
J
H
E
P
0
3
(
2
0
1
9
)
0
7
1

Published for SISSA by Springer

Received: January 15, 2019

Revised: February 15, 2019

Accepted: February 21, 2019

Published: March 13, 2019

Cosmology with a very light Lµ − Lτ gauge boson

Miguel Escudero,a,b Dan Hooper,c,d,e Gordan Krnjaicc and Mathias Pierref,g,h

aDepartment of Physics, King’s College London,

Strand, London WC2R 2LS, U.K.
bInstituto de F́ısica Corpuscular (IFIC), CSIC-Universitat de València,
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Abstract: In this paper, we explore in detail the cosmological implications of an abelian

Lµ − Lτ gauge extension of the Standard Model featuring a light and weakly coupled Z ′.

Such a scenario is motivated by the longstanding ∼ 4σ discrepancy between the measured

and predicted values of the muon’s anomalous magnetic moment, (g − 2)µ, as well as the

tension between late and early time determinations of the Hubble constant. If sufficiently

light, the Z ′ population will decay to neutrinos, increasing the overall energy density of

radiation and altering the expansion history of the early universe. We identify two distinct

regions of parameter space in this model in which the Hubble tension can be significantly

relaxed. The first of these is the previously identified region in which a ∼ 10− 20 MeV Z ′

reaches equilibrium in the early universe and then decays, heating the neutrino population

and delaying the process of neutrino decoupling. For a coupling of gµ−τ ' (3− 8)× 10−4,

such a particle can also explain the observed (g − 2)µ anomaly. In the second region, the

Z ′ is very light (mZ′ ∼ 1 eV to MeV) and very weakly coupled (gµ−τ ∼ 10−13 to 10−9).
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In this case, the Z ′ population is produced through freeze-in, and decays to neutrinos after

neutrino decoupling. Across large regions of parameter space, we predict a contribution

to the energy density of radiation that can appreciably relax the reported Hubble tension,

∆Neff ' 0.2.
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1 Introduction

Light and weakly coupled particles are found within many well-motivated extensions of the

Standard Model (SM) [1, 2]. Among the motivations for such states is the muon’s anoma-

lous magnetic moment, whose measured value constitutes a 4.1σ discrepancy with respect

to the predictions of the SM [3]. This anomaly has inspired many explanations involving

new sub-GeV particles [4, 5]. Although many of these explanations have already been

ruled out (including both visibly and invisibly decaying dark photons with kinetic mixing

ε ∼ 10−3), scenarios in which new states couple predominantly to muons remain viable.

In addition to the muon’s magnetic moment, there is also a ∼ 3σ tension between

the values of the Hubble constant, H0, as determined from local measurements [6, 7] and

from the temperature anisotropies of the cosmic microwave background (CMB) [8]. Such
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a discrepancy could be ameliorated if the expansion rate of the universe departed from the

predictions of standard ΛCDM cosmology at early times [9, 10]. Particularly well motivated

within this context are scenarios in which the energy density in relativistic particles exceeds

that predicted by the SM, generally parameterized in terms of a non-zero contribution to

the effective number of neutrino species, ∆Neff [11–15]. Scenarios involving early dark

energy [16–18] or a component of decaying dark matter [19] have also been proposed to

address this tension. Upcoming CMB measurements will be significantly more sensitive

to the value of ∆Neff [20], providing us with further motivation to consider this class

of scenarios.

Particularly interesting with this context are models with a broken U(1)Lµ−Lτ gauge

symmetry, corresponding to a new massive gauge boson that couples to muons, taus,

and their corresponding neutrinos. This is one of the few anomaly free U(1) gauge ex-

tensions of the SM [21, 22], and is the only such model without tree-level couplings to

first generation quarks and/or leptons.1 For this reason, U(1)Lµ−Lτ models are relatively

unconstrained and lead to qualitatively different phenomenological and cosmological con-

sequences [5, 23–27, 27–35].

In this paper, we revisit in detail the impact of a Lµ −Lτ gauge boson on the particle

content and expansion rate of the early universe. We solve the full set of Boltzmann

equations that describe the evolution of the Z ′ and neutrino populations, calculating the

value of ∆Neff across the parameter space of this model. We identify two distinct regions in

which the tension between early and late-time determinations of the Hubble constant can be

substantially relaxed. In the first of these regions, a ∼ 10− 20 MeV Z ′ reaches equilibrium

in the early universe and then decays, heating the neutrino population and delaying the

process of neutrino decoupling. For a gauge coupling of gµ−τ ' (3− 8)× 10−4, such a Z ′ is

also capable of explaining the measured value of the muon’s anomalous magnetic moment.

In the second region, a very light and weakly coupled Z ′ is produced in the early universe

through freeze-in, and decays to neutrinos only after neutrino decoupling. We identify a

large plateau of parameter space in which the contribution to the energy density is near

∆Neff ' 0.2, in good agreement with the value required to relax the tension associated

with the Hubble constant.

The remainder of this paper is organized as follows. In section 2 we describe the

U(1)Lµ−Lτ model, including kinetic mixing between the Z ′ and the photon. In section 3

we solve the full system of Boltzmann equations in order to calculate the contribution to

Neff in this model, in both the thermalized and freeze-in regimes. In section 4 we review

the experimental and astrophysical constraints on this model. Finally, in section 5 we

summarize our results and conclusions. We also include a series of appendices in which we

describe the Boltzmann equations for Z ′ production, the bounds from Supernova 1987A, the

contribution to Z ′-photon kinetic mixing induced by additional scalars, the Z ′ mediated

corrections to the energy transfer rates responsible for delaying the process of neutrino

decoupling, and a detailed description of the solutions to the Boltzmann equation in the

freeze-in regime.

1Other choices for gauging global SM quantum numbers are B − L,Li − Lj , B − 3Li, where B and L

are respectively baryon and lepton numbers and a subscript denotes a specific lepton flavor.
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2 Model description

In this study, we extend the SM to include a spontaneously broken U(1)Lµ−Lτ gauge

symmetry. In the broken phase,2 the Lagrangian is given by

L = LSM −
1

4
Z ′
αβ
Z ′αβ +

m2
Z′

2
Z ′αZ

′α + Z ′αJ
α
µ−τ , (2.1)

where gµ−τ is the gauge coupling, mZ′ is the mass of the gauge boson, and Z ′αβ ≡ ∂αZ ′β −
∂βZ

′
α is the field strength tensor. The µ− τ current is

Jαµ−τ = gµ−τ (µ̄γαµ+ ν̄µγ
αPLνµ − τ̄ γατ − ν̄τγαPLντ ) , (2.2)

where PL = 1
2(1− γ5) is the left chirality projector and

ΓZ′→`+`− =
g2
µ−τmZ′

12π

(
1 +

2m2
`

m2
Z′

)√
1−

4m2
`

m2
Z′
, ΓZ′→ν̄iνi =

g2
µ−τmZ′

24π
, (2.3)

are the rest frame partial widths for Z ′ decays to charged leptons ` = µ, τ and neutri-

nos νi = νµ,τ .

The contribution of the Z ′ to the anomalous magnetic moment of the muon, to leading

order in gµ−τ , is given by [4]

∆aZ
′

µ =
g2
µ−τ
8π2

∫ 1

0
dz

2m2
µz(1− z)2

m2
µ(1− z)2 +m2

Z′ z
' 1.3× 10−10

(gµ−τ
10−4

)2
, (2.4)

where aµ ≡ 1
2(g− 2)µ. In the last step, we have taken the mZ′ � mµ limit. The measured

value of this quantity is ∆aµ ≡ aµ(obs) − aµ(SM) = (28.8 ± 8.0) × 10−10 [3], and thus

requires a gauge coupling of gµ−τ ' (3− 8)× 10−4 in order to resolve the anomaly.

At tree-level, the Z ′ in this model couples only to heavy leptons and their neutrino

flavors. Muon and tau loops, however, can lead to kinetic mixing between the Z ′ and the

photon, inducing an effective coupling for the Z ′ to electromagnetically charged fermions.

For low energy processes we can integrate out µ and τ , resulting in an off-diagonal kinetic

term, FαβZ ′αβ , between the Z ′ and the photon. Diagonalizing these fields and restoring

canonical normalization induces the following Z ′ coupling to the electromagnetic current

L ⊃ Z ′α
(
Jαµ−τ + εJαEM

)
, JαEM = e

∑
f

Qf f̄γ
αf, (2.5)

where e is the electron charge, f is a SM fermion with charge Qf , and the quantity ε

quantifies the degree of kinetic mixing. The irreducible contributions to ε from the loops

shown in figure 1 are given by [24]

ε = −egµ−τ
2π2

∫ 1

0
dxx(1− x) log

[
m2
τ − x(1− x)q2

m2
µ − x(1− x)q2

]
−−−−→
mµ�q

− egµ−τ
12π2

log
m2
τ

m2
µ

' −gµ−τ
70

.

(2.6)

2The scalar field whose vacuum expectation value is responsible for the spontaneous breaking of

U(1)Lµ−Lτ is generally expected to be much heavier than the Z′ mass and other energy scales consid-

ered in this work. Details regarding this symmetry breaking are beyond the scope of this paper and are not

expected to affect our results.
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γ Z ′
µ

γ Z ′
τ

Figure 1. Feynman diagrams that lead to kinetic mixing between the Z ′ and the photon. In

addition to the diagrams shown here, there could also be model dependent contributions that

arise from heavy states charged under both electromagnetism and U(1)Lµ−Lτ . For a treatment of

additional contributions from heavy physics beyond the SM, see appendix C.

This calculation provides us with a benchmark value for ε, which we will refer to throughout

this paper as “natural kinetic mixing”. One should keep in mind, however, that other model

dependent contributions could potentially arise, in particular if there exist heavy particles

that are charged under both electromagnentism and Lµ − Lτ .

As a result of this kinetic mixing, the Z ′ can decay to e+e− with a partial width

given by

ΓZ′→e+e− =
(εe)2mZ′

12π

(
1 +

2m2
e

m2
Z′

)√
1− 4m2

e

m2
Z′
, (2.7)

leading to the following branching fraction

BrZ′→e+e− =
ΓZ′→e+e−

ΓZ′→ν̄µνµ + ΓZ′→ν̄τντ
'
(

eε

gµ−τ

)2

' 2× 10−5, (2.8)

where in the last step we have used the value of ε given in eq. (2.6) and taken the me �
mZ′ � mµ limit. Note that this result is independent of the gauge coupling, which cancels

in the absence of additional contributions to ε.

3 Contributions to Neff

In the early universe, the Z ′ number density, nZ′ , is governed by the following Boltzmann

equation

ṅZ′ + 3HnZ′ = 〈ΓZ′〉
(
n

(eq)
Z′ − nZ′

)
, (3.1)

where H ≡ ȧ/a is the expansion rate of the universe and n
(eq)
Z′ is the equilibrium value of

the Z ′ number density. The quantity ΓZ′ is the rest frame width, for which the thermally

averaged value is given by the following

〈ΓZ′〉 ≡ ΓZ′
K1(x)

K2(x)
, (3.2)

where K1,2 are Bessel functions of the first and second kind and x ≡ mZ′/T . Although

many processes can affect nZ′ , in the weakly coupled regime (gµ−τ � 1) it suffices to

consider only decays and inverse decays in the collision term. For a derivation and other

details, see appendix A.
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We are interested in the effect of Z ′ decays on the total radiation density just prior

to matter-radiation equality at Tγ ' 0.8 eV, which can be written in terms of Neff , the

effective number of neutrino species:

ρR =

[
1 +

7

8

(
4

11

)4/3

Neff

]
ργ , (3.3)

where ργ is the photon energy density, the factor of 7/8 accounts for the fact that neutrinos

are fermions, and the (4/11)1/3 = Tν/Tγ in the SM. Note that the SM prediction for

NSM
eff = 3.045 [36, 37] is slightly larger than 3 because of the entropy transferred to the

neutrinos through e+e− annihilations, the non-instantaneous nature of neutrino decoupling,

finite temperature corrections, and neutrino oscillations [36–39].

The evolution of the Z ′ population in the early universe depends on the values of its

mass and coupling. Broadly speaking, we will consider two qualitatively distinct regions

of parameter space:

• Early Universe Equilibrium: if gµ−τ & 4× 10−9, the Z ′ population thermalizes with

the SM bath at early times and decays into neutrinos when T ∼ mZ′/3. If these

decays occur predominantly after the neutrinos and photons decouple, they contribute

to the neutrino energy density and thereby increase the value of Neff . Furthermore,

in the presence of non-negligible kinetic mixing with the photon, Z ′ interactions with

charged particles can delay the neutrino-photon decoupling, quantitatively affecting

Neff .

• Freeze In (Late Equilibration): if gµ−τ . 4 × 10−9, the Z ′ population will not have

initially been in equilibrium with the SM in the very early universe, but is instead

produced through the freeze-in mechanism. For a wide range of masses and couplings,

the Z ′ production rate is slower than Hubble expansion at very early times, but

then becomes comparable as the Hubble rate decreases. Across this broad region

of parameter space, the Z ′ population eventually thermalizes with neutrinos, but

only after the latter decouple from photons, inducing a contribution of ∆Neff ' 0.21

through Z ′ → ν̄ν decays, provided that mZ′ & 1 eV so that the Z ′ decays prior to

CMB formation.

Each of these parameter space regions can be easily identified in figure 2.

3.1 Early universe equilibrium regime

If gµ−τ is sufficiently large, the rate of Z ′ production will exceed that of Hubble expansion,

〈ΓZ′〉 � H, keeping the Z ′ population in equilibrium with the SM plasma at early times.

In this limit, the Z ′ population satisfies nZ′ = n
(eq)
Z′ , where

n
(eq)
Z′ =

∫ ∞
0

d3~p

(2π)3

gZ′

eE/T − 1
, (3.4)

is the equilibrium number density and gZ′ = 3 is the number of spin states. As the

temperature of the universe drops below mZ′ , inverse decays become kinetically forbidden

– 5 –
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Figure 2. A summary of the phenomenology of a Lµ − Lτ gauge boson in the absence of kinetic

mixing (ε = 0) or assuming the “natural” degree of kinetic mixing associated with the diagrams

shown in figure 1 (ε ' gµ−τ/70). We show contours of constant ∆Neff, as well as the regions favored

by measurements of the muon’s anomalous magnetic moment, (g−2)µ (red band). We also identify

the regions that are excluded by measurements of di-muon production in neutrino nucleus scattering

(CCFR) [5, 40], solar neutrino observations (Borexino) [24, 41, 42], by stellar cooling [43, 44] and

by observations of Supernova 1987A [45] (see section 4 and appendix B). Regions shaded in blue

yield ∆Neff = 0.2− 0.5 which can substantially ameliorate the tension between early and late time

measurements of H0.
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Z ′ γ

e± e±

e± Z ′

e−

e+

ν̄µ,τ

Z ′

νµ,τνµ,τ

ν̄µ,τ νµ,τ

Z ′

ν̄µ,τν̄µ,τ

νµ,τ

Z ′

νµ,τ

ν̄µ,τ

νµ,τ

ν̄µ,τZ ′

Z ′

Figure 3. Z ′ induced scattering and decay processes that can alter the process of νµ and

ντ decoupling.

and the entropy of this population is transferred to other species. If only neutrinos and

photons are present, we can write the effective number of neutrino species as

Neff =
8

7

(
11

4

)4/3 ρν
ργ
, (3.5)

where ρν generically differs from its SM value due to entropy transferred from Z ′ decays.

In the equilibrium regime, these decays take place while Z ′ mediated ν scattering is in

chemical equilibrium, so the decay daughter neutrinos thermalize with the existing neutrino

population and increase their common temperature.

The presence of a light U(1)Lµ−Lτ Z
′ can substantially alter the decoupling history of

the neutrinos through processes of the kind shown in figure 3. Of these diagrams, the most

important are the decays and inverse decays of the Z ′ to neutrinos and electrons. Obser-

vations from Borexino constrain the scattering rate between neutrinos and electrons to be

within 8% of the SM prediction [24, 41], and thus such 2→ 2 processes cannot significantly

impact the process of neutrino decoupling. The impact of νµν̄τ → Z ′Z ′ scattering is to

suppress any chemical potential that might exist in the νµ − ντ − Z ′ sector, an effect that

will be efficient for gµ−τ & 10−5 [24]. Throughout the phenomenologically viable parameter

space of this model (with Neff . 4), however, the chemical potential will be negligible as a

result of e+e− ↔ νµ, τ ν̄µ, τ scattering, which is efficient for T & 3 MeV. Finally, the process

e+e− ↔ Z ′γ is suppressed by a factor of α ∼ 1/137 relative to e+e− ↔ Z ′ and thus can be

safely neglected.

From these considerations, we conclude that it is sufficient to calculate the evolution

of the following three temperatures: Tγ(=Te), Tνe and Tνµ(=Tντ =TZ′). We adopt the

assumption of Maxwell-Boltzmann statistics in the collision terms to derive the following

set of coupled differential equations which describe the evolution of these quantities [46]:

dTνe
dt

= −
(

4Hρνe −
δρνe
δt

)(
∂ρνe
∂Tνe

)−1

(3.6)

– 7 –
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dTνµ
dt

= −
(

8Hρνµ + 3H (ρZ′ + pZ′)− 2
δρνµ
δt
− δρZ′

δt

)(
2
∂ρνµ
∂Tνµ

+
∂ρZ′

∂Tνµ

)−1

(3.7)

dTγ
dt

= −
(

4Hργ + 3H (ρe + pe) +
δρνe
δt

+ 2
δρνµ
δt

+
δρZ′

δt

)(
∂ργ
∂Tγ

+
∂ρe
∂Tγ

)−1

, (3.8)

where the energy transfer rates are

δρZ′

δt
=

3m3
Z′

2π2

[
TγK2

(
mZ′

Tγ

)
− TνµK2

(
mZ′

Tνµ

)]
ΓZ′→e+e− (3.9)

δρνe
δt

=
G2
F

π5

[
2(1 + 4s2

W + 8s4
W )F (Tγ , Tνe) + F (Tνµ , Tνe)

]
(3.10)

δρνµ
δt

=
G2
F

π5

[
2(1− 4s2

W + 8s4
W )F (Tγ , Tνµ)− 1

2
F (Tνµ , Tνe)

]
+
e2ε2g2

µ−τ
4π5m4

Z′
F (Tγ , Tνµ), (3.11)

where GF = 1.16 × 10−5 GeV−2 is the Fermi constant, s2
W = 0.223 is the square of the

weak mixing angle [3], K2 is a modified Bessel function of the second kind and we have

defined the function

F (a, b) ≡ 16(a9 − b9) + 7a4b4(a− b), (3.12)

where the first and second terms arise from annihilation and scattering processes respec-

tively; for a derivation of the Z ′ induced corrections, see appendix D. In the above equa-

tions, the δρν terms account for SM and Z ′ mediated neutrino-electron and neutrino-

neutrino interactions, whereas the δρZ′ term accounts for e+e− ↔ Z ′ inverse decays. Here

we have safely assumed that the Z ′ population is strongly coupled to the µ− τ neutrinos

due to the large decay rate, ΓZ′→ν̄µνµ � H. The derivation of SM collision terms here can

be found in [46–49] and the collision terms for the Z ′ mediated processes are derived in

appendix D.

Finally, we note that the mass splittings inferred from atmospheric and solar neutrino

observations correspond to oscillations that are active for temperatures T ∼ 3 MeV and

T ∼ 5 MeV, respectively [49–51]. Since neutrino oscillations imply a rapid change in the

neutrino flavor, they act as to equilibrate the νe and νµ−ντ distribution functions, leading

to Tνe ' Tνµ . To properly account for such oscillations would require the use of the density

matrix formalism. Since the effect of such oscillations is to equilibrate the temperatures of

the different neutrino species, however, we can simply work in terms of a common neutrino

temperature, Tν . In this case, the evolution of the temperatures Tν and Tγ can be simplified

as follows

dTν
dt

= −
(

4Hρν + 3H (ρZ′ + pZ′)−
δρν
δt
− δρZ′

δt

)(
∂ρν
∂Tν

+
∂ρZ′

∂Tν

)−1

(3.13)

dTγ
dt

= −
(

4Hργ + 3H (ρe + pe) +
δρν
δt

+
δρZ′

δt

)(
∂ργ
∂Tγ

+
∂ρe
∂Tγ

)−1

, (3.14)

where ρν ≡ ρνe + 2ρνµ and the energy transfer rates are δρν/δt = δρνe/δt + 2δρνµ/δt and

δρZ′/δt, as described in eqs. (3.9), (3.10) and (3.11).

Using this set of equations, we can describe the process of neutrino decoupling, includ-

ing the energy injection into the SM plasma from Z ′ decays and any exchange of energy

– 8 –
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10−210−1100101

Tγ (MeV)

0.9

1.0

1.1

1.2

1.3

1.4
T γ
/T

ν

mZ ′ = 13 MeV, gµ−τ = 5× 10−4, Neff = 3.4
mZ ′ = 13 MeV, gµ−τ = 10−9, Neff = 3.32

mZ ′ = 5 MeV, gµ−τ = 5× 10−8, Neff = 3.4
mZ ′ = 5 MeV, gµ−τ = 10−10, Neff = 4.39

With ν-oscillations, ε = gµ−τ/70

10−210−1100101

Tγ (MeV)

1.0

1.2

1.4

T γ
/T

ν

mZ ′ = 13 MeV, gµ−τ = 5× 10−4, Neff = 3.31
mZ ′ = 13 MeV, gµ−τ = 10−9, Neff = 3.51

mZ ′ = 5 MeV, gµ−τ = 5× 10−8, Neff = 3.16
mZ ′ = 5 MeV, gµ−τ = 10−10, Neff = 4.71

Tνµ
Tνe

Without ν-oscillations, ε = gµ−τ/70

Figure 4. The evolution of Tγ/Tν for several choices of the Z ′ mass and Lµ − Lτ gauge coupling,

adopting the “natural” value for the kinetic mixing parameter, ε ' gµ−τ/70. The solid lines denote

Tνµ,ντ while the dashed lines correspond to Tνe . In the left panel, we adopt Tνe = Tνµ as expected

from rapid neutrino oscillations. In the right panel, neutrino oscillations are neglected.

between neutrinos and the electromagnetic sector that might result from U(1)Lµ−Lτ interac-

tions. We solve this set of equations starting from an initial condition of Tγ = Tν = 20 MeV,

for which the SM weak interactions are very efficient (Γ/H ∼ 300). In figure 4 we plot

the evolution of the photon-to-neutrino temperature ratio for several choices of the Z ′

mass and coupling. Note that when solving these equations we explicitly check that the

continuity equation, ρ̇ = −3H(ρ + p), is fulfilled to a relative accuracy of at least 10−5.

In figure 5 we show contours for the value of Neff predicted across a range of parameter

space in this model, focusing on the range of masses and couplings that are potentially

relevant for the (g − 2)µ anomaly. We show these results for three choices of the kinetic

mixing parameter, and both including or ignoring the impact of neutrino oscillations. Also

shown are the constraints on this parameter space derived from measurements of di-muon

production in neutrino nucleus scattering (CCFR) [5, 40], the solar neutrino scattering

rate (Borexino) [24, 41, 42] (see section 4). For mZ′ ∼ 10 − 20 MeV, the predicted value

of Neff falls within the range capable of relaxing the tension between late and early-time

determinations of the Hubble constant. Furthermore, for gµ−τ ' (3 − 8) × 10−4, such a

particle can also account for the observed value of (g − 2)µ. In figure 6, we extend these

results to smaller values of gµ−τ . Although this parameter space cannot address the mea-

sured magnetic moment of the muon, the Hubble tension can be relaxed for a Z ′ with a

wide range of couplings.

Before moving on, we note that the results described in this section do not agree

with those presented in ref. [24]. This is the case for two primary reasons. First, the

authors of ref. [24] did not consider kinetic mixing between the photon and the Z ′ and

thus neglect potentially important process of the form e+e− ↔ Z ′. Second, they adopted

1.5 MeV for the decoupling temperature of the νµ,τ neutrinos, instead of the correct value

of T dec
νµ ' 3.2 MeV (or T ' 2.4 MeV after taking into account oscillations) [46, 49–51]. If we

set ε = 0 and T dec
νµ,ντ = 1.5 MeV, we are able to reproduce the results presented in ref. [24].

In a follow up study, ref. [25] considered the interactions e+e− ↔ Z ′ in the particular
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Figure 5. Contours of constant Neff as a function of the Z ′ mass and gauge coupling for three differ-

ent values of the kinetic mixing parameter, ε. In the left panels we assume that neutrino oscillations

equilibrate the νe component such that Tνe = Tνµ , whereas neutrino oscillations are neglected in

the right frames. We also show are the regions of parameter space favored by measurements of

the muon’s anomalous magnetic moment, (g − 2)µ, as well as those excluded by measurements of

di-muon production in neutrino nucleus scattering (CCFR) [5, 40], and solar neutrino scattering

(Borexino) [24, 41, 42] (see section 4). This parameter space is also constrained rare kaon decays,

but the bound is weaker than the CCFR region above [52]. Intriguingly, the full parameter space

that simultaneously ameliorates both the H0 and (g − 2)µ anomalies can also be tested with fixed

target experiments [53–56], rare kaon decays [52, 57], and at Belle-II [58, 59].
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Figure 6. As in figure 5, but for smaller values of gµ−τ and for the case of ε = gµ−τ/70.

case in which gµ−τ = 5 × 10−4 and used entropy conservation to track the temperature

evolution of the different sectors. Our results are similar to those presented in ref. [25] for

gµ−τ = 5 × 10−4. Ref. [25], however, did not include SM neutrino-electron interactions

and assumed T dec
νµ = 1.5 MeV, whereas the present work includes these interactions and

calculates the value of T dec
ν .

3.2 Freeze-in (late equilibration) regime

If the value of gµ−τ is very small, the Z ′ population will not reach equilibrium with the

SM thermal bath in the very early universe. The condition for these particles to reach

equilibrium with muons and taus at early times can be written as nµ〈σv〉µµ→γZ′ > H(mµ),

corresponding to the following requirement on the gauge coupling:

gµ−τ &

(
1.66
√
g∗

α

mµ

mPl

)1/2

' 4× 10−9, (3.15)

where we have approximated 〈σv〉µµ→γZ′ ∼ αg2
µ−τ/2m

2
µ in the nonrelativistic limit near

T ∼ mµ, where the production rate is maximized relative to that of Hubble expansion. As

long as mZ′ � mµ, the condition in eq. (3.15) is independent of mZ′ .

But even if gµ−τ is too small for the Z ′ population to be thermalized through µ+µ− →
Z ′γ annihilations, a significant abundance of Z ′’s can be produced through inverse decays.

In fact, inverse decays may ultimately be able to generate an equilibrium Z ′ abundance.

More specifically, in the case of a light Z ′ (for which inverse decays are active when Tν �
mZ′), equilibrium between the Z ′ and neutrino populations will be achieved for gµ−τ &
1.3× 10−10(mZ′/MeV)1/2.

After neutrino decoupling, neutrino oscillations are efficient enough to approximately

equilibrate the neutrino distributions [49–51], and thus even if the Z ′ only interacts with

muon and tau neutrinos the rapid oscillation will render the νe distribution very similar

to that of νµ and ντ . Taking this into account, and imposing energy and number density

conservation, we can calculate the neutrino and Z ′ distributions after equilibration. These

– 11 –
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equations explicitly read

3ρν(Tν , 0) = 3ρν(Teq, µeq) + ρZ′(Teq, 2µeq), (3.16)

3nν(Tν , 0) = 3nν(Teq, µeq) + 2nZ′(Teq, 2µeq) , (3.17)

where the equilibrium condition requires µZ′ = 2µν . Solving these equations simultaneously

yields the following result:

Teq

Tν
= 1.2076 ,

µeq

Tν
= 1.1664 . (3.18)

Thus the neutrino temperature increases at the same time that a chemical potential is

developed for the neutrino and Z ′ populations. Once the Z ′ population is in equilibrium

with the neutrinos, it will maintain its distribution due to the active decays and inverse

decays until the temperature drops to Tν ∼ mZ′/3, at which time they will decay out

of equilibrium and thereby generate a net contribution to Neff. Since this decay process

is occurring out of equilibrium, we cannot use Fermi-Dirac or Bose-Einstein distributions

but instead have to solve the full Boltzmann equation for the distribution functions. The

relevant Boltzmann equations read as follows [60, 61]:

∂fZ′

∂t
−HpZ′

∂fZ′

∂pZ′
= −mZ′ΓZ′

EZ′pZ′

∫ EZ′+pZ′
2

EZ′−pZ′
2

dEνFdec (EZ′ , Eν , EZ′ − Eν) , (3.19)

∂fν
∂t
−Hpν

∂fν
∂pν

=
mZ′ΓZ′

Eνpν

∫ ∞
|(m2

Z′/4pν)−pν |

dpZ′pZ′

EZ′
Fdec (EZ′ , Eν , EZ′ − Eν) , (3.20)

where

Fdec (EZ′ ,Eν1 ,Eν2) = fZ′(EZ′) [1−fν(Eν1)] [1−fν(Eν2)]−fν(Eν1)fν(Eν2) [1+fZ′(EZ′)] .

(3.21)

By using the continuity equation we find that the photon temperature simply evolves as

dTγ
dt

= −
[
4Hργ + 3H(ρe + pe)

](
∂ργ
∂Tγ

+
∂ρe
∂Tγ

)−1

. (3.22)

In order to solve eqs. (3.19) and (3.20), we bin the Z ′ and ν distribution functions in

comoving momentum, y = a p/MeV, from ymin = 0.01 to ymax = 20 in 100 bins (this choice

has been previously shown to produce accurate results [38, 61]). We use this set of equations

for both the equilibration and freeze-in cases, since out-of-equilibrium decays result in each.

For the freeze-in case, we start the integration at a temperature of Tν = 100 ×mZ′ with

the initial condition fZ′ = 0 and fν = fFD(Tν , µν = 0), whereas in the equilibrium case

we start the integration at a temperature of Tν = 10×mZ′ and with the initial condition

fZ′ = fBE(Teq, 2µν) and fν = fFD(Teq, µν).

In figure 7 we show the evolution of the neutrino and Z ′ energy densities in two

representative cases. In the case of gµ−τ = 10−10 and mZ′ = 1 keV, the Z ′ population

thermalizes with the neutrinos while relativistic and only decays after Tν ∼ mZ′/3, ren-

dering ∆Neff ' 0.21. By contrast, for the case of gµ−τ = 1.3 × 10−11 and mZ′ = 2.2 keV,

– 12 –
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gµ−τ = 10−10

Figure 7. The evolution of the neutrino (solid) and Z ′ (dashed) energy densities in a regime in

which only decays and inverse decays are effective and occur after neutrino decoupling. The red

lines correspond to a situation in which the Z ′ thermalizes at a temperature similar to its mass

Tν ∼ mZ′ , prior to which its energy density was negligible. In blue we show a case in which the Z ′

population equilibrates with the neutrinos while still relativistic.

the Z ′ population reaches thermal equilibrium with the neutrinos at Tν ∼ mZ′ . We see in

this case that the neutrino energy density is reduced as the Z ′ population grows, and then

increases as the Z ′ population decays, to yield ∆Neff ' 0.21.3 In appendix E we display

the time evolution of fZ′ and the final fν |Tγ�mZ′ for some representative values of gµ−τ
and mZ′ .

In exploring the freeze-in parameter space within this model, we find the following

behavior:

ΓZ′ ≥ H(Tν = mZ′) =⇒∆Neff ' 0.21

ΓZ′ = H(Tν = mZ′)/5
2 =⇒∆Neff ' 0.1 (3.23)

ΓZ′ = H(Tν = mZ′)/172 =⇒∆Neff ' 0.03

We would like to emphasize that throughout the parameter space in which the Z ′

population reaches thermal equilibrium with the neutrinos, this model yields a prediction

of ∆Neff ' 0.21. This limit is realized across a wide range of the mZ′−gµ−τ parameter space

(see figure 2), making ∆Neff ' 0.21 a common feature within the context of this model.

We appreciate that this result will strike many readers as counterintuitive. To un-

derstand why this ∆Neff ' 0.21 plateau arises within the parameter space of this model,

consider the following summary. If gµ−τ . 4 × 10−9, the Z ′ population will not ther-

malize with muons and taus at early times (see eq. (3.15)). But so long as gµ−τ &
1.3 × 10−10 (mZ′/MeV)1/2, a light Z ′ will ultimately obtain an equilibrium abundance

through inverse decays. Thus for the a sizable range of couplings that fall in between these

two limits, the Z ′ population will not reach equilibrium with muons or taus at early times,

3If the effect of neutrino oscillations is neglected in this computation, we find ∆Neff ' 0.18 instead.

– 13 –



J
H
E
P
0
3
(
2
0
1
9
)
0
7
1

but will equilibrate with neutrinos, ultimately leading to ∆Neff ' 0.21 through their de-

cays. Note that ∆Neff ' 0.21 will only result from Z ′’s with mZ′ & 1 eV, since for lighter

gauge bosons the Z ′ population would not have decayed prior to TCMB ' 0.26 eV.

4 Constraints

In this section, we consider a number of constraints on this model, including those that

apply directly to the gauge coupling, and which depend on the degree of kinetic mixing

between the Z ′ and the photon.4 See e.g. [34, 35] for an exhaustive set of constraints for

MeV-GeV Z ′’s.

4.1 Neutrino tridents

Light Lµ − Lτ gauge bosons are constrained by the results of the Columbia-Chicago-

Fermilab-Rochester (CCFR) Neutrino Experiment, which are consistent with the SM pre-

dictions for νN → νNµ+µ− trident production [5, 40]. In the presence of a light Z ′, this

process receives additional corrections from the three body νN → νNZ ′ process followed

by a prompt Z ′ → µ+µ− decay. Consistency with the CCFR trident measurement requires

gµ−τ . 10−3 for mZ′ � MeV, as shown in figures 2 and 5.

4.2 Supernova 1987A

A light Z ′ can be produced via neutrino inverse decays ν̄ν → Z ′ within the dense core

of supernovae. If such particles are long-lived, they may efficiently remove energy from

the core and thus modify the observed ∼ 10 second duration of the neutrino burst from

Supernova 1987A [45]. In figures 2 we show the regions of parameter space in which the Z ′

luminosity introduces an order one correction to the total energy loss (∼ 1053 erg) in the

first ∼ 10 seconds of a supernova explosion, assuming a ∼ 10 km radius and a ∼ 30 MeV

core temperature. The details of this estimate are described in appendix B.

4.3 Stellar cooling

In this model, the Z ′ can be produced in stellar plasmas and induce anomalous cooling by

carrying energy away from stars. Since this process yields an invisibly decaying particle,

the stellar bounds on dark photons from refs. [43, 44] can straightforwardly be adapted

to constrain the Lµ − Lτ model. This constraint is shown in the lower frame of figure 2.

We also note that bounds from white dwarfs cooling apply to our model [34, 63], and that

they are of comparable strength to those derived from Borexino for Z ′’s in the MeV mass

range [25]. However, such constraints have been derived assuming that the Z ′ is more

massive than the typical temperature of a white dwarf (T ∼ 5 keV), and therefore it is not

trivial to extrapolate them for mZ′ . 10 keV, and hence are not shown in the figures.

4We have explicitly checked that given the small branching fraction of the Z′ to electrons BrZ′→e+e− '
2× 10−5 (2.8), the energy injection from the Z′ population decay during the CMB or BBN [62] is too small

to result in meaningful constraints on the model.
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4.4 Solar neutrino scattering

Nonzero kinetic mixing introduces Z ′ mediated interactions between νµ,τ and charged

fermions, which can distort the observed solar neutrino scattering rate at Borexino [24,

41, 42]. These constraints are shown in figures 2 and 5 (in those frames corresponding

to ε > 0).

5 Summary and conclusions

The reported tension between early and late time determinations of the Hubble constant

has motivated us to consider models that include a new light gauge boson. In particular,

in light of the stringent constraints on gauge bosons with couplings to first generation

fermions, we consider a model with a broken U(1)Lµ−Lτ gauge symmetry, corresponding to

a massive gauge boson with tree-level couplings to muons, taus, and their corresponding

neutrino species. We have studied the impact of such a particle on the evolution of the early

universe, solving the full set of Boltzmann equations and determining the contribution to

the energy density in radiation, parameterized in terms of ∆Neff .

We have identified two distinct regions of parameter space in which the tension related

to the Hubble constant can be substantially relaxed (corresponding to ∆Neff ∼ 0.2− 0.5):

• For a gauge boson with gµ−τ & 4 × 10−9, this particle will reach equilibrium with

the Standard Model bath in the early universe. For mZ′ ∼ 10− 20 MeV, the decays

of these particles will heat the neutrino population and delay the process of neutrino

decoupling, resulting in ∆Neff ∼ 0.2−0.5. For a coupling of gµ−τ ' (3−8)×10−4, such

a Z ′ could also account for the measured value of the muon’s anomalous magnetic

moment. We also note that the parameter space which simultaneously ameliorates

both the H0 and (g − 2)µ anomalies can also be tested with existing and future

accelerator searches for muon specific forces with muon beams [53–56], measurements

of rare kaon decays [52, 57], and at Belle-II [58, 59].

• For a very light (mZ′ & 1 eV) gauge boson with a very small coupling (gµ−τ . 4 ×
10−9), the Z ′ population does not reach equilibrium with muons or taus at early times.

Instead, a significant abundance of such particles can be produced through ν̄ν → Z ′

inverse decays. In particular, for gµ−τ & 1.3×10−10(mZ′/MeV)1/2, inverse decays will

ultimately produce a Z ′ population that reaches equilibrium with neutrinos. When

this Z ′ population decays, it produces an energy density of neutrinos corresponding

to ∆Neff ' 0.21. This result is found across a wide range of parameter space within

this model.

These results are summarized in figure 2, which includes contours of constant ∆Neff, as

well as the regions favored by measurements of the muon’s anomalous magnetic moment,

(g−2)µ. Among other motivations, this model is particularly interesting in light of the large

regions of its parameter space that can relax the reported Hubble tension (∆Neff ∼ 0.2−0.5)

and that are within the reach of next-generation CMB measurements (∆Neff & 0.03 [20]).
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A Boltzmann equation for Z′ production

The number density evolution of the Z ′ in the presence of the ν(p1) + ν(p2) ←→ Z ′(p3)

process is
dnZ′

dt
+ 3HnZ′ = C[fZ′ ], (A.1)

where nZ′ is the Z ′ number density, H is the Hubble rate, and the collision term satisfies

C[fZ′ ] =

∫
d3~p1

(2π)32E1

d3~p2

(2π)32E2

d3~pZ′

(2π)32EZ′
|AZ′→νν̄ |2 [fν(~p1)fν(~p2)− fZ′(~pZ′)]

× (2π)4δ4(p1 + p2 − pZ′), (A.2)

where |Ai→f |2 is the squared, spin-averaged matrix element for the process in the subscript.

By detailed balance, we can simplify the inverse process using

f (eq)
ν (~p1)f (eq)

ν (~p2) = f
(eq)
Z′ (~pZ′) , (A.3)

so the collision terms can be simplified∫
d3~p1

(2π)32E1

d3~p2

(2π)32E2

d3~pZ′

(2π)32EZ′
|AZ′→νν̄ |2

[
f

(eq)
Z′ (~pZ′)− fZ′(~pZ′)

]
(2π)4δ4(p1 + p2 − pZ′).

(A.4)

Using the definition of the energy dependent width

ΓZ′(EZ′) =
1

2EZ′

∫
d3~p1

(2π)32E1

d3~p2

(2π)32E2
|AZ′→νν̄ |2(2π)4δ4(p1 + p2 − pZ′), (A.5)

where the prefactor is 1/EZ′ instead of 1/mZ′ (as in the rest frame expression), the Boltz-

mann equation becomes

s
dYZ′

dt
=

∫
d3~pZ′

(2π)32EZ′
2EZ′ΓZ′(EZ′)

[
f

(eq)
3 (~pZ′)− f3(~pZ′)

]
= 〈ΓZ′〉

[
n

(eq)
Z′ (t)− nZ′(t)

]
,

(A.6)
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where we have defined the comoving dimensionless yield YZ′ ≡ nZ′/s and

〈ΓZ′〉 ≡
∫
d3~pZ′ Γ(EZ′)e

−EZ′/T∫
d3~pZ′ e−EZ′/T

=
ΓZ′

mZ′TK2

(mZ′
T

) ∫ ∞
mZ′

dEZ′
√
E2
Z′ −m2

Z′e
−EZ′/T

= ΓZ′
K1

(mZ′
T

)
K2

(mZ′
T

) , (A.7)

which is valid in the limit of Boltzmann statistics. Note that eq. (A.6) has the familiar

freeze out form, except that there is a linear dependence on the phase space distributions (as

opposed to quadratic) and the thermally averaged cross section for annihilation is replaced

with a thermally averaged decay rate. Defining z ≡ mZ′/T , and YZ′ = nZ′/s, where s is

the total entropy density, we have

H(z) =
1.66
√
g∗

mPl

(mZ′

z

)2
,

s(z) =
2π2

45
g∗S

(mZ′

z

)3
,

Y
(eq)
Z′ (z) =

gZ′

2π2s(z)

∫ ∞
mZ′

dy
y
√
y2 −m2

Z′

eyz/mZ′ − 1
,

(A.8)

and we can rewrite the full Boltzmann equation as

dYZ′

dz
=

ΓZ′

H(z)z

K1(z)

K2(z)

[
Y

(eq)
Z′ (x)− YZ′(x)

]
, (A.9)

which is equivalent to eq. (3.1) expressed in terms of the yield, YZ′ . Note that this equation

accounts for both production and decay processes.

B Supernova 1987A bounds

The energy-density loss rate per unit volume from ν(p1) + ν(p2) → Z ′(pZ′) production in

an isotropic, homogeneous supernova is

dρZ′

dt
=

∫
d3~p1

(2π)32E1

d3~p2

(2π)32E2

d3~pZ′

(2π)32EZ′
EZ′〈|AZ′→νν̄ |2〉f (eq)

ν (~p1)f (eq)
ν (~p2)

× (2π)4δ4(p1 + p2 − pZ′). (B.1)

Since the neutrinos are in equilibrium in the core, but the Z ′ population is not, we neglect

the reverse process. By detailed balance, we can substitute f
(eq)
ν (~p1)f

(eq)
ν (~p2) = f

(eq)
Z′ (~p3),

which yields

dρZ′

dt
=

∫
d3~p1

(2π)32E1

d3~p2

(2π)32E2

d3~pZ′

(2π)32EZ′
EZ′〈|AZ′→νν̄ |2〉f

(eq)
Z′ (~pZ′)(2π)4δ4(p1 + p2 − pZ′).

(B.2)

Since we are mainly interested in very small Z ′ couplings in the non-equilibrium regime,

we can neglect the reverse process which depends on fZ′ , so using the definition of the rest

frame width

ΓZ′ =
1

2mZ′

∫
d3~p1

(2π)32E1

d3~p2

(2π)32E2
〈|AZ′→νν̄ |2〉(2π)4δ4(p1 + p2 − pZ′), (B.3)
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the total production rate can be written

dρZ′

dt
= mZ′ΓZ′

∫
d3~pZ′

(2π)3
f

(eq)
Z′ (~pZ′), (B.4)

where the integral corresponds to the equilibrium number density of Z ′s inside the super-

nova. To calculate the total energy carried away by the Z ′ population, we need to include

the probability that a given Z ′ will survive out to a distance of R ∼ 10 km at T ∼ 30 MeV,

so we have

dρZ′

dt
= mZ′ΓZ′

∫
d3~pZ′

(2π)3
f

(eq)
Z′ (~pZ′) e

−ΓZ′R/γ =
3mZ′ΓZ′

2π2

∫ ∞
0

dpZ′p
2
Z′e
−EZ′/T e−ΓZ′R/γ

(B.5)

where γ = EZ′/mZ′ is the boost factor and the factor of 3 accounts for the number of

polarization states in the convention f (eq) = 3 e−EZ′/T since we performed a spin average

in the definition of the rest frame width. To ensure that we don’t modify the observation

of Supernova 1987A by an order one amount, we demand that the total energy loss in a

10 second interval not exceed ∼ 1053 erg, so our criterion is

∆ESN ∼ (V∆t)
dρ

dt
=

3mΓ

2π2
(V∆t)

∫ ∞
0

dp p2e−EZ′/T e−ΓZ′RmZ′/EZ′ . 1053 erg, (B.6)

where we have dropped Z ′ subscripts and multiplied by the core volume, V = 4
3πR

3.

Comparing other processes. The Z ′ can also be produced via ν scattering with ra-

diative emission νν → ννZ ′ which has the same scaling in the gauge coupling as inverse

decays, but doesn’t depend on mZ′ for mZ′ � T ∼ 30 MeV. The radiative production rate

is approximately

Γ(νν → ννZ ′) = nνσ(νν → ννZ ′) ∼ G2
FT

5αµ−τ ∼ 3.2× 10−18 GeVαµ−τ , (B.7)

where we have taken T ∼ 30 MeV, included a αµ−τ penalty for Z ′ emission, and conser-

vatively neglected the 3-body phase suppression for this process. Comparing this to the

thermally averaged inverse decay process with the same parametric scaling,

〈ΓZ′〉 = ΓZ′
K1(z)

K2(z)
' 1

3
αµ−τmZ′

(mZ′

2T

)
' 5.5× 10−12 GeVαµ−τ

(mZ′

keV

)2
, (B.8)

we find that the latter dominates over the full mass range we consider. Only near mZ′ ∼ eV

does radiative emission compete. Similarly, we can estimate neutrino annihilation, νν →
Z ′Z ′, for which the rate scales as ∼ α2

µ−τT and yields

Γ(νν → Z ′Z ′)

〈ΓZ′〉
∼ 6αµ−τT

2

m2
Z′

∼ 5.4× 10−3
( αµ−τ

10−12

)(keV

mZ′

)2

, (B.9)

so unless the mass is very small or the gauge coupling is large and in the thermal regime,

inverse decays are the dominant form of Z ′ production. Note that in this estimate, we have

taken T = 30 MeV for the SN temperature.
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γ Z ′
φµ−τ

γ Z ′

φµ−τ

Figure 8. Contributions to the γ − Z ′ kinetic mixing from heavy scalar loops.

C Scalar loop induced kinetic mixing

In addition to the irreducible “natural” kinetic mixing considered throughout this paper,

there could also be additional contributions from hypothetical heavier particles, beyond

the SM. To assess the magnitude of such contributions, we calculate in this appendix the

contribution to γ−Z ′ kinetic mixing from an additional pair of heavy scalars with identical

charges under electromagnetism and opposite charges under Lµ − Lτ .

The loop-level kinetic mixing from each scalar arises from two intermediate loop dia-

grams, as shown in figure 8. The two propagator contribution is

iΠµν
2 (q2) = i2(ie)(igµ−τ )

∫
d4k

(2π)4

(2k + q)µ(2k + q)ν

[(k + q)2 −m2][k2 −m2]
, (C.1)

where m is a scalar mass and we combine denominators with Feynman parameters

1

[(k + q)2 −m2][k2 −m2]
=

∫ 1

0

dx

[`2 + x(1− x)q2 −m2]2
≡
∫ 1

0

dx

(`2 −∆)2
, (C.2)

where ` ≡ k+ xq and ∆ ≡ −x(1− x)q2 +m2. Dropping terms linear in ` in the numerator

of the integrand, we can rewrite this as

iΠµν
2 (q2) = egµ−τ

∫ 1

0
dx

(
4

∫
d4`

(2π)4

`µ`ν

(`2 −∆)2
+ (1− 2x)2qµqν

∫
d4`

(2π)4

1

(`2 −∆)2

)
,

(C.3)

which we can evaluate in dimensional regularization and extract the divergent piece

(divergent) iΠµν
2 (q2) =

iegµ−τm
2

4π2ε
gµν +

iegµ−τ
24π2ε

(qµqν − q2gµν), (C.4)

where the second term has the Ward identity structure, but the first term will need to

cancel against the contribution from the one propagator diagram with a four point vertex,

which is simpler to evaluate

iΠµν
1 (q2) = i(2iegµ−τ )gµν

∫
d4k

(2π)4

1

k2 −m2
, (C.5)

which yields a divergent piece

(divergent) iΠµν
1 (q2) = − iegµ−τm

2

4π2ε
gµν . (C.6)
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Combining the divergent ε pole contributions now becomes

(divergent) iΠµν
1 (q2) + iΠµν

2 (q2) =
iegµ−τ
24π2ε

(qµqν − q2gµν), (C.7)

which has the requisite gauge invariant structure. In the MS scheme the residual finite

contribution is

iΠµν(q2) =
iegµ−τ
16π2

∫ 1

0
dx

(
2gµν

[
m2
(
logm2−1

)
−∆(log∆−1)

]
−(1−2x)2qµqν log∆

)
,

(C.8)

so performing the integrals yields the gauge invariant result

iΠµν(q2) =
iegµ−τ

144π2q2

[
24m2 − 8q2 − 6q2

(
4m2

q2
− 1

)3/2

cot−1

√
4m2

q2
− 1 + 3q2 logm2

]
×
(
qµqν − q2gµν

)
. (C.9)

To eliminate the explicit dimensionful logm2 dependence, we need to compare this to a

reference value, so just like with the fermion case with µ and τ loops, we add a second

scalar with opposite Lµ−Lτ charge and identical SM quantum numbers to obtain a mixing

with the hypercharge gauge boson

iΠµν(q2) =
iegµ−τ
48π2q2

(
8(m2

1−m2
2)−2q2(x3

1 cot−1x1−x3
2 cot−1x2)+q2 log

m2
1

m2
2

)(
qµqν−q2gµν

)
,

(C.10)

where m1,2 are the scalar masses, xi ≡
√

4m2
i /q

2 − 1. We can extract the kinetic mixing

from the coefficient of
(
q2gµν − qµqν

)
by expanding in powers of q2 to get

ε ' egµ−τ
48π2

log
m2

1

m2
2

∼ 3.6× 10−3gµ−τ , (C.11)

where we have taken the limit q2 → 0 and assumed m1/m2 = mτ/mµ in the log. If the

scalars are integrated out above the electroweak scale, the only allowed kinetic mixing is

between the Z ′ and the SM hypercharge gauge boson, Bµ ≡ cos θWAµ − sin θWZ
0
µ, so we

would need to replace e→ g′ where g′ ≡ e cos θW is the hypercharge gauge coupling. Since

the induced kinetic mixing is logarithmically sensitive to heavy particle masses, there is

considerable UV dependence to the “natural” value.

D Delayed neutrino decoupling

In this appendix we derive the Z ′ mediated corrections to the energy transfer rates in

eqs. (3.9) and (3.11), which are responsible for delaying neutrino decoupling; the SM pro-

cesses which are also present and available in [46] and in references therein. The Liouville

equation that evolves the phase space density fi of particle species i in an expanding FRW

universe is
dfi
dt

=
∂fi
∂t
−Hpi

∂fi
∂pi

= Ci[fi], (D.1)
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where pi is the particle’s three momentum and the collision term for i+X → Y is

Ci[fi] =
1

2Ei

∏
X,Y

d3~pX
(2π)32EX

d3~pY
(2π)32EY

S|Ai+X→Y |2Λ(fi, {fY }, {fZ})

× (2π)4δ (pi + ΣY pY − ΣZ pZ) , (D.2)

where X and Y are other initial and final state species, Ai+X→Y is the matrix element for

this process, S is a symmetrization factor which is 1/2 for identical particles in the initial

or final states, and

Λ(fi, {fY }, {fZ}) ≡ fi
∏
Y

fY
∏
Z

(1± fZ)−
∏
Z

fZ
∏
Y

(1± fY )(1± fi), (D.3)

is the phase space factor where the ± signs correspond to Bose and Pauli statistics, respec-

tively.

Dividing eq. (D.1) by (2π)3 and integrating over gi d
3~pi gives the familiar Boltzmann

equation for the evolution of the number density

∂ni
∂t

+ 3Hni =

∫
d3~pi

(2π)32Ei
giCi[fi] ≡

δni
δt
. (D.4)

Similarly, dividing eq. (D.1) by (2π)3 and integrating over giEi d
3~pi we can track the

evolution of the energy density

∂ρi
∂t

+ 3H(ρi + Pi) =

∫
d3~pi

(2π)32Ei
giEiCi[fi] ≡

δρi
δt
, (D.5)

where Pi is the pressure and we have defined an energy transfer rate δρi/δt. Thus, in the

context of this work, computing the neutrino decoupling temperature is tantamount to

evaluating integrals over the collision term.

Inverse decays. For the inverse decay process e+(p1)e−(p2) → Z ′(k) in eq. (3.9) the

energy transfer rate is∫
d3~k

(2π)32Ek

d3~p1

(2π)32E1

d3~p2

(2π)32E2
gk Ek|Ae+e−→Z′ |2f (eq)

e (~p1)f (eq)
e (~p2)(2π)4δ4(p1 + p2 − k),

(D.6)

where |Ae+e−→Z′ |2 is the inverse decay matrix element, f (eq)(p) is approximated to be

the Maxwell-Boltzmann distribution, and we have neglected Pauli blocking effects. Using

energy conservation, detailed balance f
(eq)
e (~p1)f

(eq)
e (~p2) = f

(eq)
Z′ (~k), and the definition of

the partial width for ΓZ′→e+e− we can simplify this expression

δρZ′

δt
=

3mZ′ΓZ′→e+e−

2π2

∫ ∞
mZ′

dEE
√
E2 −m2

Z′e
−E/Tγ =

3m3
Z′Tγ

2π2
K2

(
mZ′

Tγ

)
ΓZ′→e+e− ,

(D.7)

where we have dropped the k subscript on the integration variable. Note that this result

recovers the first term on the r.h.s. of eq. (3.9); the reverse process with Tγ → Tνµ accounts

for the second term, so we have

δρZ′

δt
=

3m3
Z′

2π2

[
TγK2

(
mZ′

Tγ

)
− TνµK2

(
mZ′

Tνµ

)]
ΓZ′→e+e− , (D.8)

which recovers the expression in eq. (3.9).
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Annihilation and scattering. For the 2-2 processes in eq. (3.11), we follow the for-

malism outlined in refs. [46, 48, 51], which compute the collision terms for ν̄ν ↔ e+e−

annihilation and νe↔ νe scattering in the SM. We are interested in using these results to

compute the Z ′ mediated corrections to neutrino decoupling in our Lµ−Lτ extension with

Z ′ − γ kinetic mixing. To simplify our analysis, we take the massless electron limit and

integrate out the Z ′ to obtain an effective Lagrangian for νµ,τ and electron interactions,

which contains the interactions

−2
√

2GF [ν̄µγ
µPLνµ+ ν̄τγ

µPLντ ][ēγµ(CV −CAγ5)e]− εegµ−τ
m2
Z′

[ν̄µγ
µPLνµ− ν̄τγµPLντ ][ēγµe],

(D.9)

where the first term represents SM interactions with vector and axial couplings CV,A and

the second term arises from virtual Z ′ exchange. From [48, 49], the SM energy transfer

rates for scattering and annihilation can be written as [46]

1

2π2

∫
dpp3Cν̄ν↔e+e− =

16G2
F (C2

V + C2
A)

π5

(
T 9
γ − T 9

ν

)
, (D.10)

1

2π2

∫
dpp3Cν̄e↔νe =

7G2
F (C2

V + C2
A)

π5
T 4
γT

4
ν (Tγ − Tν), (D.11)

where we have neglected all chemical potentials and included all forwards and backwards

reactions. We can use this result to compute the corresponding Z ′ induced corrections by

noting that the new interactions in eq. (D.9) have the same form as their SM electroweak

counterparts with the replacements

CV → 1 , CA → 0 , GF →
εegµ−τ

2
√

2m2
Z′
, (D.12)

so the additional energy transfer rates in an Lµ − Lτ extension are(
δρν
δt

)
Z′

=
(eεgµ−τ )2

4π5m4
Z′

[
16(T 9

γ − T 9
ν ) + 7T 4

γT
4
ν (Tγ − Tν)

]
, (D.13)

which recovers the gµ−ν dependent correction in eq. (3.11). Note that this expression

includes an additional overall factor of 2 to account for both neutrinos and antineutrinos.

E Freeze-in solutions

In this appendix, we describe some of the solutions to the time evolution of the Z ′ and

neutrino distribution functions as obtained by integrating eqs. (3.19) and (3.20) as described

in section 3. In the upper panels of figure 9 we show the evolution of fZ′ as a function of

the photon temperature for the two scenarios considered in figure 7. In the upper left panel

we show the case in which the Z ′ reaches thermal equilibrium with the neutrino population

while relativistic, while the upper right panel corresponds to a scenario in which the Z ′

thermalizes when Tν ∼ mZ′ . The two lower panels show the evolution of the Z ′ distribution

function for two choices of gµ−τ and mZ′ for which the Z ′ never reaches thermal equilibrium

with the neutrinos, leading to ∆Neff < 0.21.
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Figure 9. In the upper panels, we plot the evolution of the Z ′ distribution function as a function of

the photon temperature (in keV) for the two choices of masses and couplings considered in figure 7

which lead to ∆Neff = 0.21. The upper left panel corresponds to a Z ′ that thermalizes with the

neutrinos while relativistic, while in upper right panel the Z ′ thermalizes with the neutrinos at

Tν ∼ mZ′ . In the lower panels, we plot the evolution of the Z ′ distribution as a function of the

photon temperature for two scenarios in which the Z ′ never reaches thermal equilibrium with the

neutrinos, leading to ∆Neff < 0.21.

In figure 10 we show the neutrino distribution function after a Z ′ population that

was initially generated through ν̄ν → Z ′ inverse decays has complete decayed away (at

Tν � mZ′ , as relevant for CMB observations). The y axis has been normalized such that

∆Neff can be computed as ∆Neff = 3× 120
7π4

∫∞
0 dy y3(fν − fFD

ν ), where fFD
ν corresponds to

the distribution function of a free-streaming decoupled neutrino, fFD
ν = 1/(1 + eyν ). Note

that the results for a different Z ′ mass can be obtained by rescaling the corresponding

couplings in figure 10 by (2.2 keV/mZ′)
−1/2.

Figure 10 illustrates why a Z ′ that thermalizes with the neutrinos after they have

decoupled from the SM plasma renders ∆Neff ' 0.21. Once the neutrinos have decoupled

from the SM plasma, the only relevant process are ν̄ν → Z ′ and Z ′ → ν̄ν. At very

high temperatures fZ′ = 0, and a Z ′ population is eventually generated at the expense of

neutrinos, via ν̄ν → Z ′ (this can also be seen from figure 7). After the Z ′ population has

thermalized with the neutrinos, it decays out of equilibrium to neutrinos. However, the

decay products of the Z ′ population have an energy Eν ∼ mZ′/2, which is substantially
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Figure 10. The resulting neutrino distribution functions, fν , after the Z ′ population has completely

decayed as a function of the comoving momentum, yν . fFD
ν is the distribution function for a free-

streaming decoupled neutrino, fFD
ν = 1/(1 + eyν ). Here we have chosen mZ′ = 2.2 keV.

different from 3Tν , leading to a final neutrino population that is more energetic than

that found in thermal equilibrium (as can be appreciated from figure 10). This results

in ∆Neff ' 0.21 for gµ−τ & 1.3 × 10−10 (mZ′/MeV)1/2, and to ∆Neff < 0.21 for smaller

values of gµ−τ (which do not enable the Z ′ population to reach thermal equilibrium with

the neutrinos).
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