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1 Introduction

The successful operation of the LHC and the ATLAS and CMS experiments have led to

the discovery of the Higgs boson and completion of the standard model (SM) of particle

physics [1, 2]. Precision test on properties of the Higgs boson including all its couplings

with standard model particles becomes one primary task of particle physics at the high

energy frontier. Continuous operation of LHC has shown great success on refined study

of the Higgs boson, for example, the recent discovery of the Higgs couplings with top

quarks [3, 4] and bottom quarks [5, 6]. On the other hand, the ability of the LHC or high

luminosity (HL) LHC are limited on several aspects in the study of Higgs couplings. Due

to the huge SM backgrounds, the accuracy of measurements on the Higgs signal strength

cannot go below the order of 5% [7]. It is also very difficult to probe Yukawa couplings

of the fermions of first two generations [8–16], as well as possible invisible decay channels

present in new physics models. Besides, the sensitivity to Higgs self-interactions are rather

weak [17–20].

To measure the Higgs properties with higher accuracy and to probe rare decay modes

of the Higgs boson, there have been a few proposals to build a future lepton collider that

can serve as a Higgs factory. These include ILC [21], CEPC [22], CLIC [23] and FCC-

ee [24]. At a lepton collider, e.g., the CEPC [22], all decay channels of the Higgs boson

can be measured in a model-independent way including possible invisible channels, and

the total width can be reconstructed. The projected precision on most Higgs couplings are

at the percent level thanks to the clean environment [25]. This is an order of magnitude

improvement over the ability of the (HL-)LHC.
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Precision experiments require equally precision theoretical predictions. To further

scrutinize the SM and to look for possible new physics beyond, it is necessary to calculate

higher-order corrections to the production and decay of the Higgs boson. In this respect,

there have been enormous advances in recent years. For example, the next-to-next-to-next-

to-leading order (N3LO) quantum chromodymamics (QCD) corrections to Higgs boson

production via gluon fusion in the heavy top-quark limit [26, 27] and to Higgs boson

production via vector boson fusion within the structure function approach [28], the next-to-

next-to-leading order (NNLO) corrections to Higgs boson production in association with a

jet in the heavy top-quark limit [29–32], and the next-to-leading order (NLO) corrections to

Higgs boson pair production with full top-quark mass dependence [33] have been known for

some time. The two-loop mixed QCD and electroweak corrections have also been calculated

recently for the associated production of Higgs boson and a Z boson at electron-positron

colliders [34–36].

In this work, we are concerned with the hadronic decays of the Higgs boson. Namely,

the final-state consists hadrons initiated by quarks and gluons. This channel is particularly

interesting for a future lepton collider, since it is rather difficult to be detected at hadron

colliders. This channel also provides a unique place to cleanly study non-perturbative

aspects of QCD related to gluon jets. Due to the hadronic nature of this channel, the

cross sections receive sizeable QCD corrections. As a result, higher order calculations for

various observables in this process are highly demanded. The partial width for H → bb̄ is

known up to the next-to-next-to-next-to-next-to-leading order (N4LO), in the limit where

the mass of the bottom quark is neglected [37]. The partial width for H → gg has been

calculated to the N3LO in the heavy top-quark limit [38]. We refer the readers to [39, 40]

for a complete list of relevant calculations. At a more exclusive level, the fully differential

cross sections for H → bb̄ have been calculated to NNLO in [41, 42] with massless b-quarks,

and in [43] with massive b-quarks.

For hadronic decays, event shapes are a class of good observables. On one hand,

they are infrared safe observables which can be theoretically calculated order-by-order in

perturbation theory. On the other hand, they can be experimentally constructed from the

hadron momenta without the need to specify a jet algorithm. For Higgs boson decay, in

particular, one of the authors has proposed to use event shapes such as thrust, hemisphere

mass and C parameter to distinguish final states induced by the Hgg coupling and the

Hqq̄ coupling [44]. This may help to probe possible new physics effects which modifies

the light-quark Yukawa couplings. It is also suggested in [45] to use jet energy profile to

improve the measurement of the Hgg coupling.

In this work, we investigate the thrust distribution in the hadronic decays of the Higgs

boson. Such decays can be induced by the effective coupling between the Higgs boson and

gluons, and can also be induced by the Yukawa coupling between the Higgs boson and

quarks. We discuss these couplings in section 2. We then calculate the leading order (LO)

and the NLO contributions to the thrust distribution in section 3. We find that the NLO

corrections are rather large, and proceed to construct an approximate NNLO prediction in

section 4. We conclude in section 5.
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2 Formalism

In this work, we study the thrust distribution in hadronic decays of the Higgs boson. The

thrust T is defined by

T ≡ max
~n

∑
i |~n · ~pi|∑
i |~pi|

, (2.1)

where ~pi runs over the 3-momenta of the final state particles, and ~n is a 3-vector with unit

norm. It is conventional to introduce the variable τ ≡ 1−T , which we will use extensively

later. The limit τ → 0 corresponds to the final-state configuration of two back-to-back

jets, and the limit τ → 1/2 corresponds to a nearly isotropic event.

Our calculations are based on the effective Lagrangian

Leff =
αs(µ)Ct(mt, µ)

12πv
Og +

∑
q

yq(µ)√
2
Oq

≡ αs(µ)Ct(mt, µ)

12πv
HGµν,aGaµν +

∑
q

yq(µ)√
2
Hψ̄qψq, (2.2)

where µ is the renormalization scale, v is the vacuum expectation value of the Higgs field,

H represents the physical Higgs boson after electroweak symmetry breaking, and Gaµν is

the field strength tensor of the gluon field. ψq is the light quark fields namely excluding

top quark. The strong coupling αs(µ) and the Yukawa coupling yq(µ) are renormalized in

the MS scheme with nf = 5 active flavors, i.e., with the top quark integrated out. The

Wilson coefficient Ct(mt, µ) comes from integrating out the top quark, whose perturbative

expansion can be written as

Ct(mt, µ) = 1 +

∞∑
n=1

(
αs(µ)

4π

)n
C

(n)
t (mt, µ) . (2.3)

The coefficients C
(n)
t (mt, µ) have been calculated up to N4LO [46–52]. For our purpose,

we need the results up to N3LO, which are given by

Ct(mt, µ) = 1 +
αs
4π

11 +
(αs

4π

)2
[
Lt

(
19 +

16

3
nf

)
+

2777

18
− 67

6
nf

]
+
(αs

4π

)3
[
L2
t

(
209 + 46nf −

32

9
n2
f

)
+ Lt

(
4834

9
+

2912

27
nf +

77

27
n2
f

)
− 2761331

648
+

897943ζ3

144
+

(
58723

324
− 110779ζ3

216

)
nf −

6865

486
n2
f

]
, (2.4)

where Lt = ln(µ2/m2
t ), and we have set explicitly the number of colors Nc = 3 to shorten

the expression.

We work in the limit of vanishing light quark masses, mq = 0, while keeping the

Yukawa coupling yq non-zero. This treatment can be justified if new physics beyond the

SM leads to a different relation between yq and mq in the low energy effective theory. The

zero mass limit is a good approximation as long as τ � m2
q/m

2
H .
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The massless (chiral) limit brings about a few simplifications to our calculation, which

we elaborate in the following. The first immediate effect is that the two operators in

eq. (2.2) do not interfere when computing squared-amplitudes. That is to say, for all final

state X, the following interference term

〈0|Gµν,aGaµν |X〉 〈X|ψ̄qψq|0〉 (2.5)

vanishes to all orders in the strong coupling αs. This can be easily seen since the QCD

interactions preserve chirality in the massless limit, while the quark operator Oq couples two

quark fields with opposite chirality. Therefore, irrelevant of the final states, it is guaranteed

that one of the two matrix elements in the above interference term vanishes.

The second simplification resides in the fact that the two operators in eq. (2.2) do not

mix with each other under renormalization. To see this, it is sufficient to show that the

two matrix elements 〈qLq̄R|Gµν,aGaµν |0〉 and 〈gg|ψ̄qψq|0〉 are zero. The vanishing of both

matrix elements follows from the same argument on chirality in the above. As a result of

this observation, the two coefficients Ct(mt, µ) and yq(µ) evolve independently under the

renormalization group (RG). We have

d

d lnµ
Ct(mt, µ) = γt(αs(µ))Ct(mt, µ) ,

d

d lnµ
yq(µ) = γy(αs(µ)) yq(µ) . (2.6)

The explicit expressions for the anomalous dimensions γt and γy are known to third order

in αs, and are collected in appendix A.

Finally, we note that in the massless limit, the impact of integrating out the top quark

on the quark operator is fully absorbed by the Yukawa coupling yq(µ) defined in the 5-

flavor scheme. This is slightly different from the massive case [49], where in addition to the

flavor-decoupling in yq(µ), there is an extra Wilson coefficient C2(mt, µ) coming into play.

However, this coefficient arises purely from a similar effect as the operator mixing between

Og and Oq. Since we have shown above that such a mixing is absent when mq = 0, we can

conclude that C2(mt, µ) equals unity to all orders in αs.

It is easy to demonstrate the above fact at the two-loop order (where the effect first

appears). Consider the matching procedure for the HqLq̄R amplitude. The matching

coefficient comes from 3 contributions in the full theory with a closed top-quark loop:

1) diagrams where the external Higgs field is attached to the top-quark loop, e.g., the

first diagram in figure 1; 2) diagrams where the Higgs filed is attached to the light quark

propagator, e.g., the second diagram in figure 1; and 3) top-quark loop contributions to

the renormalization of yq and ψq. The second and third contributions cancel each other if

the renormalization constants for Yukawa coupling and quark field, Zy and Zψ, are chosen

in the 5-flavor scheme. This cancellation is in fact the very definition of the “5-flavor

scheme”, which is obvious if we perform the matching with the external quarks on-shell

and the Higgs momentum set to zero. As for the first contribution, it can be immediately

seen that the first diagram in figure 1 vanishes in the massless limit. The absence of the first

contribution can be formally proven to all orders, since it is related to the on-shell matrix

element 〈qLq̄R|ψ̄tψt|0〉. Such an amplitude must have the form Fµ(p1, p2) ū(p1)γµv(p2)

which is zero due to the equation-of-motion.
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Figure 1. Representative top-quark loop contributions for the matching of the HqLq̄R amplitude.

1
1

Figure 2. Representative Feynman diagrams for the Hgg channel (left) and the Hqq̄ channel

(right) for the thrust distribution at LO.

In summary, in the limit mq → 0, the hadronic decay of the Higgs boson can be clas-

sified at the parton level into two categories, induced by the gluon operator and the quark

operator in eq. (2.2), respectively. These two operators do not mix under renormalization.

In the following, we will denote the partonic processes induced by the gluon operator as

the Hgg channel, and those induced by the quark operator as the Hqq̄ channel. The names

might sometimes be misleading, since the two channels can have the same final state par-

ticles. For example, the two operators can both induce the H → qq̄g process. However,

according to the discussions around eq. (2.5), these two amplitudes do not interfere with

each other. As a result, from the computational point of view, we can strictly separate the

Hgg channel and the Hqq̄ channel, and calculate higher order QCD corrections for them

independently.

3 The leading order and next-to-leading order results

For the thrust distribution, at LO in αs, the Hgg channel contains two partonic subpro-

cesses H → ggg and H → qq̄g, while the Hqq̄ channel has only one subprocess H → qq̄g.

The representative Feynman diagrams are depicted in figure 2. The LO result for the

Hgg channel has been calculated in [53]. We calculate the LO result for Hqq̄ channel

and also reproduce the LO result for Hgg channel. The expressions of normalized thrust

– 5 –
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Figure 3. Representative Feynman diagrams for the Hgg channel (upper) and the Hqq̄ channel

(lower) at NLO.

distribution are given by

1

Γq0

dΓqLO

dτ
=

y2
q (µ)

y2
q (mH)

αs(µ)

2π
CF

1

τ(τ − 1)

[
3(1− 3τ)(1− τ)2 − 2

(
2− 3τ + 3τ2

)
ln

1− 2τ

τ

]
,

1

Γg0

dΓgLO

dτ
=

α2
s(µ)

α2
s(mH)

αs(µ)

2π

{
CA

1

3τ(τ − 1)

[
(1− 3τ)(1− τ)(11− 24τ + 15τ2)

− 12
(
1− τ + τ2

)2
ln

1− 2τ

τ

]
+ TFnf

2

3τ

[
(1− 3τ)(2− 15τ + 15τ2) + 6τ

(
1− 2τ + 2τ2

)
ln

1−2τ

τ

]}
, (3.1)

where τ ∈ (0, 1/3], µ is the renormalization scale, Γq0 ≡ Γq0(mH) and Γg0 ≡ Γg0(mH) are LO

partial decay widths at the scale µ = mH , with decay width at a scale of Higgs mass, with

Γq0(µ) =
y2
q (µ)mH CA

16π
, Γg0(µ) =

α2
s(µ)m3

H

72π3v2
. (3.2)

The NLO corrections to the thrust distribution involve both virtual gluon exchanges

and real gluon emissions. The representative Feynman diagrams are show in figure 3. The

virtual diagrams contain ultraviolet (UV) divergences which are removed by renormaliza-

tion of the couplings αs and yq. The renormalization constants are given by

Zαs = 1− αs
4π
e−εγE (4π)ε

β0

ε
+O(α2

s) , Zy = 1− αs
4π
e−εγE (4π)ε

γy0
2ε

+O(α2
s) , (3.3)

where β0 and γy0 are given in appendix A; ε = (4 − d)/2 is the dimensional regulator;

and γE is the Euler constant. After renormalization, both real and virtual corrections

– 6 –
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Figure 4. Thrust distributions at LO and NLO in the Hgg (left plot) and Hqq̄ (right plot) channels.

are separately infrared (IR) divergent, while their sum is finite. In order to implement the

cancellation in a Monte-Carlo generator, we adopt the dipole-subtraction method [54]. This

amounts to introducing an auxiliary function dΓA which has the same singular behaviors

in the soft and/or collinear limits. The sum of the virtual and real corrections then be

written in the form

ΓiV+R =

∫
n+1

dΓireal +

∫
n
dΓivirt =

∫
n+1

(
dΓireal − dΓiA

)
+

∫
n

(
dΓivirt +

∫
1
dΓiA

)
, (3.4)

where the integral symbol with subscript n denotes an n-body phase-space integration,

and i = q, g represent the Hqq̄ and Hgg channels, respectively. The two terms in the

above formula are both finite, and the integration can be performed numerically. For the

Hgg channel, there is an extra contribution from the Ct coefficient at NLO. Combining

everything, we have the NLO decay rates as

ΓqNLO = ΓqLO + ΓqV+R ,

ΓgNLO =
(

1 +
αs
2π
C

(1)
t (mt, µ)

)
ΓgLO + ΓgV+R . (3.5)

Based on the above formulas, we construct an in-house Fortran program to compute

the differential decay rates. We use the real-emission matrix elements from OpenLoops [55]

and the one-loop matrix elements from refs. [42, 56]. The Monte-Carlo integrations are

performed with the Cuba library [57]. For the input parameters, we use αs(mZ) = 0.1181,

mH = 125.09 GeV and mt = 173.5 GeV.

In figure 4, we show the LO and NLO thrust distributions in the Hgg andHqq̄ channels,

respectively. The error bands reflect the variations of the results when the renormalization

scale µ is varied up and down by a factor of 2 from the nominal choice of mH . Note that the

LO distributions approach zero when τ → 1/3, due to phase space constraints. At NLO,

with an additional parton emitted, the region 1/3 < τ < (1− 1/
√

3) opens up. From this

figure, one can see that the NLO corrections are rather large for both channels, indicating

the bad convergence of the perturbative series. Especially for the Hgg channel, the NLO

differential cross section is twice the LO one at τ ∼ 0.05. The correction is even more

– 7 –
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Figure 5. The ratios of the LO and NLO differential cross sections to their central values.

pronounced for larger τ . We also find that the scale uncertainties of the LO results do not

overlap with the NLO ones. This indicates that the scale variation of the LO differential

cross sections underestimate the theoretical uncertainties. We also show in figure 5 differ-

ential cross sections normalized to their central values. At LO the scale variations arise

entirely from running of the couplings and show no dependence on kinematics. The scale

variations are reduced at NLO for τ below the kinematic endpoint at LO.

To summarize, our NLO calculation reveals a few unsatisfactory features which make us

believe that even higher order corrections are phenomenologically important. To obtain the

full NNLO thrust distribution for, e.g., the Hqq̄ channel, one needs to calculate, among

others, the two-loop virtual corrections to the H → qq̄g process, the one-loop virtual

corrections to the H → qq̄gg process, and the tree-level H → qq̄ggg process. One also

needs to combine these contributions, either analytically or numerically, in order to cancel

the infrared divergences. Before get into such an involved computation, it is useful to

estimate the size of the NNLO corrections. The rest of this paper will be devoted to the

calculation of thrust distributions at approximate NNLO based on a factorization formula

in small-τ limit. The factorization formula can also be used to resum large logarithms

appearing in small-τ region, where the perturbative expansion is doomed to fail. This will

be left to a future work in preparation.

The factorization formula deals with singular terms of the form lnn τ/τ in the thrust

distributions. Before going into the NNLO corrections, we can extract such singular terms

in the LO results from eq. (3.1). The results are given by

1

Γq0

dΓqLO,sing

dτ
=

y2
q (µ)

y2
q (mH)

αs(µ)

2π
CF

1

τ

(
− 4 ln τ − 3

)
,

1

Γg0

dΓgLO,sing

dτ
=

α2
s(µ)

α2
s(mH)

αs(µ)

2π

[
CA

1

3τ

(
− 12 ln τ − 11

)
+ TFnf

4

3τ

]
. (3.6)

In figure 6, we compare numerically the singular terms at LO against the exact results

by plotting their ratios. From there one can see the singular terms dominate at small-τ

region. They remain as the leading contributions up to τ ∼ 0.25, where the non-singular

terms contribute about 30% and 20% for Hgg and Hqq̄ respectively.
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Figure 6. Comparison between the exact results and the singular terms at LO.

4 Factorization at small τ and approximate NNLO

In this section, we briefly introduce the factorization formula at small τ , and use it to

derive an approximate NNLO formula for the thrust distribution. In the τ → 0 limit, the

final state hadrons form two nearly back-to-back jets in the rest frame of the Higgs boson.

In this reference frame, it is convenient to choose two light-like vectors n = (1, 0, 0, 1) and

n̄ = (1, 0, 0,−1) to represent the directions of the two jets. The momenta of the two jets are

then labeled by pn and pn̄. The factorization formula can be obtained using the language of

soft-collinear effective theory (SCET) [58–63], following the derivations for the e+e− → qq̄

process [64–66]. The factorized form is given by

dΓi

dτ
= Γi0(µ) |Cit(mt, µ)|2 |CiS(mH , µ)|2

∫
dp2

n dp
2
n̄ dk δ

(
τ − p2

n + p2
n̄

m2
H

− k

mH

)
× J in(p2

n, µ) J in̄(p2
n̄, µ)Si(k, µ) , (4.1)

where i=q, g denote the Hqq̄ and Hgg channels, respectively. We have defined Cgt (mt, µ) ≡
Ct(mt, µ) and Cqt (mt, µ) ≡ 1, corresponding to the matching coefficients discussed in

section 2.

The formula eq. (4.1) involves several ingredients, which we introduce in the following.

The hard Wilson coefficients CiS(mH , µ) comes from integrating out the hard fluctuations

at the scale µ ∼ mH . They are defined as the matching coefficient from the full theory

eq. (2.2) to SCET. They can be obtained from the Hqq̄ and Hgg form factors, which

are know up to the 3-loop order [67–71]. From these results, the Wilson coefficients CqS
and CgS can be extracted up to the next-to-next-to-next-to-leading order (N3LO). The jet

functions J in(p2
n, µ) and J in̄(p2

n̄, µ) describe collinear emissions along the directions of the

two jets. The typical jet masses are given by p2
n ∼ p2

n̄ ∼ τm2
H . Both the quark jet function

and the gluon jet function have been calculated to the N3LO [72–75]. The soft functions

Si(k, µ), on the other hand, describe soft emissions with typical momenta k ∼ τmH . The

quark soft function has been known analytically up to the NNLO [64, 76–78]. For our

purpose, we also need the scale-dependent part of the N3LO soft function, which can be

– 9 –
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Figure 7. Comparison between the exact results and the singular terms at NLO.

obtained through its RG equation. Note that the scale-independent part of the N3LO

soft function was also extracted numerically, albeit with large uncertainty [74]. Up to the

N3LO, the gluon soft function can be obtained from the quark one by a Casimir scaling

CA/CF . The explicit expressions for the above ingredients are collected in appendix B.

Given the factorization formula eq. (4.1), it is straightforward to obtain the leading

singular terms for the thrust distribution by expanding the formula in terms of αs(µ). Up

to the NNLO, the singular part of the thrust distribution can be formally written as

dΓising

dτ
= Γi0(µ)

[
αs(µ)

4π
∆

(1)
i (τ, µ) +

(
αs(µ)

4π

)2

∆
(2)
i (τ, µ) +

(
αs(µ)

4π

)3

∆
(3)
i (τ, µ)

]
, (4.2)

with i = q, g. The explicit expressions of the coefficients ∆
(n)
i (τ, µ) can be found in ap-

pendix C.

With the above formula, we can now perform a comparison similar to figure 6 for the

NLO corrections. This is shown in figure 7. Again we see that the ∆
(2)
i term serves as

a very good approximation of the exact NLO correction up to τ ∼ 0.2. This leads us to

believe that the ∆
(3)
i term should also provide a good description of the NNLO correction in

this region. Therefore, we define our Approximate-NNLO (NNLOA) thrust distribution as

dΓiNNLO,A

dτ
=
dΓiNLO

dτ
+ Γi0(µ)

(
αs(µ)

4π

)3

∆
(3)
i (τ, µ) . (4.3)

Namely, we add the NNLO singular contribution from ∆
(3)
i to the exact NLO result cal-

culated in the previous section.

In figure 8, we show the approximate NNLO results for the Hgg and Hqq̄ channels in

the region 0.05 ≤ τ ≤ 0.25. In the upper plots we show the absolute distributions, while

in the lower plots we show the ratios of the differential cross sections to the LO central

values. We see that the NNLO corrections are still quite large. Especially for the Hgg

channel, the NNLO correction can reach about 50% of the NLO differential cross section.

Nevertheless, the NNLO band now marginally overlaps with the NLO one, indicating that
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Figure 9. The ratios of the integrated cross sections in the bin τ ∈ [0.1, 0.2] to their central values

at µ = mH , as a function of µ/mH .

the perturbative series starts to converge. We can therefore expect that the scale variations

of the NNLO results provide a relatively honest estimate of the perturbative uncertainties

due to missing higher order corrections.

To see more clearly the relative scale variations at each order, we show in figure 9 the

ratios of the integrated cross sections in the bin τ ∈ [0.1, 0.2] to their central values at µ =
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Figure 10. The ratios of the LP, NLP, next-to-next-to-leading power (NNLP), and next-to-next-

to-next-to-leading power (NNNLP) results to the exact LO.

mH . The slopes of the curves indicate how strong the predictions depend on the unphysical

renormalization scale µ. We observe that the scale dependence consistently decreases as

we go to higher orders in perturbation theory. However, for the Hgg channel, the variation

of the cross section is still at the level of ±10% when µ is varied in the range [mH/2, 2mH ],

which calls for further improvement to match the precision of future e+e− colliders.

Finally, it should be noted that the factorization formula (4.1), and hence the leading

singular term in eq. (4.2), captures only the leading power (LP) contribution enhanced

by 1/τ . Recently, there have been a lot of efforts to calculate the next-to-leading power

(NLP) corrections for various processes. In particular for thrust distribution, this has been

considered in [81]. It will be interesting to include such higher power contributions in the

approximate NNLO formula. This will improve the accuracy of the approximate formula

for moderate τ , and will also extend its range of validity to larger values of τ . While this is

beyond the scope of the current work, it is straightforward to perform a power expansion

in τ for the LO distribution using the analytical expressions (3.1). For example, in the

Hgg channel, the result is given by

1

Γg0

dΓgLO

dτ
=

1

Γg0

dΓgLO,sing

dτ

+
α2
s(µ)

α2
s(mH)

αs(µ)

2π

[
CA
(
4 ln τ + 11

)
− TFnf

(
4 ln τ + 14

)︸ ︷︷ ︸
next-to-leading power

+O(τ)
]
. (4.4)

In figure 10, we study the convergence of the power expansion for the LO distributions

with the central scale choice µ = mH . We show the ratios of the first 4 orders in the

power expansion to the exact LO result. It can be seen that in the Hgg channel, the NLP

contribution brings the approximate result much closer to the exact one. On the other

hand, in the Hqq̄ channel, the NLP result accidentally behaves worses than the LP one

for τ > 0.15. Only by including even higher power corrections can one obtain a reliable

approximation to the exact LO result. It would be interesting to see in the future whether

the same conclusions can be drawn for the NLO and NNLO results.
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5 Conclusion and outlook

In this paper, we have presented predictions for the thrust distribution in hadronic decays

of the Higgs boson to quarks and gluons. Our calculation is based on a low energy effective

theory with Hgg effective coupling and Hqq̄ Yukawa couplings by integrating out the

top quark. We have calculated the NLO QCD corrections to both channels and find

large impacts on the differential cross sections. Especially for the di-gluon case, the NLO

corrections can be as large as the LO results (corresponding to a K-factor ∼ 200%). The

scale variations of the LO fail to predict the genuine perturbative uncertainties, and are

barely reduced by the inclusion of the NLO corrections. Besides, the NLO calculation

provides a new leading contribution to the large τ region 1/3 < τ < (1− 1/
√

3), in which

the LO distribution vanishes.

The above observations indicate that higher order corrections beyond NLO are needed

to reduce the perturbative uncertainties of theoretical predictions, in order to match the

experimental precision at a future Higgs factory. As a first step, we have derived an

approximate formula based on a factorization theorem valid in the small τ limit. The

formula captures the leading singular terms arising from soft and collinear emissions. We

show that the formula provides a reasonable approximation to the exact result for τ up to

∼ 0.25 at LO and NLO. We then use the formula to give an approximate NNLO prediction

for the thrust distribution in the range τ ∈ [0.05, 0.25]. We find that the NNLO corrections

are still quite sizable and important. They also reduce the scale uncertainties significantly.

Therefore, the NNLO results must be taken into account for future experiments.

A couple of improvements over the results in this work are ongoing. First of all,

the fixed-order predictions presented in this work cease to be valid in the region of very

small τ . In this region, the singular terms lnn τ/τ in eq. (4.2) are too large at each order

in αs, such that the perturbative convergence is spoiled. An all-order resummation of

these singular contributions is mandatory to arrive at reliable predictions. The ingredients

for such a resummation at the next-to-next-to-next-to-leading logarithmic accuracy are

available, and can be readily applied. The second improvement concerns the large τ region.

The approximate NNLO formula obtained in this work is not valid there. An exact NNLO

calculation would be necessary to correctly describe the tail of the thrust distribution.

These improvements will be presented in our forthcoming articles.
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A Ingredients relevant for LO and NLO calculations

The β-function is defined as

dαs(µ)

d lnµ
= β(αs) = −2αs

∑
n=0

(αs
4π

)n+1
βn , (A.1)

where the coefficients are given by [79]

β0 =
11

3
CA −

4

3
nfTF , (A.2)

β1 =
34

3
C2
A −

20

3
CAnfTF − 4CFnfTF ,

β2 =
325

54
n2
f −

5033

18
nf +

2857

2
,

β3 =
1093

729
n3
f + n2

f

(
6472ζ3

81
+

50065

162

)
+ nf

(
−6508ζ3

27
− 1078361

162

)
+ 3564ζ3 +

149753

6
.

Here the color factors are CA = Nc, CF = (N2
c − 1)/(2Nc), TF = 1/2 and nf = 5 is

the number of light quarks. For β2 and β3 we have substituted Nc = 3 to shorten the

expressions.

The anomalous dimension of the Yukawa coupling yq(µ) is the same as the anomalous

dimension of quark masses. It is given by

γy(αs(µ)) =
∑
n=0

(αs
4π

)n+1
γyn , (A.3)

with the coefficients given by [71]

γy0 = 6CF ,

γy1 = 3C2
F +

97

3
CACF −

10

3
CFnf ,

γy2 = 129C3
F −

129

2
CAC

2
F +

11413

54
C2
ACF + (48ζ3 − 46)C2

Fnf

−
(

556

27
+ 48ζ3

)
CACFnf −

70

27
CFn

2
f . (A.4)

The anomalous dimension of Ct(mt, µ) is actually not used in our calculation, since we

always evaluate the coefficient at the renormalization scale µ as in eq. (3.5). We nevertheless

give it here [50]

γt0 = 0 ,

γt1 =
40

3
CAnfTF −

68

3
C2
A + 8CFnfTF ,

γt2 = −650

27
n2
f +

10066

9
nf − 5714 . (A.5)
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B Ingredients relevant for the leading singular terms

We expand the hard Wilson coefficients CiS in eq. (4.1) as

CiS(mH , µ) = 1 +
∞∑
n=1

(
αs(µ)

4π

)n
C
i(n)
S (LH) , (B.1)

where

LH = ln
−m2

H − iε
µ2

. (B.2)

The NLO and NNLO coefficients are given by [70, 71]

C
g(1)
S (LH) = CA

(
π2

6
− L2

H

)
,

C
g(2)
S (LH) = C2

A

[
L4
H

2
+

11L3
H

9
+

(
π2

6
− 67

9

)
L2
H +

(
−2ζ3 −

11π2

9
+

80

27

)
LH

+
π4

72
− 143ζ3

9
+

67π2

36
+

5105

162

]
+ CFnf

(
2LH + 8ζ3 −

67

6

)
+ CAnf

[
−

2L3
H

9
+

10L2
H

9
+

(
52

27
+

2π2

9

)
LH −

46ζ3

9
− 5π2

18
− 916

81

]
, (B.3)

and

C
q(1)
S (LH) = CF

(
−L2

H +
π2

6
− 2

)
,

C
q(2)
S (LH) = C2

F

[
L4
H

2
+

(
2− π2

6

)
L2
H +

(
24ζ3 − 2π2

)
LH + 6 +

7π2

3
− 30ζ3 −

83π4

360

]
+ CFCA

[
11L3

H

9
+

(
π2

3
− 67

9

)
L2
H +

(
242

27
+

11π2

9
− 26ζ3

)
LH

+
151ζ3

9
+

11π4

45
− 467

81
− 103π2

108

]
+ CFnf

[
−

2L3
H

9
+

10L2
H

9

−
(

56

27
+

2π2

9

)
LH +

2ζ3

9
+

5π2

54
+

200

81

]
. (B.4)

We now turn to the jet function J i(s, µ) in eq. (4.1). In practice, it is more convenient

to work with its Laplace transform

j̃i(LJ , µ) =

∫ ∞
0

ds exp

(
− νs

m2
H

)
J i(s, µ). (B.5)

where

LJ = ln
m2
H

µ2νeγE
, (B.6)

with γE the Euler constant. The transformed jet function can be expanded as

j̃i(LJ , µ) = 1 +
∞∑
n=1

(
αs(µ)

4π

)n
j̃i(n)(LJ). (B.7)
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For our purpose, we need the NLO and NNLO coefficients, as well as the LJ -dependent

part of the N3LO coefficients. They are given by [65, 74, 75, 80]

j̃q(1)(LJ) = CF

(
2L2

J − 3LJ −
2π2

3
+ 7

)
,

j̃q(2)(LJ) = CFnf

[
4

9
L3
J −

29

9
L2
J +

(
247

27
− 2π2

9

)
LJ +

13π2

18
− 4057

324

]
+ CFCA

[
−22

9
L3
J +

(
367

18
− 2π2

3

)
L2
J +

(
40ζ3 +

11π2

9
− 3155

54

)
LJ − 18ζ3 −

37π4

180

−155π2

36
+

53129

648

]
+ C2

F

[
2L4

J − 6L3
J +

(
37

2
− 4π2

3

)
L2
J +

(
4π2 − 24ζ3 −

45

2

)
LJ

−6ζ3 +
61π4

90
− 97π2

12
+

205

8

]
,

j̃q(3)(LJ) = CFn
2
f

[
4

27
L4
J −

116

81
L3
J +

(
470

81
− 4π2

27

)
L2
J +

(
58π2

81
− 8714

729
− 64

27
ζ3

)
LJ

]

+ CFCAnf

[
− 44

27
L4
J +

(
1552

81
− 8π2

27

)
L3
J +

(
28π2

9
− 7531

81
+ 8ζ3

)
L2
J +

(
32π4

135

− 1976ζ3

27
− 2632π2

243
+

160906

729

)
LJ

]
+ CFC

2
A

[
121

27
L4
J +

(
44π2

27
− 4649

81

)
L3
J +

(
22π4

45

− 132ζ3 −
389π2

27
+

50689

162

)
L2
J +

(
18179π2

486
− 53π4

135
− 599375

729
− 232ζ5 −

88π2ζ3

9

+
6688ζ3

9

)
LJ

]
+ C2

Fnf

[
8

9
L5
J −

70

9
L4
J +

(
875

27
− 20π2

27

)
L3
J +

(
151π2

27
− 15775

162

)
L2
J

+

(
32ζ3

9
+

4π4

27
− 2833π2

162
+

7325

36

)
LJ

]
+ C2

FCA

[
− 44

9
L5
J +

(
433

9
− 4π2

3

)
L4
J

+

(
164π2

27
− 10537

54
+ 80ζ3

)
L3
J +

(
− 68ζ3 +

π4

30
− 2045π2

54
+

157943

324

)
L2
J

+

(
290ζ3

3
− 120ζ5 −

88π2ζ3

3
− 923π4

540
+

35075π2

324
− 151405

216

)
LJ

]
+ C3

F

[
4

3
L6
J − 6L5

J

+

(
23− 4π2

3

)
L4
J +

(
8π2 − 99

2
− 48ζ3

)
L3
J +

(
60ζ3 +

61π4

45
− 151π2

6
+

349

4

)
L2
J

+

(
240ζ5 +

64π2ζ3

3
− 218ζ3 −

149π4

30
+

145π2

4
− 815

8

)
LJ

]
+ cJ3q , (B.8)

and

j̃g(1)(LJ) = CA

(
2L2

J −
11

3
LJ +

67

9
− 2π2

3

)
+ nf

(
2

3
LJ −

10

9

)
,
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j̃g(2)(LJ) = n2
f

(
4

9
L2
J −

40

27
LJ −

2π2

27
+

100

81

)
+ CFnf

(
2LJ + 8ζ3 −

55

6

)
+ CAnf

[
16

9
L3
J

− 28

3
L2
J +

(
224

9
− 10π2

9

)
LJ −

8ζ3

3
+

67π2

27
− 760

27

]
+C2

A

[
2L4

J−
88

9
L3
J+

(
389

9
−2π2

)
L2
J

+

(
55π2

9
+ 16ζ3 −

2570

27

)
LJ −

88ζ3

3
+

17π4

36
− 362π2

27
+

20215

162

]
,

j̃g(3)(LJ) = n3
f

[
8

27
L3
J −

40

27
L2
J +

(
200

81
− 4π2

27

)
LJ

]
+ CFn

2
f

[
10

3
L2
J +

(
16ζ3 − 24

)
LJ

]

− C2
FnfLJ+CAn

2
f

[
4

3
L4
J−

292

27
L3
J+

(
3326

81
− 4π2

3

)
L2
J+

(
508π2

81
− 116509

1458
− 256ζ3

27

)
LJ

]

+ CACFnf

[
16

3
L3
J +

(
32ζ3 − 55

)
L2
J +

(
− 8π4

45
− 10π2

3
+

5599

27
− 1096ζ3

9

)
LJ

]

+ C2
Anf

[
20

9
L5
J −

64

3
L4
J −

(
88π2

27
− 3106

27

)
L3
J +

(
586π2

27
− 8ζ3

3
− 10067

27

)
L2
J

+

(
449π4

270
− 16831π2

243
+

1052135

1458
− 1280ζ3

27

)
LJ

]
+ C3

A

[
4

3
L6
J −

110

9
L5
J +

(
85− 8π2

3

)
L4
J

+

(
484π2

27
− 9623

27
+ 32ζ3

)
L3
J +

(
169π4

90
− 484ζ3

3
− 2362π2

27
+

85924

81

)
L2
J

+

(
− 4411π4

540
+

52678π2

243
− 1448021

729
− 112ζ5 −

160π2ζ3

9
+

6316ζ3

9

)
LJ

]
+ cJ3g . (B.9)

The LJ -independent terms cJ3q and cJ3g are known, but are not relevant to the calculations

in this work.

The case for the soft function Si(k, µ) is similar. We define its Laplace transform as

s̃i(LS , µ) =

∫ ∞
0

dk exp

(
− νk

mH

)
Si(k, µ) , (B.10)

where

LS = ln
mH

µνeγE
. (B.11)

Again, we need the expansion coefficients of s̃i(LS , µ) up to the NNLO and the LS-

dependent terms at N3LO. They can be written as [65, 77]

s̃q(1)(LS) = CF
(
−8L2

S − π2
)
,

s̃q(2)(LS) = CFnf

[
− 32

9
L3
S +

80

9
L2
S −

(
8π2

9
+

224

27

)
LS −

52ζ3

9
+

77π2

27
+

40

81

]
+ CFCA

[
176

9
L3
S +

(
8π2

3
− 536

9

)
L2
S +

(
44π2

9
− 56ζ3 +

1616

27

)
LS +

286ζ3

9
+

14π4

15

− 871π2

54
− 2140

81

]
+ C2

F

(
32L4

S + 8π2L2
S +

π4

2

)
,
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s̃q(3)(LS) = CFn
2
f

[
− 64

27
L4
S +

640

81
L3
S −

(
32π2

27
+

800

81

)
L2
S +

(
64π2

9
− 3200

729
− 64ζ3

9

)
LS

]

+ CFCAnf

[
704

27
L4
S +

(
64π2

27
− 9248

81

)
L3
S +

(
64π2

9
+

16408

81

)
L2
S +

(
6032ζ3

27
+

64π4

45

− 19408π2

243
− 80324

729

)
LS

]
+ CFC

2
A

[
− 1936

27
L4
S −

(
352π2

27
− 28480

81

)
L3
S +

(
104π2

27

− 88π4

45
− 62012

81
+ 352ζ3

)
L2
S +

(
50344π2

243
− 88π4

9
+

556042

729
+ 384ζ5 +

176π2ζ3

9

− 36272ζ3

27

)
LS

]
+ C2

Fnf

[
256

9
L5
S −

640

9
L4
S +

(
32π2

3
+

1504

27

)
L3
S +

(
5620

81
− 856π2

27

− 160ζ3

9

)
L2
S +

(
608ζ3

9
+

56π4

45
+

152π2

27
− 3422

27

)
LS

]
+ C2

FCA

[
− 1408

9
L5
S

+

(
4288

9
− 64π2

3

)
L4
S +

(
448ζ3 −

176π2

3
− 12928

27

)
L3
S +

(
5092π2

27
− 2288ζ3

9
− 152π4

15

+
17120

81

)
L2
S +

(
56π2ζ3 −

44π4

9
− 1616π2

27

)
LS

]
+ C3

F

[
− 256

3
L6
S − 32π2L4

S − 4π4L2
S

]
+ cS3q , (B.12)

where again the constant term cS3q is not relevant for this work. The expression for the

gluon soft function can be obtained from the quark one by a Casimir scaling.

C Leading singular terms up to NNLO

In eq. (4.2), the singular parts of thrust distributions are expressed in terms of the coeffi-

cients ∆
(n)
i (τ, µ). Here we give their explicit expressions, where we set the number of colors

Nc = 3 for simplicity. We also set µ = mH to get rid of the scale-dependent logarithms, and

one can easily recover them through the RG equation. For the Hgg channel, the results

are given by

∆(1)
g (τ,mH) =

(
4nf
3
− 22

)
1

τ
− 24

ln(τ)

τ
, (C.1)

∆(2)
g (τ,mH) =

[
360ζ3 − 88π2 − 2150 +

(
16π2

3
+

640

3

)
nf −

40

9
n2
f

]
1

τ

+

(
8n2

f

3
− 8nf − 120π2 − 1410

)
ln(τ)

τ
+ (1188− 72nf )

ln2(τ)

τ
+ 288

ln3(τ)

τ
, (C.2)

∆(3)
g (τ,mH) =

[(
256

9
n2
f − 368nf − 1672

)
LHT +

(
800

81
− 80π2

81

)
n3
f

+

(
1304π2

27
− 992ζ3

3
− 31081

27

)
n2
f +

(
742121

27
− 4276π2

9
+ 7552ζ3 −

176π4

15

)
nf

− 37152ζ5 + 3456π2ζ3 − 20904ζ3 +
968π4

5
− 698π2

3
− 1610351

9

]
1

τ

– 18 –
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+

[
− (512nf + 1824)LHT −

320

27
n3
f +

(
352π2

9
+

5512

9

)
n2
f

+

(
7072ζ3 − 896π2 − 2044

3

)
nf − 90288ζ3 −

72π4

5
− 568π2 − 205012

3

]
ln(τ)

τ

+

[
32

9
n3
f + 144n2

f −
(
624π2 + 11616

)
nf − 26784ζ3 + 10296π2 + 126876

]
ln2(τ)

τ

+

[
− 1184

9
n2
f +

9184

3
nf + 2304π2 − 3752

]
ln3(τ)

τ
+ (960nf − 15840)

ln4(τ)

τ

− 1728
ln5(τ)

τ
, (C.3)

where LHT = ln(mH/mt). For the Hqq̄ process, we have

∆(1)
q (τ,mH) = −8

τ
− 32

3

ln(τ)

τ
, (C.4)

∆(2)
q (τ,mH) =

(
40

3
nf +

1120ζ3

9
− 128π2

9
− 340

)
1

τ
+

(
176

27
nf −

160π2

9
− 2056

9

)
ln(τ)

τ

+

(
304− 32

3
nf

)
ln2(τ)

τ
+

512

9

ln3(τ)

τ
, (C.5)

∆(3)
q (τ,mH) =

[(
1952π2

243
− 1024

27
ζ3 −

3056

81

)
n2
f +

(
106624ζ3

81
+

608π4

405
− 6880π2

27

+
16640

9

)
nf −

42688ζ5

9
+

8192π2ζ3

27
− 198016ζ3

27
− 10472π4

405
+

48248π2

27
− 516776

27

]
1

τ

+

[(
128π2

81
+

1120

243

)
n2
f +

(
19840ζ3

27
− 22400π2

243
+

31376

81

)
nf −

118208ζ3

9

− 2336π4

1215
+

76064π2

81
− 193688

27

]
ln(τ)

τ
+

[
544

27
n2
f −

(
1216π2

27
+

4160

3

)
nf −

86528ζ3

27

+
9632π2

9
+

53576

3

]
ln2(τ)

τ
+

(
−896

81
n2
f +

33152

81
nf +

11264π2

81
− 9632

3

)
ln3(τ)

τ

+

(
2560

27
nf −

6400

3

)
ln4(τ)

τ
− 4096

27

ln5(τ)

τ
. (C.6)
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[68] T. Gehrmann, T. Huber and D. Mâıtre, Two-loop quark and gluon form-factors in

dimensional regularisation, Phys. Lett. B 622 (2005) 295 [hep-ph/0507061] [INSPIRE].

[69] S. Moch, J.A.M. Vermaseren and A. Vogt, Three-loop results for quark and gluon

form-factors, Phys. Lett. B 625 (2005) 245 [hep-ph/0508055] [INSPIRE].

[70] T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the

quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094

[arXiv:1004.3653] [INSPIRE].

[71] T. Gehrmann and D. Kara, The Hbb̄ form factor to three loops in QCD, JHEP 09 (2014)

174 [arXiv:1407.8114] [INSPIRE].

– 23 –

https://doi.org/10.1016/S0550-3213(96)00589-5
https://arxiv.org/abs/hep-ph/9605323
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9605323
https://doi.org/10.1103/PhysRevLett.108.111601
https://doi.org/10.1103/PhysRevLett.108.111601
https://arxiv.org/abs/1111.5206
https://inspirehep.net/search?p=find+EPRINT+arXiv:1111.5206
https://doi.org/10.1016/S0370-2693(97)01102-7
https://doi.org/10.1016/S0370-2693(97)01102-7
https://arxiv.org/abs/hep-ph/9707448
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9707448
https://doi.org/10.1016/j.cpc.2005.01.010
https://doi.org/10.1016/j.cpc.2005.01.010
https://arxiv.org/abs/hep-ph/0404043
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0404043
https://doi.org/10.1103/PhysRevD.63.014006
https://arxiv.org/abs/hep-ph/0005275
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0005275
https://doi.org/10.1103/PhysRevD.63.114020
https://arxiv.org/abs/hep-ph/0011336
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0011336
https://doi.org/10.1103/PhysRevD.65.054022
https://arxiv.org/abs/hep-ph/0109045
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0109045
https://doi.org/10.1016/S0550-3213(02)00687-9
https://arxiv.org/abs/hep-ph/0206152
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0206152
https://doi.org/10.1016/S0370-2693(02)03204-5
https://arxiv.org/abs/hep-ph/0211358
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0211358
https://doi.org/10.1007/978-3-319-14848-9
https://doi.org/10.1007/978-3-319-14848-9
https://arxiv.org/abs/1410.1892
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.1892
https://doi.org/10.1103/PhysRevD.77.014026
https://arxiv.org/abs/0709.2709
https://inspirehep.net/search?p=find+EPRINT+arXiv:0709.2709
https://doi.org/10.1088/1126-6708/2008/07/034
https://arxiv.org/abs/0803.0342
https://inspirehep.net/search?p=find+EPRINT+arXiv:0803.0342
https://doi.org/10.1103/PhysRevD.78.034027
https://doi.org/10.1103/PhysRevD.78.034027
https://arxiv.org/abs/0801.4569
https://inspirehep.net/search?p=find+EPRINT+arXiv:0801.4569
https://doi.org/10.1103/PhysRevD.68.013001
https://arxiv.org/abs/hep-ph/0304035
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0304035
https://doi.org/10.1016/j.physletb.2005.07.019
https://arxiv.org/abs/hep-ph/0507061
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0507061
https://doi.org/10.1016/j.physletb.2005.08.067
https://arxiv.org/abs/hep-ph/0508055
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0508055
https://doi.org/10.1007/JHEP06(2010)094
https://arxiv.org/abs/1004.3653
https://inspirehep.net/search?p=find+EPRINT+arXiv:1004.3653
https://doi.org/10.1007/JHEP09(2014)174
https://doi.org/10.1007/JHEP09(2014)174
https://arxiv.org/abs/1407.8114
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.8114


J
H
E
P
0
3
(
2
0
1
9
)
0
3
0

[72] T. Becher and M. Neubert, Toward a NNLO calculation of the B̄ → X(s)γ decay rate with a

cut on photon energy. II. Two-loop result for the jet function, Phys. Lett. B 637 (2006) 251

[hep-ph/0603140] [INSPIRE].

[73] T. Becher and G. Bell, The gluon jet function at two-loop order, Phys. Lett. B 695 (2011)

252 [arXiv:1008.1936] [INSPIRE].
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