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1 Introduction

Recent experiments performed at the Relativistic Heavy Ion Collider (RHIC) and the Large

Hadron Collider (LHC) have provided spectacular evidences supporting the formation of

so-called quark-gluon plasma (QGP), a deconfined state of hadronic matter [1–4]. The

experimental discovery, e.g, a very small ratio of shear viscosity to entropy density [5, 6],

quenching of high energy partons with large transverse momentum, and elliptic flow etc.,

indicate that QGP is a strongly coupled plasma whose dynamics after collision is dominated

by non-perturbative effects [7, 8]. The perturbative QCD works only in the weak coupling

regime, while lattice QCD is the proper tool for understanding the static equilibrium

thermodynamics of such strongly coupled plasma. However, none of them allow us to

compute some dynamical quantities like transport coefficients, drag force, and jet quenching

parameter etc., in the strong coupling regime.

Recently, a novel tool called the “AdS/CFT correspondence” [9–13] provide a powerful

tool to study the strongly coupled plasma. The most studied example in the context of

AdS/CFT correspondence [7, 14, 15] is the duality between the N = 4 SU(Nc) super-

Yang-Mills theory and type IIB string theory on AdS5 × S5, which allows one to study

this strongly coupled gauge theory in the large Nc limit and large ’t Hooft coupling, λ =

g2
YMNc. The ratio of shear viscosity over entropy density obtained from this duality is

small, η/s = 1/4π [5, 16, 17] which is consistent with the experimental data [18]. Also,

the strong collective behavior observed in very small systems, such as Au-Au collisions

at RHIC [19–21], Pb-Pb [22–25], p-Pb [26–28] and p-p [29] collisions at LHC are well

described by hydrodynamics from the time and distance scales as a fraction of the (local)

inverse temperature [30–35] which is consistent with holographic results [36, 37].

Although the initial temperatures in the most central, high-energy collisions are in

the range of quasi-conformal regime, the non-conformal effects become important in the
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subsequent evolution and cooling of the produced QGP or in the off-central or lower-energy

collisions where the temperature is lower. In fact, Lattice data indicates that the QGP with

the temperature range available at high-energy heavy ion collisions (temperatures a few

times larger than the critical temperature) is not a fully conformal fluid and bulk viscosity

(a purely non-conformal effect) is needed for highly-precise extraction of the shear viscosity

of the QGP [38]. Furthermore, hydrodynamics including non-conformal effects successfully

described the smaller system such as p-Pb [39] and p-p [40, 41] collisions [42].

There are many attempts to extend the original duality to the theories close to QCD or

QGP using either a top-down [43–45] or a bottom-up [46, 47] construction. In the latter, the

equations of motion of a five-dimensional supergravity action coupled to a matter content

of fields is solved. One may break the conformal invariance even at zero temperature by

coupling a scalar field at pure gravity in AdS [48] which is dual to a CFT deformed by a

source Λ for a dimension-three operator. This source breaks the scale invariance explicitly

and triggers a non-trivial Renormalization Group (RG) flow from an ultraviolet (UV) fixed

point to an infrared (IR) fixed point. Usually, the scalar potential coupled to gravity is

chosen to mimic the detailed properties of QCD, e.g. [49]. However, the authors in [48]

have chosen their potential by simplicity. The UV fixed point is needed to guarantee that

we are in the regime where the holographic duality is best understood and the bulk metric

is asymptotically AdS. The IR fixed point guarantees that the solutions are regular in the

interior and the zero-temperature solution is smooth in the deep IR. Although turning on a

source for a relevant operator is the simplest way to break conformal invariance, this simple

model exhibits a rich phenomenology. For example, the relaxation of small-amplitude and

homogeneous perturbations are studied by computing the spectrum of quasi-normal modes

(QNM) and it is shown that the dominant channel for relaxation in this approximation

depends on the ratio of T/Λ, where T is the temperature of the system. At small T/Λ

the system first EoSizes (the evolution of the energy density and the average pressure

towards asymptotic values related to one another by the equation of state (EoS)) and

then isotropises. In contrast at large T/Λ, the system first isotropises and subsequently

EoSizes [48].

One of the interesting properties of QGP is jet quenching processes in which a high

energy parton propagates through the medium, interacts with medium and consequently

loses energy. Analysing the energy loss of these energetic partons as they travel throw QGP

may reveal extremely valuable information about the dynamics of plasma and may exhibit

distinctive properties such as jet-quenching which can be clearly observed at RHIC [1–4]

and more recently at LHC [50–52].

In the AdS/CFT correspondence, an external heavy quark with infinite mass can be

introduced by adding a fundamental string attached to a flavor brane on the AdS boundary.

The string endpoint specifies the heavy quark while the string itself can be considered as a

gluonic cloud around the quark. The mass of quark is proportional to the inverse distance

of the string endpoint from the boundary, such that light quark or massless quark is

mapped into a string attached to a flavor brane which is extended from the boundary to

the horizon [53–57].
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A pair of light quark-anti quark is modelled by an initially point-like open string

created close to the boundary with endpoints that are free to fly apart [58, 59]. The initial

conditions of the string imply that the string extends in a direction parallel to the boundary

as it falls toward the black hole horizon, so it is called the falling string. The maximum

stopping distance of the falling string (the maximum distance which a quark with initial

energy E can travel) can be used as a phenomenological guideline to estimate the stopping

power of the strongly- coupled plasma. This quantity is calculated numerically for many

different sets of string initial conditions in a thermal N = 4 SYM plasma at a temperature

T and it is found that the maximum penetration depth scales as xmax = C
T

(
E

T
√
λ

)neff where

C is a constant and neff = 1/3 [58]. The analogous computation is done in a plasma with

non-conformal effect [60] or with anisotropy effect [61] and it is shown that the power of

neff deviates from its conformal isotropic cousin. The constant of proportionality is also

important for phenomenological applications as it determines the overall strength of jet

quenching. Here, we analyze the maximum stopping distance of light quark by numerical

computation of stopping distance for many different sets of string initial conditions in the

non-conformal background of [48].

Another interesting experimental observables associated with quark energy lost in the

dense hot QGP is the transport coefficient which is called “jet quenching”, q̂. This observ-

able is defined as the average transverse momentum square transferred from the traversing

parton, per unit mean free path [62]. As mentioned before, the quark-antiquark pair in the

context of AdS/CFT is mapped to a fundamental string with both endpoints attached to

the AdS boundary. The string hangs down to the bulk along the radial direction. The jet

quenching parameter q̂ is related to the thermal expectation value of the light-like Wilson

loop operator [63] corresponding to the trajectory of two endpoints of the string. Several at-

tempts were made to compute this parameter using the AdS/CFT correspondence [63–78].

In this paper, we also study the jet quenching parameter in the introduced non-conformal

background. Our results are in good agreement with experimental expectation.

This paper is organised as follows: in section 2 we briefly review the non-conformal

background introduced in [48]. In section 3 we discuss the generic falling string solutions

and calculate the maximum stopping distance of light quark in the strongly coupled non-

conformal plasma. In section 4, we calculate the jet quenching parameter and section 5 is

devoted to summary.

2 Non-conformal holographic model

In this section we review the non-conformal holographic model presented by [48]. The

action for the five-dimensional Einstein gravity coupled to a scalar field is

S =
2

κ2
5

∫
d5x
√
−g
[

1

4
R− 1

2
(∇φ)2 − V (φ)

]
, (2.1)

where κ5 is the five-dimensional Newton constant. The considered potential in this model

has the following non-trivial rather simple form

L2V = −3− 3

2
φ2 − 1

3
φ4 +

(
1

3φ2
M

+
1

2φ4
M

)
φ6 − 1

12φ4
M

φ8 . (2.2)
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This potential possesses a maximum at φ = 0 (UV fixed point) and a minimum at φ = φM
(IR fixed point) corresponding to two AdS solutions. L is the radius of the AdS solution

at the UV whereas the radius of the IR AdS is

LIR =

√
− 3

V (φM )
=

1

1 + 1
6φ

2
M

L . (2.3)

The number of degrees of freedom decreases along the flow (from a UV to an IR) because

of the fact that LIR < L.

The vacuum solutions to the Einstein equations can be easily found

ds2 = e2A(r)
(
−dt2 + dx2

)
+ dr2 , (2.4)

where

e2A =
Λ2L2

φ2

(
1− φ2

φ2
M

)φ2
M
6

+1

e−
φ2

6 , (2.5)

φ(r) =
ΛLe−r/L√

1 + Λ2L2

φ2
M
e−2r/L

. (2.6)

Here, Λ is an arbitrary constant that breaks conformal invariance. The scalar field is dual

to a scalar operator in the dual gauge theory Ø, with different dimension at the UV and

IR fixed points. The dimension of this operator at the UV fixed point is ∆UV = 3 while

the operator Ø at the IR fixed point has dimension

∆IR = 6

(
1 +

φ2
M

9

)(
1 +

φ2
M

6

)−1

. (2.7)

So, by increasing φM the dimension of the scalar operator at the IR fixed point decreases

and finally reaches ∆IR = 4 at φM → ∞. One can determine the vacuum expectation

values (VEV) of the stress tensor and the scalar operator by studying the behavior of the

metric and the scalar field near the boundary. Using the new variable u as u = Le−r/L,

the metric can be rewritten as [79]

ds2 =
L2

u2

(
du2 + gµν dx

µdxν
)
. (2.8)

The expectation values of the field theory operators can be readily determined by expanding

the metric and the scalar field in powers of u in the u→ 0 limit as follows [48]

〈Tµν〉 =
2L3

κ2
5

[
g(4)
µν +

(
Λ2 φ2 −

Λ4

18
+

Λ4

4φ2
M

)
ηµν

]
, (2.9)

〈Ø〉 = −2L3

κ2
5

(
2Λφ2 +

Λ3

φ2
M

)
, (2.10)

which implies the Ward identity for the trace of the stress tensor〈
Tµµ
〉

= −Λ 〈Ø〉 . (2.11)
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Since the scalar field is a monotonic function of r, we can use the φ as the radial coordinate

and consider the following ansatz for black brane solutions of the action in the Eddington-

Finkelstein form [49]

ds2 = e2A
(
−h(φ)dt̃ 2 + dx2

)
− 2eA+BLdt̃ dφ , (2.12)

where h(φ) is the blackening factor which is zero at horizon, φ = φH . The boundary of

space is at φ = 0 and φH is the location of the horizon. With this ansatz, the equations of

motion can be written as

A′′(φ)−A′(φ)B′(φ) +
2

3
= 0 , (2.13a)

4A′(φ)h′(φ)−B′(φ)h′(φ) + h′′(φ) = 0 , (2.13b)

3

2
A′(φ)h′(φ) + h(φ)

(
6A′(φ)2 − 1

)
+ 2e2B(φ)L2V (φ) = 0 , (2.13c)

4A′(φ)−B′(φ)− e2B(φ)L2V ′(φ)

h(φ)
+
h′(φ)

h(φ)
= 0 , (2.13d)

where primes denote d/dφ. It is shown that these four equations can be combined into a

master equation of the form [48]

G′(φ)

G(φ) + 4V (φ)
3V ′(φ)

=
d

dφ
log

 1

3G(φ)
− 2G(φ) +

G′(φ)

2G(φ)
− G′(φ)

2
(
G(φ) + 4V (φ)

3V ′(φ)

)
 , (2.14)

where G(φ) = d
dφA(φ) is assumed to be a smooth generating function which can be inte-

grated to obtain A(φ) as

A(φ) = A0 +

∫ φ

φ0

dφ̃G(φ̃) . (2.15)

Integrating the first three equations of eq. (2.13) leads to

B(φ) = B0 +

∫ φ

φ0

dφ̃
G′(φ̃) + 2/3

G(φ̃)
, (2.16a)

h(φ) = h0 + h1

∫ φ

φ0

dφ̃ e−4A(φ̃)+B(φ̃) , (2.16b)

V (φ) =
h(φ) e−2B(φ)

2L2

(
1− 6G(φ)2 − 3G(φ)h′(φ)

2h(φ)

)
. (2.16c)

Using the fact that h has a simple zero at the horizon, the eq. (2.13c) and eq. (2.13d) give

rise to

V (φH) = − 3

4L2
G(φH)h′(φH) e−2B(φH) , (2.17a)

V ′(φH) =
1

L2
h′(φH) e−2B(φH) , (2.17b)
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which leads to the solution of G(φ) at the horizon as

G(φH) = −4

3

V (φH)

V ′(φH)
. (2.18)

So, the near horizon solution of G can be read as

G(φ) = −4

3

V (φH)

V ′(φH)
− 2

3

(
1− V (φH)V ′′(φH)

V ′(φH)2

)
(φ− φH) +O

[
(φ− φH)2

]
. (2.19)

On the other hand, near boundary (φ→ 0) solution of G turns out to be

G(φ) =
1

∆− 4

1

φ
+ · · · , (2.20)

where ∆ is the dual operator scaling dimension which is 3 for the choice of potential eq. (2.2)

as mentioned above. Substituting the eq. (2.20) into the eq. (2.15) and requiring that A

must be finite at the boundary, the function A is obtained

A(φ) ' 1

∆− 4
log(φ) . (2.21)

Comparing this equation with eq. (2.15) at the limit of φ0 → φH lead to

AH ≡ A(φH) = log

(
φH

∆− 4

)
+

∫ φH

0
dφ

(
G(φ)− 1

(∆− 4)φ

)
, (2.22)

and finally A can be expressed as

A(φ) = AH +

∫ φ

φH

dφ̃G(φ̃) . (2.23)

There is a residual gauge freedom in the ansatz of metric dr = ± eB dφ. As φ increases

from zero to φH , the radial coordinate r decreases from ∞ to a finite value. Therefore the

minus sign is meaningful. The leading asymptotic behavior of metric functions at large r is

A ≈ r

L
h ≈ 1 φ ≈ (ΛL)4−∆e(∆−4)A . (2.24)

Accordingly, the asymptotic behavior of generating function at large r becomes

G =
dA

dφ
=
dr

dφ

dA

dr
≈ −eB 1

L
. (2.25)

By considering the lower limit of the integral in the eq. (2.16a) to be φH and manipulating

the equation, one can find the following relation

B(φ)−B(φH) = log
G(φ)

G(φH)
+

2

3

∫ φ

φH

dφ̃

G(φ̃)
. (2.26)

Substituting B(φ) from eq. (2.25) into the above equation, B(φH) is obtained as follows

BH ≡ B(φH) = log(−G(φH)) +
2

3

∫ φH

0

dφ

G(φ)
, (2.27)
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and finally we get

B(φ) = BH +

∫ φ

φH

dφ̃
G′(φ̃) + 2/3

G(φ̃)
. (2.28)

In the last step, one can obtain the function h(φ) from eq. (2.13c) and eq. (2.13d) as follows

h(φ) = −e
2B(φ)L2 (4V (φ) + 3G(φ)V ′(φ))

3G′(φ)
. (2.29)

The thermodynamical quantities of the background are expressed as

LT =
A(φH)−B(φH)

4π
, s =

2π

κ2
5

e3A(φH) . (2.30)

Substituting the metric functions at the horizon leads to the following form for the tem-

perature and entropy of the plasma

T = −Λ
L2V (φH)

3πφH
exp

{∫ φH

0
dφ

(
G(φ) +

1

φ
+

2

3G(φ)

)}
, (2.31)

s =
2π

κ2
5

Λ3

φH
3 exp

{
3

∫ φH

0
dφ

(
G(φ) +

1

φ

)}
. (2.32)

The non-conformal behavior of the thermodynamics of the dual theory can be identified

by studying the entropy, the speed of sound, the ratio of bulk over shear viscosity and

the violation of Buchel’s bound. In figure 1a, we plot the ratio of non-conformal to the

conformal entropy in terms of temperature. At high and low temperature, the entropy of

the theory is the same as the conformal theory and scale as T 3.

The square of the speed of sound can be obtained from the inverse of the logarithmic

derivative of the entropy as
1

c2
s

=
d log s

d log T
. (2.33)

The deviation of the speed of sound from its conformal value (cs = 1/
√

3) is depicted in

the figure 1b as a function of temperature. At low and high temperatures, this quantity

reaches its conformal value while the deviation gets larger by increasing φM at intermediate

temperatures. The ratio of shear viscosity η to entropy has a universal value of η/s =

1/4π for all theories with a two-derivative gravity dual [6]. The bulk viscosity, ζ can be

determined from the dependency of the entropy to the value of the scalar field at the

horizon [80]

ζ

η
= 4

(
d log s

dφH

)−2

, (2.34)

which is zero in any conformal field theory. This ratio has been shown in the figure 1c as

a function of temperature for different values of φM . The behavior of this quantity as a

function of temperature is similar to that of the speed of sound. At low temperatures, the

violation of this ratio from Buchel’s bound is shown in the figure 1d.
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Figure 1. (Color online) (a) The ratio of non-conformal to the conformal entropy, (b) inverse speed

of sound square, (c) ratio of bulk to shear viscosity, (d) violation of Buchel’s bound as a function

of temperature for different values of φM .

3 Light quark maximum stopping distance

We are interested to study the propagation of energetic excitations which resemble quark

jets through the strongly coupled non-conformal plasma. These excitations are considered

as open string configurations with high energy, moving through the bulk of AdS space.

The maximum stopping distance of these strings, the quantity which is not sensitive to

the precise initial conditions, can be used as a phenomenological guideline to estimate the

stopping power of the strongly- coupled plasma.

In this section, we first briefly review the string configuration dual to a light quark jet

in the non-conformal background and then numerically calculate the maximum stopping

distance traversed by a quark with initial energy E.

3.1 String configuration

We rewrite the black brane solution of eq. (2.12) in Poincare coordinates to study the non-

conformality effect on the dynamics of light quark jet moving in a strongly coupled plasma.

According to the gauge/gravity duality, quarks moving through a medium are dual to open

– 8 –
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Figure 2. The typical falling string profiles moving in the x − φ plane in the non-conformal

background eq. (2.12) with φM = 3 and T = 0.265 GeV. The string is created at the point φc = 0.2

and evolved to the extended object by time evolution. The quark, corresponding to the half of the

string, has the energy of 100 GeV and the small positive virtuality as defined in eq. (3.13).

strings moving in the 10-d gravitational background. Flavor D-branes are added to the

background in the probe limit (do not back-react on the background metric) to describe

the fundamental matter of the field theory. These branes fill the 4D Minkowski space and

extend along the radial coordinate from the boundary at φ = 0 down to the location of

the horizon at φ = φH and wraps an S3 of the S5 sphere. In the AdS/CFT dictionary,

quark-antiquark pairs in the field theory side are dual to open strings whose endpoints are

attached to the D-brane.

In this paper, we consider a back-to-back jet pair created in the medium which can

be regarded as a string created at a point, extends in space-time and falls toward the

horizon. The profile evolution of a typical string for various times has been shown in

figure 2. In this setup, the two endpoints of the string move away from each other and

the total spatial momentum of the string vanishes. The string embedding function is

Xµ(τ, σ) 7→ (t(τ, σ), x(τ, σ), 0, 0, φ(τ, σ)) and for an open string created in a point φ = φc
at a time tc, the profile is given by

t(0, σ) = tc , x(0, σ) = 0 , φ(0, σ) = φc, (3.1)

where tc is the time for which the string becomes an extended object from a point and

σ ∈ [0, π].

The Nambu-Goto action becomes singular for falling string at late times, therefore we

use the Polyakov action in which additional degrees of freedom are involved by a nontrivial

worldsheet metric ηab and the equations of motion are well-behaved everywhere on the

worldsheet [53, 58, 81]. The Polyakov action for the string has the following form

SP = −T0

2

∫
d2σ
√
−η ηab ∂aXµ∂bX

ν Gµν . (3.2)

– 9 –
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Canonical momentum densities associated with the string can be obtained by varying the

action with respect to the derivatives of the embedding functions,

Πa
µ(τ, σ) ≡ 1√

−η
δSP

δ(∂aXµ(τ, σ))
= −T0 η

ab ∂bX
ν Gµν , (3.3)

and the equations of motion are obtained by variation of the Polyakov action with respect

to the embedding functions Xµ as

∂a
[√
−η ηabGµν ∂bXν

]
=

1

2

√
−η ηab∂Gνρ

∂Xµ
∂aX

ν∂bX
ρ

⇐⇒ ∇a Πa
µ = −T0

2
ηab

∂Gνρ
∂Xµ

∂aX
ν∂bX

ρ. (3.4)

We choose the following worldsheet metric

‖ηab‖ =

(
−Σ(φ) 0

0 Σ(φ)−1

)
, (3.5)

where Σ is called the stretching function and generally can be an arbitrary function of world-

sheet embedding functions. We found that choosing the stretching function of the form

Σ(φ) =

(
eA(φ)

eA(φc)

)a(
h(φ)

h(φc)

)b
(3.6)

would cancel the singularities and equations of motion remain well behaved everywhere on

the worldsheet. We choose values of a and b in the range of 1 to 5 depends on the string

initial conditions. The constraint equation is obtained by varying the Polyakov action,

eq. (3.2) with respect to ηab which reduces to Ẋ2(0, σ) = 0 at initial time by considering

a string with point-like initial condition. Combining the open string boundary condition

and constraint equation, the initial profile must satisfy the following conditions

ẋ′(0, σ∗) = φ̇′(0, σ∗) = 0. (3.7)

The below initial conditions (IC) obey all necessary conditions and assures the physical

requirements for the non-conformal background

ẋ(0, σ) = Aφc cosσ ,

φ̇(0, σ) = φc (1− cos 2σ) , (3.8)

ṫ(0, σ) =

√
gxx(φc) ẋ2 + gφφ(φc) φ̇2

−gtt(φc)
,

where φc and A are free parameters related to the energy and momentum of the dual quark

in the field theory side. The IC are chosen such that the string is long-lived and yields to

the stable numerical solutions. Moreover, most of the string’s energy and momentum are

concentrated near its endpoints. These IC yield a symmetric string profile about x = 0

at all times, since ẋ(0, σ) is antisymmetric about σ = π/2 while φ̇(0, σ) is symmetric. An
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explicit check of any numerical solution was performed to be assured that all numerical

solutions respect the equation of constraint for all τ .

The non-conformal background geometry Gµν depends only on φ, hence for µ corre-

sponding to (t, ~x) one can write

∇aΠa
µ = 0 , (3.9)

which means that the momentum densities Πa
µ are conserved Noether currents on the

related worldsheet. Therefore, the total energy of the falling string is constant and equals

to its initial energy

Estring = −
∫ π

0
dσ
√
−ηΠτ

t (0, σ)

=
λ

2π

∫ π

0
dσ

√
gtt(φc)

(
gxx(φc) ẋ(0, σ)2 + gφφ(φc) φ̇(0, σ)

2
)
,

(3.10)

and the total energy of light quark is obtained from

Eq =
1

2
Estring . (3.11)

The total momentum of the string is conserved in x-direction and can be found from the

string IC as

Pq =
λ

2π

∫ π/2

0
dσ gxx(φc) ẋ(0, σ) . (3.12)

Here, the total momentum of the string in x-direction is completely symmetric about

σ = π/2 and equals to zero. Therefore, the quark momentum equals to the anti-quark

momentum with a minus sign. The string energy and momentum are determined by two

parameters A and φc in the string initial condition. These parameters are translated into

the virtuality of the jet created in the non-conformal QGP obtained from

Q2 ≡ E2
q − P 2

q . (3.13)

The solution of eq. (3.4) for a typical string with E = 100 GeV in the non-conformal

background eq. (2.12) with φM = 3 is plotted in figure 2. The temperature of the plasma

is about T = 0.265 GeV. The dynamics of two halves of the string are exactly alike, one

moving in the opposite direction of the another one. As we expected, the two endpoints of

the string move away from each other as the string extends along the (x, φ) direction and

falls toward the horizon.

3.2 Maximum stopping distance

Numerical studies, figure 3 show that the traversed distance of a quark with a specific

energy in the plasma before thermalizing depends strongly on the chosen initial condition

of the dual string, i.e. the initial distance from the boundary. Since there is no known map

between the string IC and the actual field theory quantities, we aim to study a quantity

which is insensitive to these IC at the string side. The stopping distance which is called

– 11 –
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Figure 3. (Color online) The maximum stopping distance of the jet moving in the plasmas versus

to its initial distance from the boundary located at φ = 0. The non-conformal plasma has the same

temperature as the conformal plasma, T = 350 MeV. In all cases, the quark has 100 GeV energy

but created at a different radial distance from the boundary. The dashed black line is the stopping

distance in the AdS-Sch background, while the blue, red and green lines are stopping distance in

the non-conformal plasmas with φM = 1, 3 and 10, respectively. The stopping distance increases

by increasing φM in the medium ranges of φc where it is maximum.

the thermalization distance, xtherm is defined as the length along the x-direction between

two points at which the point-like string originates and falls into the black hole horizon

respectively. On the field theory side of the duality, xtherm corresponds to the length of

the plasma traversed before the jet becomes completely thermalized (i.e. indistinguishable

from the plasma). We are looking for the maximum distance a quark with the energy E can

travel before thermalizing independent of the exact IC of the string. Although this quantity

is not enough to calculate observables such as RAA or v2 in general, it can be used as a

phenomenological guideline to estimate the stopping power of the strongly-coupled plasma.

In order to compare the results of the jet stopping distance in non-conformal plasma

with the results of conformal AdS-Sch, we can either fix the temperature or the entropy of

the non-conformal plasma with the AdS-Sch ones. In figure 4 we plot the rescaled entropy

of the non-conformal theory with different φM compared to the conformal entropy in terms

of temperature. The intersection of black dashed lines shows the entropy of the AdS-Sch

metric with T = 265 MeV as a reference point. This figure indicates that if we fix the

temperature and increase φM (moving along the vertical dashed black line), the entropy of

the non-conformal theory decreases. On the other hand, increasing φM on the line of fixed

entropy (moving along the horizontal dashed black line) give rise to the non-conformal

theories with higher temperature.

In figure 5, and figure 6 we numerically compute the stopping distance for many

different sets of string initial conditions in the backgrounds with different non-conformal

parameters. In these figures, each point shows the logarithm of stopping distance of a string

with a specific initial condition in terms of logarithm of its initial energy. Black dots show

– 12 –
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Figure 4. (Color online) The rescaled entropy of the non-conformal theory with different φM
compared with the conformal entropy in terms of temperature. The intersection of two dashed

black lines shows an AdS-Sch background with T = 265 MeV. We study the non-conformality effect

on our results by moving away from this point along the either vertical (same temperature) or

horizontal (same entropy) dashed black lines.

the strings in the AdS-Sch metric, while the blue triangles, red stars, and green diamonds

correspond to strings in the non-conformal backgrounds with φM = 1, φM = 3, and

φM = 10, respectively. In the figure 5, all plasmas have the same temperature, while in the

figure 6 the entropy of the backgrounds is fixed. The interesting point is that the stopping

distance increases by increasing the deviation from conformality when the temperature of

the background is fixed. However, it decreases if the entropy of the background is fixed.

As explained in figure 4, by fixing the entropy and increasing the φM , the plasma becomes

hotter which leads to a larger jet suppression.

As clearly shown in these figures, the dynamics of the string is a multi-variable quantity

depends on the both string IC and background thermodynamics, but all data points for

each set of data fall below the solid lines. These lines display the maximum stopping

distance of the light quark in the corresponding medium, i.e. the maximum distance that a

quark with the energy of E can travel in the medium before thermalization. It is shown that

this distance in the conformal background scales like E1/3 for large enough energies [58].

In fact, numerical results show that the maximum stopping distance for a given energy

depends on the energy of the quark and the temperature of plasma as follows

xmax =
C
T

(
E

T
√
λ

)neff , (3.14)
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Figure 5. (Color online) The stopping distance of the jet (GeV−1) in terms of its energy (GeV)

moving in the non-conformal backgrounds with different φM . All of the non-conformal backgrounds

have the same temperature as the AdS-Sch temperature sets to be 265 MeV. For each set of data,

all data points fall below the solid line which determines the maximum stopping distance of the

quark in terms of its energy.

which C and neff are estimated to be 0.526 and 1/3 in the AdS-Sch case, respectively [58].

We explore this relation with our numerical results and estimate the values of C and neff

in the case of non-conformal plasma. We fit our data in the AdS-Sch with eq. (3.14) by

fixing C = 0.526. The estimated neff is less than 1/3 for the available energies at RHIC or

LHC but it approaches to this value at very high energies.

In figure 7, the neff is calculated by fitting the numerical results to the eq. (3.14) by

considering C = 0.45 for all non-conformal metrics and C = 0.526 for the AdS-Sch metric.

In fact, these constants give rise to a more precise fit to the numerical results. Again,

in figure 7a all backgrounds have the same temperature and in figure 7b they have the

same entropy. In general, increasing the deviation from conformal invariance increases the

stopping distance of jet of light quark.

4 Jet quenching

To calculate the jet quenching parameter for the non-conformal theory, we use the thermal

expectation value of a close light-like Wilson loop [82]

〈WA(C)〉 ≈ exp

[
− 1

4
√

2
q̂ L− L2

]
, (4.1)
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Figure 6. (Color online) The stopping distance of the jet (GeV−1) in terms of its energy (GeV)

moving in the non-conformal backgrounds with different φM . All of the non-conformal backgrounds

have the same entropy as the AdS-Sch entropy. For each set of data, all data points fall below the

solid line which determines the maximum stopping distance of the quark in terms of its energy.
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Figure 7. (Color online) (a) The effective power in eq. (3.14) in non-conformal plasmas with

the same temperature as the AdS-Sch temperature. (b) The effective power in eq. (3.14) in non-

conformal plasmas with the same entropy as the AdS-Sch entropy.

where L is the transverse distance (conjugate to the transverse momentum of the radiated

gluons) and L− is the light-cone distance ( conjugate to partons with relativistic velocities).

This equation is valid for L− � L. In the gravity side, the thermal expectation value of the

Wilson loop 〈WF (C)〉 can be obtained by using the action of the extremal surface as [83–87]

〈WF (C)〉 = exp [−SI(C)] , (4.2)
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where SI is the normalized action after subtracting the self energy of the qq̄ pair from the

Nambu-Goto action of the string worldsheet. As in the large Nc limit, Tr(Adj.) = Tr2
(Fund.),

one can write

q̂ =
8
√

2SI
L− L2

. (4.3)

In the light-cone coordinates, x± = (t±x1)/
√

2, the non-conformal background of eq. (2.12)

becomes

ds2 = −e2A(1 + h(φ))dx+dx− + e2A
(
dx2

2 + dx3
2
)

+
e2A

2
(1− h(φ))

(
dx+2

+ dx−
2
)

+
e2B

h
dφ2

≡ Gµνdx
µdxν . (4.4)

The string parametrization is xµ(τ, σ) where σα = (τ, σ) is the worldsheet coordinates.

The Nambu-Goto action of the string is

SNG =
1

2πα′

∫
dσdτ

√
det gαβ , (4.5)

where gαβ is the induced metric on the string worldsheet and (τ, σ) are set to be (x−, x2).

L is considered to be the contour length along x2-direction and L− to be its length along

τ -direction. The boundary conditions are φ
(
±L

2

)
= 0 and x3(σ) and x+(σ) coordinates

are constant. Then the action of eq. (4.5) reads

SNG =
2L−

2πα′

∫ L
2

0
dσ

√
e4A(1− h(φ))

2

√
1 +

e2(B−A)

h(φ)
φ′2 , (4.6)

where prime denotes the derivative with respect to σ. Since the Lagrangian density is time

independent, the Hamiltonian of the system is constant

L − φ′ ∂L
∂φ′

= Πφ (4.7)

and one can obtain the following equation for φ′

φ′ =
∂φ

∂σ
=
eA−B√

2Πφ

√
h(φ)

(
e4A(1− h(φ))− 2Πφ

2
)
. (4.8)

Integrating equation eq. (4.8) leads to

L

2
=
√

2a0Πφ +O(Πφ
3), (4.9)

where

a0 =

∫ 0

φH

dφ
eB−3A√

h(φ)(1− h(φ))
. (4.10)

Here, we have used the fact that for small length L, the constant Πφ is small and its higher

order terms are negligible. Substituting eq. (4.8) into eq. (4.6) and expanding for small Πφ

yields to

SNG =
L−√
2πα′

∫ 0

φH

dφ

√
1− h(φ)

h(φ)
eA+B

(
1 +

e−4A Πφ
2

1− h(φ)
+ . . .

)
. (4.11)
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This action diverges and we should subtract the self energy of two disconnected strings

whose worldsheets are located at x2 = ±L
2 and extended from φ = 0 to φ = φH

S0 =
2L−

2πα′

∫ 0

φH

dφ
√
g−−gφφ =

L−√
2πα′

∫ 0

φH

dφ eA+B

√
1− h(φ)

h(φ)
. (4.12)

The normalized action is then written as

SI = SNG − S0 ≡
L−L2

8
√

2πα′a0

. (4.13)

Inserting eq. (4.13) into eq. (4.3) leads to the following expression for the jet quenching

parameter of the non-conformal theory

q̂NC =

√
λ

πR2a0
, (4.14)

where a0 is the numerical integral of eq. (4.10). Here, we have used the relation between

the string tension and the ’t Hooft coupling R2

α′ =
√
λ.

For N = 4 supersymmetric Yang-Mills theory in the large Nc and large λ limits, the

jet quenching parameter is [88]

q̂SYM =
π3/2Γ

(
3
4

)
Γ
(

5
4

) √
λT 3, (4.15)

To understand how non-conformality affects the jet quenching parameter, we calculate

eq. (4.14) for different values of φM numerically. Here, we have taken the ’t Hooft coupling

λ = 5.5 for numerical estimates. The ratio of jet quenching in non-conformal background

to its conformal value in terms of temperature is shown in figure 8a for φM = 1 (blue

curve), φM = 3 (red curve) and φM = 10 (green curve). The plot shows that for each

value of φM , the ratio of q̂NC/q̂SYM starts from a finite value and approaches to 1 at

higher temperature where conformality is dominant. This behavior reflects the fact that

deviations from conformality are magnificent at lower temperatures and suppress at higher

temperatures. Also, increasing the values of φM , decreases the values of jet quenching

(and hence the ratio is decreased). In figure 8b, the temperature dependency of the jet

quenching parameter is shown for φM = 1 (blue curve), φM = 3 (red curve), φM = 10

(green curve) as well as N = 4 SYM theory (dashed curve). Two black circles with error

bars are the corresponding absolute values of q̂ for a 10 GeV quark jet in the most central

Au-Au collisions at RHIC with the highest temperature T = 0.37 GeV and Pb-Pb collisions

at LHC with the highest temperature T = 0.47 GeV [89]. Both temperatures are rescaled

due to the fact that the number of degrees of freedom in the non-conformal theory is more

than those of 3 favor QCD and one can use TNC ≈ TSYM = 3−1/3TQCD [89].

In table 1, the numerical values of the jet quenching parameter is shown for N = 4

SYM theory, non-conformal background (φM = 1, φM = 3 and φM = 10) and experimental

data from RHIC and LHC. q̂ values are in the units of GeV2/fm. It can be seen that the

jet quenching results from non-conformal background are in a good agreement with the
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Figure 8. (a) The ratio of q̂NC/q̂SYM in terms of temperature for different φM . (b) Jet quenching

parameter for N = 4 SYM theory and non-conformal theory with different φM . The circles indicate

the experimental values of q̂ from RHIC and LHC.

T (GeV) q̂SYM φM = 1 φM = 3 φM = 10 Data

0.37 1.51 1.19 0.87 0.79 1.2± 0.3

0.47 3.10 2.54 2.20 2.15 1.9± 0.7

Table 1. Comparison between the jet quenching values obtained from N = 4 SYM, non-conformal

model and experiments. Selected temperature are T = 0.37 GeV (RHIC) and T = 0.47 GeV (LHC).

experimental data. It is found that at T = 0.37 GeV varying φM from 1 to 3 decreases

q̂ by ∼ 26% while varying φM from 3 to 10 reduces q̂ just about ∼ 9%. On the other

hand, at T = 0.47 GeV varying φM from 1 to 3, the decrease of q̂ is about ∼ 13% while

varying φM from 3 to 10, the decrease of q̂ is about ∼ 2%. Therefore, our results imply an

increase of the jet-medium interaction at lower temperature where non-conformality effects

are dominanat.

Holographic models such as [65, 73] indicate that increasing nonconformality leads to

decreasing the value of jet quenching parameter which is consistence with our results from

jet quenching parameter as well as the results of light quark stopping distance obtained

from the previous section. In general, increasing the deviation from conformal invariance

decreases the capability of medium to quench the jets of quarks. However, in the case of

holographic QCD models with phase transition, this parameter exhibits a peak around the

QCD phase transition region due to the fact that the system degrees of freedom change

rapidly from hadronic gas to QGP [90, 91].

5 Summary

The quark-gluon plasma produced in heavy ion collisions is a strongly coupled, non-

conformal plasma as indicated by lattice data [38] and hydrodynamics calculations [39–42].

The gauge/gravity duality provides us the opportunity to study the hot plasma in a strongly

coupled regime. Suppression of high energy partons produced at heavy ion collision with
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high transverse momentum is one of the interesting properties of this strongly-coupled

plasma that can be investigated using the AdS/CFT correspondence. Although, previous

studies show that suppression of jets with sensible energies in N = 4 SYM theory is much

larger than its experimental expectations [59, 61].

In this paper, we investigated the suppression of jet in the strongly-coupled non-

conformal plasma in the framework of AdS/CFT correspondence. We considered a holo-

graphic five-dimensional model consisting of Einstein gravity coupled to a scalar field with

a non-trivial potential which corresponds to a dual four-dimensional non-conformal gauge

theory which exhibits a renormalization group flow between two different fixed points (lo-

cated at UV and IR) at zero temperature [48]. The parameter φM indicates the deviation

from conformality as shown in figure 1.

We considered a point-like initial condition string created close to the boundary with

endpoints that are free to fly apart. The initial conditions of the string are chosen such

that the string extends in a direction parallel to the boundary as it falls toward the black

hole horizon (falling string). The equations of motion for the string moving in the non-

conformal background have been solved numerically and plotted in figure 2 for a typical

string moving in the background with φM = 3. Since the dynamics of the string depends

on the string initial conditions (see figure 3, figure 5 and figure 6 for clarifications), we

studied the maximum stopping distance which is insensitive to these IC in the string

side. Although, this quantity is not good enough to compute the observables like nuclear

modification factor, it is still a good quantity to estimate the stopping power of the plasma.

Our results show that the thermalization distance in the non-conformal backgrounds

compare to the N = 4 SYM theory depends on the fact that theories have the same

temperature, figure 5 or the same entropy, figure 6. Actually, the figure 4 demonstrates that

increasing non-conformality while keeping the entropy constant leads to a hotter plasma

and consequently a larger jet suppression. We fitted the maximum stopping distance to

the well-known relation presented in eq. (3.14) and used the neff as the stopping power of

the plasma. Our numerical results, presented in figure 7 indicated that the thermalization

distance increases by increasing the non-conformality of the plasma.

In the last section, we calculated the jet quenching parameter for the non-conformal

geometry of section 2. For different values of φM , our results are in a good agreement with

experimental data. Deviations from conformality are magnificent at lower temperatures

and suppress at higher temperatures where non-conformal results approach to the corre-

sponding value of the conformal background. As non-conformality increases, the value of jet

quenching parameter decreases and this behavior is in consistency with both experiments

and the results of light quark stopping distance obtained in section 3.2.
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