussian mixed states. Our

approach focused on a definition dubbed the purification complexity in [19]. That is,

we considered the minimal complexity amongst the possible pure states which purify the

desired mixed state ρ̂A. Let us point out, however, that our perspective differs slightly

from that of the authors of [19] in that the latter only consider essential purifications.

The reason for this restriction was that they wanted the definition to collapse to the usual

pure state complexity definition when the target state is pure. In section 3, we found

that essential purifications are actually optimal, at least for the Gaussian mixed states

considered there, and as a consequence this assumption becomes redundant. It would be

interesting to explore whether including extra auxiliary degrees of freedom which appear

in a simple tensor product in the final pure state could actually reduce the complexity of

mixed states (or pure states) in more complicated situations.86

We might add that the purification complexity discussed here and in [19] is closely

aligned with the standard approach developed in quantum information theory, e.g., [6, 23].

However, in this setting, the auxiliary degrees of freedom are regarded as another resource

required for the preparation of the desired mixed states, and hence an additional cost is

associated with adding more ancillae. This cost was not considered in our analysis nor

in [19]. This would be another feature that would favour essential purifications as the

optimal purifications. For example in section 3.2.2, where we found the same complexity

using either one or two ancillae, the essential purification with one ancilla would clearly

86We are reminded here of coherent (pure) states [28], where, in simple examples, the reference and target

states had a tensor product structure which was not respected by the intermediate states.
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become the optimal one if we added an extra penalty for each ancilla that is introduced.

Still, it would be interesting to investigate whether this simple result extends to, e.g., the

case of interacting quantum field theories.

7.1 Other proposals for mixed state complexity

Before proceeding with a further discussion of our results, we would first like to briefly

review the other proposals for mixed-state complexity made in [19] and possible connections

to our current work:

Spectrum and basis complexity. One alternative [19] is to break the problem of

preparing mixed states into two parts — creating the spectrum and creating the basis of

eigenvectors. The spectrum complexity CS is defined as the minimal purification complexity

of some mixed state ρ̂spec which has the same spectrum as ρ̂A, where one also optimizes

over the possible ρ̂spec. Since one possible ρ̂spec with the required spectrum is simply ρ̂A,

we conclude that CS ≤ CP , where CP denotes the purification complexity of ρ̂. In our

analysis, the spectrum is defined by the eigenvalues of the matrix B in eq. (3.11).

The basis complexity can be defined in different ways: The first suggestion in [19] is

simply the difference CP −CS . The second suggestion is to define CB as the complexity (i.e.

minimal number of unitary gates) required to go from the optimal ρ̂spec to our target state

ρ̂. The latter preparation can be made with unitary gates because the two mixed states

share the same spectrum. We can easily demonstrate CP ≤ CS + CB since on the left-hand

side, the preparation is constrained to pass through the intermediate state ρ̂spec.

Our construction using the physical basis seems closely related to this approach. To

modify the spectrum, one must use “mixed” entangling gates acting between A and Ac, and

so these would appear in the circuit preparing (the purification of) ρ̂spec. The gates acting

only on the A degrees of freedom are modifying the basis, and the circuit preparing ρ̂A
from ρ̂spec is comprised solely of these gates. However, it seems that there is no natural role

for the gates acting only on Ac. In this framework then, not using these gates may be the

reason for the difference in the complexities, i.e. CP ≤ CS + CB. Let us also note that both

the spectrum complexity and the entanglement entropy are both insensitive to the action

of the gates acting only on A or only on Ac. Only the AAc entangling gates change these

quantities. For example, considering two mixed states of a single harmonic oscillator with

the same entanglement entropies, this implies that the spectrum complexities must also

be equal. It would be interesting to understand to what extent this property generalizes

to states over many degrees of freedom, e.g., the thermal state of a free scalar, studied in

section 4. We will explore some of the issues above in the future work [77].

Open system complexity. Open system complexity studies the complexity of circuits

which move through the space of density matrices using general CPTP maps, rather than

only unitary transformations. This requires characterizing these general maps in terms

of elementary operations and then assigning a cost to the latter. Of course, as discussed

in the introduction, the dilation theorems [22] imply that the most general CPTP maps

acting on a system of qubits can be realized as unitary evolution of the system coupled to

ancillary qubits [6], which seems to bring this approach back to the framework used for the
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purification complexity. However, one potential difference for the open system complexity

is that some of the ancillae may be introduced and traced out, i.e. they are re-initialized, at

every step. This would contrast with having a single reservoir of ancillae on which we can

repeatedly act before tracing them at the very end of the unitary evolution, as described

for the purification complexity.

Ensemble complexity. The ensemble complexity is defined using a decomposition of

the mixed state over an ensemble of pure states as follows

CE = min
{pi,|ψi〉}

∑
i

pi C(|ψi〉) , where ρ̂ =
∑
i

pi|ψi〉〈ψi| . (7.1)

Of course, this notion reduces to the pure state complexity when the state ρ̂A is pure. Even

with a Gaussian mixed state ρ̂A, we would generally have to explore ensembles which are not

constructed solely from Gaussian states. In the case of the thermal state, a decomposition

is available in terms of coherent states and this allows to put a bound on the ensemble

complexity of thermal states — see section 3.5 of [19] for further details.

Path-integral complexity for mixed states. Finally, we would like to mention that

an alternative method for evaluating the complexity of states in quantum field theory was

suggested based on path-integral optimization, see e.g., [78–82].87 Unlike Nielson’s geo-

metric method or complexity definitions based on the Fubini-Study metric, path-integral

optimization considers the Euclidean path integral that prepares a given state in a two di-

mensional CFT and translates the problem of its optimal preparation to that of minimizing

the Liouville action obtained from Weyl rescaling the path-integral measure. Generaliza-

tions for higher dimensions were also proposed. The path-integral approach also allows

to handle mixed states, where in order to optimize a reduced density matrix one includes

boundary contributions to the Liouville action. It is interesting to point out that path-

integral optimization was recently used to shed light on entanglement of purification [83].

It is perhaps interesting to explore a definition for complexity of mixed states based on

complexity of purification using the path-integral complexity as a starting point for the

complexity of pure states.

7.2 Mutual complexity in QFT

In section 4.5, we considered beginning with the pure state |ΨAB〉, and then constructed

the two reduced density matrices, ρ̂A and ρ̂B. Then in eq. (4.30), the mutual complexity

was defined as the combination [49],

∆C = C(ρ̂A) + C(ρ̂B)− C(|ΨAB〉) , (7.2)

which quantifies the additional correlations between the subsystems A and B.

Our first application of this quantity was to compare the complexity of the TFD state

with the purification complexity of the thermal mixed state produced by tracing out either

87We would like to thank an anonymous referee for suggesting a connection with this approach.
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the left or the right degrees of freedom, e.g., see eq. (4.31).88 As a warm-up exercise, we

evaluated the mutual complexity for a two-mode TFD state and as shown in eq. (4.34),

we found ∆Cdiag

1 (|TFD〉12) > 0. More generally, we might evaluate the mutual complexity

for general two-mode pure Gaussian states |Ψ〉12. That is, integrating out each of the

degrees of freedom in term yields two distinct mixed states, ρ̂1 and ρ̂2, and so one might

compare the purification complexity of these two mixed states with that of the parent pure

state, with the analogous expression to that in eq. (7.2). In fact, using the results for the

purification complexity of one-mode Gaussian states in eq. (2.50), it is straightforward to

show that subadditivity always holds for any two-mode pure Gaussian state, i.e.

∆Cdiag

1 (|Ψ〉12) = Cdiag
1 (ρ̂1) + Cdiag

1 (ρ̂2)− Cdiag
1 (|Ψ〉12) ≥ 0 . (7.3)

However, this inequality does not extend to the purification complexity calculated in the

physical basis, as in section 2.5. It would be interesting to investigate whether the above

inequality can be made more restrictive, e.g., where the mutual complexity is greater than

some finite bound proportional to the entanglement entropy.

Since in section 4, the TFD state has a simple product structure for the free scalar field

theory, the mutual complexity becomes simply a sum over the same quantity evaluated for

each of the individual modes — see eqs. (4.35) and (4.48). Hence the positivity appearing

in eq. (4.34) for the two-mode TFD states in the diagonal basis extends to the TFD state

of the full scalar QFT. That is, ∆Cdiag
1 (|TFD〉) > 0 irrespective of the values of the

temperature, reference frequency or the mass of the scalar.

This positivity is not replicated for the mutual complexity when it is evaluated using the

physical basis, as shown in figure 14. There we showed that for a massless two-dimensional

scalar, ∆Cphys
1 (|TFD〉) becomes negative when the reference frequency µ is much smaller

or much larger than the temperature.

In section 4.5 we found that with µ � T , the mutual complexity of the TFD state is

proportional to entanglement entropy between the left and right copies of the field theory.

However, in general, there would be an overall proportionality constant which contains

a temperature dependence through the (dimensionless) ratio T/µ, as well as T/m for

a massive scalar. This behaviour is easily seen analytically in the diagonal basis using

eqs. (4.38) and (4.39), but similar results also apply in the physical basis, see comments at

the end of section 4.5.2. In any event, the appearance of the entanglement entropy in the

regime µ � T reinforces the intuition that the mutual complexity in eq. (7.2) quantifies

the correlations between the subsystems to which the pure state is reduced.

Before turning to subregions, let us briefly comment again that ∆C is UV finite for the

TFD state. For the free scalar, we found that the leading UV divergence in the purification

complexity of the thermal mixed state is the same for either the diagonal or physical basis,

as determined in eqs. (4.14)–(4.16) or eq. (4.27), respectively. The precise form of this

88We reiterate that all the results for the purification complexity in sections 4–5 have been derived using

a GL(N,R) subgroup of the group Sp(2N,R) of transformations between the Gaussian states and using a

mode-by-mode purification ansatz.
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leading divergence can be found as

C(ρ̂th(β)) '


Ωd−2Vd−1

2 (2π)d−1(d−1)
Λd−1

(
ln µ

Λ + 1
d−1

)
, µ ≥ Λ ,

Ωd−2Vd−1

2 (2π)d−1(d−1)
Λd−1

(
ln Λ

µ + 2
d−1

( µ
Λ

)d−1 − 1
d−1

)
, µ ≤ Λ .

(7.4)

Exactly, the same divergences also appear in the complexity of the vacuum state of the

scalar field theory, e.g., see appendix B of [15]. These divergences are also exactly one-

half of those found for the TFD state, and hence the subtraction in eq. (4.31) yields

∆C (|TFD〉) which is UV finite (in either basis). More precisely, all of the potentially

divergent contributions cancel in the integrand of eq. (4.36) for the diagonal basis and of

eq. (4.48) for the physical basis, and so all of the UV divergences cancel in the corresponding

mutual complexities.

Of course, this UV finiteness is directly related to the fact that optimal purification

of the thermal state ρ̂th(β) is not the TFD state. Much of the preparation of the TFD

state involves introducing short-distance correlations in both copies of the field theory.

Even though the optimal purification of ρ̂th(β) involves introducing a number of auxiliary

degrees of freedom that is equivalent to introducing a second copy of the QFT, there is

no need to prepare the purification with UV correlations amongst the ancillae since after

they are integrated out, these will not affect the physical correlations of the thermal mixed

state.89 This is why the UV divergences in C(ρ̂th(β)) carry exactly a factor of one-half

compared to C (|TFD〉).90

In section 5, we considered the purification complexity of subregions of the vacuum.

In this case, both the vacuum state and the mixed states produced by reducing to a

subregion can again be written in a product form. However, the basis of states appearing

in these products is not the same, i.e. for the vacuum, we use momentum eigenstates

(which are eigenstates of the Hamiltonian), while for the subregions, we use eigenstates

of the corresponding modular Hamiltonian. Hence we can no longer apply eq. (7.3) to

determine the sign of the mutual complexity of the vacuum divided into two complementary

subregions, A and B. However, we found that ∆Cdiag
1 is still positive in the diagonal basis,

as illustrated in figure 17. In the physical basis, we gave two definitions of the mutual

complexity in eq. (5.19), which differ by the basis in which the ground state complexity

is evaluated. Our analysis indicates that ∆Cphys
1 is generally negative, while ∆C̃phys

1 is

positive, as illustrated in figure 21. The sign difference between these two definitions is

due to the vacuum complexity being much larger in ∆Cphys
1 than in ∆C̃phys

1 . The cutoff

dependence of ∆Cphys
1 is related to the subleading divergences of the subregion complexities

and the ground state complexity, which are all logarithmic. On the other hand, the cutoff

dependence of ∆C̃phys
1 is dominated by the subleading divergence of CAB1 (|Ψ0〉), which is

linear in the cutoff.

89Similar comments appear in [19] using the basis and spectrum language, i.e. preparing the TFD state

requires many gates which adjust the basis of the purifying system but which do not affect the mixed

thermal state of the original system.
90Given the optimal purification of ρ̂th(β), it may be interesting to investigate the properties of ρAc , i.e.

the mixed state found after tracing out the physical degrees of freedom. For example, one should find that

it is much less entangled at short distances.
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At this point, let us note that for subregions of the vacuum, it is again the case that

the original state, i.e. the vacuum state, does not provide the optimal purification. If the

vacuum was the optimal purification, then the subregion complexity would simply match

the complexity of the ground state. As a result, the leading divergence of all of the subregion

complexities would be C ∼ V (Σ)/δd−1 (where V (Σ) is the volume of the global time slice)

and the corresponding mutual complexity would also exhibit a volume-law divergence.

Instead as shown in eqs. (5.11) and (5.17), the leading divergences are instead proportional

to V (A), the volume of the subregion, and as discussed above, the mutual complexity

is then controlled by the subleading divergences appearing in the individual complexities.

Again, this reflects the fact that in the optimal purification, there is no need to prepare UV

correlations amongst the ancillae. Moreover, we might note that the ground state would

not even be an essential purification (with the minimal number of ancilla) for subsystems

whose size is less than half of that of the full system.

We turn to the comparison of the mutual complexity from our QFT and our holographic

calculations in the next subsection. However, before closing here, let us note that there is

no reason why in calculating the mutual complexity, the initial state must be a pure state.

That is, a simple generalization of eq. (7.2) would be

∆C = C(ρ̂A) + C(ρ̂B)− C(ρ̂A∪B) , (7.5)

where the combined system begins in a mixed state ρ̂A∪B. We still expect that in this

situation the mutual complexity (7.5) quantifies the additional correlations between the

subsystems A and B. Using our results, a simple example would be to consider two

neighbouring (but not overlapping) subregions, A and B, in the vacuum state. These

combine to form the larger subregion A∪B (but note that we assume A∩B = 0). Building

on eq. (6.31) in the holographic context, we would find that the leading contribution to

the mutual complexity becomes

AdSd+1,P : ∆CA = − Ld−1

2π2(d− 2)GN
ln

(
2(d− 1)`ct

L

)
V (∂A ∩ ∂B)

δd−2
+ · · · ,

AdSd+1,P : ∆CV 2.0 = − 4Ld−1

d(d− 1)(d− 2)GN

V (∂A ∩ ∂B)

δd−2
+ · · · . (7.6)

In this case, we observe that this leading divergence is comparable to that in the mutual

information between the subregions A and B. Of course, this suggests that in general

one should think of the mutual complexity as being related to mutual information, rather

than the entanglement entropy even when ρ̂AB is a pure state. It would be interesting to

investigate this generalization (7.5) further in the case of disjoint (i.e. non-neighbouring)

subregions A and B, where the mutual information is finite, and exhibits an interesting

phase transition for holographic CFTs [84–86]. A similar setup studying purifications of

two complementary subregions appears also in the context of the entanglement of purifi-

cation [25–27, 87]. It would be interesting to investigate the relation between these two

notions.

Further, we observe that the mutual complexity (7.5) for mixed states would generally

be nonvanishing (but UV finite) using the subregion-CV approach (6.1), even if the subre-

– 84 –



J
H
E
P
0
3
(
2
0
2
0
)
0
1
2

gions lie in a constant time slice on the boundary. Another interesting issue to investigate

would be if inequalities similar to the Araki-Lieb inequality [88] can be used to bound

the difference in complexity between two complementary subsystems when starting with

a mixed state. Finally, to close here, let us comment on the case of partially overlapping

subregions. In this case, one is naturally lead to consider the following generalization of

the mutual complexity

∆C = C(ρ̂A) + C(ρ̂B)− C(ρ̂A∪B)− C(ρ̂A∩B) . (7.7)

With this difference of complexities, the leading divergences in the individual complexities

cancel, and the sign of the result is nontrivial. It would be interesting to investigate the

properties of this generalization further.

7.3 Holographic complexity

Much of the motivation of our paper was to compare the results for the purification com-

plexity in the free scalar QFT to those for the mixed state complexity found in holography.

Hence we now compare the QFT results of sections 4 and 5 for the purification complex-

ity of thermal states and subregions in the vacuum state to the analogous results found

with the subregion-CV (6.1), subregion-CA (6.2), and subregion-CV2.0 (6.4) prescriptions

found in section 6. Recall that motivated by previous comparisons, we focused our analysis

of the complexity in the QFT on the F1 cost function (2.11). For example, the structure

of the UV divergences for the C1 complexity in QFT was found to be similar to that for

holographic complexity [14, 15]. However, the basis dependence of this measure was found

to play an important role in evaluating the complexity of TFD states [29], and so we also

evaluated our QFT complexities in both the diagonal and physical bases here. One more

observation, before turning to the results, is that the authors of [89] have argued that

the relevant gates in holographic complexity should be non-local. Of course, the original

analysis of the QFT complexity [14], which we adapt here in our analysis, also involves

non-local gates. Hence this is a common point for the complexity in both frameworks.

The leading UV divergence in any of the holographic prescriptions for the complexity

of the reduced state on a subregion has the same volume-law form as found for a pure state.

That is, all three prescriptions yield an expression of the form C ' kd V (A)/δd−1+· · · where

V (A) is the volume of the boundary subregion A on which the mixed state is defined, and

kd is some constant depending on the dimension, the central charge cT and the prescription

chosen. In the vacuum (or any pure state), the leading divergence is precisely the same

except that V (A) is replaced by V (Σ), the volume of the entire Cauchy surface in the

boundary theory. This volume-law behaviour is the same as found for the free scalar. For

example, the leading divergence in the QFT complexity of the thermal state is shown in

eq. (7.4). As noted there, this divergence is precisely the same as found for the vacuum

state [15]. Similarly, for subregions in the vacuum state we found a leading divergence

proportional to the volume of the subregion, see eqs. (5.11) and (5.17).

When considering subregions of the vacuum, an interesting feature which distinguishes

the subregion-CA and subregion-CV2.0 proposals from the subregion-CV prescription is
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that the former two generate subleading divergences that are associated with the geometry

of the boundary of the subregion, e.g., as shown in eq. (6.29). In contrast, no such contribu-

tions appear with the subregion-CV proposal, e.g., see eq. (6.19).91 Of course, as discussed

in section 6.1, we could modify the subregion-CV prescription by adding a term propor-

tional to the volume of the HRT surface, as in eq. (6.7). This modified prescription would

yield boundary contributions similar to those found with the subregion-CA and subregion-

CV2.0 proposals. As this modification of the subregion-CV prescription highlights, at least

to leading order, the boundary contributions are proportional to the entanglement entropy

of the reduced density matrix on the subregion.

We would like to explore further the relation between the subleading divergences in the

complexity and entanglement entropy by returning to our results of AdS3 in section 6.3.

Recall that using global coordinates in the bulk of AdS3 corresponds to the two-dimensional

boundary CFT living on a circle with a finite circumference C. Further our results for the

subregion complexity for the subregion-CA and subregion-CV2.0 proposals were presented

in eqs. (6.21) and (6.25) with a finite term, which we could not determine analytically.

However, in the limit of small subregions, i.e. `/C � 1, we were able to predict the form

of these finite functions f(`/C) and f̃(`/C) in eqs. (6.22) and (6.26), by comparing to the

results coming from putting the boundary CFT on an infinite line. However, if we imagine

that the boundary contributions to the subregion complexity are related to entanglement

entropy, we should recall the formula for the entanglement entropy of an interval in CFT2

on a finite circle: SEE = c
3 ln

(
C
πδ sin

(
π`
C

))
[35, 36]. This formula suggests that f(`/C) and

f̃(`/C) should be given by the following expressions,

f(`/C) =
c

3π2

(
− ln

(
2`ct

L

)
ln

[
1

π
sin

(
π`

C

)]
+
π2

8

)
, (7.8)

f̃(`/C) = −4 c

3

(
ln

[
1

π
sin

(
π`

C

)]
+
π2

8

)
. (7.9)

Of course, the expressions above reduce to those in eqs. (6.22) and (6.26) in the limit `/C →
0. However, we note that eqs. (7.8) and (7.9) are symmetric about `/C = 1/2, and so a

similar logarithmic singularity appears in the limit `/C → 1, e.g., f̃(`/C) ' −4 c
3 ln[C−`C ]

in this limit. Figure 23 shows results for f(`/C) and f̃(`/C) obtained by numerical inte-

gration (see [56, 73] for further details) and compares these to the predictions in eqs. (7.8)

and (7.9). In both cases, the numerical results fit almost perfectly with the predicted

analytic expressions. Hence it appears that the subleading logarithmic divergence in the

complexities in eqs. (6.21) and (6.25) takes precisely the same form as the corresponding

entanglement entropy. This suggests a deep relation between the two quantities (at least

for two-dimensional CFTs). It would be interesting to investigate this relation further, and

to investigate if eqs. (7.8) and (7.9) can be derived analytically.

With the subregion-CA or subregion-CV2.0 proposals, the boundary divergences dis-

cussed above dominate the mutual complexity of the vacuum state, e.g., see eqs. (6.31)

and (6.32). Hence, given a bipartition of the vacuum into subregions A and B, the mutual

91While this equation does exhibit a subleading logarithmic divergence, there is no ‘area-law’ divergence

proportional to R/δ.
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Figure 23. Finite part of the complexity using the subregion-CA (left) and subregion-

CV2.0 (right) using global coordinates. For subregion-CA, we expressed f(`/C) ≡
c

3π2

(
− ln

(
2`ct
L

)
b(`/C) + a(`/C)

)
and the left plot shows our numerical evaluation of a(`/C) (green

dots) and b(`/C) (blue dots). These results are overlaid with the corresponding expressions sug-

gested by the entanglement formula in eq. (7.8), i.e. a(`/C) = π2/8 and b(`/C) = ln
[
1
π sin

(
π`
C

)]
(black and red curves). For subregion-CV2.0, we expressed f̃(`/C) ≡ − 4 c

3 ã(`/C) and the right

plot shows our numerical evaluation of ã(`/C) (blue dots). These results are overlaid with the

corresponding expression in eq. (7.9), i.e. ã(`/C) = ln
[
1
π sin

(
π`
C

)]
+π2/8 (red curve). In both cases,

the numerical results fit almost perfectly with the predicted analytic expressions.

complexity is UV divergent with the leading divergence taking the form ∆C ∼ V (∂A)/δd−2,

where we have implicitly used that ∂A = ∂B. Of course, this divergence has precisely the

same form as the celebrated area-law term [90–92] found in the entanglement entropy be-

tween A and B. This again supports the claim that the mutual complexity characterizes

the correlations between the two subsystems appearing in eq. (7.2). Similar observations

relating the mutual complexity and the entanglement entropy also appear in [55].

With a bipartition of the vacuum state on a fixed time slice, the mutual complexity

precisely vanishes using the subregion-CV prescription. Of course, if we adopted the mod-

ified prescription for C′V (A) in eq. (6.7), the resulting mutual complexity would, of course,

be proportional to the entanglement entropy. Further, this construction emphasizes the ob-

servation below eq. (7.6) that it is more appropriate to think of these mutual complexities

as being proportional to the mutual information between the subregion and its comple-

ment. That is, applying eq. (6.7) to evaluate eq. (7.5) clearly yields ∆C′V = η I(A,B)

where I(A,B) = SEE(A) +SEE(B)−SEE(A∪B) is precisely the mutual information of the

two subregions.

The mutual complexity is, of course, an interesting quantity to compare between the

holographic and QFT approaches. Our results for ∆C are summarized in table 1 for all

three holographic prescriptions calculated in section 6, as well as those for the free scalar

QFT calculated in sections 4 and 5.

One feature common to the holography and QFT is that the UV divergences in the

complexity of the thermal state ρ̂th(β) precisely match those found in the complexity of a

single copy of the vacuum,92 or alternatively, they are precisely one-half of those found for

the TFD state. As a consequence, the mutual complexity of the TFD state is UV finite in

92We return to this point below.
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both holography and the free QFT. Further, we demonstrated that the mutual complexity

for the TFD state calculated for the free scalar in the diagonal basis is proportional to the

thermal entropy in (4.38), where we have taken m = 0 and also βµ � 1. In the physical

basis, we also expect that with the limit βµ� 1 and βm� 1, the mutual complexity will

be proportional to the entropy — see comments at the end of section 4.5.2. Again, this

matches the behaviour found in eqs. (6.14) and (6.17) for the subregion-CA and subregion-

CV2.0 approaches.

Unfortunately, the holographic complexity is superadditive, while in the diagonal basis,

the QFT complexity is subadditive, i.e. ∆C(TFD) < 0 for holography while ∆C(TFD) > 0

for the free QFT using the diagonal basis. However, the QFT mutual complexity in the

physical basis was observed to be negative when the reference frequency βµ was either

very small or very large, see the figure 14. Hence in these regimes, the physical basis

results compare well with the holographic results, for the subregion-CA and subregion-

CV2.0 proposals. Of course, for the tL = 0 = tR time slice, the mutual complexity to the

TFD state vanishes using the subregion-CV prescription. However, we could also apply

the modified prescription in eq. (6.7), in which case we would find ∆C′V (TFD) = 2η S. In

this case, the sign is determined entirely by the sign of the parameter η, and in particular,

choosing η > 0 would yield a subadditive result as found using the diagonal basis in the

free QFT.

For subregions in the vacuum state of a two-dimensional free scalar field theory, using

numerical fits, we inferred the general divergence structure of the purification complexity

in the diagonal basis in eq. (5.11) and in the physical basis in eq. (5.17). The leading

divergence is a volume term `
2δ | ln

1
µδ |, where the coefficient precisely matches that found

in the vacuum. In this respect, the QFT complexities show the same behaviour as found

with the three holographic subregion complexity proposals, in eq. (6.18) for subregion-

CV, eq. (6.21) for subregion-CA and eq. (6.25) for subregion-CV2.0.93 The numerical fits

for the QFT complexities (see eqs. (5.11) and (5.17)) did reveal a subleading logarithmic

divergence proportional to ln(C/δ),94 which was found in the holographic results for the

subregion-CA and subregion-CV2.0 approaches (see eqs. (6.21) and (6.25)). However, our

numerical results were not sensitive enough to resolve the precise form of the subleading

contributions, e.g., to find a form similar to that found for the corresponding holographic

systems in eqs. (7.8) and (7.9). It would be interesting to extend our QFT calculations

to larger lattices, but also higher dimensional lattices where the subleading divergences

become stronger.

Here, we might note that as discussed above, the subleading contributions in the

subregion complexity are expected to dominate the corresponding mutual complexity. In

this regard, the functional dependence of ∆C on `/C compares well between the QFT

and the holographic results on general grounds. That is, we may compare the free scalar

QFT results in figure 17 for the diagonal basis and in figure 21 for both definitions in

93Note that our QFT results of section 5 are valid for the circle and so should be compared to the

holographic result in global coordinates, see footnote 52.
94Here we denote the total size of the system as C(= L in section 5) to facilitate the comparison with

the corresponding holographic results.
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Figure 24. Fits (solid curves) and data (points) of the size dependence of the mutual complexity

in the diagonal basis ∆Cdiag1 for different reference frequencies µL = 100, 200 and 300. The cutoff

was set to δ/L = 1/N = 1/1000. The solid lines correspond to the fit in eq. (7.10).

the physical basis with the form appearing in figure 23 for the subleading contributions in

the corresponding subregion-CA and subregion-CV2.0 results. In both cases, the mutual

complexity rises dramatically for small `/C, has a broad maximum at `/C = 1/2 and is

symmetric under `/C → (C− `)/C. A preliminary examination of the QFT results for the

diagonal basis showed the following gave a good fit to our numerical results95

∆Cdiag
1 ≈ 200

500 + µC

[
ln

(
C

πδ
sin

(
π`

C

))
+ 8.33 + 0.0214µC

]
. (7.10)

Figure 24 compares this function to our numerical results in figure 17. It would be interest-

ing to investigate these fits in more detail and in particular, to produce the analogous fitting

function for the physical basis results. The latter will require producing numerical results

with much greater resolution than figure 21 which was produced with N = C/δ = 100.

Unfortunately, there was not a good match for the sign of these mutual complexities

in comparing the holographic and free QFT results. In particular, for all three holographic

approaches, the vacuum mutual complexity was generally superadditive, i.e. ∆C < 0.96

In contrast, using the diagonal basis in the free QFT produced a subadditive result for

subregions of the vacuum. In the case of the physical basis, we actually proposed two

definitions for the mutual complexity in eq. (5.19). With the first definition, where we

introduce a partition of the vacuum degrees of freedom according to the arbitrary choice

made for the subregions, ∆Cphys

1 < 0 which agrees with holography. However, the leading

contribution in the QFT result appears to be linear, i.e. proportional to `/δ, whereas the

leading term in the subregion-CA and subregion-CV2.0 results are proportional to ln(`/δ).

With the second definition, where we subtract the standard vacuum complexity, ∆C̃phys

1 > 0

which disagrees with the holographic results. However, in this case, the leading contribution

in the QFT result appears to be logarithmic, as shown in figure 22.

95Note that L/δ = 1000 for all three curves.
96Of course, the modified subregion-CV approach (6.7) could yield either sign for the mutual complexity

depending on the sign of the parameter η.
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If we compare the leading divergences noted above in the purification complexity and

the holographic complexity from subregion-CA, we are lead to identify97

ln

(
`ct

L

)
∼
∣∣ ln (µδ)

∣∣ =

ln (µδ) , for µδ > 1 ,

ln
(

1
µδ

)
, for µδ < 1 .

(7.11)

We note that the definition of circuit complexity in the free scalar QFT introduces an new

scale — the reference frequency µ, while the CA proposal for holographic complexity de-

pends on the arbitrary length scale `ct, which is introduced by the null boundary countert-

erm [63]. The comparison of the divergences in these approaches motivates us to relate the

ratio µδ in the QFT complexity to `ct/L in the CA proposal with `ct/L ∼ max(µδ, 1/µδ).98

A similar identification was pointed out in [14, 15] and the discussion section of [67].

We observe that this identification has interesting implications for the subregion-CA

results since the coefficient ln(`ct/L) also appears in terms beyond the leading contribution

to the complexity. For example, an extra factor of | ln(µδ)| would appear in the leading

term in the mutual complexity in eq. (6.31). If µ and δ are independent scales, this

would mean that this leading term no longer matches the area-law divergence appearing

in the entanglement entropy. However, this interpretation can be restored if the reference

frequency scales with the UV cutoff, e.g., µδ = e−σ so that the logarithmic factor simply

introduces a new numerical factor, i.e. | ln(µδ)| = |σ|.
Our calculations also lend themselves to examining another interesting quantity,

namely, the difference of the complexity of the thermal state and that of the vacuum

state, i.e.

δC = C(ρ̂th(β))− C(vac) =
∆C (|TFD〉) + ∆̃Cformation

2
. (7.12)

As we noted above, the UV divergences in C(ρ̂th(β)) are precisely the same as in C(vac),

and hence we are left with a UV finite quantity in δC. In the second expression in eq. (7.12),

we are expressing this quantity in terms of the mutual complexity of the TFD state (see

eq. (4.31)) and the “complexity of formation” of the TFD state [29, 43], i.e. ∆̃Cformation =

C (|TFD〉)− 2C(vac).

The quantity δC will be positive in free scalar QFT using the diagonal basis. This

can be seen by comparing eq. (4.1) with the corresponding the vacuum complexity for

each mode,

C(vac) =
1

2

∣∣∣ln µ
ω

∣∣∣ . (7.13)

Hence the difference is positive for each mode, and summing over all modes, as in eq. (4.12),

we find a positive result. Further, we see that this integrand decays exponentially for large

frequencies, i.e. βω � 1, and so the integral will be UV finite, as already noted above.

97Of course, the same identification comes from comparing leading divergences in the purification com-

plexity of the thermal state, or even the complexity of vacuum state.
98We are implicitly assuming that `ct/L > 1 in order that the CA complexity is positive.
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Figure 25. The quantity δCphys
1 (|TFD〉12) as defined in eq. (7.12) with fixed r̄ = 1

2 ln ω
µ < 0 as a

function of α. We find that the quantity δCphys
1 is always positive.

In the physical basis, we can combine eq. (4.46) for the mutual complexity of the TFD

state, together with the result that ∆̃Cformation = 2α (see eq. (4.44)) to show that in the

limit βω � 1

δCphys

1 = 2α
ln µ

ω√
µ/ω −

√
ω/µ

+O(α2) . (7.14)

The latter is again exponentially suppressed for large frequencies and so we expect the

corresponding δC to be UV finite when integrated over frequencies. A plot of δCphys

1 for a

single-mode is shown in figure 25 and is also positive (this plot is simply obtained from the

plot in figure 13 by multiplying by a half and adding α). Hence we also expect that δC > 0

in the physical basis. Supporting evidence for this positivity can be found in observing

that the slope in the plot for small α can be read from the coefficient in eq. (7.14), which

again is always positive.

Let us add that in either the diagonal or physical basis, we find that δC is proportional

to the thermal entropy, at least for the limits of large µβ and small mβ, as may be inferred

from the discussion at the end of section 4.5.2.

Using any of the three holographic approaches, δC is again a UV finite quantity because

there are no boundary contributions in C(ρ̂th(β)), and the remaining UV divergences match

those in C(vac). Recall that the mutual complexity of the TFD was vanishing for the CV

proposal and so by eq. (7.12), δC is simply given by one-half of the complexity of formation.

The latter was evaluated for planar geometries in eq. (5.8) of [43]. Hence we obtain

δCV =
1

2
Cformation
V = 2

√
π

(d− 2)Γ(1 + 1
d)

(d− 1)Γ(1
2 + 1

d)
S , (7.15)

which is positive for d > 2 and vanishing for d = 2. For the CA proposal, eq. (6.14)

combines with the complexity of formation in eq. (3.38) of [43] to yield

δCA = − 1

4π2

[
a(d) + g0 + 4π

(
1− 1

d
− d− 2

2 d
cot
(π
d

))]
S , (7.16)
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where a(d) and g0 are defined in eq. (6.13). One may show that the sum of the three terms

inside the square brackets above is always positive,99 and hence we find that δCA < 0.

Similarly, using the CV2.0 approach, we combine eq. (3.35) of [43] with eqs. (6.5) and (6.17)

to find

δCV 2.0 = − 8

d(d− 1)
S , (7.17)

which is once again negative. That is, according to both the CA and CV2.0 proposals, it

is easier to prepare the mixed thermal state than the pure vacuum state.

Now comparing δC for the free scalar QFT with that coming from holography, we

observe that in all instances, this quantity is proportional to the entropy of the thermal

state. As explained above, in the QFT result, this required considering the limits, µβ � 1

and mβ � 1. Of course, the latter is natural to compare the result to the boundary CFT

in the holographic framework. However, we must also note that while δC is positive for

the free scalar and for the CV approach, it is negative for the CA and CV2.0 approaches.

Hence there is some tension between the results for the two last approaches and those for

the free QFT.

Let us summarize our comparison of the purification complexity for the free scalar

QFT with the various subregion proposals in holography: Our results do show that various

general features are common to the two frameworks. However, a detailed comparison does

not lead to any definite conclusions. Based on comparisons of the mutual complexity for

the TFD and vacuum states, it seems that details of the QFT results using the diagonal

basis are quite different from the corresponding holographic results. Recall that previous

calculations of the complexity of formation for the free scalar [29] already indicated that

the diagonal basis did not produce results comparable to holography. The QFT results

using the physical basis can be brought into closer alignment with the holographic results,

at least in certain regimes, e.g., βµ � 1 or βµ � 1 is required for the mutual complexity

of the TFD state to be superadditive. These restrictions may be informing us about

the microscopic model underlying holographic complexity. However, we are still left with

apparent discrepancies for the mutual complexity of the vacuum state, as well as for the

purification complexity of the thermal state (7.12), which may be warning us that these

comparisons simply have limited applicability.

7.4 Entanglement entropy

Much of the original motivation to study holographic complexity was trying to understand

the structure behind the horizon which is not encoded in the entanglement entropy [10].

From the quantum information perspective, entanglement entropy is simply one of a broad

array of diagnostics with which to characterize quantum entanglement. Hence while the

Ryu-Takayanagi prescription [30, 31] for holographic entanglement entropy has provided

many new insights on the connection between geometry and entanglement in quantum grav-

99Note that for large d, the third term is actually large and negative (i.e. ∼ −2d), however, this behaviour

is precisely canceled by the growth of g0 ∼ 2d. Further recall that we argued that `ct/L > 1 to ensure that

the holographic complexity is positive and hence a(d) is always positive.
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ity, it is not surprising that the full picture will require drawing on additional observables,

such as holographic complexity.

Here, we explicitly compare the information about a given reduced density matrix

which is encoded in the complexity and the information which is encoded in the entan-

glement entropy. We begin with the density matrices for a single harmonic oscillator, as

described in section 2.100 The entanglement entropy of such a density matrix can be read

from the results of [92]

S1 = −Tr(ρ̂1 ln ρ̂1) = − ln(1− u)− u

1− u
lnu , (7.18)

where using the parametrization in eq. (2.27), we have u = e−βω.101 Hence the entangle-

ment entropy depends only on the combination βω, and is independent of the squeezing

parameter r. This is to be contrasted with our result for the complexity, e.g., see eq. (2.50),

which depends on both of these parameters. That is, while the entanglement entropy is

entirely fixed by the temperature, the purification complexity also contains information

about the squeezing of the mixed state.

The natural extension of these observations to a general N -mode Gaussian state is as

follows: First, note that general N -mode Gaussian states can be decomposed as102

ρ̂A = UA

(
N⊗
i=1

υ̂th(βi, ωi)

)
U †A . (7.19)

However, acting on a density matrix ρ̂A by a unitary operator as follows Uρ̂AU
† does not

change its eigenvalues, and hence does not modify the entanglement entropy. Hence the

entanglement entropy of any such state (7.19) does not depend on the unitaries UA and,

in fact, is a simple sum of the thermal entropies for each mode, i.e.

SA =

N∑
i=1

Sth(βiωi) where Sth(βiωi) =
βiωi

eβiωi − 1
− ln(1− e−βiωi) . (7.20)

That is, the entanglement entropy of the states ρ̂A and U †A ρ̂A UA =
⊗N

i=1 υ̂th(βi, ωi) are

identical. On the contrary, the purification complexity will generally depend on the unitary

operator UA, as well as the choice of the reference state |ΨR〉. In the previous one-mode

example, these two extra pieces of data are combined together and encoded in the single

parameter r̄ ≡ r+ 1
2 ln ω

µ appearing in eq. (2.50). For a more general mixed state, its entan-

glement entropy is only sensitive to its eigenvalues, while we expect that the purification

complexity will capture some of the information about the unitary operator part UA in

the density matrix which is absent in the entanglement entropy. In any event, this general

example further emphasizes the conclusion that the purification complexity offers access

to more information about mixed states than the entanglement entropy.

100This comparison was also examined in [37], with the conclusion that “complexity is more.”
101Using eqs. (2.16) and (2.31), we may match the wavefunction parameters in [92] with our notation as

coshβω = γ/β and ω2e2r =
√
γ2 − β2.

102See appendix A for more details.
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7.5 Other cost functions

In the main text, we defined the purification complexity by minimizing the complexity of

pure states which purify a given mixed state using the F1 cost function. Of course, the

latter is only one choice amongst many possibilities, and so here we briefly explore the

complexity of mixed states with other cost functions. We also give a short discussion of

applying the Fubini-Study approach [15] to this problem, but leave further details of this

case to [77].

Before proceeding, we must note that the authors of [37] have considered the purifi-

cation complexity for one-mode Gaussian mixed states using the F2 cost function in their

appendix C, as we will do below. They considered the most general purification consist-

ing of a six real (or three complex) parameter family of two-mode pure Gaussian states

as purifications. The authors used numerical minimization to show that the purification

complexity using the F2 cost function is subadditive. Below, we go further analytically by

restricting our attention to the three-dimensional space of real purifications, i.e. eq. (2.36).

Purification complexity with F2 and κ = 2 cost functions. Here, we will focus on

the one-mode Gaussian state ρ̂1, e.g., see eq. (2.27), and consider the F2 and κ = 2 cost

functions for which the complexity of the pure state (2.36) is defined as

Cκ=2 (|ψ〉12) = C2 (|ψ〉12)2 =

(
1

2
ln
ω+

µ

)2

+

(
1

2
ln
ω−
µ

)2

=
1

2
(r̄ + s̄) 2 +

1

2

(
cosh−1 (cosh 2α cosh(r̄ − s̄))

)2 (7.21)

where the two normal frequencies ω± are defined in eq. (2.42). We can define the purifica-

tion complexity of the mixed state ρ̂1 using the κ = 2 and F2 cost functions as the minimal

value of eq. (7.21) over all possible purifications

C2 (ρ̂1) ≡ mins C2 (|ψ〉12) , Cκ=2 (ρ̂1) = mins Cκ=2 (|ψ〉12) = C2 (ρ̂1)2 . (7.22)

Here, the minimization is performed with respect to the free parameter s (or equivalently

s̄ defined in eq. (2.45)). In principle, we only need to find the extremal point by solving

∂s̄C2 = 0 = ∂s̄Cκ=2, where the two cost functions share the same minimal point with

respect to the free parameter s̄. For the special limit of the pure state we have α = 0

which leads to a minimum at s̄ = 0 and C2

∣∣
min

= r̄, as expected. Unfortunately, the above

minimizations cannot, in general, be performed analytically. However, we are able to make

more comments on the special case of the thermal mixed state υ̂th with r̄ = 1
2 ln ω

µ , see

eqs. (2.27) and (2.45). Here, the purification complexity with the F2 cost function reads

Cκ=2 (υ̂th) = mins
1

2

((
s− ln

µ

ω

)2
+
(
cosh−1 (cosh 2α cosh s)

)2)
. (7.23)

We are able to get an analytic solution for the purification complexity and for the mutual

complexity in a number of special limits. First, consider the limit of large frequency (or

small temperature) βω � 1, where we have α� 1. Here it is easy to find that the minimal
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point at the O(α2) order approximately locates at

s ≈ 1

2
ln
µ

ω
− α2µ

2 − 2µω lnµω − ω
2

(µ− ω)2
, (7.24)

for which the complexity is

Cκ=2 (υ̂th) =
1

4

(
ln
µ

ω

)2
+ α2 ln

µ

ω

(
µ+ ω

µ− ω

)
+O(α4) . (7.25)

On the other hand, we can take the small frequency or large temperature limit βω � 1, or

α� 1, together with ln µ
ω − 2α� 1 to find

2s ≈ ln
µ

ω
− ln cosh 2α ≈ ln

µ

ω
+ ln 2− 2α. (7.26)

The requirement ln µ
ω − 2α� 1 ensures that s is large and positive, allowing us to perform

an expansion in s and solve the resulting transcendental equation for the minimal point.

This will not be satisfied, e.g., for a small reference frequency. The complexity of this

purification is then

Cκ=2 (υ̂th) =

(
α+

1

2
ln
µ

2ω

)2

+O(1/α) . (7.27)

Next, we turn to the mutual complexity. We will need the complexity of the TFD

state which can be obtained by substituting s = 0 in eq. (7.23) and reads

Cκ=2 (|TFD〉12) =
1

2

(
ln
ω

µ

)2

+ 2α2 . (7.28)

By numerical minimization, it is easy to show that the mutual complexity with the κ = 2

cost function is subadditive, i.e.

∆Cκ=2 (|TFD12〉) = 2Cκ=2 (υ̂th)− Cκ=2 (|TFD〉12) ≥ 0 . (7.29)

Except for the numerical proof, we can also show the subadditivity analytically in the

various limits studied above. For the case βω � 1 we find

∆Cκ=2 (|TFD12〉) ≈ 2

(
ln
µ

ω

(
µ+ ω

µ− ω

)
− 1

)
α2 +O(α4) ≥ 2α2 ≥ 0 . (7.30)

Similarly, in the opposite limit βω � 1 (but also ln µ
ω − 2α� 1), we have

∆Cκ=2 (|TFD12〉) ≈ 2α ln
µ

2ω
− ln 2 ln

µ√
2ω

, (7.31)

which is again positive in this limit. Note that the term proportional to ln2(µ/ω) has been

canceled in both these limits.

To close this section, we would like to mention the following inequality between purifi-

cation complexities with the different cost functions

Cdiag
1 (ρ̂A) ≥ C2(ρ̂A) =

√
Cκ=2(ρ̂A) . (7.32)
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These relations are valid for any mixed state ρ̂A, and arise straightforwardly from the

definition of complexity of pure states. Although we do not have an analytic solution for

C2(ρ̂A), this inequality can, of course, be tested numerically. From the second equality, we

can show that the subadditivity of purification complexity using the F2 measure follows

from the subadditivity for the κ = 2 cost function because of their special relation and the

fact that the inequality A2 +B2 ≥ C2 implies the inequality |A|+ |B| ≥ |C|.
Finally, note that the analysis in this section is restricted to purifications of a single-

mode Gaussian state by one additional auxiliary mode, and we have not addressed more

general questions related to optimizing the purifications, when using the F2 or κ = 2 cost

functions. For example, we have not clarified whether the optimal purifications should be

essential purifications for these new cost functions. We will return to these issues in [77].

Fubini-study approach. Instead of approaching the complexity with Nielsen’s geomet-

ric approach [38–40], the authors of [15] developed a similar geometric approach based

on the Fubini-Study metric, i.e. quantum information metric for pure states as a distance

measure on the space of pure states to derive complexity. It is straightforward to extend

our discussion of purification complexity using this Fubini-Study method, as follows,

CFS (ρ̂A) ≡ minAc CFS (|ΨAAc〉) . (7.33)

Here, the CFS is the Fubini-Study complexity of the pure state |ΨAAc〉, which purifies the

target mixed state ρ̂A. Returning to our simple one-mode mixed state ρ̂1 in eq. (2.27), we

can easily define

CFS (ρ̂1) ≡ mins CFS (|ψ12〉) = mins C2 (|ψ12〉) , (7.34)

where we have used the fact that the Fubini-Study complexity of Gaussian states is the

same as that evaluated using the F2 cost function, e.g., compare the results of [14] and [15].

Therefore, the above results for C2(ρ̂1) also give the purification complexity for the Fubini-

Study method.

As shown in this paper, the purification complexity for N -mode systems requires a

careful treatment for the optimal purification. In order to avoid these complications, the

future work [77] extends the Fubini-Study method to mixed states by considering a quan-

tum information metric, or quantum fidelity susceptibility, of mixed states in order to

develop a measure of complexity for mixed states. Remarkably, it is found that the com-

plexity of arbitrary Gaussian mixed states using this new approach is exactly equivalent to

the purification complexity based on the Fubini-Study metric (7.33). In other words, the

quantum information metric provides a perfect measure for the purification complexity of

mixed states, without implementing the purification, and hence without optimizing over

the additional parameters associated with the auxiliary degrees of freedom.
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A Alternative parametrization for Gaussian states

In section 3.1, we discussed general properties of the purification of mixed Gaussian states

with NA modes. Here, we want to rephrase this discussion using (a generalization of)

the notation introduced in section 2.3, i.e. using thermal density matrices and squeezing

operators. Of course, all our conclusions will remain the same using this decomposition,

however, let us point out that this description has certain numerical advantages since

it scans the space of parameters much more efficiently than the naive decomposition in

section 3.1 due to the exponential relationship between the parameters, see e.g., eq. (2.31)

and (2.38) for the case of a mixed state of a single oscillator.

Williamson’s theorem implies that multi-mode Gaussian states with zero mean103 can

be decomposed into a thermal part acted on by unitary operators [45, 47] (this discussion is

often phrased in terms of covariance matrices). This is similar to the thermal decomposition

of one-mode Gaussian states in eq. (2.27). Explicitly, starting with an NA-mode Gaussian

density matrix ρ̂A we have

ρ̂A = US

(
NA⊗
i=1

υ̂th(βi, ωi)

)
U †S , (A.1)

where US are unitary transformations which do not change the fact that ρ̂A is zero-mean,

and

υ̂th(βi, ωi) ≡
(

1− e−βiωi
) ∞∑
n=0

e−βiωin |n(ωi)〉 〈n(ωi)| (A.2)

are thermal density matrices for the different thermal modes with inverse temperatures βi
and frequencies ωi respectively. The i-th mode will be pure if the associated temperature

103A multi-mode Gaussian state is said to have zero mean if the expectation values of the positions x̂i and

momenta p̂i of the various oscillators vanish in the state.
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Ti = 1/βi vanishes. The thermal decomposition of ρ̂A is very suggestive of the fact that

the minimal number of ancillary modes needed in order to purify the system is equal to

the number of non-zero Ti-s. This corresponds to the rank of the matrix B in section 3.1.

The most general unitary US which transforms among Gaussian states leaving 〈x̂i〉 =

〈p̂i〉 = 0 invariant is spanned by exponentiating the NA(2NA+1) generators of SP(2NA,R):

i(x̂ap̂b+ p̂bx̂a), ix̂ax̂b and ip̂ap̂b. However, for the purposes of this paper where we restricted

to the NA(NA + 1) parameter family of real density matrices ρ̂A of the form (3.4) with A

and B real and symmetric, the GL(NA,R) subgroup generated by i(x̂ap̂b+ p̂bx̂a) is enough

for the purpose of constructing US in the thermal decomposition (A.1).

In section 3.2.3 we made the distinction between Gaussian mixed states which take a

product form in the different degrees of freedom (3.28) and more general Gaussian mixed

states. We can make this distinction also in the language of the thermal decomposition in

eq. (A.1). The simple product state will be given by

ρ̂A = S(~r)

(
NA⊗
i=1

υ̂th(βi, ωi)

)
S†(~r) =

NA⊗
i=1

ρ̂i (βi, ri) , (A.3)

where S (~r) =
NA∏
i
Si(ri), with ~r ≡ (r1, r2, · · · , rNA), Si(ri) are the one mode squeezing op-

erators (2.28) for the i-th oscillator and ρ̂i is the one-mode Gaussian state defined in (2.27)

for the i-th oscillator. This corresponds to US = S(~r) in eq. (A.1).

However, the most general multi-mode Gaussian state cannot be written in this way

as the tensor product of NA one-mode Gaussian states. In general, we can always decom-

pose US in eq. (A.1) according to Euler/Bloch-Messiah decomposition [45, 93, 94]. The

decomposition implies that we can decompose the unitary US as

US = UK

(
NA⊗
i=1

S(ri)

)
UL, (A.4)

where UK,L are “passive” transformations. The term “active” (“passive”) refers to the

property that these transformation change (leave invariant) the photon number. More

concretely, they change (leave invariant) the following quantity

NA∑
i=1

〈
1

2ωi
p̂2
i +

ωi
2
x̂2
i

〉
. (A.5)

The upshot of the Euler decomposition (A.4) is that when the first unitary UL and the

multi-mode squeezing S(~r) are non-trivial, the thermal decomposition (A.1) does not fac-

torize into a product state (A.3).

Lastly, we comment on the restriction of the Euler decomposition (A.4) to the GL(N,R)

subgroup on which we focused in this paper. The condition that (A.5) be conserved implies

that the “passive” GL(N,R) transformations are generated by the antisymmetric i(x̂ap̂b−
x̂bp̂a) generators, and correspond to the “beam splitter transformations” in the language

of [45]. These are simply SO(N,R) rotations which act simultaneously on x̂a and p̂a. The
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matrices UK and UL in eq. (A.4) are therefore determined by NA(NA − 1)/2 parameters

each, and together with the NA one mode squeezing parameters ri in eq. (A.4) and NA
thermal parameters βiωi in eq. (A.1) these constitute the NA(NA+1) real parameters of the

density matrix ρ̂A in eq. (3.4). For completeness let us also specify that the “active” part

of the GL(N,R) subgroup is spanned by the two mode squeezing operators i(x̂ap̂b + x̂bp̂a),

similar to the one in eq. (2.33).

B Numerics for essential purifications

As discussed in section 3.2.2, one might naively expect that purifications with more than

the minimal number of ancillae could lead to a lower value of the complexity for a given

mixed state. However, we have proven that this is not the case for the F1 cost function in

the diagonal basis. In this appendix we parallel a part of that discussion using a thermal

decomposition similar to the one in appendix A. Since this decomposition is more suitable

for numerical analysis, we use this advantage to show numerical evidence confirming our

previous conclusion by comparing the diagonal basis purification complexity of the one-

mode mixed Gaussian state in eq. (2.27) using three-mode and two-mode purifications.

A general three-mode pure state (cf. eq. (3.18)) can be decomposed as

|ψ123〉 = S(α23)S(r1)S(r2)S (r3)S(α13)S(α12) |01(ω), 02(ω), 03(ω)〉 , (B.1)

where |0i(ω)〉 is the ground state of the i-th oscillator with frequency ω and where we have

suppressed the subscripts on the one and two-mode squeezing operators Si, Sij (cf. eq. (2.28)

and (2.33)) and used instead subscripts on their parameters ri, αij in order to indicate which

modes they act on. This is similar to the decomposition of the two-mode purification in

eq. (2.36). The corresponding wavefunction is Gaussian and takes the form

ψ123(x, y, z) ≡ 〈x, y, z |ψ123〉 = N123 exp

(
−1

2
~xT A123(ri, αij) ~x

)
, (B.2)

where ~xT = (x, y, z) and A123 is a 3 by 3 real symmetric matrix. The explicit form of

A123 can be found using the techniques of [14] by representing the action of the squeez-

ing operators on the matrix representation A123 of the wavefunction in terms of matrix

conjugation

A123 = U123 ·A0 · UT123 , A0 ≡ ωI , U123 = eα23g23er1g11er2g22er3g33eα13g13eα12g12 , (B.3)

where the corresponding generators of the one-mode squeezing operators S(r1), S(r2),

S(r3) and the two-mode squeezing operators S(α12), S(α13), S(α23) are given by

g11 =

 1 0 0

0 0 0

0 0 0

 , g22 =

 0 0 0

0 1 0

0 0 0

 , g33 =

 0 0 0

0 0 0

0 0 1

 ,

g12 =

 0 −1 0

−1 0 0

0 0 0

 , g13 =

 0 0 −1

0 0 0

−1 0 0

 , g23 =

 0 0 0

0 0 −1

0 −1 0

 .

(B.4)
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The six parameter family of purifications (B.1) is constrained to reproduce the desired

mixed state ρ̂1 (2.27) upon tracing out the two auxiliary oscillators which leaves us with

a four parameters family over which we have to minimize the complexity. As explained in

section 3.2.1 we can use SO(2) rotations in the y, z directions to eliminate a one parameter

degeneracy among purifications with equal complexity. The simplest choice is to eliminate

α13, since then

|ψ123〉
∣∣
α13=0

= S(α23)S(r1)S(r2)S(r3) |TFD〉12 , (B.5)

where the TFD state was defined in eq. (2.32) and is taken to have an inverse temperature

β1 where tanhα12 = e−β1ω/2. Tracing out the second and third oscillators leaves us with

Tr23 (|ψ123〉 〈ψ123|) = S(r1)υ̂th(β1, ω)S†(r1) = ρ̂1. (B.6)

In other words, the parameters r1, α12 fully parametrize the mixed state ρ̂1 and the pa-

rameters r2, r3, α23 are totally free for the different purifications. By choosing the simple

reference state |ψR〉 = |01(µ), 02(µ), 03(µ)〉, the purification complexity with the F1 cost

function in the diagonal basis is given by

Cdiag
1 (ρ̂1;ψ123) = minr2,r3,α23

1

2

(∣∣∣∣ln ω1

µ

∣∣∣∣+

∣∣∣∣ln ω2

µ

∣∣∣∣+

∣∣∣∣ln ω3

µ

∣∣∣∣) , (B.7)

where ωi are the three eigenvalues of A123 and the minimization is taken among the three

free parameters r2, r3, α23.

We have performed this minimization numerically for r̄1 ≡ r1 + 1
2 ln ω

µ = 1, see

eq. (2.45), and 0 ≤ α ≤ 2 and found |Cdiag
1 (ρ̂1;ψ123) − Cdiag

1 (ρ̂1) | ≤ 3 · 10−8 and for

α = 1 and |r̄1| ≤ 3 and found |Cdiag
1 (ρ̂1;ψ123) − Cdiag

1 (ρ̂1) | ≤ 3 · 10−7, where Cdiag
1 (ρ̂1)

is the complexity obtained for a two mode purification in eq. (2.50). For the region with

α > |r̄1|, where the optimal purification is given by the TFD state the accuracy becomes

extremely high and we have |Cdiag
1 (ρ̂1)− Cdiag

1 (ρ̂1;ψ123) | ≤ 10−15. These small deviations

from zero can be understood as resulting from the numerical accuracy of our minimization

procedure. The numerical simulations indicate that it is not necessary to introduce one

more mode for the purification of one-mode Gaussian states in accord with our analytic

proof in section 3.2.2.

C Complexity basis dependence

In this paper, we refer to two different bases for the definition of the C1 complexity: the

diagonal basis and the physical(-ancilla) basis. In addition, for coupled harmonic oscillators

representing a lattice quantum field theory, a natural basis to consider is the original

position basis, where each harmonic oscillator represents a position in the lattice. To help

clarify the difference and relations between these bases, in this appendix we explicitly

construct two examples of a discretized free scalar field theory on a lattice and write down

the wavefunction matrix of the ground state in each of these three bases. We first look at

the example of two coupled harmonic oscillators and find the complexity in the diagonal

basis and in the physical basis. For the case of two coupled harmonic oscillators, there is no
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distinction between physical basis and position basis. In the next example of four coupled

harmonic oscillators, we explicitly find the parameter matrices in the three bases. The

position basis and the physical basis are different in this case, and we show that the ground

state can be understood as the thermofield double of a two harmonic oscillator modular

Hamiltonian, which we explicitly write. The physical basis modes are the eigenmodes of

the modular Hamiltonians of each subregion.

Before going into the two specific examples, we explicitly rewrite some of the formu-

las in section 4 for the one dimensional case to describe the one-dimensional chain of N

harmonic oscillators. We begin with the lattice of harmonic oscillators (4.5) realizing a

regularization of a free quantum field theory (4.4) on a one-dimensional circle of length L

corresponding to the Hamiltonian104

H =
1

2M

N∑
a=1

[p̄2
a +M2ω̄2x̄2

a +M2Ω2(x̄a − x̄a+1)2] , (C.1)

where we have defined x̄n ≡ δφ(n), p̄n ≡ π(n), ω̄ ≡ m and Ω = M ≡ 1/δ, see, e.g., [14], and

assumed periodic boundary conditions x̄N+1 := x̄1. The lattice spacing δ is related to the

size of the system and the number of harmonic oscillators by δ = L/N . The Hamiltonian

can be written in terms of normal modes as in eq. (4.6)

xk ≡
1√
N

N∑
a=1

exp

(
2πik

N
a

)
x̄a, ω2

k = ω̄2 + 4Ω2 sin2 πk

N
, (C.2)

where k ∈ 1, . . . N (see, e.g., section 5.1 of [29]). Using these degrees of freedom, the

Hamiltonian reads (4.7)

H =
1

2M

N∑
k=1

(
|pk|2 +M2ω2

k|xk|2
)
, (C.3)

where we have used that x†k = xN−k. The ground state wavefunction of this system

of harmonic oscillators is straightforward to find in normal mode basis and is given by

eq. (5.1). This can be explicitly written in the physical basis using the transformation (4.6)

and is given by eqs. (5.2)–(5.3).

C.1 Example 1: two coupled harmonic oscillators

We will start by considering a simple toy model of two coupled harmonic oscillators with

Hamiltonian105

H12 =
1

2

(
p2

1 + p2
2 + ω̄2(x2

1 + x2
2) + Ω2(x1 − x2)2

)
=

1

2

(
p2

+ + p2
− + Ω2

+x
2
+ + Ω2

−x
2
−
)
,

(C.4)

104The following are the one dimensional versions of eqs. (4.5), (4.6) and (4.7).
105A similar toy model was considered in the context of complexity of pure states in reference [14].
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where the normal-mode coordinates are x± = 1√
2
(x1±x2) and the normal-mode frequencies

are Ω2
+ = ω̄2 < Ω2

− = ω̄2 + 2Ω2, and where we have set the mass of the oscillators M to

one, as in the bulk of the paper. This corresponds to the N = 2 case of (C.1). The

corresponding ground state wave function is given by

ψ0(x+, x−) =

(
Ω+Ω−
π2

)1/4

exp

(
−1

2

(
Ω+x

2
+ + Ω−x

2
−
))

. (C.5)

Restoring the dependence of this wavefunction on the original coordinates x1 and x2 we ob-

tain

ψ12 = ψ0 =

(
Ω−Ω+

π2

)1/4

exp

(
−Ω− + Ω+

4
(x2

1 + x2
2) +

Ω− − Ω+

2
x1x2

)
. (C.6)

We can then compare the wave function to the one in eq. (2.17) (see also (2.38) and (2.45))

and find an easy translation to the notation of section 2.4

r̄ = s̄ =
1

4
ln

(
Ω−Ω+

µ2

)
, α =

1

4
ln

(
Ω−
Ω+

)
. (C.7)

For the reference state

ψR(x+, x−) =

√
µ

π
exp

(
−1

2

(
µx2

1 + µx2
2

))
, (C.8)

and using the entangling and scaling gates as the fundamental set of gates, the diagonal

basis complexity of the ground state using Nielsen’s geometric method with the F1 cost

function is (see eq. (2.14) or [14]),

Cdiag
1 (ψ0) =

1

2

∣∣∣∣ln Ω+

µ

∣∣∣∣+
1

2

∣∣∣∣ln Ω−
µ

∣∣∣∣ . (C.9)

In the following, we want to find the complexity of a subsystem given by the first harmonic

oscillator after tracing out x2. Tracing out the second oscillator, we obtain a density matrix

of the form (2.16) for the first oscillator with parameters (see eq. (2.20))

a =
(Ω+ + Ω−)2 + 4Ω+Ω−

4(Ω+ + Ω−)
, b =

(Ω+ − Ω−)2

4(Ω− + Ω−)
. (C.10)

As we already know from the discussion in section 2, the purification complexity for a sub-

region consisting of the first oscillator is not necessarily given by eq. (C.9) since the optimal

purification is not necessarily the original pure state in eq. (C.5). The purification com-

plexity can be read by substituting the parameters α and r̄ from eq. (C.7) into eq. (2.50).

The original ground state (C.5) will not be the optimal purification for the subregion ex-

cept for Ω− > µ > Ω+. More precisely, we can compare the values of r̄ = 1
4 ln Ω−Ω+

µ2 and

α = 1
4 ln Ω−

Ω+
and we see that the three cases of section 2.4 translate to

case 1 : 0 6 α 6 −r̄ → µ > Ω− > Ω+ ,

case 2 : α > |r̄| → Ω− > µ > Ω+ ,

case 3 : 0 6 α 6 r̄ → Ω− > Ω+ > µ .

(C.11)
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Indeed, it is straightforward to confirm that when we are in case 2, the original ground

states is the one with minimal complexity given by

Cdiag
1 (ρsub) = 2α =

1

2
ln

Ω−
Ω+

= Cdiag
1 (ψ0) , (C.12)

since s̄ = r̄ = s̄min as was found in eq. (2.49). In contrast, for µ outside of that region, for

example in the case µ > Ω− > Ω+, the complexity of the optimal purification is

Cdiag
1 (ρsub) =

1

2
ln

(
e−2r̄ cosh 2α− 1

1− e2r̄ cosh 2α

)
=

1

2
ln

[
µ2

Ω−Ω+

Ω− + Ω+ − 2Ω−Ω+/µ

2µ− Ω− − Ω+

]
<

1

2
ln

Ω−Ω+

µ2
,

(C.13)

which means that the original pure state is not the optimal purification.

For completeness, we explicitly write the optimal purifications for each of the three

cases. For case 2, as mentioned above, the optimal purification is the ground state of

the two harmonic oscillator system itself. This corresponds to the state (C.5) or equiv-

alently (C.6) in terms of the original (x1, x2) coordinates. For the other two cases, the

optimal purification takes the following form, see eqs. (2.40), (2.45) and (2.47),

ψ12 =

(
Ω−Ω+

π2
f

)1/4

exp

(
− Ω− + Ω+

4

(
x2

1 + fx2
2

)
+

Ω− − Ω+

2

√
f x1x2

)
, (C.14)

where

f =
Ω− + Ω+ − 2µ

2 Ω−Ω+/µ− Ω− − Ω+
. (C.15)

In the case of two harmonic oscillators, there is no distinction between the physical-ancilla

basis and the position basis. This is because the “submatrices” Γ = Ω = Ω−+Ω+

2 in eq. (3.1)

are simply a number and are therefore already diagonal. Thus, the ground state expressed

in the position basis (C.6) is also expressed in terms of the physical-ancilla modes.

Lastly, we mention the relation of these purifications to the TFD of the single har-

monic oscillator. As observed in section 2, in the comments around eq. (2.51), the mixed

state obtained after tracing out one of the oscillators corresponds to a thermal state

with modified frequency ω′ = ωe2r = µe2r̄ =
√

Ω−Ω+ at an inverse temperature of

β′ω′ = 2 arcosh
(

Ω−+Ω+

Ω−−Ω+

)
, see also eq. (2.39). Comparing the ground state parameter

matrix (C.6) with eqs. (2.40) and (2.34), the optimal purification can be seen to corre-

spond to the TFD of two harmonic oscillator at this modified temperature and frequency

when we are in case 2, that is, when Ω− > µ > Ω+.

C.2 Example 2: four coupled harmonic oscillators

We restrict to the example of a lattice of four harmonic oscillators with the goal of explicitly

providing an example of the ground state in the normal mode basis, in position basis and

in the physical(-ancilla) basis. We will express these in terms of the parameter matrix

– 103 –



J
H
E
P
0
3
(
2
0
2
0
)
0
1
2

M used throughout the main body of the paper. That is, we use Mbasis to represent the

state106

Ψ0(xbasis) =

(
det

(
Mbasis

π

))1/4

exp

[
−1

2
x†basisMbasisxbasis

]
. (C.16)

The state we are interested in is the ground state of the free QFT lattice Hamiltonian

consisting of four coupled harmonic oscillators, i.e. the N = 4 case of (C.1). This state was

already written in normal mode basis in eq. (5.1). For a lattice of four harmonic oscillators,

the normal modes xk ≡ (x1, x2, x3, x4)T are related to the original physical basis modes

x̄a ≡ (x̄1, x̄2, x̄3, x̄4)T by eq. (C.2), namely

x = Rx̄ , where R =
1

2


i −1 −i 1

−1 1 −1 1

−i −1 i 1

1 1 1 1

 , (C.17)

or, explicitly

x1 =
1

2
(ix̄1 − x̄2 − ix̄3 + x̄4) , x2 =

1

2
(−x̄1 + x̄2 − x̄3 + x̄4) ,

x3 =
1

2
(−ix̄1 − x̄2 + ix̄3 + x̄4) , x4 =

1

2
(x̄1 + x̄2 + x̄3 + x̄4) .

(C.18)

Notice that, while the position basis degrees of freedom are real valued, this is not

the case for the normal mode degrees of freedom where, in particular x∗1 = x3 so that

x†normal = (x3, x2, x1, x4).107 The parameter matrix in normal mode basis can easily be

read off eqs. (5.1) and (C.2)

Mnormal =


ω̄1 0 0 0

0 ω̄2 0 0

0 0 ω̄3 0

0 0 0 ω̄4

 , (C.19)

where

ω̄1 = ω̄3 =

√
ω̄2 + 2

√
2Ω2 , ω̄2 =

√
ω̄2 + 4Ω2 , ω̄4 = ω̄ . (C.20)

The fact that the parameter matrix in normal mode basis is diagonal reflects the fact that

there is no entanglement between normal mode degrees of freedom.108

106We use the generalization of eq. (2.1) for a complex basis. This will be necessary since the Fourier

transformation in eq. (C.2) yields complex normal modes.
107Recall that the Fourier transform obeys the identity x†k = xN−k, see comment below eq. (C.3).
108Note that substituting the parameter matrix (C.19) into the bi-linear form in eq. (C.16) yields a

wavefunction whose dependence on the x1 and x3 coordinates is of the form Ψ0 ∝ exp
[
−α(|x1|2 + |x3|2)

]
=

exp [−2αx1x3], where α = 1
2
ω̄2 +

√
2Ω2. So although the form seems orthogonal in complex coordinates,

it does not look orthogonal when reexpressing the conjugate coordinates in terms of the original ones.

This is due to the fact that the normal mode basis given by eq. (C.2) is not Hermitian. This awkward

dependence on the product of seemingly different degrees of freedom can be removed by using a real

Fourier transformation involving sin(· · · ) and cos(· · · ) instead of the complex exponentials in eq. (C.2). An

equivalent way of getting rid of this dependence is to make a second transformation xreal
k = 1

2
(xk + x∗k) and

xreal
N−k = 1

2i
(xk − x∗k) for those values of k for which xk are not real.
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The physical basis parameter matrix can be found by applying the transforma-

tion (C.17) to the normal mode basis parameter matrix (C.19)

Mpos = R†MnormalR (C.21)

or simply be read off eq. (5.3). Either way, for our four harmonic oscillator example it
takes the form

Mpos =
1

4


ω̄ + ω̄2 + 2ω̄1 ω̄ − ω̄2 ω̄ + ω̄2 − 2ω̄1 ω̄ − ω̄2

ω̄ − ω̄2 ω̄ + ω̄2 + 2ω̄1 ω̄ − ω̄2 ω̄ + ω̄2 − 2ω̄1

ω̄ + ω̄2 − 2ω̄1 ω̄ − ω̄2 ω̄ + ω̄2 + 2ω̄1 ω̄ − ω̄2

ω̄ − ω̄2 ω̄ + ω̄2 − 2ω̄1 ω̄ − ω̄2 ω̄ + ω̄2 + 2ω̄1

 . (C.22)

The form of the parameter matrix makes evident that the position basis degrees of freedom

are entangled with each other. Furthermore, the entanglement decays for longer distances

since ω̄ < ω̄1 < ω̄2 implies |ω̄ − ω̄2| > |ω̄ + ω̄2 − 2ω̄1|.109 This is to be expected for

entanglement being spread by nearest neighbor interactions coming from the discretized

kinetic term (the last term in (C.1)).

The position and normal mode basis should be familiar to most readers; they are the

lattice equivalents of the position and momentum bases in quantum field theory. The

physical-ancilla basis is less familiar. In [29], it appears under the name left/right basis

since it was used in the context of the TFD state, which is considered a natural purification

of the thermal state where the left/right division corresponds to the physical degrees of

freedom of the thermal system and the ancilla degrees of freedom introduced in order to

purify it.110

To define the physical-ancilla basis, we must partition the system into a physical sub-

system and an ancilla subsystem. In other words, we consider the four harmonic oscillator

ground state (C.16) as a purification of a mixed state of a subset of the oscillators. This is

an important property of the physical-ancilla basis: it depends on a specific partition of the

full system. In our example, we will choose to partition the system in two: the x̄1 and x̄2

oscillators as one subsystem and the x̄3 and x̄4 oscillators as the other subsystem. Which

subsystem we call physical and which one ancilla depends on which degrees of freedom are

traced out in order to construct the given two-mode mixed state.

With this partition in mind, we can decompose the physical basis parameter ma-

trix (C.22), as in eq. (3.1), into111

Mpos =

(
Γ K

KT Σ

)
(C.23)

109Recall that our lattice is periodic and so the sites x̄1 and x̄4 are nearest neighbors.
110Of course, when talking about the TFD it is ambiguous which of the sides we should consider as

the physical system and which side represents the ancillae since tracing out either side will reproduce the

thermal density matrix.
111In section 3.1 we introduced the decomposition (3.1)

Mpos =

(
Γ K

KT Ω

)
,

which has the unfortunate notation Ω for the lower right sub-matrix. In the following, we use instead the

letter Σ to denote this sub-matrix in order to avoid confusion with the oscillator coupling Ω in eq. (C.1).
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where

Γ = Σ =
1

4

(
ω̄ + ω̄2 + 2ω̄1 ω̄ − ω̄2

ω̄ − ω̄2 ω̄ + ω̄2 + 2ω̄1

)
,

K =
1

4

(
ω̄ + ω̄2 − 2ω̄1 ω̄ − ω̄2

ω̄ − ω̄2 ω̄ + ω̄2 − 2ω̄1

)
.

(C.24)

The physical-ancilla basis is defined as the basis which diagonalizes the sub-matrices

Γ and Σ without mixing the two subsystems. More precisely, we look for transformations

of the form

Rphys−anc =

(
Rphys 0

0 Ranc

)
(C.25)

that diagonalize both Γ and Σ. In our example, this transformation is given by

Rphys =
1√
2

(
1 1

−1 1

)
, Ranc =

1√
2

(
1 1

1 −1

)
, (C.26)

or, explicitly

xphys
1 =

1√
2

(x̄1 + x̄2) , xphys
2 =

1√
2

(x̄2 − x̄1) ,

xphys
3 =

1√
2

(x̄3 + x̄4) , xphys
4 =

1√
2

(x̄3 − x̄4) .

(C.27)

The physical-ancilla basis parameter matrix can be found by applying the transforma-

tion (C.25) to the position basis parameter matrix (C.22)

Mphys =
1

2


ω̄ + ω̄1 0 ω̄ − ω̄1 0

0 ω̄2 + ω̄1 0 ω̄1 − ω̄2

ω̄ − ω̄1 0 ω̄ + ω̄1 0

0 ω̄1 − ω̄2 0 ω̄2 + ω̄1

 . (C.28)

In this basis, there is no entanglement between the modes in each subsystem (xphys
1 is not

entangled with xphys
2 and similarly for xphys

3 and xphys
4 ). However, the entanglement between

the two subregions cannot be removed by transformations of the form (C.25). Consequently,

the modes between regions remain entangled. In our case, the state factorizes to a product

state form where xphys
1 is entangled with xphys

3 and xphys
2 with xphys

4 . Bellow we will also

see that the ground state is the TFD for a 2 harmonic oscillator modular Hamiltonian.

To see this, we compare the physical basis parameter matrix to the thermal parameters

by using eqs. (2.40) and (2.39) for each factor of the factorized state (C.28). First, focusing

on the xphys
1 and xphys

3 modes, we see that they are in a TFD state with inverse temperature

β13 and frequency ω13 given by

β13ω13 = 2 arcosh

(
ω̄ + ω̄1

ω̄1 − ω̄

)
, ω13e

2r13 =
√
ω̄ ω̄1 , (C.29)
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and the xphys
2 and xphys

4 modes are in a TFD state with inverse temperature β24 and

frequency ω24 given by

β24ω24 = 2 arcosh

(
ω̄1 + ω̄2

ω̄2 − ω̄1

)
, ω24e

2r24 =
√
ω̄1 ω̄2 . (C.30)

For these to have the same inverse temperature β0 we must fix112

e−2r13 =
2

β0
√
ω̄ ω̄1

arcosh

(
ω̄ + ω̄1

ω̄1 − ω̄

)
, e−2r24 =

2

β0
√
ω̄1 ω̄2

arcosh

(
ω̄1 + ω̄2

ω̄2 − ω̄1

)
, (C.31)

which leads to the following frequencies of the Rindler modes

ω13 =
2

β0
arcosh

(
ω̄ + ω̄1

ω̄1 − ω̄

)
, ω24 =

2

β0
arcosh

(
ω̄1 + ω̄2

ω̄2 − ω̄1

)
. (C.32)

Lastly, we can take the small frequency limit (or equivalently, small cutoff limit) ω̄ � Ω =

1/δ to see that the xphys
1 and xphys

3 are the zero modes and that the xphys
2 and xphys

4 modes

have frequencies proportional to the temperature

ω13 =
213/8

β0

√
ω̄

Ω
, ω24 =

2

β0
arcosh

(
2 + 23/4

2− 23/4

)
≈ 2π

β0
. (C.33)

Lastly, we can explicitly write the modular Hamiltonian of the xphys
1 and xphys

2 system

from the expression of their frequencies (C.32)

Hmod =
1

2M0

(
pphys

1

)2
+

2M0

β2
0

arcosh2

(
ω̄ + ω̄1

ω̄1 − ω̄

)(
xphys

1

)2

+
1

2M0

(
pphys

2

)2
+

2M0

β2
0

arcosh2

(
ω̄1 + ω̄2

ω̄2 − ω̄1

)(
xphys

2

)2
.

(C.34)

D Holographic subregion complexity in the Poincaré patch

In this appendix, we summarize and extend the results in the literature regarding subregion

complexity in holography. We start by summarizing the volume results from [20, 21] for

a ball-shaped subregion in general dimensions. After that, we discuss the subregion-CA

complexity in the Poincaré patch, regulated in such a way that the WDW patch starts at

the cutoff surface z = δ in Fefferman-Graham coordinates. This calculation was outlined

in [21]. However, at the time the paper was written it was still not clear if the counterterm

restoring reparametrization invariance is an essential ingredient of the complexity=action

proposal. This later became clear, among other things, due to the fact that the counterterm

is essential for obtaining the expected behavior in the presence of shocks, see [67, 95]. We

briefly review the results of [21] and then extend them to include the counter term.

112The temperature is a free parameter because the modular Hamiltonian can always be rescaled to change

the value of β0. However, the dimensionless products ωβ0 will remain fixed.

– 107 –



J
H
E
P
0
3
(
2
0
2
0
)
0
1
2

D.1 Subregion-CV

Here we summarize the results of [20] (see eq. (5)-(7)) as well as [21] (see eq. (4.9)) for the

subregion complexity using the CV conjecture for a ball shaped region on the boundary of

AdSd+1 in Poincaré coordinates. The bulk spacetime is described by the metric

ds2 =
L2

z2

[
dz2 − dt2 + dρ2 + ρ2dΩ2

d−2

]
. (D.1)

For a ball-shaped region on a constant time slice with ρ ≤ R, the complexity is given by

performing the following integral

CV =
Ld−1Ωd−2

(d− 1)GN

∫ R

δ
dz

(R2 − z2)
d−1

2

zd
(D.2)

where Ωd−2 = 2π
d−1

2 /Γ
(
d−1

2

)
is the volume of the Sd−2 sphere and R is the radius of the

ball (or half the size of the interval for a two dimensional boundary). The explicit results

of this integration for d = 2 (AdS3) and d = 3 (AdS4) are presented in the main text in

eqs. (6.18) and (6.19).

D.2 Subregion-CA

The form of the intersection W̃ between the WDW patch (starting at the cutoff surface)

and the entanglement wedge is illustrated in figure 26, together with its projection on the

t = 0 time slice, where we label the various surfaces and joints required for the calculation.

The region W̃ is bounded by four surfaces. S± are the boundaries of the WDW patch and

C± are the boundaries of the entanglement wedge. They are described by the following

constraints

S± : t = ±(z − δ), C± : t = ±(R−
√
ρ2 + z2), (D.3)

where R is the radius of the ball shaped subregion for which we evaluate the complexity.

The affinely parameterized normals to the various surfaces are113

S± : k1,2 = α(−dt± dz), C± : k3,4 = β

(
−dt∓ ρdρ+ zdz√

ρ2 + z2

)
. (D.4)

The subregion-CA conjecture consists of evaluating the gravitational action of the

region W̃ . When the normals to the null surfaces are affinely parametrized the relevant

contributions are: the bulk contribution Ibulk, the joints J (1), J (2) and (twice) J (3) (see

figure 26), whose contributions we label I(1), I(2) and I(3), respectively, and finally the

counterterm contribution required to render the result independent of the normalization

constants α and β. This counterterm was first presented in appendix B of [63] and it reads

Ict = − 1

8πGN

∫
dλ dd−1x

√
γΘ ln (`ct|Θ|) , (D.5)

113Here we chose the direction such that the normal vectors are future oriented, in order to be consistent

with the conventions of appendix C of [63] which we use throughout the following.
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Figure 26. The intersection of the entanglement wedge and the WDW patch defines the region

W̃ that is relevant for the evaluation of CA(B).

where the expansion parameter is Θ = ∂λ ln
√
γ, γ is the metric on the light surface modulo

light rays and `ct is an arbitrary constant representing the freedom in the definition of this

counter term. The parameter λ runs along the null generators of the light surface and has to

be defined such that it matches our definition of the normal vectors kµ = dxµ/dλ. Since the

boundary of the entanglement wedge is a killing horizon with vanishing expansion [96, 97]

we only have to include the counter term on the boundaries of the WDW patch S±. Finally

the complexity is given by

CA(B) =
1

π

(
Ibulk + I(1) + I(2) + 2I(3) + 2Ict

)
. (D.6)

Most of the contributions above were already evaluated in [63] and we quote the results

here (fixing a few small typos). For the bulk contribution we have

Ibulk = −dΩd−2L
d−1

4πGN

∫ R−δ
2

0
dt

∫ R−t

t+δ

dz

zd+1

((R− t)2 − z2)
d−1

2

d− 1
. (D.7)

For the various joints we have114

I(1) = − Ωd−2L
d−1

4π(d− 1)GN

(R2 − δ2)
d−1

2

δd−1
ln

(
αδ

L

)
,

I(2) = − Ld−1Ωd−2

4πGN

∫ R

δ

dz

zd−1
R(R2 − z2)

d−3
2 ln

(
βz

L

)
,

I(3) =
Ld−1Ωd−2

8πGN

∫ R+δ
2

δ

dz̄

z̄d−1
(R+ δ)

d−1
2 (R+ δ − 2z̄)

d−3
2 ln

(
αβz̄2(R+ δ)

2L2(R+ δ − z̄)

)
,

(D.8)

114We have fixed the following factors: overall factor of R in I(2) was missing, upper limit of integration

in I(3) was changed to R+δ
2

.
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where in I(3) we have relabeled the integration variable as z̄ for reasons that will become

clear in a moment. Recall that the boundaries of the WDW patch had vanishing expansion

and so no counterterm was needed in order to cancel the dependence on the normalization

constant β. To make this observation manifest let us use the following change of variables

z̄ =
z(R+ δ)

R+ z
, z =

R z̄

R+ δ − z̄
, (D.9)

which relabels the various points on the joint J (3) by the corresponding value of z on the

joint J (2) along the same light ray originating from the point z = ρ = 0, t = R. After this

change of variables we are able to combine the contributions of the joints J (2) and J (3)

as follows

I(2) + 2I(3) =
Ld−1Ωd−2

4πGN

∫ R

δ

dz

zd−1
R (R2 − z2)

d−3
2 ln

(
αz(R+ δ)2

2(R+ z)LR

)
, (D.10)

where we see explicitly that all the dependence on β canceled out.

Next, we evaluate the contribution of the counterterm. For this purpose, we first

identify the light-ray parameter λ = −L2/αz which is consistent with the normal defini-

tion kµ1 = dxµ/dλ, see eq. (D.4), along the surface S+, see eq. (D.3). We then evaluate

the expansion

Θ = ∂λ ln
√
γ = −α(d− 1)z

L2
. (D.11)

Finally the counter term contribution reads

Ict =
Ωd−2L

d−1

8πGN

∫ R+δ
2

δ

dz̄

z̄d
(R+ δ)

d−1
2 (R+ δ − 2z̄)

d−1
2 ln

(
`ct α(d− 1)z̄

L2

)
. (D.12)

Once again, it will be useful to use the change of coordinates (D.9), which brings this

contribution to the form

Ict =
Ωd−2L

d−1

8πGN

∫ R

δ

dz

zd
R (R+ z)

d−3
2 (R− z)

d−1
2 ln

(
`ct α(d− 1)z(R+ δ)

L2(R+ z)

)
. (D.13)

Combining all the joints and the counter term and using integration by parts together with

the identity
∫
dz
zd
R2(R2 − z2)

d−3
2 = − 1

zd−1
(R2−z2)

d−1
2

d−1 finally yields

Is,j,ct ≡ 2Ict + I(1) + I(2) + 2I(3)

=
Ωd−2L

d−1

4πGN

∫ R

δ
dz
R
(
R2 − z2

) d−3
2

zd−1

×
[

(R− z)

z

[
1

(d− 1)
+ ln

(
`ct(d− 1)

L

)]
+ ln

(
R+ δ

2R

)]
,

(D.14)

and we see that all the dependence on α has canceled. The final result for the complexity

is then given by combining eqs. (D.7) and (D.14), i.e.

CA =
1

π
(Ibulk + Is,j,ct) . (D.15)

We evaluated this expression explicitly for the cases of d = 2 and d = 3 and the final results

are given by eqs. (6.20) and (6.23).
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Figure 27. The WDW patch relevant for the evaluation of CA of the full region in the poincaré

patch of AdSd+1. We introduce an IR regulator ρmax in order to obtain a finite answer.

D.3 Full state CA in the Poincaré patch

For completeness, we also include the counter term contribution Ict in the full state CA

calculation in the Poincaré patch of AdSd+1. The other contributions to the full-state CA

calculation appear in [21] and we review them below. The WDW patch starts at the cutoff

surface z = δ and we use an IR regulator ρ = ρmax all the way through the bulk, see

figure 27.

We start with the bulk contribution

Ibulk = −dL
d−1 Ωd−2

4πGN

∫ ∞
δ

dz

zd+1

∫ z−δ

0
dt

∫ ρmax

0
dρ ρd−2

= −L
d−1 Ωd−2

4πGN

ρd−1
max

(d− 1)2

1

δd−1
.

(D.16)

Next we consider the joint J (1), see figure 27, whose contribution reads

I(1) = − Ld−1 Ωd−2

4πGN (d− 1)

ρd−1
max

δd−1
ln

(
αδ

L

)
. (D.17)

Finally we include the counter term (D.5)115

Ict =
Ld−1Ωd−2

8πGN
ρd−1

max

∫ ∞
δ

dz

zd
ln

(
`ct(d− 1)α

L2
z

)
=
Ld−1Ωd−2

8πGN
ρd−1

max

1

(d− 1)

1

δd−1

[
ln

(
`ct(d− 1)α δ

L2

)
+

1

d− 1

]
.

(D.18)

115The surfaces S± only contribute the counter term since we chose their normals to be

affinely parametrized.
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Adding the bulk, joint and counterterm contributions in eqs. (D.16)–(D.18), we obtain

CA =
1

π
( Ibulk + 2Ict + I(1)) =

Ld−1Ωd−2

4π2(d− 1)GN

ρd−1
max

δd−1
ln

(
`ct(d− 1)

L

)
. (D.19)

E Superadditivity of CA(|TFD〉) at general times

Using the results of [70] we can demonstrate that the mutual complexity of the time evolved

TFD state using the subregion-CA proposal is in general negative. As mentioned in the

main text CA(L) and CA(R) are invariant under time evolution and we therefore have

∆CA(t) ≡ CA(L) + CA(R)− CA(L ∪R)(t) = ∆CA(t = 0)− δCA , (E.1)

where ∆CA(t = 0) can be found in eq. (6.14)

∆CA(t = 0) = −2S

π2
ln

(
`ct(d− 1)

L

)
+ negative, (E.2)

and we have defined

δCA = CA(L ∪R)(t)− CA(L ∪R)(0) . (E.3)

The most negative value obtained by δCA can be bounded using the results of [70] for the

rate of change of the complexity of the TFD state. There the authors found that the rate

of change of the complexity was vanishing for t = tL + tR < tc where tc = 2(r∗∞ − r∗(0)) is

the critical time where the WDW patch leaves the past singularity,116 and after this time,

the rate of change became negative for a brief amount of time and later on approached

a positive constant proportional to the mass of the black hole. The explicit expression is

give in eq. (E.9) of [70] and reads

dCA
dt

∣∣∣∣
t>tc

=
Ωk,d−1(d− 1)f (rm)

16π2GN

[
2ωd−2

f (rm)
− rd−2

m

[
ln

r2
m

L2|f(rm)|
− 2 ln

(d− 1)`ct

L

]]
, (E.4)

where rm is the place where the null boundaries of the WDW patch meet behind the past

horizon and is fixed according to the equation t−tc
2 +r∗(rm)−r∗(0) = 0. This rate of change

is negative for times t ∈ (tc, tc,2) corresponding to the region rm ∈ (0, rc,2). Here, the second

critical time, or the critical radius rc,2, are found by solving the equation dCA
dt

∣∣
tc,2

= 0 and

correspond to the time in which the rate of change in complexity becomes positive and the

complexity starts increasing again. Of course, we have rc,2 < rh. In order to check that the

time-evolved TFD state is always superadditive, we need to consider the minimal value of

116For the definition of the critical time we have used the tortoise coordinate r∗(r) =
∫
dr/f(r) as well

as the blackening factor f(r) = r2

L2 + k − ωd−2

rd−2 and the mass parameter ωd−2 = rd−2
h

(
r2h
L2 + k

)
, where

k = 0,±1 correspond to the various possible horizon geometries.
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the complexity for the TFD state which is decided by

δCmin
A =

∫ tc,2

tc

dCA
dt

dt =
Ωk,d−1(d− 1)

8π2GN

×
∫ rc,2

0

[
−2ωd−2

f(rm)
+ rd−2

m

(
ln

(
r2
m

L2|f(rm)|

)
− 2 ln

(
(d− 1)`ct

L

))]
drm

= −
Ωk,d−1r

d−1
c,2

4π2GN
ln

(
(d− 1)`ct

L

)
+

Ωk,d−1(d− 1)

8π2GN
× positive

> − S

π2
ln

(
(d− 1)`ct

L

)
,

(E.5)

where in the first equality we have used the relation dt = −2 drm
f(rm) to change the variable

of integration to rm and where the last inequality follows from rc,2 < rh. The extra

piece in the third line of eq. (E.5) is always positive. This can be demonstrated by using

the explicit form of the blackening factor and the mass parameter as well as the relation

rm ≤ rc,2 < rh. Combining eqs. (E.1), (E.2) and (E.5), we arrive at the conclusion that

the mutual complexity of the time-evolved TFD state is negative as advertised, i.e.

∆CA(t) = ∆CA(t = 0)− δCA < ∆CA(t = 0)− δCmin
A < 0 . (E.6)
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[75] C. Agón, E. Cáceres and M.L. Xiao, work in progress.

[76] R. Abt, J. Erdmenger, M. Gerbershagen, C.M. Melby-Thompson and C. Northe, Holographic

Subregion Complexity from Kinematic Space, JHEP 01 (2019) 012 [arXiv:1805.10298]

[INSPIRE].

[77] G. Di Giulio, J. Hernandez, R.C. Myers, S.-M. Ruan and E. Tonni, work in progress.

[78] P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Anti-de Sitter Space

from Optimization of Path Integrals in Conformal Field Theories, Phys. Rev. Lett. 119

(2017) 071602 [arXiv:1703.00456] [INSPIRE].

[79] P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Liouville Action as

Path-Integral Complexity: From Continuous Tensor Networks to AdS/CFT, JHEP 11 (2017)

097 [arXiv:1706.07056] [INSPIRE].

[80] B. Czech, Einstein Equations from Varying Complexity, Phys. Rev. Lett. 120 (2018) 031601

[arXiv:1706.00965] [INSPIRE].

[81] H.A. Camargo, M.P. Heller, R. Jefferson and J. Knaute, Path integral optimization as circuit

complexity, Phys. Rev. Lett. 123 (2019) 011601 [arXiv:1904.02713] [INSPIRE].

[82] A. Bhattacharyya, P. Caputa, S.R. Das, N. Kundu, M. Miyaji and T. Takayanagi,

Path-Integral Complexity for Perturbed CFTs, JHEP 07 (2018) 086 [arXiv:1804.01999]

[INSPIRE].

[83] P. Caputa, M. Miyaji, T. Takayanagi and K. Umemoto, Holographic Entanglement of

Purification from Conformal Field Theories, Phys. Rev. Lett. 122 (2019) 111601

[arXiv:1812.05268] [INSPIRE].

[84] M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010)

126010 [arXiv:1006.0047] [INSPIRE].

[85] T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].

[86] T. Faulkner, The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT,

arXiv:1303.7221 [INSPIRE].

– 117 –

https://doi.org/10.1007/JHEP08(2018)031
https://arxiv.org/abs/1805.03796
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.03796
https://doi.org/10.1088/0264-9381/26/19/195011
https://doi.org/10.1088/0264-9381/26/19/195011
https://arxiv.org/abs/0904.2765
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.2765
https://doi.org/10.1007/JHEP11(2017)188
https://arxiv.org/abs/1709.10184
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.10184
https://doi.org/10.1007/BF01211590
https://doi.org/10.1007/BF01211590
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,104,207%22
https://doi.org/10.1007/JHEP03(2010)111
https://arxiv.org/abs/0911.4257
https://inspirehep.net/search?p=find+EPRINT+arXiv:0911.4257
https://doi.org/10.1103/PhysRevD.60.104001
https://arxiv.org/abs/hep-th/9903238
https://inspirehep.net/search?p=find+EPRINT+hep-th/9903238
https://doi.org/10.1007/JHEP01(2019)012
https://arxiv.org/abs/1805.10298
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.10298
https://doi.org/10.1103/PhysRevLett.119.071602
https://doi.org/10.1103/PhysRevLett.119.071602
https://arxiv.org/abs/1703.00456
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.00456
https://doi.org/10.1007/JHEP11(2017)097
https://doi.org/10.1007/JHEP11(2017)097
https://arxiv.org/abs/1706.07056
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.07056
https://doi.org/10.1103/PhysRevLett.120.031601
https://arxiv.org/abs/1706.00965
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.00965
https://doi.org/10.1103/PhysRevLett.123.011601
https://arxiv.org/abs/1904.02713
https://inspirehep.net/search?p=find+EPRINT+arXiv:1904.02713
https://doi.org/10.1007/JHEP07(2018)086
https://arxiv.org/abs/1804.01999
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.01999
https://doi.org/10.1103/PhysRevLett.122.111601
https://arxiv.org/abs/1812.05268
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.05268
https://doi.org/10.1103/PhysRevD.82.126010
https://doi.org/10.1103/PhysRevD.82.126010
https://arxiv.org/abs/1006.0047
https://inspirehep.net/search?p=find+EPRINT+arXiv:1006.0047
https://arxiv.org/abs/1303.6955
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.6955
https://arxiv.org/abs/1303.7221
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.7221


J
H
E
P
0
3
(
2
0
2
0
)
0
1
2

[87] B.M. Terhal, M. Horodecki, D.W. Leung and D.P. DiVincenzo, The entanglement of

purification, J. Math. Phys. 43 (2002) 4286.

[88] H. Araki and E.H. Lieb, Entropy inequalities, Commun. Math. Phys. 18 (1970) 160

[INSPIRE].

[89] Z. Fu, A. Maloney, D. Marolf, H. Maxfield and Z. Wang, Holographic complexity is nonlocal,

JHEP 02 (2018) 072 [arXiv:1801.01137] [INSPIRE].

[90] R.D. Sorkin, 1983 paper on entanglement entropy: “On the Entropy of the Vacuum outside a

Horizon”, in Proceedings, 10th International Conference on General Relativity and

Gravitation: Padua, Italy, July 4–9, 1983, vol. 2, pp. 734–736, arXiv:1402.3589 [INSPIRE].

[91] L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A Quantum Source of Entropy for Black

Holes, Phys. Rev. D 34 (1986) 373 [INSPIRE].

[92] M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].

[93] Arvind, B. Dutta, N. Mukunda and R. Simon, The Real symplectic groups in quantum

mechanics and optics, Pramana 45 (1995) 471 [quant-ph/9509002].

[94] S.L. Braunstein, Bosonic linear unitary Bogolyubov transformation reduction theorem, Phys.

Rev. A 71 (2005) 055801 [quant-ph/9904002] [INSPIRE].

[95] S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes.

Part I, JHEP 06 (2018) 046 [arXiv:1804.07410] [INSPIRE].

[96] H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement

entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

[97] T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from

Entanglement in Holographic CFTs, JHEP 03 (2014) 051 [arXiv:1312.7856] [INSPIRE].

– 118 –

https://doi.org/10.1063/1.1498001
https://doi.org/10.1007/BF01646092
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,18,160%22
https://doi.org/10.1007/JHEP02(2018)072
https://arxiv.org/abs/1801.01137
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.01137
https://arxiv.org/abs/1402.3589
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.3589
https://doi.org/10.1103/PhysRevD.34.373
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D34,373%22
https://doi.org/10.1103/PhysRevLett.71.666
https://arxiv.org/abs/hep-th/9303048
https://inspirehep.net/search?p=find+EPRINT+hep-th/9303048
https://doi.org/10.1007/BF02848172
https://arxiv.org/abs/quant-ph/9509002
https://doi.org/10.1103/PhysRevA.71.055801
https://doi.org/10.1103/PhysRevA.71.055801
https://arxiv.org/abs/quant-ph/9904002
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,A71,055801%22
https://doi.org/10.1007/JHEP06(2018)046
https://arxiv.org/abs/1804.07410
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.07410
https://doi.org/10.1007/JHEP05(2011)036
https://arxiv.org/abs/1102.0440
https://inspirehep.net/search?p=find+EPRINT+arXiv:1102.0440
https://doi.org/10.1007/JHEP03(2014)051
https://arxiv.org/abs/1312.7856
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.7856

	Introduction
	Purification complexity of a single harmonic oscillator
	Complexity of pure Gaussian states
	Gaussian purifications of one-mode mixed states
	Alternative description of the purifications
	Purification complexity in the diagonal basis
	Purification complexity in the physical basis
	Differences between the two bases


	Optimal purification of mixed Gaussian states
	Purifying general gaussian states
	Optimal purification in the diagonal basis
	Degenerate purifications
	Essential purifications
	Mode-by-mode purifications

	Optimal purification in the physical basis
	Degenerate purifications
	Essential purifications
	Mode-by-mode purifications


	Complexity of thermal states in QFT
	Exercise: one-mode thermal states
	Discretization of the free scalar
	Purification complexity in the diagonal basis
	Purification complexity in the physical basis
	Mutual complexity of TFD states
	Mutual complexity in the diagonal basis
	Mutual complexity in the physical basis


	Complexity of vacuum subregions in QFT
	Purification complexity in the diagonal basis
	Set-up
	Numerical results in the diagonal basis

	Purification complexity in the physical basis
	Numerical results in the physical basis

	Comment on the approximation

	Holographic complexity for mixed states
	Review of the holographic proposals
	Complexity of thermal states
	Complexity of vacuum subregions

	Discussion
	Other proposals for mixed state complexity
	Mutual complexity in QFT
	Holographic complexity
	Entanglement entropy
	Other cost functions

	Alternative parametrization for Gaussian states
	Numerics for essential purifications
	Complexity basis dependence
	Example 1: two coupled harmonic oscillators
	Example 2: four coupled harmonic oscillators

	Holographic subregion complexity in the Poincaré patch
	Subregion-CV
	Subregion-CA
	Full state CA in the Poincaré patch

	Superadditivity of C(A)(|TFD>) at general times

