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Abstract: We compute how an accelerating qubit coupled to a scalar field — i.e. an

Unruh-DeWitt detector — evolves in flat space, with an emphasis on its late-time be-

haviour. When calculable, the qubit evolves towards a thermal state for a field prepared

in the Minkowski vacuum, with the approach to this limit controlled by two different time-

scales. For a free field we compute both of these as functions of the difference between

qubit energy levels, the dimensionless qubit/field coupling constant, the scalar field mass

and the qubit’s proper acceleration. Both time-scales differ from the Candelas-Deutsch-

Sciama transition rate traditionally computed for Unruh-DeWitt detectors, which we show

describes the qubit’s early-time evolution away from the vacuum rather than its late-time

approach to equilibrium. For small enough couplings and sufficiently late times the evo-

lution is Markovian and described by a Lindblad equation, which we derive in detail from

first principles as a special instance of Open EFT methods designed to handle a break-

down of late-time perturbative predictions due to the presence of secular growth. We

show how this growth is resummed in this example to give reliable information about

late-time evolution including both qubit/field interactions and field self-interactions. By

allowing very explicit treatment, the qubit/field system allows a systematic assessment of

the approximations needed when exploring late-time evolution, in a way that lends itself to

gravitational applications. It also allows a comparison of these approximations with those

— e.g. the ‘rotating-wave’ approximation — widely made in the open-system literature

(which is aimed more at atomic transitions and lasers).
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1 Introduction

It is an old observation that physical processes occurring in spacetimes with horizons share

many features of open systems. This resemblance is based on the fact that any parts of

the system that cross the horizon become eternally beyond the reach of some observers

(those outside the horizon) [1–8]. Open systems are the natural description of this because

they (by definition) are systems for which measurements are only performed on some

subsystem (call it sector A) and so for which it is possible to marginalize over the rest (the

‘environment,’ sector B) when making predictions [9–16].

In a gravitational context sector B might consist of degrees of freedom on the far side

of an observer’s horizon, with sector A representing the degrees of freedom on the near side.

This makes the effective description of systems outside a horizon more like the effective

description of a particle moving through a medium (e.g. photons moving through water, or

neutrinos within the Sun) than a traditional Wilsonian effective field theory. The difference

arises because although a Wilsonian description also divides a system into observed and

unobserved sectors (low and high energies), this division is based on a conserved quantity

(energy). The same is not true for a horizon (or a medium), where no selection rules prevent

particles and information from being exchanged and entangled between the observed and

unobserved sectors.

Several less well-appreciated side-effects come along with such an open-system perspec-

tive, including phenomena potentially of relevance to predictions in both cosmology and

within black-hole spacetimes. The one of most interest in this paper is the phenomenon

of secular growth, and the related inevitability of the breakdown of perturbation theory at

very late times. Strictly speaking secular growth is the phenomenon where the coefficients,

cn(t), of a perturbative evaluation of some observable,

O(t) =
∑
n

cn(t) gn , (1.1)

in powers of some small coupling |g| � 1, are time-dependent and grow without bound at

late times (i.e. |cn(t)| remains unbounded as t→∞) [17–23]. Secular growth such as this is

disturbing because it represents a breakdown of the ability to predict late-time behaviour

using perturbative methods. It is also generic to open systems, for which g is typically a

measure of the strength of the coupling between sectors A and B.

This kind of secular perturbative breakdown is actually generic in almost all of physics,

and ultimately arises because the time-evolution operator is given by U(t) = exp[−i(H0 +

Hint)t]. No matter how small an interaction Hamiltonian Hint might be, there is always

a time after which perturbative evaluation of U(t) breaks down. Even very small effects

can accumulate to become significant over long enough periods of time. The scattering

of wave-packets is an exception to this generic late-time observation, because in this case

interactions turn off once the overlap of the scattering wave-packets goes to zero. As a

result, late-time perturbative breakdown tends to be less familiar to particle physicists, for

whom scattering is often the main calculational focus.

The good news is that there are well-developed tools for making reliable late-time

predictions without having to exactly solve the full theory. These involve resummations of
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various types that turn perturbative calculations into reliable late-time inferences. These

usually rely on a renormalization-group type of argument, in which a perturbative cal-

culation computed in powers of g is resummed to all orders in (say) g2t while dropping

contributions of order gnt with n > 2. Such a resummation is performed by deriving a

differential evolution equation that ultimately has a broader domain of validity — and so

whose solutions can be trusted to later times — than did the initial perturbative calculation.

Perhaps the simplest example along these lines is the prediction of exponential laws

for radioactive decay. In this case the number of atoms surviving un-decayed at a time t

is given by

n(t) = n0 exp[−Γ(t− t0)] , (1.2)

where n0 is the number of atoms present at the initial time t0. In this expression the decay

rate, Γ, is usually computed in perturbation theory and the question arises why (1.2) is

trusted rather than just the expression n(t) = n0[1− Γ(t− t0)] that directly emerges from

a leading-order perturbative calculation. Ultimately eq. (1.2) is justified by the statistical

independence of the decay for each atom, which very generally1 implies the differential

relation
dn

dt
= −Γn , (1.3)

for all t. This differential relation is sufficient to justify (1.2), and perturbation theory is

then simply used to derive the value of the coefficient Γ.

An argument similar in spirit to this — though different in detail — is also often

available for computing the late-time limit of open systems [24–40]. We argue here that

for many OpenEFT applications it is the Lindblad equation [41, 42] that is the desired

evolution equation for these purposes. The evolution equation obtained for qubits differs

from (1.3) because of unitarity-based feedback on the decay rate of the initial state as the

other state becomes significantly occupied.

A central purpose of this paper is to develop and explore these arguments in a partic-

ularly simple example for which all steps can be made explicit and concrete. To this end

we examine the late-time limit of a qubit — i.e. a two-level system whose energies are split

by an amount ω — coupled to a quantum scalar field, φ, within flat spacetime. The field

is prepared in its (Minkowski) vacuum state and the qubit is assumed to move along a

uniformly accelerated trajectory, and the resulting evolution is followed as functions of the

scalar mass m, the qubit energy spacing ω, the acceleration parameter a and the qubit/field

coupling constant g.

These tools allow the following late-time inferences about the accelerating qubit cou-

pled to a field:

• There is a robust asymptotic evolution to a late-time, static thermal state. (This

is a general result for systems coupled to any environment that exhibits thermal

properties, in the sense that correlation functions obey the Kubo-Martin-Schwinger

(KMS) condition [43, 44] described in later sections.)

1Of course, it is possible to ask questions about decays for which (1.2) is not the right description, and

to do so one must choose questions that invalidate the reasoning leading to (1.3).
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• In general the evolution of the qubit’s reduced 2 × 2 density matrix, %(t), can be

developed explicitly in powers of its coupling with the field (or environment). This

evolution is described by a Nakajima-Zwanzig equation [45, 46] for which ∂t%(t)

depends on the details of an integral over %(t′) over its entire evolution history at

earlier times.

• At late-enough times the slow evolution of the qubit’s reduced density matrix becomes

Markovian inasmuch as ∂t%(t) at a given time eventually can be predicted given only

%(t) at the same time (no longer depending on its entire past history). We find the

general constraints on the parameters of the problem which control this regime of

Markovian evolution.

• Although the problem of secular growth prevents directly calculating the evolution

of %(t) at late times, the differential evolution relating ∂t%(t) to %(t) during the

Markovian regime proves to have a broader domain of validity than its perturbative

derivation, and so lends itself to the same kind of arguments that allow the robust

inference of a decay law like (1.2) from (1.3). This allows the inference of late-time

behaviour to all orders in g2t as t→∞ and g → 0.

• Diagonal and off-diagonal components of %(t) turn out to evolve independent of each

other, and the Markovian regime that dominates at very late times consequently

reveals two separate relaxation time-scales that govern the exponential approach to

the late-time thermal state. We call these time-scales ξD and ξT , and they respectively

describe the evolution of the off-diagonal and diagonal parts of the qubit density

matrix. Both ξD and ξT differ from the classic transition rate for Unruh-DeWitt

detector excitation computed many years ago [47–49].

Because the uniformly-accelerated-qubit/free-field system is particularly simple, cal-

culations for it can be extremely explicit. This allows the above general remarks to be

quantified in more detail in terms of the system parameters m, a, g and ω. In particular:

• The temperature of the late-time static thermal limit for the qubit is the standard

Unruh result: T = a/(2π). This temperature provides the natural correlation scale

for the qubit’s environment.

• Markovian evolution emerges when two conditions are satisfied. First, attention must

be focussed on late enough times; which for the accelerated qubit means proper times

τ � 1/a. Second, the proper time-scale ξ = 1/Γ of the evolution must also be large,

again compared with 1/a.

• Late-time evolution generically becomes Markovian in perturbation theory (in powers

of |g| � 1) because the predicted evolution rate vanishes at zero coupling, and at

weak coupling is Γ ∼ g2aF (m/a, ω/a) for a calculable dimensionless function of two

arguments, F (x, y). The condition Γ� a is therefore automatic whenever F is order

unity. (As described explicitly below, small g need not suffice in extreme parameter

limits for which F is not order unity.)

– 3 –
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• In the Markovian limit the evolution equation for %(τ) can be written as a Lindblad

equation, and we show why its solutions have a broader domain of validity at late

times than does straight-up perturbation theory itself. In particular, although direct

calculation of %(τ) in perturbation theory naively breaks down once aτ ' 1/g2 (due

to secular-growth effects), solutions to the Lindblad equation are nevertheless trust-

worthy even when aτ ∼ O(1/g2). Integrating the Lindblad equation turns out to

resum all orders in g2aτ while dropping terms of order g4aτ .

• The Lindblad equation we find satisfies automatically the positivity conditions (ex-

plained below) required by unitarity over its entire evolution, provided one stays

strictly within the domain of validity of its derivation. Apparent positivity violations

only arise if one strays outside of this domain. Because of this there is no need to

impose an extra coarse-graining, as is often done in the literature — called there the

rotating-wave approximation (RWA). The RWA is commonly used to remedy the

appearance of positivity-violating terms in the evolution equations for %(τ). We find

this unnecessary if one stays ruthlessly within the domain of one’s approximations.

• The predicted Markovian time-scales can be explicitly solved in terms of Bessel func-

tions and robustly satisfy ξD > ξT , so the off-diagonal components of %(τ) relax to

equilibrium more slowly than do the diagonal components.

• Relaxation becomes exponentially inefficient in the limit m� a, for want of thermally

occupied excited field states. In the large-mass limit the relaxation times take the

asymptotic form

ξD = 2ξT '
8π

ag2
sech

(πω
a

)
e2m/a , (1.4)

and so diverge in the limit m→∞, as expected as the scalar field decouples.

• For small masses, m� a, the relaxation times instead become

ξD = 2ξT '
4π

ωg2
tanh

(πω
a

) [
1 +O(m2/ω2)

]
, (1.5)

where the explicit form for the subdominant O(m2/ω2) term is given in eq. (4.28)

below.

All of the above statements apply when the accelerating qubit is coupled to a free

field. In a final section we also briefly explore the effects of field self-interactions of the

form Hint = λφ4/4! for a massless scalar. As discussed in [50], secular-growth effects also

obstruct the validity of perturbing in λ at late times, although it is also argued there

that late-time behaviour can be controllably resummed by incorporating a small mass shift

δm2 = λa2/96π2 into the zeroeth-order theory.

Using this observation in the previous small-mass results then gives the leading power

of λ in the late-time relaxation times, which turn out to have the form

ξD = 2ξT '
4π

g2ω
tanh

(πω
a

)
+

λa2

48πg2ω3
tanh

(πω
a

){
1−

cos
[
ω
a log

(
λ

384π2

)
− ζ
]√

(ω/a)2 + 1

}
, (1.6)
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with ζ as given in (4.13). Notice that although this correction is small when λ is small, it is

also not analytic at λ = 0 — a consequence of the non-perturbative nature of the late-time

resummation.

In the remainder of this paper these results are presented in the following way. In

section 2 the dynamics for the basic qubit/scalar-field system is set up and solved pertur-

batively in powers of the qubit-scalar coupling g. Several general properties of the scalar-

field correlation functions of interest are displayed, including the ‘KMS’ conditions [43, 44]

that encode detailed balance and so are sufficient for the late-time limit to be thermal.

Section 3 follows this up with a summary of how the evolution of the reduced qubit density

matrix can be described by a Nakajima-Zwanzig equation from which can be derived the

Markovian-Lindblad limit. (This derivation is amplified somewhat in appendix A.) Sec-

tion 4 applies these general techniques to the specific example of an accelerating qubit in

Minkowski space, and then section 5 focuses on identifying reliable statements that can

be made at late times. Our conclusions are briefly summarized in section 6 and a several

intermediate steps and results are given in a series of appendices.

2 Qubits in space

Our goal in this — and a companion paper [51] — is to follow the evolution of the state

of a qubit that moves along various world-lines in simple spacetimes while interacting

with a quantum field. Of particular interest is the reliable calculation of its behaviour

at very late times. Following earlier studies of Unruh-DeWitt detectors we here work

perturbatively in the qubit/field coupling, g, although unlike early work [47–49] our results

are not implicitly restricted to the regime 1� aτ � O(1/g2) (where τ is the qubit’s proper

time); in resummed form they are also valid for time-scales aτ ' O(1/g2).

2.1 The setup

We study a Unruh-DeWitt detector along the lines of that first introduced in [47, 48] and

consider a 2-level qubit with free Hamiltonian

h =
ω

2
σ3 =

(
ω/2 0

0 −ω/2

)
, (2.1)

which denotes the difference of the two qubit energies by ω > 0. We suppose the qubit

moves along a trajectory xµ = yµ(τ) within a given spacetime geometry, along which τ is

the proper time as measured with the spacetime metric ds2 = gµν dxµ dxν , so that

gµν [y(τ)]
dyµ

dτ

dyν

dτ
= −1 . (2.2)

The qubit is assumed to couple to a free real Klein-Gordon scalar field φ with mass m.

Assuming the spacetime is static and admits a foliation with metric ds2 = −dt2+γij dxi dxj ,

the scalar’s Klein-Gordon Hamiltonian can be written

H =

∫
Σt

d3x
√
γ

[
1

2
φ̇2 +

1

2
γij∂iφ∂jφ+m2φ2

]
(2.3)

where Σt is a sheet of fixed t = x0 and over-dots denote ∂t.
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The Hilbert space of states for the combined qubit/field system is the product of

the Fock space for the field with the qubit’s two-dimensional space of states. The free

Hamiltonian (before adding a qubit-field coupling) acting on the full Hilbert space is then

H0 = H⊗ I + I ⊗ h
dτ

dt
, (2.4)

where I and I are identity operators, and the factor dτ/dt is included so that H0 generates

translations in t (whereas h generates translations in the qubit’s proper time τ).

Finally, the qubit/field coupling is described by the interaction Hamiltonian

Hint = g φ
[
y(τ)

]
⊗m

dτ

dt
(2.5)

where the dimensionless coupling 0 < g � 1 is small enough to justify a perturbative

treatment and we follow a choice often made in the literature by picking the 2 × 2 matrix

here to be m = σ1, so that Hint drives transitions between the eigenstates of h. The

complete hamiltonian2 is then given by H = H0 +Hint.

The rest of this paper computes how the state of the qubit responds to its motion

through the spacetime while interacting with the quantum field, with the field assumed to

be prepared in its vacuum |Ω〉. The initial qubit state is taken to be uncorrelated with the

field degrees of freedom, with

ρ(0) = |Ω〉 〈Ω| ⊗ %0 (2.6)

where %0 is the qubit’s initial 2 × 2 hermitian density matrix, that satisfies tr %0 = 1.

To the extent that only qubit observables are measured the problem of time evolution is

completely solved once the time-dependence of the reduced density matrix is known where

%(t) := Tr
φ

[
ρ(t)

]
(2.7)

This takes a partial trace over the field theory subspace of the full density matrix ρ(t)

describing the quantum state of the entire system, and given (2.6) has the initial condition

%(0) = %0 . (2.8)

2.2 Perturbative time evolution

The strategy is to compute %(t) directly from its definition after first computing ρ(t)

perturbatively in powers of the small coupling g. To this end we switch to the interaction

picture, and suppose when doing so that the time coordinate t and the qubit proper time

τ are sychronized to ensure τ(t = 0) = 0. In this case the time-evolution operator for the

free system becomes

U0(t, 0) = T exp

(
−i
∫ t

0
ds H0

)
= e−iHt ⊗ e−ihτ(t) , (2.9)

2In section 3 we also include a counter-term Hct = 1
2
g2ω1 (I ⊗ σ3)(dτ/dt) ⊂ Hint in the interaction

Hamiltonian because at O(g2) the qubit/field interaction (2.5) alters the qubit gap size ω → ω + g2ω1.

Inclusion of this counterterm ensures the parameter ω continues to represent the gap size to this order.

– 6 –
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and so the interaction-picture interaction Hamiltonian V (t) is given by

V (t) = U †0(t, 0)HintU0(t, 0) = g φI [y(τ)]⊗mI(τ)
dτ

dt
, (2.10)

where (as usual) the interaction-picture field is related to the Schrödinger-picture field by

φI(x, t) := e+iHtφ(x)e−iHt and the interaction-picture qubit interaction is given by

mI(τ) := e+ihτm e−ihτ . (2.11)

The interaction-picture density matrix is similarly given by ρI(t) := U †0(t, 0)ρ(t)U0(t, 0)

and we use the notation

%I(t) := e+ihτ(t)%(t) e−ihτ(t) (2.12)

for the interaction-picture reduced density matrix in the qubit sector. With these defini-

tions the evolution of ρI(t) is then found by integrating the Liouville equation, which in

the interaction picture states

∂ρI

∂t
= −i

[
V (t) , ρI(t)

]
. (2.13)

Standard arguments give the perturbative solution to this equation, which to second order

in V is

ρI(t) = ρ(0)−i
∫ t

0
ds1

[
V (s1), ρ(0)

]
+(−i)2

∫ t

0
ds1

∫ s1

0
ds2

[
V (s2),

[
V (s1), ρ(0)

]]
+O(V 3) .

(2.14)

Taking the trace of this expression and using the definition (2.7) gives the desired pertur-

bative prediction for the time-dependence of the reduced density matrix.

Specializing to the qubit-field hamiltonian considered here and using the uncorrelated

initial condition (2.6) gives — after noting that 〈Ω|φI(x, t)|Ω〉 = 0 kills the first-order term

— the comparatively simple result

%I(τ) = %0 − g2

∫ τ

0
ds1

∫ s1

0
ds2

{
WΩ(s2 − s1)

[
mI(s2),mI(s1)%0

]
(2.15)

+WΩ
∗(s2 − s1)

[
mI(s2),mI(s1)%0

]†}
+O(g4) ,

which changes integration variable from t to the qubit’s proper time τ(t) and uses WΩ to

denote the Wightman function evaluated along the qubit’s trajectory

WΩ(τ1 − τ2) := 〈Ω|φ
[
y(τ1)

]
φ
[
y(τ2)

]
|Ω〉 . (2.16)

The static nature of the spacetime — and the fact that |Ω〉 is the ground state — ensures

the Wightman function depends only on t2 − t1. In what follows spacetime trajectories

are used for which this ensures the proper times also only appear through the difference

τ2 − τ1.

Eq. (2.15) can be made more explicit by choosing the specific interaction m = σ1 and

supposing the qubit begins in its ground state, %0 = |↓〉 〈↓| = 1
2(I − σ3). These choices

imply

[%(0)m(s1),m(s2)] = −e−iω(s1−s2)σ3 (2.17)

– 7 –
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which (switching back to the Schrödinger-picture) results in the simple expression

%(τ) = |↓〉 〈↓|+ g2σ3

∫ τ

0
ds1

∫ τ

0
ds2 WΩ(s1 − s2) e−iω(s1−s2) +O(g4) . (2.18)

As many authors have observed [48, 49, 52–54], the second term in this expression need

not vanish and when it does not the qubit is in general excited for τ > 0 by its interaction

with the field even though both qubit and field begin in their respective ground states.

2.3 Wightman function

Notice the definition (2.16) and the hermiticity of φ ensure that WΩ enjoys the symmetry

WΩ
∗(τ) =WΩ(−τ) . (2.19)

In the cases examined in later sections WΩ also satisfies a skew periodicity in imaginary

time

WΩ(τ − iβ) =WΩ(−τ) , (2.20)

known as the Kubo-Martin-Schwinger (KMS) condition [43, 44]. This property turns out to

be sufficient to ensure that %(τ) asymptotes to a thermal state, with temperature T = 1/β,

as we verify explicitly in later sections.

The Wightman function also has a universal singularity [55] in the limit that its argu-

ments become light-like separated, with 〈Ω|φ(x)φ(x′)|Ω〉 diverging proportional to

〈Ω|φ(x)φ(x′)|Ω〉 ∼ ∆1/2

4π2

1

σ̂(x, x′) + 2iε[T (x)− T (y)] + ε2
, (2.21)

up to logarithmic tems, where σ̂ is the square of the geodesic distance between x and x′

while ∆ is the Van Vleck-Morette determinant [56], T is a globally-defined future-increasing

function of time [57, 58], and ε is an infinitesimal that defines how to handle singularities

associated with integrating through σ̂ = 0. With our later choices for qubit trajectories

this implies

WΩ(s) ∝ 1

(s− iε)2
, (2.22)

in the limit of small proper-time separation.

2.4 Integration issues

Considerable effort has been put into computing (2.18) for various trajectories and space-

times. There are two kinds of difficulties when evaluating the integrals, with potential

divergences arising because the integrand is singular as s1 → s2 and when taking the

late-time limit τ →∞.

In what follows we find that the potential divergence at s1 → s2 is less severe than it

might have been, largely due to the iε behaviour appearing in (2.22). There is a residual

logarithmic divergence in this limit that we find gets cancelled when one renormalizes the

bare parameter ω (as might be expected for a short-distance divergence). These divergences

– 8 –
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are much discussed in the literature [60–63], which sometimes approaches them differently

than we do here.

Our main focus is on problems associated with the long-time limit, τ → ∞. Part of

the problem in this regime is well-understood, and is generic to time-translation invari-

ant systems. Because transition rates are time-independent for such systems, transition

probabilities grow linearly with time. Unbounded growth of (2.18) at τ → ∞ should

therefore be avoided if one simply computes the late-time transition rate [49] by differen-

tiating (2.18), leading to:

lim
τ→∞

∂%(τ)

∂τ
= g2σ3RΩ(ω) (2.23)

where RΩ denotes the Wightman function’s Fourier transform

RΩ(ω) :=

∫ ∞
−∞

dτ WΩ(τ) e−iωτ . (2.24)

This approach of computing the derivative of the transition probability indeed leads to

the correct result in other physical situations, such as when computing decay rates for un-

stable particles. We argue below that for the accelerating-qubit/quantum-field system con-

sidered here the same approach is only partly successful, since it only properly captures evo-

lution for times 1� aτ � O(1/g2) and does not properly capture the later-time limit when

aτ ' O(1/g2). Our goal is to reliably infer evolution in this regime at much-later times.

The property (2.19) allows the above (and later) formulae to be written in other useful

ways. It implies in particular that Re[WΩ(τ)] is an even function of τ while Im[WΩ(τ)] is an

odd function of τ . As a result the above Fourier transform can be decomposed as the sum

RΩ(ω) = CΩ(ω) + SΩ(ω) (2.25)

where we define the useful integrals

CΩ(ω) ≡
∫ ∞
−∞

dτ Re[WΩ(τ)] cos(ωτ) (2.26)

and SΩ(ω) ≡
∫ ∞
−∞

dτ Im[WΩ(τ)] sin(ωτ) . (2.27)

More can be said about these integrals when the Wightman function satisfies the

thermal KMS relation (2.20), as does the Minkowski-vacuum Wightman function when

evaluated along an accelerating world-line (as is well-known, and we see below explicitly).

Whenever this is true the rate integral RΩ(ω) obeys the detailed-balance relation [52]

RΩ(ω)− e−βωRΩ(−ω) = 0 . (2.28)

Since CΩ(ω) and SΩ(ω) are even and odd in ω respectively, the detailed-balance relation

also implies a relation between CΩ(ω) and SΩ(ω):

SΩ(ω)

CΩ(ω)
= − tanh

(
βω

2

)
, (2.29)

from which several other useful relations also follow:

RΩ(ω) =
2

eβω + 1
CΩ(ω) = − 2

eβω − 1
SΩ(ω) . (2.30)
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3 The Nakajima-Zwanzig equation and the Markovian limit

Although eq. (2.23) is a standard result, something must be wrong with it. In particu-

lar, (2.23) does not describe an approach to a static late-time thermal state, as might be

expected at late times when coupled to a thermal environment.

This (and the following) section develop the tools needed to see why (2.23) goes wrong,

and to see what must be done to reliably access the qubit’s late-time behaviour. In par-

ticular we argue that (unlike for particle decays) rates like g2RΩ of (2.23) only accurately

capture the transition rate for an intermediate range of times and not the evolution of %(τ)

at very late times.

We now argue that a better perturbative approach to the late-time evolution of the

reduced density matrix %(τ) is given by the Nakajima-Zwanzig equation [9–16, 45, 46]

(whose derivation is briefly summarized in appendix A). This equation uses the full Liouville

equation, (2.13), to marginalize the rest of the system once and for all, and thereby derive

an expression for ∂τ%(τ) that refers only to the interaction hamiltonian and to %(τ ′). The

result is an integro-differential equation that is displayed explicitly for our qubit system in

section 3.1. Although this equation in general remains difficult to solve, it is useful because

it can be used to show — as is done in section 3.2 — how things simplify in the late-

time limit when evolution becomes approximately Markovian. Section 4 then explicitly

solves the resulting Markovian evolution for the concrete example of an accelerated qubit

in Minkowski space.

3.1 The Nakajima-Zwanzig equation

The derivation of the Nakajima-Zwanzig equation starts with the observation that the

traced Liouville equation is hard to use directly because the right-hand side depends on

the full density matrix ρ(τ) rather than just the reduced matrix %(τ). The Nakajima-

Zwanzig equation fixes this by solving for the rest of ρ in terms of % so as to get an

equation that involves only the reduced density matrix. This can be done quite generally,

but at the expense of making the Liouville equation into an integro-differential equation in

which the right-hand side involves an integral over the entire history of %(τ).

For the qubit/field system described above the result (see appendix A) at second order

in g is given in the interaction picture by

∂%I(τ)

∂τ
' g2

∫ τ

0
ds

(
WΩ(τ − s)

[
mI(s)%I(s),mI(τ)

]
(3.1)

+WΩ
∗(τ − s)

[
mI(τ),%I(s)mI(s)

])
− i
[
g2ω1

2
σ3,%

I(τ)

]
.

It is the late-time implications of this equation that are explored for much of the rest of

this paper.

The last term of (3.1) naively has no counterpart in (2.15), and so deserves some

explanation. It arises because of the inclusion in the interaction Hamiltonian of an O(g2)

counter-term to the qubit gap ω (2.5)

Hint → g φ
[
y(τ)

]
⊗ σ1

dτ

dt
+ I ⊗ g2ω1

2
σ3

dτ

dt
, (3.2)
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and introduction that carries with it an associated adjustment of the interaction picture.

As mentioned in footnote 2, this counter-term arises because at second order in g the

qubit/field interaction shifts the energy difference between the two qubit levels, so that

E↑ − E↓ ' ω + g2∆Ω, with

∆Ω(ω) := 2

∫ ∞
0

ds Re[WΩ(s)] sin(ωs) . (3.3)

The counterterm of eq. (3.2) is obtained by redefining the parameter ω → ω0 := ω + g2ω1,

with ω1 = −∆Ω chosen so that E↑−E↓ ' ω0 +g2∆Ω = ω+g2(ω1 +∆Ω) = ω, which ensures

the parameter ω continues to denote the physical qubit level-difference at this order. (This

redefinition has the added bonus of cancelling the short-distance logarithmic ultraviolet

divergence3 that ∆Ω would otherwise introduce into the evolution of %I at second order

in g.) It is important when doing this redefinition to recall that this also involves a slight

redefinition of the interaction picture, since the free Hamiltonian, H0, appearing in (2.10)

is defined by (2.4) with h built using the physical qubit gap ω, in addition to Hint being

adjusted to (3.2).

Returning to eq. (3.1), it is clear that this expression agrees with the time derivative

of (2.15) if the replacement %(t)→ %0 were made, as would be natural to do given that %(t)

and %0 themselves only differ by higher orders in g. This shows how the Nakajima-Zwanzig

equation reproduces the strict perturbative result at order g2. It also shows how (3.1) can

also carry information beyond leading order, because of the replacement of %0 with a

convolution over %(t). This difference can be important, particularly at late times once

even O(g2) changes have had time to modify %(t) significantly from %0. It is this difference

that allows (2.15) and (3.1) to differ from one another at late times.

Switching the integration variable s → τ − s in (3.1) and performing some matrix

algebra yields the component equations of motion

∂%I11

∂τ
= g2

∫ τ

−τ
dsWΩ(s) e−iωs − 4g2

∫ τ

0
ds Re[WΩ(s)] cos(ωs)%I11(τ − s) , (3.4)

and

∂%I12

∂τ
= −ig2ω1 %

I
12(τ)− 2g2

∫ τ

0
ds Re[WΩ(s)]e+iωs%I12(τ − s) (3.5)

+ 2g2e+2iωτ

∫ τ

0
ds Re[WΩ(s)]e−iωs%I∗12(τ − s) ,

which use the identities4 %22 = 1 − %11 and %21 = %∗12 to eliminate %21 and %22. Further

simplification comes from using the properties tr % = 1 and %† = %

Eqs. (3.4) and (3.5) are the main results of this section. In particular, they show

that the components %I11 and %I22 evolve completely independently of the components %I12

3In intermediate-stage manipulations to follow we imagine the divergence in ∆Ω to be regulated, making

∆Ω finite but logarithmically sensitive to the UV regularization scale. In the end our physical predictions

do not depend on precisely how this regularization is carried out.
4These properties follow from the identities tr%(τ) = 1 and %†(τ) = %(τ), which are preserved for all

τ > 0 by (3.1). (Proving the hermiticity identity is easiest using the method of Laplace transforms.)

– 11 –



J
H
E
P
0
3
(
2
0
2
0
)
0
0
8

and %I21. It is this independent evolution that implies the existence of two independent

relaxation time-scales ξD and ξT in the approximations that follow, with ξD describing the

rate with which % diagonalizes, while the other ξT captures the time-scale with which the

diagonal elements approach thermal values.

3.2 The Markovian limit

So far so good, but eqs. (3.4) and (3.5) do not yet bring us closer to integrating the system to

determine the evolution of %(t). After all, the Nakajima-Zwanzig equation really contains

much the same information as does the underlying Liouville equation; just better organized.

Its main virtue is to manipulate the right-hand side of the Liouville equation in order to

write it completely in terms of the reduced density matrix %(t). This is accomplished at the

expense of introducing convolutions over the evolution history, thereby introducing memory

effects into the system (which show why both equations are in general difficult to solve).

Things become simpler, however, if it happens that WΩ(τ) falls off sharply for large τ .

In the example to follow it happens that WΩ(τ) falls off exponentially fast on sufficiently

large time-scales

WΩ(τ) ∼ e−τ/τc for τ � τc (3.6)

for some time-scale τc. When this happens the evolution for %(t) simplifies provided one

only tries to predict behaviour that is slow in comparison with the scales over which

Re[WΩ(τ)] varies.5 In this case the function %I(τ − s) within the integral can be Taylor

expanded in powers of s such that

%I(τ − s) ' %I(τ)− s ∂%
I(τ)

∂τ
+ . . . (3.7)

with higher terms generically suppressed by a derivative expansion of the form

(τc ∂τ )n%I(τ) [64, 65] once the integration over s is performed. Because (3.1) ensures

the derivative of the interaction-picture state ∂τ%
I(τ) in (3.7) is O(g2), for small g each

power of τc ∂τ tends automatically to be small.

Because small g automatically suppresses derivatives of %I(τ), the key ingredients

required for this expansion to be useful are: (i) the existence of a characteristic scale

τc beyond which WΩ falls to zero, and (ii) the requirement that (3.1) be evaluated at

sufficiently late times, τ � τc, that the falloff in WΩ is important when evaluating the

integral over s. In this case the upper limit of the s integration can also be placed at

infinity rather than τ , because the integral’s support dominantly comes from s . τc � τ .

With these approximations the evolution equation (3.7) becomes

∂%I(τ)

∂τ
' g2

∫ ∞
0

ds

(
WΩ(s)

[
mI(τ − s)%I(τ),mI(τ)

]
(3.8)

+WΩ
∗(s)

[
mI(τ),%I(τ)mI(τ − s)

])
− ig2ω1

2
[σ3,%

I(τ)] ,

5The relative simplicity coming from a hierarchy of scales between the variations of % and WΩ is the

‘effective’ part of Open Effective Field Theories [24–31].
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which is Markovian, in the sense that ∂τ%
I(τ) depends only on the instantaneous value of

%I(τ) at the same time, and not on its entire past history.

In what follows we next explicitly solve the equations of motion for %I11(τ) and %I12(τ)

in this Markovian regime to quantify the size of τc∂τ%(τ) and thereby provide more precise

conditions for the validity of the Markovian limit of the Nakajima-Zwanzig equation. To

this end it is worth focussing on the (ij) components of (3.8) (or, equivalently, specializ-

ing (3.4) and (3.5) to the Markovian regime).

The diagonal component. We start by solving for the Markovian evolution of the

diagonal components of %I . Writing %Iij(τ − s) ' %Iij(τ) in (3.4) and replacing τ → ∞ in

the integration limits leads to the following equation

∂%I11

∂τ
' g2RΩ − 2g2CΩ%

I
11(τ) , (3.9)

where the definitions (2.24) and (2.26) define the τ -independent coefficients RΩ and CΩ.

Comparing this to the perturbative expression (2.23) derived earlier shows agreement on

the first term of (3.9), while the perturbative expression misses the second term. It is

the absence of this second term that causes the naive perturbative expression to grow

indefinitely and so to fail at late times.

When WΩ satisfies the KMS condition (2.20) the solution to (3.9) is found to be

%I11(τ) ' 1

eβω + 1
+

[
%11(0)− 1

eβω + 1

]
e−τ/ξT , (3.10)

where the identity (2.30) is used and where

ξT :=
1

2g2CΩ
(3.11)

defines the solution’s relaxation time-scale. Notice that CΩ is always positive in the exam-

ples that follow. Eq. (3.10) describes exponential relaxation towards the static solution:

%∞11 = 1/(eβω+1). Furthermore, the condition %11+%22 = 1 implies %∞22 = eβω/(eβω+1) and

so %∞11/%
∞
22 = e−βω, showing that the static solution populates the qubit levels thermally.

This solution allows more precise quantification of the regime of validity for the Marko-

vian approximation. Keeping the first sub-dominant term of the expansion (3.7) in (3.4)

gives

∂%I11

∂τ
' g2RΩ − 4g2

∫ τ

0
ds Re[WΩ(s)] cos(ωs)

[
%I11(τ)− s∂%

I
11

∂τ
+ . . .

]
, (3.12)

which (again taking τ →∞ in the integration limit) leads to the more compact expression

∂%I11

∂τ
' g2RΩ − 2g2

[
CΩ%

I
11(τ)− d∆Ω

dω
∂τ%

I
11(τ) + . . .

]
, (3.13)

which also uses the definition (3.3). Using the solution (3.10) to evaluate ∂τ%
I
11(τ) ∼

−%I11(τ)/ξT shows that neglect of the last term requires ξT to satisfy

1

ξT
�
∣∣∣∣ CΩ

d∆Ω/dω

∣∣∣∣ . (3.14)
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Equivalently, using 1/ξT = 2g2CΩ in (3.14) yields

2g2

∣∣∣∣d∆Ω

dω

∣∣∣∣� 1 , (3.15)

as the condition to be satisfied when using the Markovian limit.

The off-diagonal component. A similar procedure gives a Markovian solution for

%I12(τ), with an important complication: the Markovian approximation produces a dif-

ferential equation which oscillates as well as damps. Since the oscillations are driven with

frequency ω this makes dropping derivatives in the Taylor series (3.7) less straightforward

in the large-ω limit than is the case for the diagonal equation.

To see this in detail we again use %I12(τ − s) ' %I12(τ) in the Nakajima-Zwanzig equa-

tion (3.5) (and send τ →∞ in the integration limits), leading to

∂%I12

∂τ
' −g2(CΩ + i[∆Ω + ω1])%I12(τ) + e+2iωτg2(CΩ − i∆Ω)%I∗12(τ) . (3.16)

The new complication in this equation is the potentially rapid time-dependence coming

from the factor e2iωτ . This can be removed from the differential equation by redefining

the dependent variable, which in this case simply amounts to converting eq. (3.16) back

to the Schrödinger picture. Recalling that the interaction-picture component is related to

the Schrödinger-picture component by %12(τ) = e−iωτ%I12(τ), eq. (3.16) in the Schrödinger

picture becomes

∂%12

∂τ
' −iω%12(τ)− g2(CΩ + i[∆Ω + ω1])%12(τ) + g2(CΩ − i∆Ω)%∗12(τ)

' −(iω + g2CΩ)%12(τ) + g2(CΩ − i∆Ω)%∗12(τ) , (3.17)

where the first line shows that it is the combination ω + g2(ω1 + ∆Ω) that enters this

equation the way the qubit gap would appear. The second line uses the counter-term

condition ω1 = −∆Ω to ensure that this gap is given just by ω.

The solutions to (3.17) are straightforwardly found by writing it in matrix form:

dx(τ)

dτ
= Sx(τ) with solutions x(τ) = eSτ x(0) , (3.18)

where

x(τ) :=

[
%12(τ)

%∗12(τ)

]
and S :=

[
−g2CΩ − iω g2(CΩ − i∆Ω)

g2(CΩ + i∆Ω) −g2CΩ + iω

]
. (3.19)

When calculable (i.e. in the non-degenerate Case I below), these solutions describe ex-

ponential relaxation towards a late-time static solution, with the static solution this time

being %∞12 = 0. The relaxation times in this case are governed by the eigenvalues of the

matrix S, with explicit solutions given by

%12(τ) = e−g
2CΩτ

{
%12(0)

[
cos(Στ)−iω

Σ
sin(Στ)

]
+%∗12(0)

g2CΩ−ig2∆Ω

Σ
sin(Στ)

}
(3.20)

– 14 –



J
H
E
P
0
3
(
2
0
2
0
)
0
0
8

where

Σ = ω

√
1−

g4(C2
Ω + ∆2

Ω)

ω2
. (3.21)

When interpreting this equation care must be taken to remain within the domain of

validity of all approximations. In particular, since the Nakajima-Zwanzig equations, (3.4)

and (3.5), were obtained after expanding to second-order in the coupling g, so we cannot

reliably keep O(g4) effects6 in ∂τ%. The implications of this observation depend on what

is assumed about the size of ω, so we consider two cases separately.

Case I: ω � g2
√
C2

Ω + ∆2
Ω. Consider first the parameter regime where ω � g2

√
C2

Ω + ∆2
Ω

in which case (3.21) shows the difference between Σ and ω can be dropped. Note in

particular that this automatically implies both g2CΩ/ω and g2∆Ω/ω are both small, though

possibly not negligibly small in ∂τ%.

In this regime the Schrödinger-picture solution therefore becomes

%12(τ) ' e−g2CΩτ
[
%12(0)e−iωτ + %∗12(0)

g2CΩ − ig2∆Ω

ω
sin(ωτ)

]
, (3.22)

which in the interaction picture yields

%I12(τ) ' e−g2CΩτ
[
%12(0) + %∗12(0)

(
g2∆Ω

2ω
+
ig2CΩ

2ω

)(
1− e2iωτ

)]
. (3.23)

This last expression describes very slow damping with relaxation time-scale

ξD :=
1

g2CΩ
, (3.24)

on which is superimposed much faster oscillations whose amplitude is small.

As before, this solution can be used to determine more precisely when the Markovian

equation (3.16) is valid. This means rederiving the conditions under which it is sufficient

to drop the derivatives in the expansion (3.7) of %I12(τ − s). Keeping the first subdominant

term in the expansion (3.7), the Nakajima-Zwanzig equation for ∂τ%
I
12(τ) contains on its

right-hand-side the terms

− 2g2

∫ τ

0
ds Re[WΩ(s)]e+iωs

[
%I12(τ)− s∂%

I
12

∂τ
+ . . .

]
(3.25)

+ 2g2e+2iωτ

∫ τ

0
ds Re[WΩ(s)]e−iωs

[
%I∗12(τ)− s∂%

I∗
12

∂τ
+ . . .

]
,

which, once τ →∞ is taken in the integration limits, becomes

− g2

[
CΩ%

I
12(τ) +

(
d∆Ω

dω
− idCΩ

dω

)
∂%I12

∂τ
+ . . .

]
(3.26)

+ g2e+2iωτ

[
(CΩ − i∆Ω)%I12(τ) +

(
d∆Ω

dω
+ i

dCΩ

dω

)
∂%I12

∂τ
+ . . .

]
.

6There is nothing fundamental that stops one from working to higher order in g with the Nakajima-

Zwanzig equation. Tracking O(g4) effects would involve expanding the kernel K (defined in appendix A)

to fourth-order in V and studying the master-equation that arises in this case.
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The solution (3.23) for %I12(τ) is a sum of terms whose time-evolution is exponential,

varying like A exp
[(
− 1
ξD

+ iΦ
)
τ
]
, where 1/ξD = g2CΩ and Φ = 0 or Φ = 2ω (with A a

time-independent complex amplitude). Using this to eliminate ∂τ%
I
12 in the above terms

then gives

∂%I12

∂τ
⊃ g2Ae

(
− 1
ξD

+iΦ
)
τ
[
CΩ +

(
d∆Ω

dω
− idCΩ

dω

)(
− 1

ξD
+ iΦ

)
+ . . .

]
(3.27)

+ g2e+2iωτA∗e

(
− 1
ξD
−iΦ

)
τ
[
(CΩ − i∆Ω) +

(
d∆Ω

dω
+ i

dCΩ

dω

)(
− 1

ξD
− iΦ

)
+ . . .

]
Dropping the derivatives in the Markovian series therefore requires

|CΩ|�
∣∣∣∣(d∆Ω

dω
−idCΩ

dω

)(
− 1

ξD
+iΦ

)∣∣∣∣ and |CΩ−i∆Ω|�
∣∣∣∣(d∆Ω

dω
+i

dCΩ

dω

)(
− 1

ξD
−iΦ

)∣∣∣∣ .
(3.28)

Since |CΩ−i∆Ω| ≥ |CΩ| the first of these conditions automatically ensures the second is also

satisfied. Furthermore, because | a+ ib | ≥ |a| and | a+ ib | ≥ | b | it follows from (3.28) that

|CΩ| �
∣∣∣∣ 1

ξD

d∆Ω

dω
− Φ

dCΩ

dω

∣∣∣∣ and |CΩ| �
∣∣∣∣ 1

ξD

dCΩ

dω
+ Φ

d∆Ω

dω

∣∣∣∣ (3.29)

are necessary conditions for being able to neglect derivatives, when deriving the Markovian

approximation.

When Φ = 0, the above bounds become

1

ξD
�
∣∣∣∣ CΩ

d∆Ω/dω

∣∣∣∣ and
1

ξD
�
∣∣∣∣ CΩ

dCΩ/dω

∣∣∣∣ , (3.30)

which when specialized to 1/ξD = g2CΩ become

g2

∣∣∣∣d∆Ω

dω

∣∣∣∣� 1 and g2

∣∣∣∣dCΩ

dω

∣∣∣∣� 1 . (3.31)

The first of these was encountered in (3.15) as a condition for there being a Markovian

limit of %I11.

For large ω the strongest condition comes from applying the bounds (3.29) for the

rapidly oscillating case Φ = 2ω. For this case, and using 1/ξD = g2CΩ, (3.29) becomes

1�
∣∣∣∣g2 d∆Ω

dω
− 2ω

CΩ

(
dCΩ

dω

)∣∣∣∣ and 1�
∣∣∣∣g2 dCΩ

dω
+

2ω

CΩ

(
d∆Ω

dω

)∣∣∣∣ (3.32)

As we show below, once evaluated as functions of the qubit/field parameters, condi-

tions (3.32) turn out to be impossible to satisfy once ω is larger than 1/τc ' a. This

agrees with the intuition that rapid oscillations should eventually destroy the derivative

expansion that underlies the Markovian evolution. The next sections demonstrate this

explicitly by evaluating the above expressions as concrete functions of the parameters g,

m, a and ω.
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Case II: ω � g2
√
C2

Ω + ∆2
Ω. Next consider the very degenerate regime where the qubit

gap is small enough to compete with O(g2) effects. In this case

Σ =
√
ω2 − g4(C2

Ω + ∆2
Ω) ' ±ig2

√
C2

Ω + ∆2
Ω

[
1 + · · ·

]
, (3.33)

where the ellipses are order ω2/(g4C2
Ω + g4∆2

Ω) and so are small (but need not be sup-

pressed by powers of g) in this parameter regime. Using %I12(τ) = e+iωτ%12(τ), the exact

solution (3.20) in this case becomes approximately

%I12(τ) ' e+iωτe−g
2CΩτ

%12(0)

cosh

(
g2
√
C2

Ω + ∆2
Ω τ

)
−
iω sinh

(
g2
√
C2

Ω + ∆2
Ω τ
)

g2
√
C2

Ω + ∆2
Ω


+%∗12(0)

CΩ − i∆Ω√
C2

Ω + ∆2
Ω

sinh

(
g2
√
C2

Ω + ∆2
Ω τ

) (3.34)

where effects of order ω2/(g4C2
Ω + g4∆2

Ω) are neglected. This again has the form of a sum

of exponential solutions,

%I12(τ) ' A1 e
− τ
ξ1

+iΦ1τ +A2 e
+ τ
ξ2

+iΦ2τ (3.35)

where

1

ξ1
:= g2CΩ

[
1 +

√
1 +

∆2
Ω

C2
Ω

]
Φ1 := ω , (3.36)

1

ξ2
:= g2CΩ

[
− 1 +

√
1 +

∆2
Ω

C2
Ω

]
Φ2 := ω . (3.37)

Notice the potentially worrying positive exponent for the second term (more about which

later). Such a growing mode would necessarily cause problems with unitarity if it were

to be trusted. (We find below — see the next section, and appendix E — for accelerated

qubits that the validity of the Markovian limit requires |∆Ω/CΩ| . O(g) and so 1/ξ2 is at

most order g4 and so is consistent with zero at O(g2).)

Again expanding the %I(τ−s) in the interaction-picture and dropping derivatives gives

us the validity conditions similar to those found previously, where

|CΩ| �
∣∣∣∣ 1

ξ1

d∆Ω

dω
− Φ1

dCΩ

dω

∣∣∣∣ and |CΩ| �
∣∣∣∣ 1

ξ1

dCΩ

dω
+ Φ1

d∆Ω

dω

∣∣∣∣ , (3.38)

|CΩ| �
∣∣∣∣ 1

ξ2

d∆Ω

dω
+ Φ2

dCΩ

dω

∣∣∣∣ and |CΩ| �
∣∣∣∣ 1

ξ2

dCΩ

dω
− Φ2

d∆Ω

dω

∣∣∣∣ , (3.39)

which imply the more the condensed forms:∣∣∣∣g2∆′Ω−
ωC′Ω
CΩ

∣∣∣∣� 1 ,

∣∣∣∣g2C′Ω+
ω∆′Ω
CΩ

∣∣∣∣� 1 , g2|∆′Ω|

√
1+

∆2
Ω

C2
Ω

� 1 , g2|C′Ω|

√
1+

∆2
Ω

C2
Ω

� 1 ,

(3.40)

where primes denote d/dω. There are the forms easiest to use — when ω � g2
√
C2

Ω + ∆2
Ω

— once the integrals are explicitly evaluated below for an accelerated qubit.
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4 Accelerated qubits in the Markovian regime

To this point little is assumed about the details of the qubit trajectory or of the state in

which the scalar field is initially prepared. Because of this the key assumption — that

there exists a time-scale τc for which the Wightman function falls when τ � τc — remains

merely an assumption. This section aims the make the above discussion more concrete by

evaluating the functions CΩ, RΩ, SΩ and ∆Ω explicitly for a uniformly accelerated qubit in

flat spacetime coupled to a free field that is prepared in the Minkowski vacuuum, |Ω〉 = |M〉.
The goal is to identify all of the conditions for validity of late-time Markovian evolution

explicitly as functions of the parameters g, m, ω and a, where m is the field’s mass and a

is the qubit’s proper acceleration.

To this end choose the qubit to move along a uniformly accelerated trajectory

yµ(τ) =

[
1

a
sinh(aτ),

1

a
cosh(aτ), y2, y3

]
(4.1)

in Minkowski spacetime, where a > 0 and y2, y3 ∈ R do not depend on τ . With this

parameterization the quantity τ is the qubit’s proper time as measured using the Minkowski

metric. As above the joint system’s initial state is assumed to be uncorrelated at τ = 0,

with

ρ(0) = |M〉 〈M| ⊗ %0 . (4.2)

The resulting Wightman function WM(τ) = 〈M|φ[y(τ)]φ[y(0)]|M〉 for a real massive

field (2.3) can be explicitly evaluated along an accelerating trajectory, giving the following

closed-form result [52, 66]:

WM(τ) =
am

8iπ2

1[
sinh(aτ/2)− iaε2

]K1

(
2mi

a

[
sinh(aτ/2)− iaε

2

])
(4.3)

where K1(z) is a Bessel function of imaginary argument and the small-distance infinitesimal

ε → 0+ is a consequence of the Wightman boundary conditions. Finally, in the massless

limit m→ 0+ we recover

WM(τ)→ − a2

16π2
[

sinh(aτ/2)− iaε2
]2 (massless limit) . (4.4)

Notice that (4.3) and (4.4) exhibit both properties (2.19) and (2.20) explicitly, with

T =
1

β
=

a

2π
, (4.5)

being the usual Unruh temperature.7

7We note in passing a subtlety of the ε-regularization. It can be tempting to write WM with

sinh(aτ/2) − iaε/2 replaced by sinh[(a(τ − iε)/2] (where ε has units of length), with the reasoning that

these are equivalent because infinitesimal ε > 0 is important only near τ = 0 [52]. Although this reasoning

is not false for real τ , this replacement can be dangerous where τ is not real because it does not preserve

the KMS condition (2.20).
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4.1 Perturbative result

A straightforward calculation starting from (4.3) — whose details we present in appendix B

— reveals the integral SM(ω) to be

SM(ω) =
m2

4π2a
sinh

(πω
a

){[
K iω

a

(m
a

)]2
−K iω

a
−1

(m
a

)
K iω

a
+1

(m
a

)}
, (4.6)

which, together with (2.29), then gives

CM(ω) =
m2

4π2a
cosh

(πω
a

){
K iω

a
−1

(m
a

)
K iω

a
+1

(m
a

)
−
[
K iω

a

(m
a

)]2
}

(4.7)

and so (2.30) implies

RM(ω) =
m2

4π2a
e−πω/a

{
K iω

a
−1

(m
a

)
K iω

a
+1

(m
a

)
−
[
K iω

a

(m
a

)]2
}
. (4.8)

This expression for RM agrees with ones given in [52, 67]. The property Kα(x) = K−α(x)

makes it easy to see that the detailed balance relation (2.28) is satisfied.

Of particular use are the asymptotic forms for these expressions in the limits m � a

and m � a, which are found using the asymptotic expansions for the Bessel function,

Kα(z):

Kα(z) ≈
√

π

2z
e−z

[
1 +

4α2 − 1

8z
+

9− 40α2 + 16α4

128z2
+ . . .

]
, (4.9)

for |z| � 1 and | arg z| < 3π
2 [68], while for |z| → 0 and ν ∈ C \ Z [69] Kν(z) is given by

Kν(z) =
Γ(ν)

2

(z
2

)−ν [
1 +

z2

4(1− ν)
+O(z4)

]
+

Γ(−ν)

2

(z
2

)ν [
1 +

z2

4(1 + ν)
+O(z4)

]
,

(4.10)

where Γ(z) is Euler’s gamma function. These lead to the asymptotic large-mass m � a

result,

RM(ω) ' a

8π
e−(πω+2m)/a (for m� a) , (4.11)

whose sub-leading terms are bounded when m/a � 1 + 4(ω/a)2. The opposing limit for

m� a gives (see appendix C for details)

RM(ω) ' 1

2π

ω

e2πω/a − 1

{
1 +

m2

2ω2

[
cos
(

2ω
a log

(
m
2a

)
− ζ
)√

(ω/a)2 + 1
− 1

]
+ · · ·

}
(for m� a)

(4.12)

where

ζ := Arg

[
[Γ( iωa )]2

iω
a − 1

]
, (4.13)

and which is valid for (m/a)2 � (ω/a)2
√

(ω/a)2 + 1. Once used in the perturbative rate

expression, eq. (2.23) these formulae reproduce standard results for the strictly massless

limit [49]
∂%11

∂τ
' g2RM(ω) '

(
g2

2π

)
ω

e2πω/a − 1
(for m = 0) , (4.14)
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where it is understood that (2.23) and (4.14) only apply for the proper-time interval 1 �
aτ � 1/g2. They also give the correct result in the limit of an inertial observer, a → 0+,

since the transition rate then becomes

RM(ω)→
√
ω2 −m2

2π
Θ(−ω −m) (for a→ 0) (4.15)

where the Heaviside step function — for which Θ(x) = 1 if x > 0 and Θ(x) = 0 otherwise

— ensures the result is non-zero only for ω < −m (i.e. never, for positive ω and m).

4.2 The Markovian limit

As argued above, straight-up perturbative expressions like (2.23) and (4.14) must eventually

break down at sufficiently late times, since if taken too seriously a constant transition rate

would eventually predict %11 > 1 (in conflict with tr % = 1). The feedback that prevents this

is captured by the Nakajima-Zwanzig equations, which for the accelerating qubit are (3.4)

and (3.5), reproduced here as

∂%I11

∂τ
= g2

∫ τ

−τ
dsWM(s) e−iωs − 4g2

∫ τ

0
ds Re[WM(s)] cos(ωs)%I11(τ − s) , (4.16)

∂%I12

∂τ
= +ig2∆M%

I
12(τ)− 2g2

∫ τ

0
ds Re[WM(s)]e+iωs%I12(τ − s) (4.17)

+ 2g2e+2iωτ

∫ τ

0
ds Re[WM(s)]e−iωs%I∗12(τ − s) ,

with counter-term ω1 = −∆M already chosen.

Of interest for establishing if there might be a Markovian limit is whether the Wight-

man function falls quickly enough for large τ (measured along a uniformly accelerating

worldline). As can be seen from expressions (4.3) or (4.4), for aτ � 1 the function

Re[WM(τ)] behaves as

Re[WM(τ)] ' −
√
a3m

32π3
e−3|aτ |/4 sin

(m
a
e|aτ |/2 +

π

4

)
(late times) (4.18)

provided m is large enough that m
a e
|aτ |/2 � 1. Alternatively, in the massless limit one

finds an even faster falloff, with

Re[WM(τ)] ' − a2

4π2
e−|aτ | (late times, massless limit) , (4.19)

for aτ � 1. This last limit also applies for massive fields if m is small enough to ensure

that m
a e
|aτ |/2 � 1. The cross-over from (4.18) to (4.19) occurs for |aτ | ' 2 ln(a/m).

As might have been expected for a qubit interacting with a thermal state — as the

Minkowski vacuum appears (with temperature T = a/2π) from the point of view of the

qubit — this falloff suffices to make the late-time qubit behaviour Markovian over time-

scales τ � τc ∼ 1/a. To see that qubit relaxation towards the thermal state falls into this

regime we must check that relations (3.30)–(3.32) (or (3.40)) are satisfied.
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To check these note that the Markovian equations of motion for the interaction-picture

components in this regime are

∂%I11

∂τ
' g2RM − 2g2CM %I11(τ) (4.20)

∂%I12

∂τ
' −g2CM %I12(τ) + g2e2iωτ (CM − i∆M) %I12(τ) , (4.21)

with solutions in the non-degenerate ω � g2
√
C2
M + ∆2

M limit (see appendix E for the

opposing degenerate limit)

%I11(τ) =
1

e2πω/a + 1
+

[
%11(0)− 1

e2πω/a + 1

]
e−τ/ξT (4.22)

%I12(τ) = e−τ/ξD
[
%12(0) + %∗12(0)

(
g2∆M

2ω
+ i

g2CM
2ω

)
(1− e2iωτ )

]
, (4.23)

for which the relaxation rates explicitly evaluate to

1

ξD
=

1

2ξT
= g2CM =

g2m2

4π2a
cosh

(πω
a

){
K iω

a
−1

(m
a

)
K iω

a
+1

(m
a

)
−
[
K iω

a

(m
a

)]2
}
. (4.24)

The static solution to which the relaxation occurs is

lim
τ→∞

%(τ) =

 1

e2πω/a + 1
0

0
1

e−2πω/a + 1

 , (4.25)

which is thermal. Formally this follows from the identity (2.20) satisfied by WM(τ). It

is also as expected physically given that the Minkowski vacuum |M〉 appears thermal to

accelerated observers, with temperature T = a/(2π) [3, 52, 70, 71].

Unlike the asymptotic (equilibrium) Unruh temperature, the two (non-equilibrium)

time-scales ξD and ξT in (4.24) depend sensitively on all of the parameters of the problem

(i.e. m, ω and g in addition to a). This is most easily illustrated using the various asymp-

totic limits. For instance, for large masses m � a the two time-scales are asymptotically

given by

ξD = 2ξT '
8π

ag2
sech

(πω
a

)
e2m/a (if m� a) . (4.26)

In the opposite limit of small scalar mass, m� a, the two time-scales approach the massless

limit

ξD = 2ξT '
4π

g2ω
tanh

(πω
a

)
(if m� a) . (4.27)

This massless rate crosses over from a thermal result (ξ ∝ 1/a) when ω � a to one that

scales with the qubit’s intrinsic time-scale (ξ ∝ 1/ω) when ω � a.

For later purposes it is also useful to record the sub-dominant m/a corrections to (4.27):

ξD = 2ξT '
4π

g2ω
tanh

(πω
a

){
1 +

m2

2ω2

[
1−

cos
(

2ω
a log

(
m
2a

)
− ζ
)√

(ω/a)2 + 1

]
+ · · ·

}
, (4.28)
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ω
a �

m
a � 1 m

a �
ω
a � 1 ω

a � 1� m
a

m
a � 1� ω

a 1� ω
a �

m
a 1� m

a �
ω
a

CM(ω)
a

4π2

a

4π2

a

8π
e−2m/a ω

4π

a

16π
e+πω/ae−2m/a ω

4π

C′M(ω)
ω

6a

ω

6a

πω

8a
e−2m/a 1

4π

1

16
e+πω/ae−2m/a 1

4π

∆M(ω)
ω log(aε)

2π2

ω log(aε)

2π2

ω log(eγ+1mε)

2π2

ω log (eγωε)

2π2

ω log
(
eγ+1mε

)
2π2

ω log (eγωε)

2π2

∆′M(ω)
log(aε)

2π2

log(aε)

2π2

log(eγ+1mε)

2π2

log(eγ+1ωε)

2π2

log(eγ+1mε)

2π2

log(eγ+1ωε)

2π2

Table 1. Leading-order behaviour for the various functions CM , C′M , ∆M and ∆′
M in various regimes

of relative sizes of ω, m and a, where primes denote differentiation with respect to ω. Only the

divergent part of ∆M and ∆′
M are quoted (see appendix D for their derivations for the behaviour

of ∆M and ∆′
M). γ denotes the Euler-Mascheroni constant.

where ζ is given by (4.13) and γ is the Euler-Mascheroni constant (the sub-leading terms

are again bounded when (m/a)2 � (ω/a)2
√

(ω/a)2 + 1).

One final remark bears on the potentially troubling dependence that (4.21) and (4.23)

have on the divergent quantity g2∆M/ω. As we argue in more detail in section 5 below, this

dependence is actually deceptive because (as shown in detail in appendix D) the divergent

part of ∆M goes like8

∆
(divergent)
M ' ω

2π2
log(aε) , (4.29)

where ε is the short-distance regularization scale. This shows that the combination g2∆M/ω

appearing in (4.21) and (4.23) is explicitly O(g2) and so is smaller than the order to which

they have been reliably computed. The same need not be true for the finite parts of ∆M

or CM , depending on the size of ω.

This brings us back to the question of when eqs. (4.20)–(4.21) and their solutions can

be trusted.9 The main conditions are aτ � 1 and that the remaining parameters are such

that the relaxation is sufficiently slow; i.e. that conditions (3.30)–(3.32) (or (3.40)) are

satisfied. We next evaluate the explicit parameter ranges that satisfy these conditions.

Domain of validity for Markovian evolution. Mapping out the regime of validity

for the Markovian evolution in parameter space involves computing the various functions

CM , ∆M , C′M and ∆′M as functions of these parameters (where primes denote differentiation

with respect to ω). Since these are not simple functions of ω, a or m, we present various

limiting asymptotic forms in table 1.

For definiteness, consider first the case where

ω � g2
√
C2
M + ∆2

M . (4.30)

8Depending on the regime of interest, the logarithm in (4.29) could instead have an argument of ωε� 1

or mε� 1. For an explicit formula for ∆M see (D.27).
9In existing literature which applies open quantum systems methods to Unruh-DeWitt detectors in

various spacetimes [72–81], Markovian master equations are sometimes taken as a starting point. In this

case there may be unstated conditions on the parameters that are not explicitly stated (see however [82, 83]).
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In this case dropping derivatives in the non-oscillating terms in %ij leads to conditions (3.31):

g2|∆′M |, g2|C′M | � 1 ; (4.31)

while the same condition for the oscillating terms gives (3.32):∣∣∣∣g2∆′M −
2ωC′M
CM

∣∣∣∣ , ∣∣∣∣g2C′M +
2ω∆′M
CM

∣∣∣∣� 1 . (4.32)

The above conditions also assume aτ � 1, since this is required when replacing τ →∞ in

the integration limits.

Notice also that (4.30) also implies

g2CΩ

ω
,
g2|∆Ω|
ω

. O(g2)� 1 . (4.33)

The first observation is that these conditions cannot all be satisfied if ω � a. To see

why, first notice that the rightmost three columns of table 1 show that conditions (4.31)

are automatically satisfied in the perturbative regime, because g2/4π � 1. Because of this

condition (4.32) boils down to the demand that quantities like |ωC′M/CM | and |ω∆′M/CM |
should be small. But these conditions cannot be satisfied, as is also visible from the

rightmost three columns of table 1. We henceforth therefore require

ω � a (4.34)

as a necessary condition for dropping derivatives in the Taylor series of %I(τ − s). The

remaining conditions are then summarized for the surviving three parameter regimes by

the requirement that the top four rows of table 2 be much smaller than one.

Some of the conditions given in table 2 are automatically satisfied in perturbation

theory, where the presence of the divergence in ∆M means that the perturbative treatment

only holds when the small-distance cutoff ε is chosen so that

g2

4π
� 1

| log(aε)|
� 1 . (4.35)

The rest of the conditions are generically satisfied throughout the entire range

g2

4π
� ω

a
� 1 , (4.36)

where the first inequality expresses our starting assumption, (4.30) (as re-expressed

in (4.33)).

For completeness, we also include in table 3 the same constraints as above, though

now written as a condition on the relaxation time-scales ξ (which is more convenient for

the discussion of later sections). (That is, table 3 merely repackages information that is

already presented in table 2).
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ω
a �

m
a � 1 m

a �
ω
a � 1 ω

a � 1� m
a

g2|C′M(ω)| g2ω

6a

g2ω

6a

g2πω

12a
e−2m/a

g2|∆′M(ω)| g2

2π2
| log(aε)| g2

2π2
| log(aε)| g2

2π2
| log(eγ+1mε)|∣∣∣∣g2∆′M −

2ωC′M
CM

∣∣∣∣ ∣∣∣∣ g2

2π2
log(aε)− 4π2ω2

3a2

∣∣∣∣ ∣∣∣∣ g2

2π2
log(aε)− 4π2ω2

3a2

∣∣∣∣ ∣∣∣∣ g2

2π2
log(eγ+1mε)− 2π2ω2

a2

∣∣∣∣∣∣∣∣g2C′M +
2ω∆′M
CM

∣∣∣∣ ∣∣∣∣g2ω

6a
+

2ω log(aε)

a

∣∣∣∣ ∣∣∣∣g2ω

6a
+

2ω log(aε)

a

∣∣∣∣ ∣∣∣∣πg2ω

8a
e−

2m
a +

8ω

πa
log(eγ+1mε)e

2m
a

∣∣∣∣
g2CM(ω)

ω

g2a

4π2ω

g2a

4π2ω

g2a

8πω
e−2m/a

g2|∆M(ω)|
ω

g2

2π2
| log(aε)| g2

2π2
| log(aε)| g2

2π2
| log(eγ+1mε)|

Table 2. Asymptotic form for the quantities that must be small if the Markovian approximation is

to be good, in various regimes for the relative sizes of ω, m and a. Only ω � a is considered because

the rightmost three columns of table 1 show that all Markovian conditions cannot be satisfied unless

this is true. The first four rows express conditions (4.31) and (4.32), while the bottom two rows are

assumptions about the regime for ω that are assumed when deriving the top four rows.

ω
a �

m
a � 1 m

a �
ω
a � 1 ω

a � 1� m
a

1

ξ
�

∣∣∣∣ CM∆′M

∣∣∣∣ a

| log(aε)|
a

| log(aε)|
πae−2m/a

4| log(eγ+1mε)|
1

ξ
�

∣∣∣∣CMC′M
∣∣∣∣ a2

π2ω

3a2

2π2ω

3a2

2π2ω

Table 3. The Markovian conditions expressed as constraints on the relaxation time-scales ξ. We

only quote these constraints in the allowed ω � a regime.

4.3 Field self-interactions and resummation

Up until this point the scalar field has been regarded as being non-interacting, apart from

its coupling to the qubit itself. This section briefly discusses some implications for late-time

physics that arise once a scalar-field self-interaction is also added, of the form

Hλ :=
λ

4!

∫
Σt

d3x φ4 ⊗ I , (4.37)

where again, Σt is a sheet of constant Minkowski time t and I is the 2 × 2 unit operator

acting on the qubit sector. The dimensionless coupling λ is assumed small enough to justify

a perturbative treatment.

The reason for considering Hλ is that ultimately our interest is in field interactions

and not in qubits. In particular, field self-interactions are also known to cause the phe-

nomenon of secular growth, in which powers of λ can sometimes arise in perturbation

theory systematically multiplied by growing functions of time, t. Whenever this happens

perturbation theory breaks down at late times, undermining the validity of inferences based

purely on a non-interacting scalar field. In particular this kind of secular breakdown of
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perturbation theory is known to happen for thermal systems built from massless (or very

light) bosons. In the presence of interactions like Hλ corrections to scalar field propagators,

〈φ(x, t)φ(x, t′)〉, at order λ acquire contributions of order λT 3(t− t′) [50].

Since the Minkowski vacuum behaves as a thermal state from the point of view of ac-

celerated observers, one might worry that the late-time secular growth endemic to thermal

systems might also occur for late-time corrections to the Minkowski propagator evaluated

along accelerated world-lines. This question is examined in [50], where it is shown that

secular growth can arise for accelerated observers in some circumstances, for sufficiently

light scalar fields. This study also argued that when such secular growth does occur for

massless fields its effects at late times can be resummed simply by recasting the Feynman

rules to perturb around a scalar Hamilton whose mass is shifted by the amount

δm2 =
λa2

96π2
. (4.38)

In particular, the leading late-time corrections for massless fields are simply obtained in

such a resummation by using correlation functions appropriate for a massive scalar with a

mass given by (4.38).

Applying this reasoning to the qubit evolution studied here shows how secular growth

can feed through to affect physical results. In particular the resummation it requires

changes the late-time behaviour of the Wightman function and so alters the response to it

that is felt by an accelerating qubit. We illustrate this in the present section by computing

the leading λ-dependent changes to qubit evolution at late times, for a massless scalar field

self-interacting through the Hamiltonian (4.37).

Inclusion of Hλ does not modify the Nakajima-Zwanzig equation itself for the qubit,

which turns out not to explicitly depend on the operator Hλ at second order in g. The

reason for this lies in the observation that the commutators between the qubit coupling

and the scalar self-interaction vanish. As a result the earlier analysis done for free scalars

captures well the leading late-time corrections due to scalar self-interactions. The qubit’s

late-time steady state remains the thermal one, but the relaxation time-scales now depend

on λ by replacing m using (4.38) in eqs. (4.28):

ξD = 2ξT '
4π

g2ω
tanh

(πω
a

)1 +
λa2

192π2ω2

1−
cos
[
ω
a log

(
λ

384π2

)
− ζ
]

√
(ω/a)2 + 1

 , (4.39)

with ζ given by (4.13). This provides the leading corrections to (4.27) in powers of the

scalar self-interaction. Notice that although suppressed by λ the correction is also enhanced

by ω/a in the Markovian regime (for which ω � a).

5 Controlling the late-time limit

In this section we circle back to discuss in more detail the justification for trusting the so-

lutions to the Markovian evolution out to times that are of order aτ ' O(1/g2), as must be

done if the exponential form of the falloff to the static solution at late times is to be believed.
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5.1 Late times and Lindblad form

In the preceding sections, we began with the Nakajima-Zwanzig equation (3.1) and sought

the evolution of %(τ) on time-scales long compared to the width of the scalar-field’s Wight-

man function. In this regime (3.1) reduces to the Markovian equations (3.9) and (3.16),

which re-stated in terms of the Schrödinger-picture components state

∂%11

∂τ
' g2RΩ − 2g2CΩ%11(τ) , (5.1)

∂%12

∂τ
' −(iω + g2CΩ)%12(τ) + g2(CΩ − i∆Ω)%∗12(τ) . (5.2)

As described above this assumes a choice of counter-term that ensures that ω continues

to denote the qubit’s physical energy gap, including any shifts to this gap due to the

qubit/field interaction.

The solutions to (5.1) and (5.2) describe a slow exponential relaxation towards a static

late-time thermal density matrix of the form

%static =

 1

eβω + 1
0

0
1

e−βω + 1

 , (5.3)

with temperature T = 1/β = a/(2π). At least, they do so if you really believe them out

to time intervals τ � ξ that are of order 1/g2 in size. Given that all inferences have been

based on perturbation theory in g, why should solutions of the form %ij ∝ exp[−τ/ξ] be

regarded as being more accurate than the result %ij ∝ 1−(τ/ξ) that explicitly emerges from

perturbation theory? This section fleshes out the arguments of [24] that the exponential

can be justified along the lines of the argument that justifies (1.2) by starting from (1.3).

To this end let us formalize the argument leading from (1.3) to (1.2). The starting point

is a perturbative calculation of %(τ) as a function of an initial condition %(τ0), along the

lines of (2.15). This perturbative solution necessarily breaks down at late times (because,

for instance, it predicts a constant transition rate which eventually becomes inconsistent

with qubit unitarity) and so is restricted to some interval τ − τ0 � τp, where τp is the

time-scale beyond which perturbation theory fails. Within this interval differentiating the

perturbative prediction allows the derivation of a differential evolution equation for ∂τ%,

such as the Nakajima-Zwanzig equation (3.1) or its Markovian approximation (3.8).

For the purposes of understanding late times there is an important distinction between

the Nakajima-Zwanzig result (3.1) and its Markovian approximation (3.8). This is because

the Nakajima-Zwanzig result also refers explicitly to the initial and final times, τ0 and

τ , and on the history of the evolution that happens in between them. By contrast, a

Markovian equation like (3.8) or (5.1) and (5.2), however, refers only to % and ∂τ% at the

time τ , with calculable τ -independent coefficients. This means the Markovian equation

could equally well have been justified by a perturbative calculation that starts at any time,

τ1 say, provided the subsequent evolution is also over a window τ − τ1 � τp.

Now comes the main point. Since a Markovian evolution equation makes no intrinsic

reference to a specific time or specific initial conditions, it can be separately justified in
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a family of overlapping time domains, Si, each one of which lies over an interval much

smaller than τp (to justify its perturbative derivation). But since it is the same equation

in each of the Si the domain of validity of the solutions to this equation is the union of the

domains S = ∪iSi, and so can apply over times τ � τp.

In the end of the day the result is a renormalization-group like argument. Although

the initial perturbative evolution might require both g and g2τ to be small, the differential

evolution equation obtained from it neglects only powers of g and makes no assumptions

about the size of g2τ . Consequently its solutions can resum effects to all orders in g2τ ,

while still neglecting contributions of order gnτ for n > 2.

For open systems the differential evolution to which one is led in this way is (in the

Schrödinger picture) of the Lindblad form [9–16, 41, 42, 85, 86],

∂%(τ)

∂τ
= −i [h,%(τ)] +

3∑
j,k=1

cjk

(
Fj%(τ)F †k −

1

2

{
F †kFj ,%(τ)

})
(5.4)

for some set of operators Fi and a Kossakowski matrix c = [cjk] full of coefficients. Provided

these operators and coefficients do not themselves depend on time the domain of validity

of this equation can be promoted to the union of domains, S, and thereby to times much

longer than the perturbative domain, Si, from which it might have been initially derived.

Eq. (5.4) has the property that it preserves the positivity and normalization of %, provided

only that the Kossakowski matrix is hermitian and positive semi-definite [41, 42].

5.2 Positivity issues

In the present example of the accelerating qubit eqs. (5.1) and (5.2) indeed have the form

of (5.4), with Fj = 1
2σj given by Pauli matrices and the entries of the Kossakowski matrix

c = [cjk] given explicitly by

c =

 4g2CΩ 2g2(∆Ω − iSΩ) 0

2g2(∆Ω + iSΩ) 0 0

0 0 0

 , (5.5)

which eliminates RΩ using the identity (2.25).

As mentioned above, the Kossakowski matrix must be hermitian and positive semi-

definite to ensure that the evolution of %(τ) is unitary (i.e. that the eigenvalues of %(τ)

remain real and bounded between 0 and 1 as required for their interpretation as probabil-

ities). Inspection of (5.5), however, reveals the three eigenvalues for this matrix to be

λc1 = 0 ,

λc2 = 2g2

(
CΩ +

√
C2

Ω + S2
Ω + ∆2

Ω

)
(5.6)

and λc3 = 2g2

(
CΩ −

√
C2

Ω + S2
Ω + ∆2

Ω

)
.

What is, at first sight, alarming about the above is that λc3 is negative, implying that in

general our Markovian equations of motion violate positivity of the reduced density matrix.
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If true, this would be alarming because it would imply the positivity of %(τ) is eventu-

ally violated. As we argue below, however, the negative eigenvalue of the Lindblad equation

corresponding to (5.1) and (5.2) is not reliable, since it is of the same size as contributions

that are neglected when deriving (5.4).

Positivity and the Markovian accelerated qubit. Although formally, (5.4) is not

positivity-preserving for generic values of CΩ, SΩ and ∆Ω, in this section we demonstrate

that positivity is preserved in the Markovian limit (for the accelerating qubit), provided

we ruthlessly restrict to the domain of the approximations used in its derivation.

To see how this works compare the size of the negative and positive eigenvalues of the

Kossakowski matrix, (5.5), for the accelerated qubit:

λc2 = 2g2
(
CM +

√
C2
M + S2

M + ∆2
M

)
(5.7)

λc3 = 2g2
(
CM −

√
C2
M + S2

M + ∆2
M

)
.

Recall that the validity of these equation presuppose that ω � a, and consider, for concrete-

ness’ sake, the case m� a (without assuming which of m or ω is larger). Keeping in mind

that SM = − tanh
(
πω
a

)
CM and using the results of table 2 shows that for m� a we have

∆M '
ω

2π2
log(aε) ∼ SM ' −

ω

4π
(5.8)

and so both are smaller than

CM '
a

4π2
. (5.9)

Consequently these relations imply λc2 ' 4g2CM but also give λc3 ' −g2(S2
M + ∆2

M)/CM ∼
O(g2ω2/a), showing that the negative eigenvalue is actually consistent with zero within

the approximations being used.10

In the literature the issue of non-positivity of the Lindblad equation is usually ad-

dressed using an additional approximation, called the rotating-wave approximation (RWA).

Appendix F summarizes this approximation and its relation to the description given here

in the main text.11

6 Conclusions

Open EFT methods have been proposed as useful tools when exploring late-time quan-

tum physics in gravitational backgrounds [24–40]. We here use these tools for the toy

model of a quantum mechanical two-level system coupled to a real scalar field and find

its late-time evolution that is inaccessible using ordinary perturbative methods. Although

a wealth of physics can be gleaned by studying perturbative excitation probabilities and

10These arguments follow through in both the non-degenerate ω � g2
√
C2
M + ∆2

M and degenerate

ω � g2
√
C2
M + ∆2

M limits, since the above arguments rely on ω � a and |∆M/CM | � 1 (which is true

in both cases — see appendix E).
11See [84] for another example of a master equation which does not make use of the RWA, and yet

describes a positivity-preserving solution.
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rates (like (2.18) and (2.23)), we argue that perturbative approaches generically miss out

on the physics of late times.

The state of the two-level Unruh-DeWitt detector is known to depend on its trajectory

through the spacetime of study. In this work, we first pick a generic trajectory in a static

spacetime and derive the Nakajima-Zwanzig equation (3.4)–(3.5), truncated at second-

order in the qubit-field coupling. Although the diagonal and off-diagonal components of

% evolve independently, the resulting integro-differential equations are notoriously difficult

to solve. By specializing to a trajectory whose correlation functions fall off exponentially

fast for τ � τc, and furthermore satisfy the KMS relation (2.20) with temperature β−1,

the equations of motion can be greatly simplified by taking the Markovian approximation.

In the Markovian limit, the evolution of the qubit is assumed to be extremely slow

compared to the width of the correlation functions evaluated along the trajectory of the

qubit. Here the convolutions of %(τ − s) in the Nakajima-Zwanzig equation are replaced

with a dependence only on %(τ) so that the equations of motion contain no dependence on

the history of the state (so called-memory effects). This is justified by considering a Taylor

series (3.7) of %(τ − s) in powers of s and dropping all derivatives in the expansion. By

further assuming that τ � τc the integrals in the equation of motion can be replaced with

one-sided Fourier transforms of the qubit correlation function.

In this simplified Markovian regime, the final asymptotic state for the qubit is found to

be thermal and the solutions decay with two time-scales. By constraining the derivatives

in the Taylor series of %(τ − s) to be small, explicit conditions on the parameters in the

problem are also derived: these conditions are generically written down in terms of the

relevant one-sided Fourier transforms that appear in the Markovian regime.

We apply the above framework to the concrete example of a uniformly accelerated

qubit moving through the Minkowski vaccum. The acceleration parameter a has long ago

been identified as proportional to the Unruh temperature for this system, and the qubit is

found to settle to the asymptotic thermal state defined by the Unruh temperature. The

corresponding relaxation time-scales (4.24) depend on a, the energy gap of the qubit ω,

and mass m of the underlying field and the dimensionless qubit-field coupling g. We also

develop asymptotic forms for the relaxation time-scales in the limit of large (4.26) and

small field masses (4.28), as well as for a massless field (4.27). Interacting field theories are

also known to exhibit secular perturbative breakdown: for a λφ4-interacting theory, the

lowest-order secularly growing loop corrections can be resummed to introduce a small mass

shift to (almost) massless field theories. This paper accounts for the effect of these mass

shifts in how the approach to equilibrium is adjusted in our formulae for the relaxation

time-scales (4.39) for the accelerated qubit.

The above Markovian description for the accelerated qubit only applies in a narrow

regime of parameter space outlined by the validity conditions (4.31)–(4.33). These con-

ditions can be explicitly stated in the concrete example of an accelerated qubit, and in

particular imply that the qubit gap must be small compared to the Unruh temperature

with ω � a in order for the Markovian approximation to apply.

The Markovian equation of motion for the qubit can be brought into a Lindblad form,

although for generic values of parameters which appear in this equation, it is not en-
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sured to preserve positivity of the reduced density matrix throughout its entire evolution.

Interestingly, we find that the validity conditions for the Markovian regime restrict the pa-

rameters in the equation in such a way that the solution is in fact always positive (within

the approximations taken in this work) and there is no need to take the commonly-used

‘rotating-wave’ approximation.

In short, we find that an open quantum systems approach provides invaluable insights

into the classic framework of the Unruh-DeWitt detector, particularly if the emphasis is on

late-time behaviour. The Markovian description is sometimes valid, and is quite restrictive

on the parameters in the problem. We believe that wider application of open quantum

systems methods will result in a deeper understanding of late-time quantum field theory

in other gravitational backgrounds.
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A The Nakajima-Zwanzig equation

A better description of perturbative evolution at late times is given by the Nakajima-

Zwanzig equation [11–15, 45, 46], whose derivation is briefly sketched here. The logic of

this equation is to project the evolution equation, given in the interaction picture by

∂tρ = Lt(ρ) where Lt(ρ) := −i
[
V (t), ρ

]
, (A.1)

onto the uncorrelated form ρvac ⊗ %(t) where the quantum field density matrix is the

projector onto the vacuum state: ρvac := |Ω〉〈Ω|.
This projection is accomplished by defining a projection operator whose action on an

arbitrary hermitian operator O is

P(O) := ρvac ⊗ Tr
φ

(O) . (A.2)

Because Tr φ %vac = 1 this definition defines a projection operator since P2 = P. It also

satisfies P(ρvac ⊗ a) = ρvac ⊗ a for any hermitian a acting purely within the qubit Hilbert

space. Consequently P(ρ0) = ρ0 for uncorrelated initial states ρ0 = ρvac ⊗ %0 and, more

generally, P[ρ(t)] = ρvac ⊗ %(t), where %(t) = Tr φ ρ is the reduced density matrix whose

time-evolution is sought.

Because both P and L act linearly, the projection of the evolution equation can be

found explicitly by using the pair of equations

P(∂tρ) = PLt(ρ) = PLtP(ρ) + PLtQ(ρ) (A.3)

andQ(∂tρ) = QLt(ρ) = QLtP(ρ) +QLtQ(ρ) ,
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where Q := 1 − P is also a projection operator. The idea is to use the second of these

equations to eliminate the second term on the right-hand side of the first equation, thereby

obtaining a result depending explicitly only on P(ρ), leading to the result

Q[ρ(t)] = G(t, t0)Q(ρ0) +

∫ t

t0

dsG(t, s)QLsP[ρ(s)] , (A.4)

where the quantity G(t, s) is given explicitly by

G(t, s) = 1 +
∞∑
n=1

∫ t

s
ds1 · · ·

∫ sn−1

s
dsnQLs1 · · · QLsn

= 1 +

∞∑
n=1

1

n!

∫ t

s
ds1 · · ·

∫ t

s
dsnP

[
QLs1 · · · QLsn

]
. (A.5)

Here P denotes path-ordering (or time-ordering) of the QLsi . Once this solution is inserted

into the first of eqs. (A.3) one obtains the Nakajima-Zwanzig equation,

P[∂tρ(t)] = PLtP[ρ(t)] + PLtG(t, t0)Q(ρ0) +

∫ t

t0

dsK(t, s)[ρ(s)] , (A.6)

which defines the kernel K(t, s) = PLtG(t, s)QLsP. The second term on the right-hand side

vanishes for uncorrelated initial conditions, ρ0 = ρvac ⊗ %0, since these imply P(ρ0) = ρ0

and so Q(ρ0) = 0.

Since eq. (A.6) is an exact consequence of the original Liouville equation for ρ(t) it is

typically no easier to solve. It is nonetheless convenient to expand it out order-by-order in

V , and it is useful when doing so to expand the interaction-picture interaction hamiltonian,

V (t), in a basis of operators in product form,

V (t) =
∑
n

An(t)⊗ bn(t) . (A.7)

Keeping only terms out to second order in V it suffices to approximate the kernel by

its leading (second-order in V ) part, K ' K2 = PLtQLsP. For an uncorrelated initial

condition, ρ(t0) = ρvac ⊗ %0, eq. (A.6) reduces to the following evolution equation for the

reduced density matrix:

∂t%(t) =−i
∑
n

[
bn(t),%(t)

]
〈〈An(t)〉〉+(−i)2

∑
mn

∫ t

t0

ds

{[
bm(t),bn(s)%(s)

]
〈〈δAm(t)δAn(s)〉〉

−
[
bm(t),%(s)bn(s)

]
〈〈δAn(s)δAm(t)〉〉

}
+O(V 3) , (A.8)

where 〈〈 (· · · ) 〉〉 = Tr φ[(· · · )ρvac]. This is the equation used in the main text.

Notice that if the reduced %(t) appearing on the right-hand-side of (A.8) is re-expressed

in terms of its initial value, again dropping all terms beyond V 2, then (A.8) agrees with the

B-sector trace of the differential version of eq. (2.14). It is the keeping of the full reduced

density matrix on the right-hand side of (A.8) that extends it domain of validity and allows

it to be used to control the late-time limit.
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Figure 1. The contour integral along (−∞ + iε, η + iε] ∪ Γη ∪ [+η + iε,+∞ + iε) is equivalent

to (B.1) by the Cauchy theorem. Note the branch point at z = +iε and the branch cut running

upwards from there (stemming from the fact that K1(x) has a branch point at x = 0 and a branch

cut for all Re(x) < 0).

B Evaluating the integral SM

Here we compute the massive integral SM(ω) in (2.27) assuming that ω > 0. We emphasize

that this matches the expression for RM(ω) = − 2
exp( 2π

a
ω)−1
SM(ω) given in [52]. We find it

is easier to compute SM(ω) in the form

SM(ω) = −i
∫ ∞
−∞

dτ WM(τ) sin(ωτ) (B.1)

which is equivalent to (25) since Re[WM(τ)] is even in τ and hence does not contribute to

the Fourier-sine transform. We evaluate

SM(ω) = − am
8π2

lim
ε→0+

∫ ∞
−∞

dτ
sin(ωτ)

sinh(aτ2 − iε)
K1

(
2m

a
i
[
sinh

(aτ
2
− iε

)])
(B.2)

cf. (4.3) (here for simplicity we take ε as a dimensionless regulator whose limit ε→ 0+ can

be safely taken after integration). First switching the integration variable as τ → z = aτ
2

and then allowing z be complex-valued, the integral (B.1) is equivalent to the integral over

the contour depicted in figure 1 below. The contour Γη : [0, π] → C is here a semicircular

contour of radius η > 0 centred at z = +iε which we parametrize as Γη(θ) = −ηeiθ + iε,

and hence we write (B.1) in the form

SM(ω) =− m

4π2
lim

η,ε→0+

 −η+iε∫
−∞+iε

+

∫
Γη

+

∞+iε∫
η+iε

dz
sin(2ω

a z)

sinh(z−iε)
K1

(
2m

a
isinh(z−iε)

)
. (B.3)
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We first examine the contour integral over Γη where

lim
η,ε→0+

∫
Γη

dz
sin(2ω

a z)

sinh(z − iε)
K1

(
2m

a
i sinh(z − iε)

)
= lim

η→0+

∫
Γη

dθ

(
−iηeiθ

)
sin(−2ω

a ηe
iθ)K1

(
2m
a i sinh(−ηeiθ)

)
sinh(−ηeiθ)

(B.4)

= lim
η→0+

∫ π

0
dθ

(
ω

m
+O(η2)

)
(B.5)

=
πω

m
, (B.6)

which means that

SM(ω) =− ω

4π
− m

4π2
lim

η,ε→0+

 −η+iε∫
−∞+iε

+

∞+iε∫
η+iε

dz
sin(2ω

a z)

sinh(z−iε)
K1

(
2m

a
isinh(z−iε)

)
. (B.7)

By shifting the integration variable by −iε and then taking the limit ε → 0+ the above

becomes more simply

SM(ω) = − ω

4π
− m

4π2
lim
η→0+

[∫ −η
−∞

+

∫ ∞
η

]
dz

sin(2ω
a z)

sinh(z)
K1

(
2m

a
i sinh(z)

)
, (B.8)

and then switching the integration variable z → −z in the first integral we get

SM(ω) = − ω

4π
− m

4π2
lim
η→0+

∫ ∞
η

dz
sin(2ω

a z)

sinh(z)

[
K1

(
2m

a
i sinh(z)

)
+K1

(
−2m

a
i sinh(z)

)]
.

(B.9)

Next using the connection formula iπJν(x) = e−ν
iπ
2 Kν(xe−

iπ
2 ) − eν

iπ
2 Kν(xe

iπ
2 ) valid

for all |arg(x)| < π
2 [69], the above can be expressed as

SM(ω) = − ω

4π
+
m

4π
lim
η→0+

∫ ∞
η

dz
sin(2ω

a z)

sinh(z)
J1

(
2m

a
sinh(z)

)
. (B.10)

The integrand is here regular at z = 0 and so we may take the limit η → 0+ giving

SM(ω) = − ω

4π
+

a

8π
I

(
2ω

a
,
mω

a

)
, (B.11)

where we define the integral for Ω > 0 and M > 0

I(Ω,M) := M

∫ ∞
0

dz
sin(Ωz)

sinh(z)
J1

(
M sinh(z)

)
. (B.12)

We will now evaluate this integral exactly by relating it to an ordinary differential

equation. To begin, we compute the derivative

d

dM

[
MJ1

(
M sinh(z)

)]
= J1

(
M sinh(z)

)
+
M

2
sinh(z)

[
J0

(
M sinh(z)

)
− J2

(
M sinh(z)

)]
.

(B.13)
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Using the recurrence relation Jα(x)= x
2αJα−1(x) + x

2αJα+1(x) [68] the above can be written as

d

dM

[
MJ1

(
M sinh(z)

)]
= M sinh(z)J0

(
M sinh(z)

)
(B.14)

and with this identity we find that

d

dM
I(Ω,M) = M

∫ ∞
0

dz J0

(
M sinh(z)

)
sin(Ωz) . (B.15)

We quote integral (6.679.4) in [87] for a > 0 and b > 0∫ ∞
0

dx J0

(
2a sinh

(x
2

))
sin(bx) =

2

π
sinh(πb)

[
Kib(a)

]2
, (B.16)

which leads us to the ordinary differential equation

d

dM
I(Ω,M) =

M

π
sinh

(
πΩ

2

)[
K iΩ

2

(
M

2

)]2

. (B.17)

The above differential equation may be integrated up to an integration constant c0 where

I(Ω,M) =
M2

2π
sinh

(
πΩ

2

)([
K iΩ

2

(
M

2

)]2

−K iΩ
2
−1

(
M

2

)
K iΩ

2
+1

(
M

2

))
+c0 . (B.18)

An expansion of the integrand in (B.12) near M = 0 shows a O(M2) dependence, which

demands that lim
M→0+

I(Ω,M) = 0. It is this observation that allows us to determine the

integration constant as

c0 =− lim
M→0+

{
M2

2π
sinh

(
πΩ

2

)([
K iΩ

2

(
M

2

)]2

−K iΩ
2
−1

(
M

2

)
K iΩ

2
+1

(
M

2

))}
= Ω .

(B.19)

The integral (B.12) therefore evaluates to

I(Ω,M) =
M2

2π
sinh

(
πΩ

2

)([
K iΩ

2

(
M

2

)]2

−K iΩ
2
−1

(
M

2

)
K iΩ

2
+1

(
M

2

))
+ Ω . (B.20)

The above expression matches numerical tests (extra care must be taken when per-

forming numerical integration of the left hand side as the integrand is heavily oscillatory).

We conclude that

SM(ω) =
m2

4π2a
sinh

(πω
a

)([
K iω

a

(m
a

)]2
−K iω

a
−1

(m
a

)
K iω

a
+1

(m
a

))
. (B.21)

C Small-mass asymptotics for the Minkowski rate integral

Here we provide details of the small-M expansion for the function

f(M,Ω) = M2

(
KiΩ−1 (M)KiΩ+1 (M)−KiΩ (M)2

)
(C.1)
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which appears in our expression for the massive rate integral (4.8) in Minkowski space

as RM(ω) = a
4π2 e

−πω
a f(ma ,

ω
a ). Using the expansion [69] of Kν(z) valid for |z| → 0 and

ν ∈ C \ Z

Kν(z) =
Γ(ν)

2

(z
2

)−ν [
1+

z2

4(1−ν)
+O(z4)

]
+

Γ(−ν)

2

(z
2

)ν [
1+

z2

4(1+ν)
+O(z4)

]
(C.2)

we expand f for 0 < M � 1 as

f(M,Ω) ' πΩ

sinh(πΩ)
− πM2

2Ω sinh(πΩ)
+
M2

4

((
M2

4

)iΩ [
Γ(−1− iΩ)Γ(1− iΩ)− Γ(−iΩ)2

]
+

(
M2

4

)−iΩ [
Γ(−1 + iΩ)Γ(1 + iΩ)− Γ(iΩ)2

])
, (C.3)

where we have used |Γ(iΩ)|2 = π
Ω sinh(πΩ) . We use the property Γ(z + 1) = zΓ(z) to write

the above as

f(M,Ω)' πΩ

sinh(πΩ)
− πM2

2Ωsinh(πΩ)
+
M2

4

((
M2

4

)iΩ
Γ(−iΩ)2

−iΩ−1
+

(
M2

4

)−iΩ
Γ(iΩ)2

iΩ−1

)
. (C.4)

In polar form the above becomes

f(M,Ω) ' πΩ

sinh(πΩ)
− πM2

2Ω sinh(πΩ)
(C.5)

+
M2

4

∣∣∣∣Γ(iΩ)2

iΩ− 1

∣∣∣∣
[
e
i

(
2Ω log(M2 )−Arg

[
Γ(iΩ)2

iΩ−1

])
+ e
−i
(

2Ω log(M2 )−Arg

[
Γ(iΩ)2

iΩ−1

])]
,

where we have used Γ(z)∗ = Γ(z∗). After some simplification this gives

f(M,Ω) ' πΩ

sinh(πΩ)
+

πM2

2Ω sinh(πΩ)

cos
(

2Ω log
(
M
2

)
−Arg

[
Γ(iΩ)2

iΩ−1

])
√

Ω2 + 1
− 1

 . (C.6)

D ε-dependence of divergences in ∆M and ∆′
M

Here we explore the ε-dependence of the ultraviolet divergences in ∆M for the example of

the accelerated qubit (from this the ε-dependence of ∆′M immediately follows by differen-

tiation). Using the Wightman function (4.3), but with a small-distance regulator ε, the

integral (3.3) is explicitly12

∆M = 2 lim
ε→0+

∫ ∞
0

ds sin(ωs) Re

 am

8iπ2

K1

(
2mi
a sinh a[s−iε]

2

)
sinh a[s−iε]

2

 . (D.1)

We cannot take the limit ε → 0+ here, so we keep ε small but finite (in the sense that

aε, ωε,mε � 1). For s approaching the coincident limit, the Wightman function has the

behaviour

WM(s) ' − 1

4π2(s− iε)2
. (D.2)

12We replace sinh( as
2

)− iaε/2→ sinh(a[s− iε]/2) relative to the form in (4.3).
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We subtract and add (D.2) in the expression for ∆M giving

∆M = 2

∫ ∞
0

ds sin(ωs) Re

 am

8iπ2

K1

(
2m
a sinh a[s−iε]

2

)
sinh a[s−iε]

2

+
1

4π2(s−iε)2
− 1

4π2(s−iε)2

 . (D.3)

We split this apart into two integrals such that

∆M = ∆
(divergent)
M + ∆

(finite)
M (D.4)

where

∆
(divergent)
M = 2

∫ ∞
0

ds sin(ωs) Re

[
− 1

4π2(s−iε)2

]
(D.5)

and ∆
(finite)
M = 2

∫ ∞
0

ds sin(ωs) Re

 am

8iπ2

K1

(
2m
a sinh a[s−iε]

2

)
sinh a[s−iε]

2

+
1

4π2(s−iε)2

 . (D.6)

which is justified since ε is finite here (and hence both integrals converge). We first compute

the divergent part ∆
(divergent)
M . To this end, we quote the integral (3.722.1) in [87],∫ ∞

0
dx

sin(ax)

x+ β
= sin(βa)ci(βa)− cos(βa)si(βa) (D.7)

which is valid for a > 0 and | arg(β)| < π, where ci and si are respectively the cosine

integral and sine integral functions [87], defined by13

ci(z) = γ + log(z) +

∫ z

0
dt

cos(t)− 1

t
and si(z) = −π

2
−
∫ z

0
dt

sin(t)

t
. (D.8)

By differentiating the above integral with respect to β, an exact expression for ∆
(divergent)
M

can be explicitly computed where

∆
(divergent)
M = − 1

4π2

∫ ∞
0

ds
sin(ωs)

(s− iε)2
− 1

4π2

∫ ∞
0

ds
sin(ωs)

(s+ iε)2
(D.9)

=
ω

2π2

[
cosh(ωε)chi (ωε)− sinh(ωε)shi (ωε)

]
. (D.10)

where chi and shi are the hyperbolic cosine and sine integral functions [87], respectively

(defined analagous to (D.8) in the obvious way). Using chi(z) ' γ + log(z) + O(z2) and

shi(z) ' z+O(z3) in the 0 < z � 1 limit, for ωε� 1 the above divergent piece has the form

∆
(divergent)
M ' ω

2π2

[
log(eγωε) +O(ω2ε2)

]
. (D.11)

For ∆
(finite)
M defined in the integral (D.6), the limit ε→ 0+ can be safely taken, where

∆
(finite)
M =

a

4π2

∫ ∞
0

dz sin

(
2ω

a
z

)[
πm

a

Y1

(
2m
a sinh(z)

)
sinh(z)

+
1

z2

]
(D.12)

13Note these definitions are valid for z ∈ C in the complex plane so long as the contour connecting the

limits on the integral does not intersect (−∞, 0].
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where the connection formula −πYν(x) = e−ν
iπ
2 Kν

(
xe−

iπ
2

)
+ eν

iπ
2 Kν

(
xe

iπ
2

)
valid for

| arg(x)| ≤ π/2 [69] has been used to relate the integrand in (D.6) to the Bessel function

of the second kind Y1. Note that a change of variables s→ z = as/2 has also been made.

We evaluate the function ∆
(finite)
M by computing it as the limit

∆
(finite)
M =

a

4π2

∫ ∞
0

dz sin

(
2ω

a
z

)
lim
p→1−

{
πm

a

Yp
(

2m
a sinh(z)

)
sinh(z)

+
(m
a

)1−p Γ(p)

z1+p

}
, (D.13)

where the second p-dependent term is designed to continuously cancel (as a function of p)

the leading-order behaviour of the first p-dependent term near z = 0 (this follows from the

leading-order behaviour Yp(x) ' −Γ(p)
π

(
x
2

)−p− cos(πp)Γ(−p)
π

(
x
2

)p
for x� 1 and ν /∈ Z [69]).

Such a choice ensures that the integrand is bounded by an integrable function for all z being

integrated (and for each p in a neighbourhood of 1), and so by the dominated convergence

theorem [90] the limit operation can be taken outside of the integral such that

∆
(finite)
M = lim

p→1−

m

4π

∞∫
0

dz sin

(
2ω

a
z

)
Yp
(

2m
a sinh(z)

)
sinh(z)

+
aΓ(p)

4π2

(m
a

)1−p
∞∫

0

dz
sin
(

2ω
a z
)

z1+p

 .
(D.14)

Eq. (D.14) is a useful parametrization because each of the integrals can be individually

integrated for 0 < p < 1 (and then the limit p → 1− can be safely taken). The latter

well-known integral in (D.14) can be evaluated (for example, with the help of formula

(3.761.4) in [87]), and the first integral can be re-written with the connection formula

Yp(z) = cot(πp)Jp(z)− csc(πp)J−p(z) [69] so that

∆
(finite)
M =

ω

2π2
lim
p→1−

{
πm

2ω
cot(πp)

∫ ∞
0

dz sin

(
2ω

a
z

)
Jp
(

2m
a sinh(z)

)
sinh(z)

(D.15)

− πm

2ω
csc(πp)

∫ ∞
0

dz sin

(
2ω

a
z

)
J−p

(
2m
a sinh(z)

)
sinh(z)

+
(

2ω

m

)p−1 π sin
(πp

2

)
p sin(πp)

}
,

where the remaining integrals can be evaluated such that

∞∫
0

dz
sin
(

2ω
a z
)
J±p

(
2m
a sinh(z)

)
sinh(z)

=
m

±pa

∞∫
0

dz sin

(
2ω

a
z

)[
J±p−1

(
2m

a
sinh(z)

)
+ J±p+1

(
2m

a
sinh(z)

)]
(D.16)

=
m

±pa
Im

[
I±p−1

2
−iω

a

(m
a

)
K±p−1

2
+iω

a

(m
a

)
(D.17)

+ I±p+1
2
−iω

a

(m
a

)
K±p+1

2
+iω

a

(m
a

)]
:= ±m

pa
U
(
p,
ω

a
,
m

a

)
(D.18)
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In (D.16) we have used the recurrence relation 2νJν(z)/z = Jν−1(z) + Jν+1(z) [69], and

then in (D.17) we have used formula (6.679.1) from [87],

∫ ∞
0

dz sin(2Bz)J2ν

(
2A sinh z

)
= Im [Iν−iB(A)Kν+iB(A)] , (D.19)

which converges for A > 0, B > 0 and Re[ν] > −1 (since 0 < p < 1 both expressions for ±p
in (D.17) are valid). Writing the limit (D.15) in terms of the function U(p, ωa ,

m
a ) defined

in (D.18) then yields

∆
(finite)
M =

ω

2π2
lim
p→1−

{ m2

2ωa cos(πp)U(p, ωa ,
m
a ) + m2

2ωaU(−p, ωa ,
m
a ) +

(
2ω
m

)p−1
sin
(πp

2

)
p sin(πp)

π

}
.

(D.20)

In the given form, the above limit is actually in indeterminate form. To see this define

the functions f(p) := m2

2ωa cos(πp)U(p, ωa ,
m
a ) + m2

2ωaU(−p, ωa ,
m
a ) +

(
2ω
m

)p−1
sin
(πp

2

)
as well as

g(p) := p sin(πp)
π (suppressing the dependence on the other variables for clarity of notation),

and note that g(1) = 0 and that

f(1) =
m2

2ωa

[
−U

(
1,
ω

a
,
m

a

)
+ U

(
−1,

ω

a
,
m

a

)]
+ 1 (D.21)

=
m2

2ωa
Im

[
− I1−iω

a

(m
a

)
K1+iω

a

(m
a

)
+ I−1−iω

a

(m
a

)
K−1+iω

a

(m
a

)]
+ 1 (D.22)

=
m2

2ω
Im

[
− 2(−iω)

m

(
K−iω

a

(m
a

)
dI−iω/a

(
m
a

)
dm

− dK−iω/a
(
m
a

)
dm

I−iω
a

(m
a

))]
+ 1 (D.23)

= 0 (D.24)

where (D.23) follows by use of the symmetry Kν(z) = K−ν(z) as well as the recurrence

relations Iν±1(z) = I ′ν(z)∓ 2ν
z Iν(z) (which Kν(z) also obeys) [69]. From there (D.24) follows

by use of the Wronskian relation Kν(z)I ′ν(z) −K ′ν(z)Iν(z) = 1/z. Since f(1) = g(1) = 0

the limit (D.20) is in indeterminate (“0/0”) form and can be evaluated using l’Hôpital’s

rule [68] where now ∆
(finite)
M = ω

2π2 lim
p→1−

f ′(p)
g′(p) giving

∆
(finite)
M =

ω

2π2

[
− m2

2ωa

(
∂U
∂p |p=1+ ∂U

∂p |p=−1

)
+log

(
2ω
m

)]
[−1]

(D.25)

=− ω

2π2
log

(
2ω

m

)
+

m2

4π2a
Im

[
Kiω

a

(m
a

) ∂Iν (ma )
∂ν

∣∣∣∣
ν=−iω

a

+
∂Kν

(
m
a

)
∂ν

∣∣∣∣
ν=iω

a

I−iω
a

(m
a

)
+

1

2
K−1+iω

a

(m
a

) ∂Iν (ma )
∂ν

∣∣∣∣
ν=−1−iω

a

+
1

2

∂Kν

(
m
a

)
∂ν

∣∣∣∣
ν=−1+iω

a

I−1−iω
a

(m
a

)
+

1

2
K1+iω

a

(m
a

) ∂Iν (ma )
∂ν

∣∣∣∣
ν=1−iω

a

+
1

2

∂Kν

(
m
a

)
∂ν

∣∣∣∣
ν=1+iω

a

I1−iω
a

(m
a

)]
(D.26)

– 38 –



J
H
E
P
0
3
(
2
0
2
0
)
0
0
8

ω
a �

m
a � 1 m

a �
ω
a � 1 ω

a � 1� m
a

m
a � 1� ω

a 1� ω
a �

m
a 1� m

a �
ω
a

∆
(finite)
M − ω

2π2 log
(
eγω
a

)
− ω

2π2 log
(
eγω
a

)
− ω

2π2 log
(

2ω
em

)
a · O( aω ) − ω

2π2 log
(

2ω
em

)
a · O( aω )

∆M
ω

2π2 log(aε) ω
2π2 log(aε) ω

2π2 log(eγ+1mε) ω
2π2 log (eγωε) ω

2π2 log
(
eγ+1mε

)
ω

2π2 log (eγωε)

Table 4. As given in table 1, the leading-order behaviour in various regimes for the function

∆
(finite)
M given by (D.26) and ∆M given by (D.27). In each case the sub-leading corrections are

parametrically small.

which means that ∆M is overall given by the function

∆M =
ω

2π2
log

(
eγmε

2

)
+

m2

4π2a
Im

[
Kiω

a

(m
a

) ∂Iν (ma )
∂ν

∣∣∣∣
ν=−iω

a

+
∂Kν

(
m
a

)
∂ν

∣∣∣∣
ν=iω

a

I−iω
a

(m
a

)
+

1

2
K−1+iω

a

(m
a

) ∂Iν (ma )
∂ν

∣∣∣∣
ν=−1−iω

a

+
1

2

∂Kν

(
m
a

)
∂ν

∣∣∣∣
ν=−1+iω

a

I−1−iω
a

(m
a

)
+

1

2
K1+iω

a

(m
a

) ∂Iν (ma )
∂ν

∣∣∣∣
ν=1−iω

a

+
1

2

∂Kν

(
m
a

)
∂ν

∣∣∣∣
ν=1+iω

a

I1−iω
a

(m
a

)]
. (D.27)

This expression can be expanded in various regimes of ω, m and a, with results quotes in

table 4 (the leading-order behaviour for ∆′M is achieved by differentiating the entries in

this Table.

E Small qubit splitting and the Markovian approximation

We explore the degenerate ω � g2
√
C2
M + ∆2

M limit in this section, applied to the example

of the accelerated qubit. Naively solving the Markovian equation for %I12(τ) in this limit

yields

%I12(τ)' e+iωτe
−g2

[
CM+
√
C2
M+∆2

M

]
τ

[
%12(0)

2

(
1+i

ω

g2
√
C2
M+∆2

M

)
− %
∗
12(0)

2

CM−i∆M√
C2
M+∆2

M

]

+e+iωτe
+g2

[
−CM+

√
C2
M+∆2

M

]
τ

[
%12(0)

2

(
1−i ω

g2
√
C2
M+∆2

M

)
+
%∗12(0)

2

CM−i∆M√
C2
M+∆2

M

]
.

(E.1)

As outlined in section 3.2, dropping derivatives in the Taylor series of %I(τ − s) in the

Nakajima-Zwanzig equation necessitates the bounds (3.40), restated here for convenience:∣∣∣∣g2∆′M −
ωC′M
CM

∣∣∣∣� 1 ,

∣∣∣∣g2C′M +
ω∆′M
CM

∣∣∣∣� 1 ,

g2|∆′M |

√
1 +

∆2
M

C2
M

� 1 , g2|C′M |

√
1 +

∆2
M

C2
M

� 1 ,
g2CM
ω

√
1 +

∆2
M

C2
M

� 1 .

(E.2)

where the last bound is a re-statement of the degeneracy condition ω � g2
√
C2
M + ∆2

M .

The first important step is to note that the last three bounds of (E.2) imply the hierarchy

g2|∆′M | , g2|C′M | �
1√

1 + ∆2
M/C2

M

� g2CM
ω

. (E.3)
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ω
a �

m
a � 1 m

a �
ω
a � 1 ω

a � 1� m
a

m
a � 1� ω

a 1� ω
a �

m
a 1� m

a �
ω
a

ωC′M
CM

2π2ω2

3a2

2π2ω2

3a2

π2ω2

a2
1

πω

a
1

Table 5. Leading-order behaviour for the function ωC′M/CM from the bound (E.5) in various regimes

of parameter space. Notice it is only possible to satisfy ωC′M/CM � 1 in the ω � a regime. (I.e. in

the first three columns.)

ω
a �

m
a � 1 m

a �
ω
a � 1 ω

a � 1� m
a

1�
∣∣∣∣g2∆′M−

2ωC′M
CM

∣∣∣∣' ∣∣∣∣ g2

2π2
log(aε)− 4π2ω2

3a2

∣∣∣∣ ∣∣∣∣ g2

2π2
log(aε)− 4π2ω2

3a2

∣∣∣∣ ∣∣∣∣ g2

2π2
log(eγ+1mε)− 2π2ω2

a2

∣∣∣∣
1�

∣∣∣∣g2C′M+
2ω∆′M
CM

∣∣∣∣' ∣∣∣∣g2ω

6a
+

2ω log(aε)

a

∣∣∣∣ ∣∣∣∣g2ω

6a
+

2ω log(aε)

a

∣∣∣∣ ∣∣∣πg2ω
8a e−

2m
a + 8ω log(eγ+1mε)

πa e
2m
a

∣∣∣
1� g2|∆′M |

√
1+ ∆2

M

C2
M
' g2

2π2
| log(aε)| g2

2π2
| log(aε)| g2

2π2
| log(eγ+1mε)|

1� g2|C′M |
√

1+ ∆2
M

C2
M
' g2ω

6a

g2ω

6a

g2πω

8a
e−2m/a

1� g2CM
ω

√
1+ ∆2

M

C2
M
' g2a

4π2ω

g2a

4π2ω

g2a

8πω
e−2m/a

Table 6. The leading-order behaviour for the validity relations (E.2). Note that in the last three

bounds we used the fact that
√

1+∆2
M/C2

M ' 1 to leading-order (since |∆M/CM |� 1).

This statement (E.3) implies two things. The first is that:

g2|∆′M | �
g2CM
ω

=⇒ ω|∆′M |
CM

� 1 =⇒
∣∣∣∣∆M

CM

∣∣∣∣ � 1 (E.4)

where the last implication follows because ω∆′M ' ∆M to leading-order (this is immediately

seen in table 1). The second thing that the statement (E.3) implies is that

g2|C′M | �
g2CM
ω

=⇒ ω|C′M |
CM

� 1 =⇒ ω � a (E.5)

Where the last implication follows by examining the values of the functions CM and C′M in

table 1. To make this explicit, we write down table 5 exploring the size of ωC′M/CM in the

various regimes (showing that only ω � a is allowed). For completeness we also fill out

table 6 with all the inequalities (E.2) in the ω � a regime. We also point out that the

last row of table 6 tells us that ω/a is so small that ω/a � g2 � 1. We note finally that

|∆M/CM | . O(g2)� 1, which is easy to see in table 7.

Using the information in the above tables, the Markovian approximation demands that

ω/a � 1 as well as 1 � |∆M/CM | ∼ O(g2) as described in section 3.2. This means that

the solution (E.1) is

%I12(τ) ' e+iωτe−2g2CM τ
[
%12(0)

2

(
1 + i

ω

g2CM

)
− %∗12(0)

2

(
1− i∆M

CM

)]
(E.6)

+ e+iωτ

[
%12(0)

2

(
1− i ω

g2CM

)
+
%∗12(0)

2

(
1− i∆M

CM

)]
,
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ω
a �

m
a � 1 m

a �
ω
a � 1 ω

a � 1� m
a∣∣∣∣∆M

CM

∣∣∣∣ ' 2ω

a
| log(aε)| 2ω

a
| log(aε)| 4ω

πa
e2m/a| log(eγ+1mε)|

Table 7. The leading-order behaviour for the function ∆M/CM in the ω � a regime. Note that

∆M/CM � 1. The third column with a e2m/a factor may seem alarming (i.e. possibly not small),

but in fact the last row in table 6 ensures that the combination ω
a e

2m/a � g2/(8π) is small.

where contributions O
(
∆2
M/C2

M

)
have been neglected. At late times g2aτ ∼ O(1) the

Schrödinger-picture state has the form

lim
aτ∼O(1/g2)

%12(τ) ' %12(0)

2

(
1− i ω

g2CM

)
+
%∗12(0)

2

(
1− i∆M

CM

)
(E.7)

which has not yet fully decohered.

F Connection to the ‘rotating wave’ approximation

In the literature, the issue of non-positivity of % is usually addressed by taking an additional

approximation called the rotating-wave approximation (RWA). This approximation is used

when relaxation times of the qubit are very long compared to the time-scale of the system

oscillations; i.e. when ω � 1/ξ. When this is so, the approximation involves coarse-

graining over the fast oscillations, so that quickly oscillating factors in the interaction-

picture equations of motion can be dropped by arguing that they average to zero.

As applied to the qubit/field system considered here, the equation of motion for the

diagonal component is completely unchanged by this averaging, while the off-diagonal

equation in the interaction picture,

∂%I12

∂τ
' −g2CΩ%

I
12(τ) + g2e+2iωτ (CΩ − i∆Ω)%I∗12(τ) , (F.1)

is instead replaced by
∂%RWAI

12

∂τ
' −g2CΩ%

RWAI
12 (τ) , (F.2)

where we write %RWA(τ) to emphasize that this is describes evolution distinct from the

Markovian equations derived in section 3. Replacing (F.1) with (F.2) in the limit ω � 1/ξ

is usually justified by claiming that the factor e2iωτ in (F.1) oscillates extremely quickly

by the time the state of the qubit changes significantly. In this sense the equations of

motion in the RWA are supposed to describe a coarse-graining, since this oscillatory factor

is supposed to average to zero over any time-scales that can be resolved (as far as the

evolution of the qubit is concerned).

The appeal of the RWA is that the solution %RWA(τ) is always positivity-preserving.

In contrast to section 5, the equations of motion in the RWA can be cast into the Lindblad

form (in terms of the Schrödinger-picture state)

∂%RWA(τ)

∂τ
=−i

[
h,%RWA(τ)

]
+

3∑
j,k=1

cRWA
jk

(
Fj%

RWA(τ)F †k−
1

2

{
F †kFj ,%

RWA(τ)
})

(F.3)
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where Fj = 1
2σj again and the entries of the Kossakowski matrix are now instead

cRWA =

 2g2CΩ −2ig2SΩ 0

2ig2SΩ 2g2CΩ 0

0 0 0

 . (F.4)

This solution is positivity-preserving for any arbitrary choice of CΩ and SΩ now because

the eigenvalues of cRWA are non-negative.14

To the level of approximation we have taken in this work, we claim that it is not

justified to take the rotating-wave approximation for this system. For convenience we

re-state the solution to (F.1) in the interaction picture

%I12(τ) ' %12(0)e−g
2CΩτ + %∗12(0)e−g

2CΩτ
(
g2∆Ω

2ω
+ i

g2CΩ

2ω

)(
1− e2iωτ

)
, (F.5)

and in contrast, we state the RWA solution to (F.2) in the interaction picture

%RWAI
12 (τ) ' %12(0)e−g

2CΩτ , (F.6)

which we see corresponds to the first term in (F.5). Recall that g2CΩ, g
2∆Ω � ω was

assumed in the derivation of (F.5) (when neglecting O(g4) in the non-degenerate limit),

which makes the sub-leading terms in this solution small, but not negligibly so. Although

the usual assumption ω � 1/ξ = g2CΩ of the RWA holds true here (at least in the non-

degenerate limit), we see that the statement about rapidly oscillating factors seems here

to be a red herring: clearly, even if the e2iωτ factor is replaced with its average of zero in

the solution (F.5), there are still other sub-leading corrections which remain (which do not

oscillate).

This argument about dropping quickly oscillating factors in the interaction picture was

most precisely outlined by Davies [91–93], who showed that the Nakajima-Zwanzig equation

formally reduces to the those in the RWA in the limit that g → 0 while simultaneously

taking τ → ∞ (such that g2τ is order unity).15 In this latter formulation of Davies, it is

more clear what the rotating-wave approximation describes in this setting: in taking the

limit g → 0 the sub-leading terms of (F.5) become neglected, while the damping factor

e−g
2CΩτ must be kept since late times g2aτ ∼ O(1) are to be probed in the limit described

by Davies. In our case, we are not inclined to drop the sub-leading O(g2) terms in (F.5)

and so do not take the rotating-wave approximation.

14The eigenvalues of cRWA are 0 and 2g2(CΩ ±SΩ), where the latter two eigenvalues are positive because

SΩ = − tanh
(
βω
2

)
CΩ on account of (2.29) (and of course, CΩ is positive).

15In this limit, Davies formally showed that the Nakajima-Zwanzig equation reduces to a positivity-

preserving Lindblad equation of the form ∂%(τ)
∂τ

= −i[h, %(τ)]+g2K\[%(τ)] where the operator K\ is given by

K\[%(τ)] = lim
T→∞

1

2T

∫ T

−T
dr e+ihrK[e−ihr%(τ)e+ihr]e−ihr

with

K[%(τ)] = −
∫ ∞

0

ds Tr
φ

([
e+iHy0(s)φ[y(τ + s)]e−iHy

0(s) ⊗ e+ihsme−ihs,
[
φ[y(τ)]⊗m, |Ω〉 〈Ω| ⊗ %(τ)

]])
,

which is an equivilent route to arrive at the RWA equations with (F.2).
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