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signatures through quantum corrections even without direct productions. By measuring

the Standard Model processes precisely, we can indirectly probe the EWIMPs. In this

paper, we study the current constraint and future prospect of the EWIMPs by using the

precision measurements of mono-lepton production from the charged Drell-Yan processes at

hadron colliders. We found the mono-lepton signature can be a better probe than dilepton

signature from the neutral Drell-Yan processes.
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1 Introduction

An electroweak-interacting massive particles (EWIMP) is quite generic prediction of var-

ious extensions of the Standard Model (SM). Supersymmetric (SUSY) models and extra

dimension models predict the massive partner particles whose gauge charges are identical

to the SM particles. A generic class of the extended Higgs models also contain the scalar

particles which have electroweak charges.

The electroweak gauge interaction also plays a critical role in the dark matter physics.

In many new physics models, the dark matter abundance is controlled by the electroweak

gauge interaction. The most drastic example of the electroweak-interacting dark matter

is so-called “minimal dark matter” (MDM) model [1–3]. The idea of this model is that a

large electroweak gauge charge can automatically stabilize a particle without any ad-hoc

Z2 parity. In this case, a 5plet Majorana fermion or 7plet real scalar particle is a candidate

of the dark matter.

Searching for such particles are essential to reveal the nature of fundamental physics.

One of the most important goal of the LHC is to discover such particles. In fact, the search

strategy of the EWIMPs at the LHC is not straightforward. The LHC signatures of the

EWIMP production strongly depend on how the produced particles decay. If the EWIMP

decays into much lighter particles and the decay products contain leptons, photons or

missing energy, the LHC reach is getting excellent. For the SUSY case, the mass constraint

on the chargino and neutralino can be now better than 1 TeV, if the decay products contain

multi-leptons [4, 5]. The constraint of charginos/neutralinos decaying into photons is also

severe [6] and this can exclude a broad class of the low-scale gauge mediation models [7].

If the mass difference between the EWIMP and daughter particle is small, the EWIMP

cannot emit energetic particles. However, due to phase space suppression, the decay rate of

the EWIMP is suppressed and can be long-lived. In such a case, the EWIMPs provide exotic

charged tracks. A prime example is the Wino dark matter in the SUSY model [8–12]. The

Wino dark matter candidate predicts rich signatures in the cosmic rays and direct detection

experiments [13–19]. The Wino dark matter is motivated very well from the viewpoint of

SUSY model building, which a generic prediction from the anomaly mediation [20, 21].
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Figure 1. Radiative correction from EWIMPs.

This framework is compatible with the so-called “mini-split SUSY” scenario [22–27], and

the discovery of the 125 GeV Higgs boson [28, 29] triggers this framework to attract more

and more attention [30–36]. In such a mini-split SUSY, the decay length of the charged

Wino is around 6 cm [37, 38] and the mass constraint of the Wino is around 500 GeV [39].

Recently, several ideas to catch a shorter charged track are proposed [40, 41], and Higgsino

dark matter in high-scale SUSY [42] and MDM, whose charged track is much shorter, can

be tested by improving tracking technique and detectors.

The hardest EWIMP target at the LHC is the case that the decay products are soft

and there no exotic charged tracks. Such cases have been intensively studied and various

LHC signatures to increase the sensitivity of the EWIMP search are proposed [43–49]. The

aim of this work is propose another strategy for the EWIMP search.

As far as a particle has electroweak gauge charge, it inevitably affects the ordinary

SM process through the quantum corrections. With the precision measurement of the SM

process enable us to probe the EWIMP indirectly, even without direct EWIMP production.

In the previous works [50, 51], we propose indirect probes of the EWIMPs, by using the

precision measurement of the dilepton distribution at lepton colliders and hadron colliders.

Along this line, the prospect at a future 100 TeV hadron collider has been studied [52].

In this paper, we extend the previous analysis to mono-lepton signatures. We find that

the mono-lepton signatures at the hadron collider is also useful probe of the EWIMPs and

potentially its sensitivity is better than the dilepton signatures.

2 Correction from EWIMPs to mono-lepton signatures

In the Standard Model, the mono-lepton and missing energy signatures come from a virtual

W boson exchange. This process has a reasonably large cross section, and is often utilized

for a heavy W ′ search. Instead of direct production of new physics particles, we focus on

the the quantum effect from the EWIMPs. The EWIMP loop contribution affects the W

boson propagator and accordingly the mono-lepton signatures are modified.

Here we discuss the radiative corrections to the mono-lepton signatures form the

EWIMPs. Figure 1 shows an example of the one-loop correction to the Drell-Yan pro-

cesses. The interference between the EWIMP loop and the Standard Model processes

affects the cross section of the mono-lepton productions. After integrating the EWIMP
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field out from the original Lagrangian at one-loop level, we obtain the following effective

Lagrangian for the mono-lepton signatures:

Leff = LSM +
dWW

4
W a
µν Π(−D2/m2)W aµν + · · · , (2.1)

where LSM is the SM Lagrangian, m is the EWIMP mass, g is the gauge coupling of SU(2)L

and W a
µν the field strength tensor, respectively, with D being the covariant derivative acting

on W aµν . The Π is a loop function of renormalized self-energy of the W boson and given by

Π(x) =


1

16π2

∫ 1

0
dy y(1− y) ln[1− y(1− y)x] (fermion)

1

16π2

∫ 1

0
dy (1− 2y)2 ln[1− y(1− y)x] (scalar)

. (2.2)

Here we use the MS regularization scheme with the renormalization scale µ = m. The

gauge factor dWW is given by

dWW =
g2n(n− 1)(n+ 1)

12

{
1 (complex scalar)

8 (Dirac fermion)
. (2.3)

In the cases of a Majorana fermion and real scalar, another factor 1/2 should be multiplied.

If the EWIMP has other internal degrees of freedom such as color factor, this factor should

be also multiplied.

The matrix element of the mono-lepton process at leading order (LO) is

MSM[u(p)d̄(p′)→ `+(k)ν(k′)] =
g2

2

[v̄L(d; p′)γµuL(u; p)] [ūL(`; k)γµvL(ν; k′)]

ŝ−m2
W

, (2.4)

The amplitude of the one-loop diagram with the EWIMP is:

MEWIMP[u(p)d̄(p′)→ `+(k)ν(k′)]

=
g2

2

[v̄L(d; p′)γµuL(u; p)] dWW ŝΠ(ŝ/m2) [ūL(`; k)γµvL(ν; k′)]

(ŝ−m2
W )2

, (2.5)

With the EWIMP loop, the cross section is modified as:

σ̂EWIMP − σ̂SM

σ̂SM
=
|MEWIMP +MSM|2 − |MSM|2

|MSM|2
' 2dWW

ŝRe(Π(ŝ/m2))

ŝ−m2
W

. (2.6)

In figure 2, we show the modification of the partonic cross section as a function of

the center of the center-of-mass energy of the initial state partons
√
ŝ or the invariant

mass of the charged lepton and neutrino m`ν . As examples, we show the cases of 300 GeV

Wino (n = 3, Majorana fermion) and 5plet real scalar particles. For the smaller m`ν �
2m, the correction is suppressed and proportional to m2

`ν/m
2. When m`ν ' 2m, the

correction negatively contributes and reduced the cross section by a factor of dW /(18π2)

for the fermion and dW /(36π2) for the scalar case. In the cases of the Wino and 5plet real
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ŝ ❬●❡❱❪

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 2. The EWIMP correction to the partonic cross section. The blue and solid line shows the

corrections from the 300 GeV Wino (n = 3, Majorana fermion) and red and dashed 300 GeV 5plet

real scalar.

scalar, these factors are 0.019 and 0.006 respectively, as seen in the figure. For the larger

m`ν � 2m, the cross section gets logarithmically enhanced, since the EWIMP particles

strengthen the gauge coupling g, as the EWIMPs increase the coefficient of the SU(2)L

gauge beta function.

In reality, for the mono-lepton signatures, we cannot fully reconstruct the invariant

mass of the charged lepton and neutrino, as the longitudinal momentum of the neutrino

cannot be measured. It is useful to use the transverse mass,

m2
T = 2pT,`pT,miss(1− cos(φT,`,miss)), (2.7)

where φT,`,miss is the azimuthal angle between the lepton and the missing energy directions

in the transverse plane. The transverse mass mT is less than m`ν and its distribution has

a so-called Jacobian peak at mT = m`ν . In figure 3, we show the EWIMP correction to

the transverse mass distribution for 13 TeV LHC running. To estimate this correction,

we generate the SM mono-lepton signals, by using the program MG5 aMC@NLO [53, 54].

We reweight events by following eq. (2.6), using the invariant mass of the parton-level

lepton and neutrino. In figure 3, we show the EWIMP correction to the transverse mass

distribution at the 13 TeV LHC. We see that even in the transverse momentum distribution,

the EWIMP corrections can remain and the size of the correction is almost same as the

correction to the m`ν distribution. In the following, we discuss how we can test this

deviation from the Standard Model case.

3 Analysis of LHC signatures

Here we compare the EWIMP signatures with current observation [55] and study the future

prospects. In the following analysis, we perform the Monte-Carlo simulation with programs
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Figure 3. The EWIMP correction to the transverse mass distribution at the 13 TeV running LHC.

The blue and solid line shows the corrections from the 300 GeV Wino and red and dashed 300 GeV

5plet real scalar.

MG5 aMC@NLO event generator [53, 54], interfaced to Pythia 6 [56] and Delphes 3 [57, 58].

The EWIMP signal, dNEWIMP/dmT, mainly come from the interference between the

SM charged Drell-Yan process and the EWIMP one-loop diagram. In order to take into

account the effect of higher order QCD correction, detector effect, kinematical selection and

so on, we calculate dNEWIMP/dmT by multiplying the factor (σ̂BSM − σ̂SM)/σ̂SM obtained

in the previous section to the W originated background number estimated by the ATLAS

collaboration [55] at each bin.

In figure 4, we show the observed data and background of the transverse mass in

the mono-lepton events [55]. We show the difference of the data from the background,

divided by the systematic uncertainty (pull) in the lower panel. We also show the EWIMP

signatures of the 100 GeV Wino and 300 GeV and 500 GeV 5plet Majorana fermion (MDM).

So far the observed data and the background are consistent, and we can set the limit on

the EWIMP contribution. For this purpose, we need to know the details of the systematic

uncertainties of the Standard Model background prediction. There are several sources

of the systematic uncertainties, such as lepton measurements and the uncertainty of the

SM cross section due to PDF and higher-order effects. There should be some correlation

of the systematic uncertainty on each bin. However, we cannot get detailed information

on the systematic uncertainties with public data and we simply assume that systematic

uncertainty of each bin is independent. Under this assumption, we compose the χ2 variable

and set the limit on the mass and charge of the EWIMP (the number of SU(2)L quantum

charge, n).

In figure 5, we show the current constraint for Majorana fermion and real scalar from

observed data [55] in the red solid lines and future prospect at 14 TeV running LHC with

integrated luminosity 3 ab−1 in the blue lines. The regions above the lines will be excluded

– 5 –
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Figure 4. The observed data and background of the transverse mass distribution at the ATLAS

detector with 13 TeV running and integrated luminosity 36 fb−1 [55]. In the lower panel, we show

the pull of the data from the background and the EWIMP signatures of the 100 GeV Wino and

300 GeV and 500 GeV 5plet Majorana fermion (MDM).

(a) Majorana fermion (b) Real scalar

Figure 5. The current limit and future prospect at 95% CL for the EWIMP are shown. The current

limit is obtained by using the data at the 13 TeV LHC with the integrated luminosity 36 fb−1 and

the future prospect by 14 TeV and 3 ab−1 LHC. The region above each line can be experimentally

excluded. The n in the vertical axis shows the effective number of SU(2)L gauge charge.

at 95% CL. For the cases of a Dirac fermion and complex scalar with SU(2)L quantum

number n , we can estimate corresponding ncorr by solving ncorr.(n
2
corr. − 1) = 2n(n2 − 1),

as the overall factor comes from eq. (2.3). For the future prospect, we adopt same binning

as the current ATLAS study and assume the systematic uncertainty 5%, 2% and 0% for

each bin. The corresponding sensitivity curves are shown in blue dotted, dashed and solid

lines in the figure, respectively. We also show the current constraint from the electroweak

precision measurement at the LEP in the green lines [51]. In the figure, we show the

quantum number of several benchmark particles in the horizontal lines. Note that the

SU(2)L quantum numbers of the Higgsino and complex Higgs doublet are estimated to be

ncorr ' 2.43, as they are not a Majorana fermion or real scalar.
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4 Conclusion and discussion

In this paper, we study the reach of the EWIMP with the precision measurement of the

mono-lepton signatures at the current and future LHC. It is worthwhile comparing the

result with our previous work based on dilepton signatures at hadron colliders [51]. If we

adopt 2% systematic uncertainties, we can test around 1.4 TeV 5plet Majorana fermion

with the mono-lepton signatures at the future LHC, whereas 1 TeV with dilepton. In

both cases, the sensitivity strongly depends on the systematic uncertainties and simple

comparison is dangerous. However, it seems the mono-lepton will be more useful to probe

the EWIMP. This would be because the SM cross section of mono-lepton process is much

greater the dilepton process and the quantum corrections from the EWIMP is relatively

larger compared to the dilepton case, since the only left-handed parton quarks and an

SU(2)L gauge boson contribute the mono-lepton signal.

We found the mono-lepton signature is a quite useful probe of the EWIMP. However,

in order gain more robust constraints and prospects, we need to pay more attention to

the systematic uncertainties. Moreover, if we consider the EWIMP with larger electroweak

gauge charges, we need to estimate higher order correction from the EWIMP. We will leave

these issues for a future work.
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