
J
H
E
P
0
3
(
2
0
1
9
)
1
0
2

Published for SISSA by Springer

Received: November 13, 2018

Accepted: March 12, 2019

Published: March 18, 2019

Superspin chains and supersymmetric gauge theories

Nikita Nekrasov

Simons Center for Geometry and Physics, Stony Brook University,

Stony Brook, NY 11794, U.S.A.

Kharkevich Institute for Information Transmission Problems,

Moscow 127051, Russia

Center for Advanced Studies, Skolkovo Institute of Science and Technology,

1 Nobel Street, Moscow 143026, Russia

E-mail: nikitastring@gmail.com

Abstract: We discuss the possible extensions of Bethe/gauge correspondence to quantum

integrable systems based on the super-Lie algebras of A type. Along the way we propose the

analogues of Nakajima quiver varieties whose cohomology and K-theory should carry the

representations of the corresponding Yangian and the quantum affine algebras, respectively.

We end up with comments on theN = 4 planar super-Yang-Mills theory in four dimensions.

Keywords: Bethe Ansatz, Supersymmetric Gauge Theory, Supersymmetry and Duality,

Topological Field Theories

ArXiv ePrint: 1811.04278

To Martin Rocek on his super-anniversary, with love.

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP03(2019)102

mailto:nikitastring@gmail.com
https://arxiv.org/abs/1811.04278
https://doi.org/10.1007/JHEP03(2019)102


J
H
E
P
0
3
(
2
0
1
9
)
1
0
2

Contents

1 Introduction 1

2 Heisenberg, Bethe, and Grassmann 3

2.1 Spin chain 3

2.2 Gauge theory 5

2.3 Generalizations 6

3 Bethe ansatz for closed super-spin chains 7

3.1 Principal gradation 7

3.2 General Dynkin diagram 9

4 Supersymmetric gauge theory for superspin chain 9

4.1 A family of theories 10

5 Conclusions and future prospects 11

1 Introduction

Gauge theories with N = (2, 2) super-Poincare symmetry have an interesting connection

to quantum integrable systems. Perhaps the first instance of such a connection has been

spotted in the studies of the two dimensional Yang-Mills theory [31], interpreted [62] as a

topological field theory, which can by obtained [63] from a twisted version of the N = (2, 2)

theory by a (non-unitary) deformation, namely one turns on the twisted superpotentials

W̃ and W̃ ∗ which are not complex conjugate. The expression [63] for the partition func-

tion of the theory on a compact Riemann surface makes it clear the physical states of the

topological theory (which are the vacua of the supersymmetric theory) are in one-to-one

correspondence with the states of a free particle living on the space of conjugacy classes

T/W of the gauge group G. For G = SU(N) this system is equivalent to the system of

free N fermions on living on a circle. In [19] this relation has been generalized to allow for

certain line operators in gauge theory. In the presence of line operators the formerly free

fermions become interacting, but they dynamics remains integrable. The energy eigenval-

ues of the many-body system is identified with the vacuum expectation value of the local

observable Trσ2, where σ is the complex adjoint scalar in vector multiplet. In [35] the

example of [19] has been upgraded: one studied the two dimensional (twisted) N = (2, 2)

SU(N) gauge theory with adjoint chiral multiplet, of twisted mass [4] c, and discovered

that the vacua were in one-to-one correspondence with the stationary states of a system

of N particles x1, . . . , xN on a circle, interacting with the repulsive potential cδ(xi − xj).
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This example has been further explored in [17, 18]. Then, in [37] the general correspon-

dence has been identified: supersymmetric vacua of gauge theories with N = (2, 2) d = 2

Poincare supersymmetry (the theories need not be two dimensional) are the stationary

states of some quantum integrable system, i.e. they are the joint eigenvectors of quan-

tum integrals of motion. Moreover, this correspondence has a remarkable social feature:

the textbook examples of supersymmetric gauge theories map to the textbook examples

of quantum integrable systems. A large class of models has been found where the quan-

tum integrable system is based on quantum algebras of the A,D,E-type, such as the

spin chains with the corresponding spin group. The dual gauge theory is of the A,D,E

quiver-type. The mathematical consequence of this relation is the connection [37] between

quantum groups: Yangians, quantum affine algebras, elliptic quantum groups, and quan-

tum cohomology, quantum K-theory, and elliptic cohomology, respectively. In the series

of remarkable works [2, 30, 47] this connection has been elucidated and put on the firm

mathematical ground, moreover, for general quivers, not only of the (affine) A,D,E type.

On the physics side the quiver gauge theories in question are softly broken N = (4, 4) the-

ories (in two dimensions). The parameter of deformation, the twisted mass corresponding

to a specific U(1) R-symmetry, maps to the Planck constant of an integrable system.

In this paper we attempt to extend the realm of the correspondence to the case of

super-algebra based quantum integrable systems. We should point out that gauge theories

based on supergroups naively make no sense, as the invariant scalar product on the Lie

superalgebra is not positive definite, so the theory is not unitary. Nevertheless, the super-

group gauge symmetry is possible in the context of topological field theory, such as Chern-

Simons theory in three dimensions, albeit there are caveats [33, 34, 60]. Also, the analytic

continuation of a conventional gauge theory may reach the supergroup gauge theory [12].

Our motivation also includes the desire to get a better understanding of the integrable

structure behind the planar limit of N = 4 super-Yang-Mills theory in four dimensions. It

has been discovered, first in a SU(2) sector [32] and then in the general case [6–9], that

the spectrum of anomalous dimensions of local operators is that of a quantum integrable

spin chain based on the Yangian Y (gl(4|4))of the superconformal group, see the excellent

review in [14]. For most of the integrable spin chains the Bethe equations can be cast in

the form:

exp
∂W̃

∂σi
= 1 , i = 1, . . . ,M (1.1)

where σi are the Bethe roots, and W̃ is the so-called Yang-Yang function. It can be shown,

however, that the dressing phase [9] entering the Bethe equations in the N = 4 super-Yang-

Mills and [5] on the AdS5 × S5 dual side, violates the potentiality of (1.1). Despite many

works explaining the origin of the dressing phase and investigating its analytic structure,

e.g. [13, 22, 54] the satisfying explanation on the side of the supersymmetric gauge theory

with N = (2, 2) supersymmetry in two dimensions is missing. The explanation might be

the further breaking of supersymmetry (2, 2)→ (0, 2) [40].

In this paper we make a modest step in this direction. We shall propose a class of

N = (2, 2) quiver gauge theories in two dimensions, whose supersymmetric vacua are in

one-to-one correspondence with the Bethe states of closed spin chains based on the Yangian

of gl(m|n).
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The paper is organized as follows. The section 2 starts with review of the simplest ex-

ample of Bethe/gauge correspondence, where the quantum integrable system is the Heisen-

berg spin chain, while the supersymmetric gauge theory is the gauged linear sigma model

with the target space being the cotangent bundle to the Grassmanian of N -dimensional

planes V in the L-dimensional complex vector space W . We recall Bethe equations, their

Yang-Yang form, and the T−Q equation which is equivalent to them. We also briefly review

the generalizations: to other spin groups, to inhomogeneous, twisted and anisotropic cases.

The section 3 reviews Bethe equations for the superspin chains, based on gl(M |N) algebra.

The section 4 introduces the main character: the gauge theory with the proper structure of

its supersymmetric vacua. We’ll see that Bethe equations themselves do not fix the matter

content uniquely. We shall propose a family of theories, L~t with the parameters ~t being

the mass terms in the superpotential. The ~t = 0,∞ theories can be topologically twisted

so as to define an A-model. The intermediate theories flow, in the infrared, to the ~t = ∞
point. However, we believe it is the ~t = 0 which should be identified with the Bethe/gauge

dual of the superspin chain, as the ~t =∞ being effectively a theory with fewer fields, is less

rigid, and, in fact, has additional marginal deformation, which masks the Planck constant.

The section 5 concludes with unfinished business and future directions.
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2 Heisenberg, Bethe, and Grassmann

2.1 Spin chain

The Heisenberg spin chain

Ĥ =
L∑
a=1

~σa ⊗ ~σa+1 , (2.1)

where

~σa+L = ~σa , (2.2)

– 3 –



J
H
E
P
0
3
(
2
0
1
9
)
1
0
2

has an SU(2) underlying symmetry: ~σa = (σxa , σ
y
a, σza) are the generators of SU(2) acting

at the site a of the length L spin chain. The eigenvectors

ψ ∈
(
C2
)⊗L

=

L⊕
N=0

HN , (2.3)

dimCHN =

(
L

N

)
(2.4)

are constructed, in the Bethe ansatz approach, from the solutions of the Bethe ansatz

equations: ∏
α 6=β

σβ − σα + 2u

σβ − σα − 2u
=

(
σβ + u

σβ − u

)L
, β = 1, . . . , N (2.5)

which can be, equivalently, represented via the so-called T-Q equation:

P (x− u)Q(x+ 2u) + P (x+ u)Q(x− 2u) = T (x)Q(x) (2.6)

where

Q(x) =

N∏
β=1

(x− σβ) , (2.7)

P (x) = xL , (2.8)

and T (x) is some polynomial of degree L. Finally, with the help of the Y -observable:

Y (x) =
Q(x)

Q(x− 2u)
(2.9)

one rewrites (2.6) as:

Y (x+ 2u) +D(x)
1

Y (x)
=

T (x)

P (x− u)
, D(x) =

P (x+ u)

P (x− u)
(2.10)

the content of this equation being the absence of the poles of the left hand side in x, other

then zeroes of P (x − u). All this generalizes in a relatively straightforward way, both in

terms of the spin group symmetry, and the possibilities of the choice of the Hamiltonian.

Recall three upgrades: twisting, inhomogeneity and anisotropy. The first two don’t change

the underlying symmetry generating algebra, while the last one deforms the rational algebra

(the Yangian) into the quantum affine and elliptic quantum algebras, respectively.

The inhomogeneity deforms the Hamiltonian (2.1) in certain fashion, making the spin

interactions, in general, a-dependent, and less local, while twisting deforms the boundary

conditions (2.2) to

~σa+L = q−
iσ3
2 ~σaq

iσ3
2 (2.11)

Both deformations preserve integrability. The only aspect of these deformations needed

for the Bethe/gauge correspondence is their impact on Bethe equations: the eqs. (2.5)

deform to ∏
β′ 6=β

σβ − σβ′ + 2u

σβ − σβ′ − 2u
= q

L∏
a=1

σβ + u− µa
σβ − u− µa

, β = 1, . . . , N (2.12)
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where

P (x) =
L∏
a=1

(x− µa) , (2.13)

while (2.6) deforms to

P (x− u)Q(x+ 2u) + qP (x+ u)Q(x− 2u) = (1 + q)T (x)Q(x) (2.14)

and (2.10) to

Y (x+ 2u) + qD(x)Y (x)−1 = (1 + q)T (x)/P (x− u) (2.15)

2.2 Gauge theory

The gauge theory for which (2.12) describe its vacua, is the softly broken N = (4, 4)

supersymmetric gauge theory in two dimensions, with the gauge group U(N), and L hy-

permultiplets in fundamental representation. Viewed as an N = (2, 2) theory, it has

a vector multiplet (Am, σ), an adjoint-valued chiral multiplet Φ, and L pairs of chiral

multiplets (Qa, Q̃
a), a = 1, . . . , L, with Qa = (Qβa)Nβ=1 transforming in the fundamental

N -dimensional representation N of U(N), Q̃a = (Q̃aβ)Nβ=1 transforming in the conjugate

representation N̄. In addition, the theory has a superpotential W =
∑L

a=1 Q̃
aΦQa, and the

twisted masses u, µa, corresponding to the U(1)u×U(L) global symmetry: U(L) acts on Q̃

in the L-dimensional fundamental representation L, on Q in the conjugate L̄. The U(1)u
symmetry acts via: (Φ, Q, Q̃) 7→ (Φe2iα, Qe−iα, Q̃e−iα). The list of relevant parameters of

the theory concludes with the Fayet-Illiopoulos parameter r and the abelian θ-angle, which

are conveniently combined into

q = e2πiθe−r (2.16)

Suppose we are in the phase where the complex adjoint scalar σ in the vector multi-

plet has the vacuum expectation value σ = diag(σ1, . . . , σN ), as dictated by the potential

tr
(
[σ, σ†]

)2
. The physical masses of the matter fields are:

|σβ − σβ′ + 2u| , for Φβ′

β ,

|σβ − µa − u| , for Qβa ,

|µa − σβ − u| , for Q̃aβ .

(2.17)

Assuming they are all non-zero we integrate out the matter fields and the non-abelian

degrees of freedom in the vector multiplet (these have masses ∼ |σβ − σβ′ |) to produce the

effective twisted superpotential

W̃ = W̃ tree + W̃ 1-loop , (2.18)

where

W̃ tree =
log(q)

2πi

N∑
i=1

σi (2.19)
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and, with $(x) = x
2πi(log(x)− 1),

W̃ 1-loop =
∑
fields

$(Qfield)

=
∑
β,β′

$(σβ − σβ′ + 2u) +
∑
β,a

($(σβ − µa − u) +$(µa − σβ − u)) (2.20)

The specific feature of the twisted superpotential, as opposed to the more familiar superpo-

tential, is the multivaluedness of its first derivative, which is related to the discrete nature

of the top component Fi of the twisted chiral superfield Σβ = σβ + . . .+ϑϑ̃Fβ which enters

the Lagrangian of the effective theory through the twisted F -term
∫
dϑdϑ̃W̃ (Σ). The min-

ima of the effective potential (which involves the coupling to the field strengths (Fβ)Ni=1 of

the abelian gauge fields) are the solutions to the equations:

exp 2πi
∂W̃

∂σβ
= 1 , β = 1, . . . , N (2.21)

which happily coincide with (2.12). As long as the masses of the matter fields (2.17) as well

as those of the W -bosons are non-zero, the exactness of the one-loop approximation (2.20)

can be justified.

The implications of the identification of (2.21) with (2.12) are quite dramatic. One

of the unexpected consequences is the realization that the Yangian of sl2, which is the

spectrum generating algebra of the Heisenberg spin chain, must act in the union of Hilbert

spaces of different quantum field theories, namely U(N) gauge theories with all values of

N , at least for N ≤ L. The specific realization of this novel symmetry is not yet completely

understood, although the constructions of [30, 36, 61] provide the tantalizing hints.

2.3 Generalizations

Let us now briefly review the generalization of the above correspondence to the case of a

Lie algebra gQ based on a quiver Q. The vertices v ∈ VQ are the simple roots while the

edges connecting the vertices encode their scalar products. The simple Lie algebras slr+1,

so2r, er with r = 6, 7, 8 and their affine versions are associated with the quivers with r

(r + 1) vertices, which coincide with their Dynkin diagrams.

The spin chain model based on gQ depends on the choice of the representation Hw of

the Yangian Y (gQ), which, in turn, can be taken to be the tensor product of the so-called

evaluation representations Ri(µ), where i ∈ VQ and µ ∈ C:

Hw =
⊗
i∈VQ

wi⊗
α=1

Ri(µ
(i)
α ) , (2.22)

where µ
(i)
α ∈ C. The multiplicities w = (wi)i∈VQ are the analogues of L, and the evaluation

points µ
(i)
a are the analogues of the parameters µ1, . . . , µL. Now, the analogue of the spin

projection N is the collection v = (vi)i∈VQ , where vi ∈ Z≥0.

The Bethe ansatz equations in the case of general Q are sometimes called the nested

Bethe equations (in the case of the A,D,E Dynkin diagrams they were written in [28, 52]).

– 6 –
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The unknowns are the Bethe roots σ
(i)
β , where β = 1, . . . , vi, i ∈ VQ. These equations have

the Yang-Yang potential:

W̃Q =
1

2πi

∑
i∈VQ

logqi

vi∑
β=1

σ
(i)
β

+
∑
i∈VQ

vi∑
β=1

 vi∑
β′=1

$(σ
(i)
β −σ

(i)
β′ +2u)+

wi∑
a=1

(
$(σ

(i)
β −µ

(i)
a −u)+$(−σ(i)

β +µ(i)
a −u)

)
+
∑
e∈EQ

vs(e)∑
α=1

vt(e)∑
β=1

(
$(σ(s(e))

α −σ(t(e))
β −u+µe)+$(−σ(s(e))

α +σ
(t(e))
β −u−µe)

)
(2.23)

where, in order to write the equations, one introduces some orientation of the edges, thereby

defining two maps s, t : EQ → VQ, sending an edge e ∈ EQ to its source s(e) and the target

t(e), respectively. The new entry in (2.23) is a C-valued 1-cochain (µe)e∈EQ which can

be eliminated by redefining µ
(i)
a ’s for simply-connected Q’s. The observation of [37] is

that (2.23) is precisely the effective twisted superpotential of the N = (4, 4) theory in two

dimensions with the gauge group

Gv = ×i∈VQ U(vi) (2.24)

and the hypermultiplets in the representations

RH =
⊕
i∈VQ

Hom(wi,vi)
⊕
e∈EQ

Hom(vs(e),vt(e)) (2.25)

where wi ≈ Cwi are the multiplicity spaces, and vi ≈ Cvi are the defining representations

of U(vi). The parameter u is the twisted mass softly breaking the supersymmetry down

to N = (2, 2), it corresponds to the U(1) symmetry under which the N = 2 adjoint

chiral multiplets Φi in N = 4 vector multiplets have charge +2, while the N = 2 chiral

multiplets in fundamental Hom(wi,vi) and antifundamental Hom(vi,wi) representations,

as well as both bi-fundamentals Hom(vs(e),vt(e)) and its conjugates Hom(vt(e),vs(e)) have

charge −1. The parameters µe are the twisted masses corresponding to the U(1)e symmetry

under which Hom(vt(e),vs(e)) has +1 charge, while Hom(vs(e),vt(e)) has −1 charge. The

evaluation parameters µ
(i)
a are the twisted masses for the maximal torus of U(wi).

3 Bethe ansatz for closed super-spin chains

The Bethe ansatz equations for the spin chains based on the superalgebra gl(m|n) has been

found long time ago. We use the formalism of [50] and [11], adapted to our notations.

3.1 Principal gradation

Let us first discuss the case of the principal gradation Dynkin diagram [15].

– 7 –
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The diagram has n+m− 1 node, with i = 1, . . . ,m− 1 and i = m+ 1, . . .m+ n− 1

called the bosonic nodes and i = m the fermionic node. The Bethe roots σ
(i)
α , α = 1, . . . , vi

are the roots of the polynomials Qi(x), i = 1, . . . ,m+ n− 1 of degrees vi,

Qi(x) =

vi∏
α=1

(
x− σ(i)

α

)
(3.1)

We also define Q0(x) = Qm+n(x) ≡ 1. Then Bethe equations (we generalized them by

including the twist parameters qi’s) have the form: whenever Qi(x) = 0:

qi
Qi−1(x+ u)

Qi−1(x− u)

Qi(x− 2u)

Qi(x+ 2u)

Qi+1(x+ u)

Qi+1(x− u)
= −Pi(x+ u)

Pi(x− u)
, 1 ≤ i ≤ m− 1 ,

qm
Qm−1(x+ u)

Qm−1(x− u)

Qm+1(x− u)

Qm+1(x+ u)
= −P+(x)

P−(x)
,

qi
Qi−1(x− u)

Qi−1(x+ u)

Qi(x+ 2u)

Qi(x− 2u)

Qi+1(x+ u)

Qi+1(x− u)
= −Pi(x− u)

Pi(x+ u)
, m < i ≤ m+ n− 1 ,

(3.2)

with monic polynomials Pk(x), k = 1, . . . ,m−1,±,m+1, . . . ,m+n−1. We see that (3.2)

can be cast in the form

exp
∂W̃gl(m|n)

∂σ
(i)
α

= 1 (3.3)

where W̃gl(m|n) is similar to the Q = Am+n−1 Yang-Yang function (2.23), except that the

node i = m contributes differently, and the sign of u is flipped in passing from i < m

to i > m:

W̃gl(m|n) =
1

2πi

m+n−1∑
i=1

logqi

vi∑
β=1

σ
(i)
β

+
m−1∑
i=1

vi∑
β=1

 vi∑
β′=1

$(σ
(i)
β −σ

(i)
β′ +2u)+

wi∑
a=1

(
$(σ

(i)
β −µ

(i)
a −u)+$(−σ(i)

β +µ(i)
a −u)

)+

+
m−1∑
i=1

vi∑
α=1

vi+1∑
β=1

(
$(σ(i)

α −σ
(i+1)
β −u)+$(−σ(i)

α +σ
(i+1)
β −u)

)
+

+

vm∑
β=1

w∑
a=1

(
$(σ

(i)
β −µ

(+)
a )+$(−σ(i)

β +µ(−)
a )

)
+

+
m+n−1∑
i=m+1

vi∑
β=1

 vi∑
β′=1

$(σ
(i)
β −σ

(i)
β′ −2u)+

wi∑
a=1

(
$(σ

(i)
β −µ

(i)
a +u)+$(−σ(i)

β +µ(i)
a +u)

)+

+
m+n−1∑
i=m

vi∑
α=1

vi+1∑
β=1

(
$(σ(i)

α −σ
(i+1)
β +u)+$(−σ(i)

α +σ
(i+1)
β +u)

)
(3.4)

where

Pi(x) =

wi∏
a=1

(
x− µ(i)

a

)
, i = 1, . . . ,m− 1,±,m+ 1, . . . , n+m− 1 (3.5)

and degP+ = degP− = w.
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3.2 General Dynkin diagram

The general Dynkin diagram of sl(m|n) is characterized by a collection of p ≥ 1 integers

0 < l1 < l2 < . . . < lp < m + n, labeling the chosen fermionic simple roots, where, for

even p = 2k:

n =

p∑
i=1

(−1)ili = d1 + d3 + . . .+ d2k−1 , (3.6)

and for odd p = 2k + 1:

m =

p∑
i=1

(−1)i−1li = d1 + d3 + . . .+ d2k+1 , (3.7)

where d0 = m+ n− lp, di = lp+1−i − lp−i, i = 1, . . . , p− 1, dp = l1, so that all di ≥ 1, and∑
i di = m+ n.

In this paper we shall not discuss the Bethe/gauge correspondence for the general

Dynkin diagrams of the gl(m|n) superalgebra. We leave this as an exercise.

4 Supersymmetric gauge theory for superspin chain

The first observation about (3.4) is that it is obtained by fusing two type A quiver theories,

Am−1 and An−1, with the opposite values of the u-parameter. The fusing node i = m is a

U(vm) N = (2, 2) gauge theory which couples to both Am−1 and An−1 theories.

Here is the minimal construction, which we found in 20081 (the paper [48] used the

same construction in the (m|n) = (2|1) case, albeit for sl rather gl superalgebra).

Start with the Am−1 × An−1 N = (4, 4) theory with the gauge group Gl × Gr where

Gl = U(v1)× . . .×U(vm−1), Gr = U(vm+1)× . . .×U(vm+n−1), the bi-fundamental hyper-

multiplets in (vi+1, v̄i), i = 1, . . . ,m − 2, and i = m+ 1, . . . ,m + n− 2, and fundamental

hypermultiplets (w̄i,vi), i = 1, . . . ,m − 1, and i = m + 1, . . . ,m + n − 1. Now let us

turn on the twisted mass u for the U(1)u symmetry which acts as U(1)u on the fields of

the Am−1 sector and as U(1)u on the fields of the An−1 sector (i.e. the opposite charges).

As usual, we turn on the twisted masses for the maximal tori of the flavor symmetry

U(w1)× . . .×U(wm−1)×U(wm+1)× . . .×U(wm+n−1).

Now we couple this theory to the N = (2, 2) gauge theory with the gauge group U(vm),

and the bi-fundamental chiral multiplets Bm−1 ⊕ B̃m−1 in (v̄m−1,vm) ⊕ (v̄m,vm−1) and

Bm ⊕ B̃m in (v̄m+1,vm) ⊕ (v̄m,vm+1) and the fundamental and anti-fundamental chirals

Im ∈ (w̄−,vm) and Jm ∈ (v̄m,w+), where the vector spaces w± have equal rank w.

The matter fields couple to the N = (2, 2) adjoint chirals at the m− 1 and m+ 1 node

through the superpotential (in addition to the superpotential inherited from the N = (4, 4)

theory):

δ1W = Trvm

(
Bm−1Φm−1B̃m−1

)
− Trvm

(
BmΦm+1B̃m

)
(4.1)

Thus, the chiral multiplets Bm−1, B̃m−1 have the charge −1 under U(1)u while Bm+1, B̃m+1

have the charge +1 (recall that Φi has the charge +2 for i < m and −2 for i > m).

1Many thanks to E. Ragoucy for helpful correspondence and patient explanations of the results in [50]

then and ten years later.
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4.1 A family of theories

The minimal choice above reproduces the equations (3.4). However this choice lacks the

rigidity one expects of the theory with the hidden Y (sl(m|n)) symmetry. Namely, the

U(1)u symmetry is a subgroup in U(1)l ×U(1)r, where U(1)l,r acts as U(1)u on the Am−1

and on the An−1 portions, respectively, including the bifundamentals (Bm−1, B̃m−1) and

(Bm+1, B̃m+1) (which are fundamental hypermultiplets from the point of view of Am−1 and

An−1 portions, respectively). One can therefore deform this theory by two twisted masses

ul, ur, so that the theory we discussed so far would correspond to the case ul + ur = 0. It

is possible that such deformation also has an interesting Bethe/gauge dual (perhaps the

generalized root systems of [55] would make an appearence, with κ/(1− κ) = −ur/ul).
We propose another solidifier. Introduce the triplet (Φ−,Φ0,Φ+) of U(vm) adjoint

chiral multiplets, with the U(1)u charges +2, 0,−2, respectively, and add the following

terms to the superpotential:

δ2W = Trvm

(
Φ0[Φ+,Φ−]− Φ+Bm−1B̃m−1 + Φ−Bm+1B̃m+1

)
(4.2)

and

δ3W = t1 TrvmΦ+Φ− + t2TrvmΦ2
0 . (4.3)

The U(1)u-symmetry allows one to add terms like U(Φ0) with some gauge-invariant polyno-

mial U(x), or
∑

l slTr
(
Φ+Φ−Φl

0

)
, however our choices are limited by cubic polynomials as

we wish to be able to lift these theories to renormalizable N = 1 theories in four dimensions

(with the XXZ and XYZ-type Bethe duals).

The term (4.2) can be accompanied by the coupling δ4W = TrΦ0IJ to yet another

fundamental hypermultiplet (I, J) ∈ (w̄0,vm)⊕ (v̄m,w0). Neither Φ0 nor (I, J) contribute

to the effective twisted superpotential W̃ since Φ0 has charge 0 under U(1)u and I and J

have the opposite charges (which can be absorbed into the twisted masses for U(w0) flavor

symmetry). The nice feature of the (Φ0,±, Bm, B̃m, Bm−1, B̃m−1, I, J) package is that its

Higgs branch coincides with the moduli space of spiked instantons [41–46] which fit into

a three dimensional variety (see [51] for the recent work where using these moduli spaces

the representations of the cohomological Hall algebra are constructed). In the absence

of the (I, J)-matter fields the corresponding Higgs branch is the moduli space of folded

instantons [41–46] which we shall discuss in the next section.

We should stress that only the δ3W term provides the rigidity ul + ur = 0. Once

t1 = t2 = 0 we can turn on both ul and ur, leading to the equations describing the

quantum cohomology, i.e. the spectrum of the twisted chiral ring: whenever Qi(x) = 0,

Qi−1(x+ul)

Qi−1(x−ul)
Qi(x−2ul)

Qi(x+2ul)

Qi+1(x+ul)

Qi+1(x−ul)
=−q−1

i

Pi(x+ul)

Pi(x−ul)
, 1≤ i≤m−1 ,

Qm−1(x+ul)

Qm−1(x−ul)
Qm(x−2ul)

Qm(x+2ul)

Qm+1(x+ur)

Qm+1(x−ur)
Qm(x−2ur)

Qm(x+2ur)

Qm(x+2ul+2ur)

Qm(x−2ul−2ur)
=

=−q−1
m

P+(x)

P−(x)

Pm(x−ul−ur)
Pm(x+ul+ur)

,

Qi−1(x+ur)

Qi−1(x−ur)
Qi(x−2ur)

Qi(x+2ur)

Qi+1(x+ur)

Qi+1(x−ur)
=−q−1

i

Pi(x+ur)

Pi(x−ur)
, m< i≤m+n−1 ,

(4.4)
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where qi = e2πiϑi−ri ’s are the Kahler moduli. The t1 = t2 = 0 locus has a bonus feature

in the form of a U(1)R symmetry, under which all the fundamentals except (I, J) and bi-

fundamentals have charge 0, all the Φi, Φ± fields have charge +1, with Φ0 having charge

−1, and I, J having charge +1. This symmetry is preserved by the β-deformation:

TrΦ0[Φ+,Φ−] −→ eβTr (Φ0Φ+Φ−)− e−βTr (Φ0Φ−Φ+) (4.5)

Likewise, this U(1)R symmetry is restored in the limit where both t1 and t2 go to infinity,

i.e. Φ± and Φ0 decouple.

The U(1)R symmetry can be used to define the topological field theory by A twist.

After the twist the fields Φi,Φ±, I, J become the (1, 0)-forms on the worldsheet Σ, i.e.

Φi = Φi,zdz ∈ Γ (End(Vi)⊗KΣ), I = Izdz ∈ Γ (Hom(w0,Vm)⊗KΣ), while Φ0 becomes

the section of End(Vm)⊗TΣ. The path integral localizes onto the solutions of the generalized

Hitchin equations, which schematically read as follows:

∇z̄(field) = (∂W/∂field)† (4.6)

where by the field we mean the lowest component of the chiral multiplet after the twisting.

When Σ = D2 or Σ = C one can further deform the theory by subjecting it to

the two-dimensional Ω-background. The path integral with the supersymmetric boundary

conditions is expected to solve the quantum Knizhnik-Zamolodchikov equation based on

superalgebras, cf. [3].

5 Conclusions and future prospects

Bethe/gauge correspondence between the finite-dimensional spin chains and two dimen-

sional supersymmetric gauge theories (their anisotropic cousins corresponding to the three

and four dimensional theories toroidally compactified to two dimensions) has a parallel

correspondence between the quantum integrable systems with infinite-dimensional spaces

of states, such as many-body systems, and the four (five, six) dimensional supersymmetric

gauge theories subject to a two dimensional Ω-background (times a circle or a torus) [38, 39].

The examples discussed in this paper are not an exception to that rule. Namely, there is

a four-dimensional theory subject to a two dimensional Ω-background, which corresponds

to a many-body system based on superalgebra sl(m|n). It was shown in [41–46] that the

folded instanton theory, i.e. a generalized gauge theory on the spacetime of the form:

C×C∪0 C (in other words, a union of the coordinate planes C2
12 (z3 = 0) and C2

23 (z1 = 0)

inside the three complex dimensional space C3 with the coordinates z1, z2, z3), with the

local gauge groups U(n) and U(m) (and local matter content of the N = 2∗ theory), re-

spectively, subject to the Ω-deformations in C1
1 and C1

3 with the equivariant parameters

ε1 and ε3, respectively, is a theory with the N = (2, 2) super-Poincare invariance in two

dimensions (i.e. in C1
2). Its Bethe dual is the deformed elliptic Calogero-Moser system (the

– 11 –
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trigonometric version was studied in [58, 59]):

Ĥ = −κ
2

n∑
i=1

∂2

∂x2
i

− 1− κ
2

m∑
j=1

∂2

∂y2
j

+

+
κ

1− κ
∑
i<i′

℘(xi − xi′) +
1− κ
κ

∑
j<j′

℘(yj − yj′) +
∑
i,j

℘(xi − yj) , (5.1)

where

κ =
ε1

ε1 + ε3
(5.2)

It was shown in [41–46] that the partition function of the theory with the surface defect

inserted at some point in C1
2 (with the monodromy defect at 0 ∈ C1

1 ∪0 C1
3) is the wave-

function of the quantum system (5.1). Specifically, such a partition function is obtained

by integration over a Zm+n-fixed locus in the moduli space of folded instantons, which is

the space of solutions to the following system of equations:

[Φ+,Φ−] = 0 ,

[Φ0,Φ+] +Bm+1B̃m+1 = 0 ,

[Φ0,Φ−] + B̃mBm = 0

Φ−Bm+1 = Φ+B̃m = B̃m+1Φ− = BmΦ+ = 0 .

(5.3)

We expect that a proper large m,n limit of this model produces a super-version of the

quantum intermediate long-wave equation, whose spectrum is determined from the Bethe

equations similar to (4.4).

On the other hand, the surface defect of the folded instanton theory can be modelled

on a two dimensional N = (2, 2) gauged linear sigma model albeit on the worldsheet made

out of two copies of C1 (more specifically C1
1 and C1

3) glued at one point 0. On either

component the low-energy effective target space is the cotangent bundle to the complete

flag variety, T ∗Fl(m,m − 1, . . . , 1) and T ∗Fl(n, n − 1, . . . , 1), respectively. In addition,

there are degrees of freedom localized at 0, which describe some interaction between the

two sigma models. We expect the equivalence between the four dimensional and the two

dimensional viewpoints on this system is a way to make contact with the discrete dynamics

approach to Bethe ansatz of superalgebras of [26].

Finally, let us mention another extension of this work. In [39] the ADE-type quiver

gauge theories in four and five dimensions were analyzed using the q-character [16] observ-

ables, which were generalized to qq-characters in [41–46]. In [27] the theories associated

to the non-simply-laced algebras were constructed, together with the corresponding qq-

characters. It must be possible to include the superalgebras into this picture as well, in

particular to define the qq-characters for the Yangians and quantum affine algebras based

on sl(m|n). The surface defects in these theories will presumably carry the N = 2 structure

in two and three dimensions that we described in this note.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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