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Abstract: The swampland program of delineating the space of effective field theories

consistent with quantum gravity appears similar to the bootstrap program of delineating

the space of quantum field theories consistent with conformal symmetry. With this in

mind we rewrite the effective field theory of the Large Volume Scenario in AdS space solely

in terms of RAdS, in a form suitable for holographic analysis. This rewritten EFT takes

a remarkably universal (and previously unnoticed) form, which is uniquely determined

in the large-volume limit up to terms suppressed by O (1/ lnRAdS), with no reference to

any of the fluxes, brane or instanton configurations that enter the microphysics of moduli

stabilisation. The putative dual 3d CFT will have two low-lying single trace scalars, an

even-parity scalar Φ dual to the volume modulus with ∆Φ = 3
2

(

1 +
√
19
)

≃ 8.038 and an

odd-parity scalar a dual to the volume axion with ∆a = 3. On the AdS side the higher-

point interactions are likewise uniquely determined. As the AdS theory is both subject to

swampland constraints and holographically related to a CFT, we argue that holography

will lead to a ‘bootland’ — a map between swampland constraints on the AdS side and

bootstrap constraints on the CFT side. We motivate this with a discussion of swampland

quantum gravity constraints on the axion decay constant in the V → ∞ limit and the

〈ΦΦaa〉 4-point function on the CFT side.
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1 Introduction

One of the oldest and most important tasks in string theory is to construct solutions

that are as close as possible to the real world — solutions with four large dimensions, all

moduli stabilised, and a matter spectrum containing the Standard Model with the correct

couplings.

It remains one of the most important tasks today. One central element to this program

— the question of moduli stabilisation — has seen significant progress over the last fifteen

years, with the construction of scenarios that (see [1–3] for reviews) stabilise all moduli

while also generating a hierarchical separation of scales that can result in interesting phe-

nomenology. Nonetheless, these ideas have not been without criticism, and there remains
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a central question — how can we know that these scenarios are true solutions of string

theory?

The ordinary lines of argument for the existence and stability of these solutions use

traditional physics methods. They are based on the techniques of dimensional reduction,

effective field theory (EFT), expansions in small couplings, and explicit worldsheet com-

putations of the effective action for the related supersymmetric Minkowski solutions. To

maximise the degree of control, they often use 4-dimensional N = 1 supergravity as an

effective theory to describe the compactification of 10d string theories, and then expand the

Kähler and superpotentials in terms of the most important α′ and gs corrections (see [4, 5]
for recent defenses of such tools). It is important to continue to develop such arguments as

far as possible, making all details of the compactification and the effective theory explicit.

Nonetheless, these techniques only go so far. The main difficulty is that, in practice, the

constructions involve many moving parts, each of which may be complex. The techniques

do not provide any calculational equivalent of an experimentum crucis that can definitively

verify the correctness of these scenarios. For example, in Calabi-Yau compactifications

preserving N = 1 supersymmetry at the compactification scale, worldsheet calculations

are intractable even in the absence of the fluxes or brane instanton effects required in

semi-realistic scenarios. Models without supersymmetry suffer even more from the absence

of a precise calculational framework. This results in a proliferation of literature where an

element of taste is required as to how justified certain approximations are (for example, the

large-N literature on the effects of anti-D3 branes down warped Klebanov-Strassler throats

in compact Calabi-Yaus).

This situation is not entirely satisfactory, when it is also claimed that many (or even

all) of these solutions do not actually exist and instead belong to the swampland (for

example [6–12]). While some aspects of the swampland critiques pertain only to de Sitter

constructions, many parts are also relevant to AdS. Furthermore, many EFT dS solutions

are founded on AdS solutions derived using a similar EFT logic. It is therefore simpler to

ask first — can we determine whether the AdS solutions genuinely exist?

The lack of a precise calculational framework makes the contours of the string swamp-

land not well delineated. However, the contours of another swampland — that of 3d

Conformal Field Theories (CFTs) — have (in some cases) been much better mapped. Re-

cent years have seen a resurgence of interest in the conformal bootstrap, together with

powerful results constraining the allowed operator dimensions within such CFTs [13, 14]

(reviews are [15, 16]).

In a strong form of the AdS/CFT correspondence, the 4d AdS solutions found in EFT

string compactification will have CFT duals, implying the existence of 3d CFTs governed by

specific expressions for the dimensions and couplings of low-lying operators. The question of

CFT duals of moduli-stabilised string vacua has attracted some attention over the years (for

earlier work see [6, 17–19]), but it has appeared difficult to make quantitative predictions

beyond very generic statements about the existence of CFTs with low-lying scalars having

∆ ∼ O(1) conformal dimension with a gaps to higher (single-trace) modes. Nonetheless,

this makes the present a particularly apt time to reconsider these questions, and ask —

what would be the properties of such CFTs? Are they in the swampland? How do the
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swampland conjectures relate to CFT consistency conditions such as unitarity and crossing

symmetry?

These questions define the philosophy of this paper — to investigate the implications

of AdS4 moduli stabilisation scenarios and the swampland for putative 3d CFT duals. This

paper will be particularly concerned with the Large Volume Scenario [20, 21]. One reason

for this is the existence of an attractive large-volume V ≫ 1 limit that is useful for analytic

control and also leads to many attractive phenomenological features. However, we will also

find that, when re-written in terms of RAdS instead of flux superpotentials, the low-energy

Lagrangian of the Large Volume Scenario exhibits a particularly simple (and previously

unnoticed) form, leading to strikingly universal results for the conformal dimensions of

dual operators and their interactions.

The paper is structured as follows. Section 2 reviews the Large Volume Scenario and

discusses the spectrum of particle masses as well as implications for the dimensions of dual

operators in the CFT, splitting the analysis in terms of heavy and light modes. Section 3

performs the same treatment for 3- and higher-point functions. Section 4 makes a brief

comparison to other models of AdS stabilisation within the framework of type IIB flux

compactifications. Section 5 analyses the consequences of various swampland conjectures

for the low-energy LVS Lagrangian and how these conjectures may manifest themselves

within a dual 3d CFT language, although attempts at explicit CFT constructions of a dual

to LVS are beyond the scope of this paper.

2 Conformal dimensions and 2-point functions in LVS

We start by reviewing the basic properties of the Large Volume Scenario (LVS) [20, 21],

which arises in the context of type D3/D7 IIB orientifolds with fluxes. It is characterised

by an AdS vacuum at exponentially large volume with broken supersymmetry. The super-

symmetry breaking is approximately no-scale and is inherited from the underlying GKP

model [22] for flux stabilisation of complex structure moduli (in contrast to KKLT where

the supersymmetric Kähler moduli stabilisation eliminates the no-scale structure [23]). The

Kähler potential K and superpotential W [24, 25] are

K = −2 ln

(

V + ξ

(

S + S̄

2

)3/2
)

− ln

(

−i
∫

Ω ∧ Ω̄

)

− ln
(

S + S̄
)

,

W =

∫

G3 ∧ Ω+
∑

i

Aie
−aiTi . (2.1)

Here V is the volume of the Calabi-Yau in units of (2π
√
α′)6, i.e. V = Vol/(2π

√
α′)6. The

superpotential is the sum of the flux superpotential
∫

G3 ∧Ω [24, 25], with G3 = F3−SH3

a combination of the dilaton modulus (S = 1
gs
+ ia0) and the RR and NS-NS 3-form fluxes.

This depends implicitly on the complex structure (U) moduli via the holomorphic (3,0)

form Ω(U). Finally, the superpotential also has a sum over effects non-perturbative in the

Kähler moduli (T = τ + ia) [23] (either brane instantons or gaugino condensation). The

Kähler potential arises from dimensional reduction of 10-dimensional type IIB supergravity,
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including the effect of the α′3 R4 correction [26, 27]. Here ξ = ζ(3)χ(M)
2(2π)3

is the coefficient

of the α′3 correction (the relative factor of g
−3/2
s in the (α′)3 term is because the volume

is measured in Einstein frame and so already contains a g
−3/2
s factor compared to string

frame).

The Large Volume Scenario requires at least two Kähler moduli — a ‘large’ modulus

controlling the overall volume and a ‘small’ modulus corresponding to a blow-up cycle.

The simplest form for the volume is

V =
1

κ

(

τ
3/2
b − τ3/2s

)

, (2.2)

where κ is a numerical constant that depends on the Calabi-Yau (κ = 1
9
√
2
for the canonical

LVS example of P4
[1,1,1,6,9] [20]), τb =

1
2(Tb + T̄b) is the large cycle, and τs =

1
2

(

Ts + T̄s
)

is

the small cycle. Such a form for the volume is referred to as a ‘Swiss cheese’ Calabi-Yau,

with the small cycle viewed as making a hole in the cheese.

The dilaton and complex structure moduli are stabilised by fluxes by solving DU,SW =

0. Integrating these out, the simplest realisation of LVS has an effective theory for the

Kähler moduli of

K = −2 ln

(

1

κ

(

(

Tb + T̄b
2

)3/2

−
(

Ts + T̄s
2

)3/2
)

+
ξ

g
3/2
s

)

,

W = W0 +Ase
−asTs . (2.3)

Computing the N = 1 supergravity scalar potential and extremising w.r.t. as = Im(Ts),

one obtains the standard LVS potential

V =
Aa2s

√
τse

−2asτs

V − BW0asτse
−asτs

V2
+
CξW 2

0

g
3/2
s V3

, (2.4)

where A, B, and C are constants whose numerical values are unimportant here.

This potential has a minimum at exponentially large values of the volume with

〈τs〉 ∼ ξ2/3

gs
,

〈V〉 ∼ eas〈τs〉. (2.5)

The stabilised volume is exponentially dependent on 1
gs
, allowing small variations in gs

to lead to large differences in 〈V〉. The exponentially large values of the stabilised vol-

ume allows us to view LVS as an approximation about a V → ∞ limit, with corrections

parametrised by powers of V−1.

As Tb does not enter the superpotential, the vacuum manifestly breaks supersymmetry

as FTb
6= 0. LVS preserves to leading order the no-scale structure of GKP models, and

so in terms of symmetry breaking it inherits many of the properties of no-scale models

(including soft terms and moduli masses that are much lighter than the ‘natural’ value of

the gravitino mass m3/2 [28] — see [29] for a field theory explanation of this).
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A distinguishing feature of LVS, crucial from a holographic perspective, is the fact that

the only moduli parametrically lighter than the gravitino mass are the volume modulus

and its axion partner (the axion is a pseudoscalar and the volume modulus is the pseudo-

Goldstone boson of the broken scaling symmetry of no-scale supergravity). All other moduli

have masses that are comparable to, or larger than, the gravitino mass. As we will see, this

implies that such moduli have large conformal dimensions when considered in the context

of AdS/CFT.1

2.1 Light modes in LVS

Following this telegraphic review of LVS, we now discuss the light modes in LVS. ‘Light’

here refers to any mode where the dual operator would have a conformal dimension that

remains finite in the limit V → ∞ of LVS (some of the results here previously appeared

in [19]).

2.1.1 Graviton

We start with the ‘trivial’ universal light mode on the AdS side. This is the 4-dimensional

massless graviton gµν , dual to the CFT stress tensor Tµν with conformal dimension ∆ = 3.

2.1.2 Volume and axion moduli

We require an effective theory for these two light moduli. For the volume axion, the

potential vanishes (although as we see in section 3 the kinetic terms involve non-trivial

interactions). For the LVS volume modulus, the effective potential for the canonically

normalised field takes the form

V = V0e
−λΦ/MP

(

−
(

Φ

MP

)3/2

+A

)

, (2.6)

(although we subsequently put MP =1). Here V0 and A are particular constants that

depend on the microphysics of the compactification, while λ =
√

27
2 in LVS. This potential

arises as follows:

1. Starting with the standard LVS potential of eq. (2.4), we solve for ∂V
∂τs

= 0 and

eliminate the heavy mode τs. This gives an effective potential for the volume modulus,

Veff =
1

V3

(

−A′

(lnV)3/2 + C ′

g
3/2
s

)

. (2.7)

(This has used e−asτs ∼
√
τs
V at the minimum.) This potential clearly has a minimum

at exponentially large volume, the precise location of which depends on A
′

and C
′

.

2. The standard Kähler potential for the volume modulus is

K = −3 ln(Tb + T̄b), (2.8)

1Note the important contrast with ‘generic’ supergravity models with many moduli, where V ∼ m
2

3/2M
2

P ,

RAdS ∼ 1

m3/2
and mmodulus ∼ m3/2, leading to many operators with O(1) conformal dimension.
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which results in a kinetic term
3

4τ2
∂µτ∂

µτ, (2.9)

where τ = Re(Tb).

3. As a consequence the canonically normalised field is

Φ =

√

3

2
ln τ =

√

2

3
lnV + c (2.10)

using the fact that V ∝ τ3/2.

Writing (2.7) in terms of the canonically normalised field Φ then gives the claimed potential.

While this argument has neglected any mixing between τs and τb modes in integrating out

τs, such mixing is volume-suppressed and so can self-consistently be neglected.

We now analyse the implications of the potential of eq. (2.6) from a holographic per-

spective. For maximum generality, we do not specify λ =
√

27
2 yet, and also phrase our

analysis in terms of the more general potential

V = V0e
−λΦ (−Φn +A) , (2.11)

which for appropriate values of A has a minimum at large Φ ≫ 1 (equivalently, Φ ≫MP ).

It follows trivially that

V
′

= V0e
−λΦ

(

−λ (−Φn +A)− nΦn−1
)

,

V
′′

= −λV ′

+ V0e
−λΦ

(

λnΦn−1

(

1− n− 1

λ

1

Φ

))

. (2.12)

At the minimum of the potential where V
′

= 0, 〈Φ〉n−1 = −λ
n(−〈Φ〉n +A). Therefore

V
′′

min = −λ2V0e−λΦ

(

(−〈Φ〉n +A)

(

1− n− 1

λ

1

〈Φ〉

))

= −λ2Vmin

(

1− n− 1

λ

1

〈Φ〉

)

, (2.13)

where 〈Φ〉 = Φ|min. As Φ ∼ lnV , the subleading correction is suppressed in the large

volume limit. We note two equivalent but illuminating ways to rewrite eq. (2.13),

V
′′

min = = 3
λ2

R2
AdS

(

1 +O
(

1

ln (RAdS/lP )

))

, (2.14)

V
′′

min = 3
λ2

R2
AdS

(1 +O (〈gs〉)) . (2.15)

Here RAdS represents the AdS radius of the 4-dimensional space-time. For a fixed (negative)

cosmological constant Λ this is given by R2
AdS = −3M2

P
Λ . For a dynamical minimum of the

potential Vmin we have therefore used Vmin = −3M2
PR

−2
AdS and 〈V〉 ∼ eξ/gs .

– 6 –
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We now consider the implications for holographic conformal dimensions. The general

AdS4/CFT3 relationship between the conformal dimension of a dual scalar operator and

the mass of the AdS excitation is

∆(∆− 3) = m2R2
AdS. (2.16)

A conformal dimension ∆ for an operatorO is equivalent to a 2-point function 〈O(x)O(y)〉=
1

|x−y|2∆ . For the operator OΦ dual to the volume modulus, we then have ∆Φ(∆Φ − 3) =

3λ2
(

1 +O
(

1
lnV
))

, and so

∆Φ =
3
(

1±
√

1 + 4
3λ

2
)

2

(

1 +O
(

1

lnV

))

. (2.17)

An attractive aspect of eq. (2.17) is that, in the limit of asymptotically large volumes,

the scaling dimension of the dual operator to the light volume modulus Φ is uniquely

determined.

Specialising to the case of LVS vacua with λ =
√

27/2 and n = 3/2, eq. (2.17) gives

∆ =
3(1 +

√
19)

2

(

1−
√

2

27

1

〈Φ〉 +O
(

1

〈Φ〉

)2
)

. (2.18)

Although we have arrived at eq. (2.18) by analytically integrating out the small τs mod-

ulus, we have also directly validated it by considering the full 2-modulus potential and

numerically diagonalising and solving for the mass of the light modulus.

As the axionic partner a of the volume modulus has a mass suppressed by effects non-

perturbative in volume (V (a) ∝ e−bV2/3
, for some constant b), to all practical purposes

the mass vanishes. As this implies ∆a(∆a − 3) = 0, the dual operator to such an axion is

exactly marginal with

∆a = 3. (2.19)

The volume modulus is a scalar, while its axion partner is a pseudoscalar. In a dual CFT

the volume modulus therefore corresponds to an even-parity scalar operator, whereas the

dual of the axion field will be an odd-parity scalar operator. The graviton corresponds to

an even parity spin 2 field.

If LVS vacua exist, they then correspond to a series of conformal field theories in

which the dimension of the low-lying scalar operator dual to the volume has a conformal

dimension (the inequality comes from eq. (2.18))

∆ ≤ 8.038 =
3(1 +

√
19)

2
, (2.20)

with the series of CFTs terminating at this asymptotic value for the conformal dimension.

The central charge of these CFTs will behave as c ∼ V3, being set by V |min.

The asymptotic value is obtained in the limit of infinitely large volume, in which the

mass gap to other modes becomes arbitrarily large. Although in principle the size of the

volume can only take discrete values, as lnV ∝ 1
gs
, and gs is fixed by the (very large)

– 7 –
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Mode Spin Parity Conformal dimension

Tµν 2 + 3

a 0 − 3

Φ 0 + 8.038 = 3
2

(

1 +
√
19
)

Table 1. The low-lying single-trace operator dimensions for CFT duals of the Large Volume

Scenario in the limit V → ∞.

choice of fluxes, in practice it is reasonable to view the allowed values for V as a continuum

attaining arbitrarily large values. For example, with 10200 flux choices satisfying the tadpole

constraint, gs can be reasonably tuned to be as small as 10−100, allowing compactification

volumes as large as e10
100

.2

We can therefore regard LVS vacua as providing a series of vacua that approach the flat-

space limit of AdS. In this limit, the dimensions of low-lying primary single-trace operators

in the CFT are shown in table 1. Note that, while the lowest single-trace positive parity

scalar operator has conformal dimension 8.038, there are double-trace scalar modes with

smaller conformal dimensions — both TµνT
µν and a2 will have conformal dimension 6.

2.1.3 Fibre moduli

One interesting variation of the Large Volume Scenario is the case where there are many

‘large’ moduli. A simple example of this would be where the bulk space is a toroidal

product, T 2 × T 2 × T 2. More generally, this occurs for scenarios of fibred Calabi-Yaus [30,

31], for example when the volume can be expressed as

V = α
(

τ1
√
τ2 − τ

3/2
3

)

. (2.21)

In these models the overall volume direction is stabilised as in the normal Large Volume

Scenario, by an interplay of α′ and non-perturbative effects. This leaves the fibre direction

(a simultaneous variation in τ1 and τ2 that leaves the overall volume unchanged) unsta-

bilised. The fibre direction can be stabilised by perturbative D-brane loop corrections that

break the additional degeneracy. Such loop corrections [32–35] generate potential terms

that are parametrically smaller than the O(α′3) effects responsible for volume stabilisation,

scaling instead as

Vloop ∝ 1

V10/3
,

smaller by a factor of V1/3 than the Vα′3 term. These generate a mass for the fibre modulus

that is lighter than the volume modulus by a factor of V1/6,

Mfibre ∝
1

V5/3
, (2.22)

while the corresponding axion field is again massless (as the stabilisation occurs via per-

turbative corrections to the Kähler potential which respect the axion shift symmetry). For

2While volumes larger than 1030 (in units of l6s) would be grossly inconsistent with phenomenology as

they imply Ms < 1TeV, such constraints are irrelevant for the questions of principle relevant to this paper.
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a conventional analysis of moduli physics as manifested in cosmology or particle physics,

we must face the fact that the prefactor in eq. (2.22) is highly model-dependent — it is de-

termined by matters such as the rank of the D7 brane gauge group and the precise cycle it

wraps. However, viewed from a holographic perspective this question simplifies. Although

the relative factor of V1/6 is not a large power, and the unknown prefactors to the fibre

modulus mass may be more important at small or moderate values of the volume, in the

limit of asymptotically large volume all such prefactors will be subdominant and the V1/6

factor will become parametrically large. In this limit, it is therefore always true that

Mfibre

Mvolume
→ 0, (2.23)

and so, in particular,

MfibreRAdS → 0. (2.24)

This implies that, within any holographic dual of a fibred version of LVS, the conformal

dimension of the operators dual to fibre moduli asymptote to ∆ = 3 for both the fibre

modulus and its axionic partner.

2.1.4 Other model-dependent light modes

The above has describe the minimal fields required for an LVS construction. LVS is nor-

mally used as a starting point for phenomenological model building. In any quasi-realistic

LVS scenario, there will be additional light degrees of freedom, in particular a matter sector

which contains both chiral fermions and massless vector bosons and is used as a proxy for

the Standard Model matter content. This sector may also contain light charged scalars,

but the masses of these are more sensitive to the subtle details of supersymmetry break-

ing [21, 36], although it is expected that charged scalars will also satisfyM2
i .M2

τb
[28, 29].

Such modes would be either light or massless within AdS space and so would correspond

to additional spin-1/2 or spin-1 operators with conformal dimensions ∆ ∼ O(1). Certainly,

the presence of many such modes would make the analysis of the properties of any dual

CFT far more intricate. However, from the perspective of moduli stabilisation these modes

all appear to be optional. LVS does not, by itself, require an interesting matter sector.

For this paper, we therefore assume that any dual CFT should not require such modes for

consistency and do not consider them further. The universal aspect of LVS is associated to

the dynamics of the volume modulus; if it is essential to consider the detail of D-brane model

building within a compactification, any progress on CFT duals would seem intractable.

2.2 Heavy modes in LVS

We now discuss the spectrum of heavy modes. Here ‘heavy’ refers to modes for which

the conformal dimension of the dual operator diverges in the asymptotic limit of V → ∞.

These modes have masses larger than the volume modulus by some power of V (the exact

power depending on the type of mode). We restrict ourselves to states present within 10-

dimensional supergravity and do not consider string states, although the discussion of KK

states can be straightforwardly generalised to the case of string states.

– 9 –



J
H
E
P
0
3
(
2
0
1
9
)
0
0
5

2.2.1 Small Kähler modulus

In addition to the volume modulus, a key role is played in LVS by the ‘small’ cycle τs.

This field is crucial for volume stabilisation because, as described in eq. (2.4), it is non-

perturbative effects in Ts that lead to the (lnV)3/2 term in the potential that balances

against the α′3 correction to produce the minimum at exponentially large volumes.

However, in the vacuum the τs mode is parametrically heavier than the volume mod-

ulus. The mass of this mode is [37]

mτs ≃ 2m3/2 ln
(

MP /m3/2

)

∼ MP lnV
V . (2.25)

As the mass arises from non-perturbative effects, the axion and fermion partners also have

similar masses and so in terms of conformal dimension, all these modes correspond to

operators with dimension

∆τs ∼ (lnV)V1/2 ≫ 1.

2.2.2 Dilaton and complex structure moduli

In IIB flux compactifications, the dilaton (S) and complex structure (U) moduli are sta-

bilised by the 3-form fluxes through a superpotential [24, 25]

W =

∫

G3 ∧ Ω, (2.26)

together with the Kähler potential [26]

KS,U = − ln

(

i

∫

Ω(U) ∧ Ω̄(Ū)

)

− ln
(

S + S̄
)

. (2.27)

Here G3 is the complexified 3-form G3 = F3 + SH3, Ω the holomorphic (3, 0) form of the

Calabi-Yau and S = 1
gs

+ ia0 the IIB dilaton-axion multiplet.

The precise number of such moduli depends on the topology of the Calabi-Yau and

can vary from O(1) to O(1000). The supergravity scalar potential is

V = eK
(

Kij̄DiWDj̄W̄ − 3|W |2
)

. (2.28)

Including −2 ln(V) from the Kähler potential, the effective potential for these moduli is

V = eKS,U
Kij̄DiWDj̄W̄

V2
, (2.29)

where the indices i, j run over the dilaton and complex structure moduli. Although no-

scale is not exact, the terms that break no-scale and give rise to LVS are subleading in the

Kähler potential and at O(V−3), and so can be neglected when considering stabilisation of

the dilaton and complex structure moduli (see [21] for a more detailed discussion of this

point).

The potential of eq. (2.29) is minimised by solving the first-order equations DU,SW = 0

with vanishing F-terms for U and S moduli. This produces a characteristic mass scale for

the dilaton and complex structure moduli,

mU,S ∼ MP

V , (2.30)
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where we only stress the volume dependence of the mass. As the stabilisation of these

moduli is supersymmetric, the same mass scaling holds for the fermionic partners.

The scaling dimension of the operators within the dual N = 1 superconformal multi-

plets is then

∆U,S ∼ V1/2 ≫ 1,

and so parametrically decoupled in the V → ∞ limit.

2.2.3 Gravitino and modulini

A further universal mode is the gravitino ψ3/2 with a mass set by m3/2 = eK/2|W |. Using
K(T + T̄ ) = −2 lnV , this gives the simple result

m3/2 =
W0MP

V , (2.31)

and so the conformal dimension of the dual spin 3/2 operator is

∆3/2 ∼ V1/2 ≫ 1.

Similar results hold for all modulini since once supersymmetry is broken their mass is of

order of the gravitino mass (see for instance [38]).

2.2.4 KK modes

We now consider heavy modes present in the 10-dimensional theory but not in the 4-

dimensional one. An important and universal set of such modes are the KK modes from

dimensional reduction of the 10d supergravity theory down to four dimensions. They arise

from solving (for scalars)

gµν∂µ∂νφ = m2φ, (2.32)

with all derivatives evaluated within the compact dimensions.

The lightest KK modes start at

MKK ∼ Ms

R
∼ MP

V2/3
. (2.33)

Eq. (2.33) has a prefactor that depends on the exact geometry (as in l(l + 1) for spherical

harmonics) but our focus is simply the power of volume V that appears.

Starting with the lowest KK modes, a tower of excited KK harmonics is built up. For

instance, for a six-dimensional torus, the masses of the states in the tower are

m2
i =

(

n21 + n22 + n23 + n24 + n25 + n26
)

M2
KK ≡ R2

KKM
2
KK , with ni ∈ Z. (2.34)

Here RKK ≡
√

n21 + n22 + n23 + n24 + n25 + n26 denotes the radius in ‘KK number’ space.

This corresponds to a spectrum of progressively heavier states with spectral density3

dN

dRKK
∝ R5

KK . (2.35)

3We expect this relationship to hold in the large V limit for all approximately homogeneous spaces.
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In general, an effective field theory including only the KK modes has a natural cutoff

at the string scale, when string modes must also be included. This cutoff occurs when

RKK ∼ V1/6 and so there will be O(V) KK states in the tower below the string scale.

Considered within a dual CFT, this tower corresponds to a tower of high-dimension

operators with

∆i ≃ RKKV5/6 (2.36)

and whose number density for 1 . RKK . V1/6 behaves as

dN

dRKK
∝ R5

KK . (2.37)

The spectral density of eq. (2.37) holds for ∆ . V . For conformal dimensions ∆ & V , the
number density of operators grows exponentially as operators dual to excited string states

appear.

As the KK spectrum comes from dimensional reduction of all modes in the 10-dimen-

sional theory, it contains not just scalars, but also particles with spins 1/2, 1, 3/2 and 2,

coming from dimensional reduction of the graviton and gravitino. As the scale of super-

symmetry breaking is much smaller than the KK scale, we expect these modes (and the

dual operators) to arrange into complete supersymmetry multiplets.

2.3 Stability of the AdS solution and holography

One general question sitting in the background here is whether metastable or non-super-

symmetric AdS solutions can be meaningfully described from a holographic perspective

(indeed, one of the conjectures of [10] (also see [39]) is that non-supersymmetric AdS

solutions do not exist (see however [40])). The argument goes as follows: if there exists a

Coleman-de Luccia (CdL) bubble that can mediate a transition to a more stable endpoint

then there exists a finite probability per unit volume for this decay to occur. If this holds,

the combination of the infinite volume and causality structure of AdS implies that decays

percolate in from the boundary and so any observer feels the decay within an AdS time,

no matter how suppressed the decay probability is [41, 42].

There are two main points to make about the relationship of this argument to the case

at hand. The first is that, at least within its 4-dimensional effective field theory, LVS is

an absolute minimum of the scalar potential rather than a metastable one — there is no

other AdS minimum anywhere within the field space. Furthermore, the potential decay of

one AdS vacuum to another with different fluxes (and superpotential) in LVS was studied

in [43] where it was found that the tension of a nucleating five-brane between two different

AdS vacua is too large compared with the difference in their respective vacuum energies

to allow for the nucleation to happen. Of course, these statements are defined only within

the 4d effective field theory. The string landscape is believed to be continuously connected,

and there are certainly stable AdS solutions of string theory with deeper potentials — for

example AdS4 × S7 solutions of M-theory. While these are very far from LVS, and would

involve multiple changes in topology and flux configuration, as well as passing through a

strong coupling transition to make the eleventh dimension geometric, the belief is that they

would be connected within the fundamental quantum gravity theory.
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If this is true, as the V ≫ 1 limit of LVS is strongly classical, the distance in field space

from the LVS to another AdS vacua with Vmin < VLVS,min would nonetheless be expected

to be ∆Φ ≫MP . This reasoning makes it possible that some highly generalised version of

a CdL instanton or bubble of nothing could exist, but one should not speculate here too

much in the absence of any concrete computation.

The second point is that intrinsic to the argument against non-supersymmetric holog-

raphy is the idea that there is no qualitative difference between a decay amplitude of e−10100

and a decay amplitude that is O(1), as each is multiplied by an infinite volume. However

such an argument must be treated with a lot of caution, as it is unusual in physics that

quantities that are arbitrarily small cannot be usefully approximated to zero (for example,

the proton decay rate). Also, despite infinite volumes, relevant quantities are usually decay

rates per unit time and unit volume. It is also well established that non-conformal theories

with running couplings (for example, QCD) can be sensibly regarded as approximately

conformal, with the conformal symmetry group used to derive useful results.

Finally, the main argument in [10] was based on examples of non-supersymmetric

flux-stabilised vacua, obtained as a near-horizon limit of brane configurations. This is

a very different origin for non-supersymmetric AdS than the interplay of perturbative

and non-perturbative corrections which are the basis of the LVS solutions. So while we

note these arguments against non-supersymmetric holography, we will still proceed with a

standard analysis of the consequences of the AdS LVS solution for its putative holographic

dual CFTLVS.

3 3-pt and Higher point functions

We now consider the higher-point functions that are present within AdS space. We struc-

ture our analysis by considering first higher-point couplings that only involve the light

fields, and then extending to mixed couplings between heavy and light modes. Within a

dual CFT, these couplings will relate via Witten diagrams to the structure constants of

the CFT [44], which play a crucial role for determining the consistency of the CFT with

unitarity and crossing symmetry.

3.1 Interactions only involving light modes

We start with couplings involving the massless (equivalently ∆a = 3) pseudoscalar field a.

As it has no potential, the field a has no an self-couplings.

Nonetheless, it does couple to the volume modulus Φ through its kinetic terms. These

arise from the kinetic terms associated to K = −3 ln
(

T + T̄
)

,

L =
3

4τ2
∂µτ∂

µτ +
3

4τ2
∂µa∂

µa. (3.1)

After canonical normalisation of Φ =
√

3
2 ln τ , eq. (3.1) becomes

L =
1

2
∂µΦ∂

µΦ+
3

4
e
−
√

8

3
Φ
∂µa∂

µa. (3.2)
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Eq. (3.2) has a clear physical meaning — in the limit 〈Φ〉 ≫ 1, the field range 2πfa of the

axion reduces, with

fa ∼ MP

V2/3

in the large V limit (restoring factors of MP ).

Expanding about the minimum of the potential, Φ = 〈Φ〉+δΦ, we obtain a canonically

normalised axion field by redefining a→
√

3
2e

−
√

2

3
〈Φ〉
a. In terms of dynamical fluctuations

about the vacuum and including factors ofMP , the interactions between a and δΦ are then

L3-pt = −
√

2

3

(

δΦ

MP

)

∂µa∂
µa,

L4-pt =
2

3

(

δΦ

MP

)2

∂µa∂
µa,

and generally

Ln-pt =

(

−
√

8

3

)(n−2)
1

2(n− 2)!

(

δΦ

MP

)n−2

∂µa∂
µa. (3.3)

We note that the form of eq. (3.3) is independent of any of the microphysics of the com-

pactification (for example the flux choice, the value of W0, the form of non-perturbative

effects, etc.).

Of course, eq. (3.3) is only a leading approximation to the full LVS Lagrangian. In

the full Lagrangian there are additional contributions to these mixed couplings, arising (for

example) from higher-derivative interactions always present in effective string Lagrangians.

We can split these effects into two sorts. First, effects on the internal space (such as the

α′3 term used in LVS) alter the kinetic terms away from eq. (3.1), modifying the canonical

normalisation by additional volume-suppressed terms. Alternatively, there are additional

corrections directly in 4-dimensions, in particular those that extend the 4d action beyond

the two derivative level.

We can use a similar logic to neglect both sets of terms — they each involve terms

suppressed by higher powers of RAdS. Two derivative couplings in AdS space are of order

the characteristic curvature scale, namely R−2
AdS. As higher derivative terms involve higher

powers of curvature, they scale as R−4
AdS or greater. Likewise, as RAdS ∼ V3/2, any extra-

dimensional terms suppressed by additional powers of volume also give effects suppressed

by powers of RAdS. In the limit of large compactification volumes and large AdS radius, it

is self-consistent to neglect all such terms compared to those of eq. (3.3).

We now consider self-couplings of the volume modulus with itself. Redefinition of

the volume modulus to canonical form using Φ =
√

3
2 ln τ eliminates any self-couplings

involving the kinetic term (this is modulo volume-suppressed effects associated either to

higher order corrections to K = −2 lnV or to the mixing of τb and τs in the LVS potential

— but as such effects are subleading by V−1, it is again self-consistent to neglect them).
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We are then left with only the higher-point self-interactions in the scalar potential, in

an expansion

V = V0 +
∑ gn

n!

(

δΦ

MP

)n

. (3.4)

While we can determine gn recursively using similar arguments to that for eq. (2.13), there

is a nicer way to obtain a general expression for gn, starting with the potential

V = V0e
−λΦ

(

−Φk +A
)

. (3.5)

The minimum of eq. (3.5) is at 〈Φ〉 = Φ0, where

A− Φk
0 = −k

λ
Φk−1
0 , (3.6)

at which

V (Φ0) = −kV0
λ

e−λΦ0Φk−1
0 (3.7)

Let us Taylor expand V around Φ = Φ0.

V = V0e
−λΦ0e−λ(Φ−Φ0)

(

A− Φk
0

(

1 +
Φ− Φ0

Φ0

)k
)

≃ V0e
−λΦ0e−λ(Φ−Φ0)

(

A− Φk
0 − kΦk−1

0 (Φ− Φ0)
)

≃ −kV0
λ

Φk−1
0 e−λΦ0e−λ(Φ−Φ0) (1 + λ(Φ− Φ0))

≃ V (Φ0)

[

∑

n

(−1)nλn(Φ− Φ0)
n

n!
+
∑

m

(−1)mλm+1(Φ− Φ0)
m+1

m!

]

≃ V (Φ0)
∑

n

(−1)nλn(Φ− Φ0)
n

(

1

n!
− 1

(n− 1)!

)

≃ V (Φ0)
∑

n

(−1)n−1(n− 1)

n!
λn(Φ− Φ0)

n. (3.8)

Since we can in general expand

V (Φ) =
∑

n

V (n)(Φ0)(Φ− Φ0)
n

n!
, (3.9)

we can read off

V (n)(Φ0) = (−1)n−1(n− 1)λnV (Φ0). (3.10)

It therefore follows that (where λ =
√

27
2 for LVS) the n-point self-interaction of the

volume modulus in AdS space is

Ln-pt = (−1)n−1λn(n− 1)

(

−3
M2

P

R2
AdS

)

1

n!

(

δΦ

MP

)n(

1 +O
(

1

λ〈Φ〉

))

. (3.11)
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Let us make some comments about the forms of the self-interaction. First, the structure

of eq. (3.11) is radiatively stable. The fact that LVS arises from type IIB flux compacti-

fications within an effective low-energy N = 1 supergravity theory implies that quantum

corrections must respect this microphysics. Quantum corrections have been studied ex-

tensively within LVS and, as a consequence of the extended no-scale structure, all known

corrections give rise to terms in the potential that are subleading by (fractional) powers of

the volume [32–35]. As they do not modify the basic form of the LVS potential in eq. (2.4),

they leave the structure of eq. (3.5) unaffected, and so the form of eq. (3.11) is stable.4

Second, we see that the detailed microphysics does not enter eq. (3.11) except via the

subleading 1
λ〈Φ〉 terms. The leading part of eq. (3.11) is independent of W0, instantons,

χ(CY ), gs or any of the other detailed properties of the compactification. This implies the

attractive feature that in the asymptotic limit of V → ∞ all the interactions are uniquely

determined and can be specified solely in terms of RAdS.

At finite volumes, we see that both the conformal dimensions and higher-point in-

teractions are corrected by an expansion in 1
λ〈Φ〉 . Similarly for the 2-point function, this

expansion in 1
λ〈Φ〉 is equivalent to an expansion in powers of gs, which is appealing from

a potential holographic interpretation. We note that the coefficients of these subleading

corrections do depend on the detailed microphysics of the geometry — for example, 〈Φ〉
depends on the value of ξ, which involves the Euler number of the Calabi-Yau.5

This suggests that the right way to think about the LVS solution, at least in a holo-

graphic sense, is as an expansion about the V → ∞ limit, organised in corrections of

the form 1
lnV . Universal behaviour occurs in the strict limit V → ∞; model-dependent

corrections occurs at finite volume.

As with the axion kinetic terms, there will also be further corrections to the interactions

of eq. (3.11) that are suppressed by actual powers of V (for example, higher α′ corrections).
As corrections suppressed by powers of V are highly subleading compared to those terms

listed in eq. (3.11) that are suppressed by lnV , we do not consider them further.

Finally, we consider interactions involving the graviton mode, gµν , that is dual to

the stress tensor of the CFT. These include its kinetic self-interactions, deriving from the

Einstein-Hilbert term
∫ √

gR, and also the coupling of the graviton to scalar field kinetic

terms, via
∫

1

2
gµν∂

µa∂νa, or

∫

1

2
gµν∂

µΦ∂νΦ,

where we have used Φ and a to denote canonically normalised fields. They also include

4The reader may wonder as to the physics of why UV divergences from loops would not renormalise the

couplings of eq. (3.11). The point is that, in string theory, 〈Φ〉 itself sets the scale of the UV regulator, as 〈Φ〉

determines the compactification volume, and so also both the string scale and the scale of supersymmetry

restoration m3/2. The Φ potential is therefore self-controlled, in the sense that the UV cutoff Λ = Λ (〈Φ〉)

itself ensures that UV divergences are regulated at a low enough scale to not affect the leading terms

in V (Φ).
5We note that Calabi-Yau geometries have made an appearance in quantum field theory loop ampli-

tudes [45].
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interactions with potential terms,

∫

d4x
√
gV (Φ, a).

As the structure of the graviton interactions is fixed by general relativity, there is nothing

particular to LVS in the form they take.

3.2 Mixed interactions of heavy modes with light modes

The volume axion does not appear in the potential, and its kinetic coupling only involves

the light volume modulus. Up to higher order terms suppressed by powers of volume it

therefore does not couple to any of the heavier moduli (such higher order terms could be

induced, for example, by mixings between the Kähler and complex structure moduli —

this, however, being volume-suppressed compared to the tree-level Kähler potential).

The expectation value of the volume modulus itself, though, plays a major role in

determining the masses of all heavier modes. In a framework of Einstein-Hilbert gravity,

the 4-dimensional Planck scale is a fixed constant of MP = 2.4× 1018GeV. As Ms ∝ MP√
V ,

variations in the expectation value of the volume modulus, 〈Φ〉, physically correspond to

variations in the string scale (as Ms ∝ MP√
V ) and so as 〈Φ〉 varies, so does the mass of all

heavy modes.

This feature determines the form of the couplings between the volume modulus and

the heavy modes. We illustrate this by focusing on the examples of the flux-stabilised

dilaton and complex structure moduli and also the KK modes.

Let us first discuss the S and U moduli. The kinetic terms for these fields have no

dependence on the volume and so, in principle, canonical normalisation can be performed

purely within the (S,U) sector. From the potential of eq. (2.29), we see that the volume

enters as a universal prefactor of V−2. This factor fixes the higher-point functions of

the volume modulus with the S and U moduli, implying the interaction with the volume

modulus is of the form

V ∝ e−
√
6(δΦ/MP )M2

ij̄UiŪj̄ , (3.12)

whereM2
ij̄
is the physical mass squared matrix for complex structure moduli in the vacuum.

Expansion of eq. (3.12) then gives the couplings

L(δΦ)nUU∗ =
1

n!

(

−
√
6
δΦ

MP

)n

M2
ij̄UiŪj̄ . (3.13)

In principle, similar arguments can be used for the KK modes. These modes arise from

eigenmodes of the Laplace operator in the extra-dimensional space,

∂µ∂
µφ = m2φ. (3.14)

The volume modulus corresponds to the isotropic rescaling mode gµν → λ2gµν , and so it

follows that the effect of this rescaling is to modify the mass of KK modes, m2 → λ−2m2.

In particular, such rescalings have the same effect on all of the KK modes — they keep
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the relative form of the KK modes unaltered, and act as a common rescaling on the mass

and kinetic terms.6

This allows the interaction of KK modes with the volume modulus to be determined,

i.e. the interactions
∑

an

(

δΦ

MP

)n

∂µH∂
µH̄ +m2

∑

bn

(

δΦ

MP

)n

HH̄ ∈ L,

where H denotes the KK mode. To determine these, we consider what a KK mode would

look like, when ‘integrated in’ to a 4d supergravity description (see [47, 48] for similar

arguments). The shift symmetry of the Kähler moduli and the holomorphy of the super-

potential implies that only the Kähler metric for the KK modes can explicitly depend on

volume (while the KK modes must have a superpotential mass, the superpotential can have

no explicit perturbative dependence on T moduli).

We use H to denote the (un-normalised) KK modes. KK modes have m2
KK ∝ M2

P

V4/3 .

To ensure this behaviour, and taking into account the V−2 from eK , the kinetic terms for

H must scale as V−1/3 ≡ (τ)−1/2. This implies a Kähler metric and superpotential for the

KK modes

K = −2 lnV +
1

(T + T̄ )1/2
HH̄ + . . . ,

W = . . .+MKK(U)H2 + . . . (3.15)

producing an interaction Lagrangian (including the mass terms)

LKK =
1

(T + T̄ )1/2
∂µH∂

µH̄ − 1

2(T + T̄ )3/2
(

∂µT∂
µH̄H + ∂µT̄ ∂

µHH̄
)

+
3

4(T + T̄ )5/2
∂µT∂

µT̄HH̄ +
M2

KK

(T + T̄ )5/2
HH̄. (3.16)

By writing H
′

= H
τ1/4

we can proceed to make the KK modes canonically normalised. In

terms of H ′ and Φ these couplings are of the form:

M2
KKe

−
√

8/3 δΦ/MP H ′H̄ ′, (3.17)

and

e−
√

1/6 δΦ/MP

{

∂µH
′∂µH̄ ′, ∂µ

(

δΦ

MP

)

∂µ

(

δΦ̄

MP

)

H ′H̄ ′, H ′∂µ
(

δΦ

MP

)

∂µH̄ + h.c.

}

.

(3.18)

Expanding the exponentials as before we can read the direct couplings to (δΦ)n. A similar

analysis can in principle be done for massive string modes.

4 Comments on non-LVS models

In this section we make some brief comments about the implications of other non-LVS

constructions for putative CFT duals.

6This holds even for models with N ≫ 1 Kähler moduli — the goldstino of the no-scale GKP model,

inherited by LVS, is aligned perfectly with the isotropic rescaling mode [46].

– 18 –



J
H
E
P
0
3
(
2
0
1
9
)
0
0
5

4.1 ‘LVS’ with λ ≤
√
6

The ordinary derivation of LVS gives λ =
√

27
2 as the unique correct value of λ in eq. (2.11).

However, it is also interesting to note the case λ ≤
√
6. The value of

√
6 is interesting

because, as ms ∝ MP√
V , λ =

√
6 corresponds to a potential that scales at large volume as

V ∝M4
s ∼ M4

P

V2
(1 + . . .) . (4.1)

One may view a V ∝M4
s scaling as somewhat ‘natural’, although we stress that there is no

known construction that both has this scaling and still gives a minimum of the potential

at asymptotically large volumes.

From this respect λ < 6 is also interesting for two reasons. First, as this corresponds

in the perturbative weakly-coupled limit of V → ∞ to V ≫ M4
s , one may suspect that it

belongs to the swampland — such a scaling would require brane configurations that are

intrinsically non-supersymmetric and involve D5/D̄5 pairs or D7/D̄7 pairs (the energy of

a D3/D̄3 system only scales as V ∝ V−2). Second, from a holographic perspective the

case of λ < 6 also marks a clear transition, as it implies ∆Φ < 6 and so would make

the volume operator the lowest-dimension even parity scalar operator, bringing it below

TµνT
µν and aa.

4.2 Perturbative stabilisation

We consider here models of perturbative stabilisation of the volume modulus (for exam-

ple as in [33, 34, 49]). Typically these arise from balancing effects of different order in

the volume expansion — e.g. balancing the V−3α′3 correction against V−10/3 string loop

corrections. In terms of the canonically normalised field Φ, for such models we can write,

allowing arbitrary values for the two powers of volume being balanced against each other,

V = Ae−λ1Φ −Be−λ2Φ, (4.2)

V
′

= −λ1Ae−λ1Φ +Bλ2e
−λ2Φ, (4.3)

and so at the minimum λ1Ae
−λ1Φ = Bλ2e

−λ2Φ and V |min =
(

λ2

λ1
− 1
)

Be−λ2Φ. From this

we can derive

V
′′ |min =

(

λ21Ae
−λ1Φ − λ22Be

−λ2Φ
)
∣

∣

∣

min
= −λ1λ2V |min, (4.4)

and also

V (n)|min = (−1)n−1λ1λ2

(

λn−1
1 − λn−1

2

)

λ1 − λ2
V |min. (4.5)

As for LVS, this depends only on the powers λ1 and λ2 and not on the microphysics such

as A or B. In general, eq. (4.2) will have a minimum at small or moderate values of the

volume and so is not directly comparable to LVS. In the limit where λ1 ≃ λ2, this minimum

moves out to large volumes. Writing λ2 = λ1 + (λ2 − λ1) and expanding perturbatively,

eq. (4.5) becomes

V (n)|min = (−1)n−1(n− 1)λn−1
1 V |min +O(λ2 − λ1), (4.6)
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exactly matching the LVS result. It is appealing that we obtain the same answer as for LVS

despite the different starting point, but note that this should not be too surprising as in the

limit of λ2 → λ1 eq. (4.2) takes a very similar form to that used previously in eq. (2.11).

4.3 KKLT

Let us also consider the widely-studied KKLT vacuum to examine any relevant differences.

The KKLT AdS vacuum also comes from IIB flux models in which the dilaton and complex

stucture moduli are stabilised supersymmetrically [23]. The effective supergravity theory

for the Kähler moduli is then

K = −3 ln(T + T̄ )

W = W0 +Ae−aT . (4.7)

This can be easily solved to obtain for a supersymmetric minimum DTW = 0. While

the above represents the simplest 1-modulus model, the general structure of KKLT can

also be applied to models with many moduli, in which a supersymmetric minimum comes

from balancing non-perturbative superpotential terms against the constant W0. To obtain

minima at moderate values of volume which one hopes to be in the supergravity limit, W0

is tuned small using fluxes.

As KKLT is a supersymmetric minimum, it follows that at the minimum VAdS =

−3m2
3/2M

2
P and so RAdS = 1

m3/2
. The mass of the volume modulus, however, satisfies [50]

mΦ ∼ m3/2 ln

(

MP

m3/2

)

. (4.8)

This implies that the conformal dimension of the dual operator in KKLT satisfies7

∆(∆− 3) ∼
(

ln

(

MP

m3/2

))2

∼ (lnRAdS)
2 , (4.9)

and so in the limit of small W0 (or small m3/2 in KKLT) one obtains ∆ ∼ ln
(

MP
m3/2

)

. In

KKLT control comes from tuning ofW0 to small values, and so in the maximally controlled

limit of arbitrary fine-tuning of W0 → 0 the conformal dimensions of the low-lying scalar

operators grow as ln
(

MP /m3/2

)

with no bound. In contrast to LVS, KKLT therefore does

not seem to offer a holographic interpretation as a perturbation about a particular CFT

obtained in the control limit (here W0 ≪ 1).

As stabilisation is supersymmetric, this mass scale also applies to both the axion

partner of the volume modulus and the fermionic partners within the supersymmetry mul-

tiplet. In the limit of small W0, the dimensions of these low-lying operators then grow as

ln (RAdS/lPl), where lPl is the 4-dimensional Planck length.

In KKLT the gravitino, with a mass of m3/2, is the lightest massive excitation. In

that decoupling of the scalar modes is possible (as any such decoupling is only logarithmic

7Notice that in [19] this logarithmic dependence was not spelled out and the conformal dimension was

taken to be of O(1).

– 20 –



J
H
E
P
0
3
(
2
0
1
9
)
0
0
5

in W0, and the difficulty of tuning fluxes scales as |W0|2 [51], it is unclear whether these

can ever be regarded as parametrically decoupled), a dual of KKLT would reduce to a

generalised free field CFT consisting of the N = 1 multiplet of the stress-tensor (dual to

gµν) and a spin-3/2 operator dual to the gravitino.

5 Bootland conjectures

We now come to the more conjectural part of this paper: the idea that swampland con-

straints on the consistency of AdS quantum gravity theories will be equivalent, via holog-

raphy, to the bootstrap consistency constraints of unitarity and crossing symmetry on the

dual 3d CFT (for discussions of the weak gravity conjecture in AdS/CFT see [52, 53]).

Unitarity constraints have been used to constrain the space of consistent effective field

theories (for example see [54]) and these ideas have also been used in connection with the

swampland for gravitational effective field theories [55, 56]

While we propose this as a conjecture, we want to use the effective LVS AdS theory

to provide motivational arguments for it. Let us re-state the form of the AdS interactions

between the two light scalar fields δΦ and a present in the effective field theory of LVS,

L(δΦ)n = (−1)n−1λn(n− 1)

(

−3
M2

P

R2
AdS

)

1

n!

(

δΦ

MP

)n(

1 +O
(

1

λ〈Φ〉

))

, (5.1)

L(δΦ)n−2aa =

(

−
√

8

3

)(n−2)
1

2(n− 2)!

(

δΦ

MP

)n−2

∂µa∂
µa, (5.2)

with λ =
√

27
2 (there are in addition the heavier modes whose dimensions diverge in the

V → ∞ limit).

If one takes the LVS solution seriously, then it defines a solution to quantum gravity

on AdS space with a low-energy spectrum and interactions that are, in the V → ∞ limit,

radiatively exact and entirely specified in terms of RAdS. Using the holographic logic of

AdS/CFT, this AdS solution determines CFT correlators via a Witten diagram expansion

in AdS (for pedagogical discussions, see [57, 58]). Assuming LVS to be correct, we then

regard the structure of eq. (5.2) together with the dimensions ∆Φ and ∆a as defining a dual

CFT, CFTLVS (or at least the part of the dual CFT corresponding to the low-dimension

operators).

Such CFTs are constrained by the consequence of unitarity and conformal symme-

try. Recent years have seen great progress in understanding the implications of these

constraints, in particular using the techniques of the conformal bootstrap. This has led to

powerful results on (for example) the value of the lowest lying allowed operator dimensions

and, given certain assumptions about which operators are relevant, the uniqueness of the

3d Ising model [59]. One can view the set of CFT properties forbidden by the confor-

mal bootstrap as defining a CFT swampland. We therefore want to conjecture that these

constraints are, under AdS/CFT, equivalent — namely, that swampland constraints on
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consistent AdS theories of quantum gravity can be reinterpreted as an inability of a dual

field theory to satisfy both unitarity and crossing symmetry.8

LVS Bootland Conjecture. Modifications to eqs. (5.1) and (5.2) that place the resulting

AdS theory in the swampland are equivalent to modifications to the dual field theory that

make it unable to satisfy the CFT bootstrap constraints of unitarity and crossing symmetry.

We can see this as a special version of a more general conjecture,

AdS Bootland Conjecture. Swampland constraints on consistent AdS theories of quan-

tum gravity are equivalent to bootstrap constraints on consistency of the dual CFT.

To have teeth, conjectures need to be translatable into quantitative statements. To

illustrate this, we first show ways of modifying the interactions of eqs. (5.1) and (5.2)

that appear plausible in field theory but which, based on our knowledge of string theory

compactified down to four dimensions, we expect to be physically nonsensical and so part

of the swampland.

1. In eq. (5.2), the axion kinetic term comes from e
−
√

8

3
Φ/MP and behaves as MP

V2/3 in the

large volume limit. A modification to eq. (5.2) such that the axion kinetic term either

remained constant or increased in the limit V → ∞ would imply that the volume

of moduli space in the V → ∞ limit would diverge. Such behaviour is strongly

believed to be incompatible with quantum gravity (e.g. [9, 60], and also see [61, 62]

for recent discussions of kinetic terms in a decompactification limit from field theory

perspectives).

This implies, for example, that a replacement of e
−
√

8

3
Φ
by e

+
√

8

3
Φ
in eq. (3.2)

— equivalently, an additional factor of (−1)n in eq. (5.2) — should be inconsistent.

More generally, we also expect that any modification of the axion kinetic term in

eq. (5.2) to originate from a positive-exponential couplings such as e+αΦ∂µa∂
µa (or

even simply ∂µa∂
µa with no Φ dependence) would be forbidden. We expect this to

hold despite the fact that the volume axion a is simply a spectator field for the LVS

dynamics and the a kinetic term plays no explicit role in LVS.

2. The LVS potential scales as V−3 in the large-volume limit, and this factor of V−3

corresponds to λ =
√

27
2 within eq. (2.6). Based on what we know about perturbative

quantum corrections within string theories, it would appear impossible to generate

an LVS-esque potential as in eq. (2.7), but with a scaling of (say) V−100 replacing the

V−3 as the prefactor that gives the dominant power in the V → ∞ limit. In such a

case, we know of no way to prevent more dominant effects at lower powers of volume

arising from string loops.

This suggests that the structure of eqs. (5.1) and (5.2), certainly in the limit

V ≫ 1, would be inconsistent with quantum gravity when λ≫
√

27
2 .

8While this mainly refers to the low energy spectrum, one can similarly conjecture that the presence of

the tower of string and KK modes are, holographically, essential to satisfy generalised modular invariance

of the 3d CFT.
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3. A much stronger form of this is the claim that, not only is λ ≫
√

27
2 forbidden,

but that LVS is the only possible mechanism for producing scale-separated vacua at

V ≫ 1 (modulo constructions such as [63] that are morally equivalent) — i.e., the

delicate balancing of α′ and instanton effects which leads to an exponentially large

volume minimum is only possible for an asymptotic V−3 scaling. This much stronger

form of the previous conjecture would then state that λ =
√

27
2 is the only consistent

value in eq. (5.1).

4. Within string theory, the presence of exponentials in the canonical field Φ, that

expand to give all the individual interactions, is ‘obvious’ — they arises from effects

that are power-law in the physical volume and so are exponential in the canonical

field Φ. In this respect, it appears unavoidable to have an axionic kinetic term

that is exponential in Φ. However, when writing effective low-energy Lagrangians in

quantum field theory there seems to be no obvious perturbative problem with (for

example) changing by a factor of two the coefficient of the (say) (δΦ/MP )
100 ∂µa∂

µa

term in the Lagrangian — or indeed any number of other such discrete changes in

the coefficients of terms in eq. (5.1) and eq. (5.2).

Based on the string theory origin, though, we claim that any such number of

discrete changes in the interactions in eqs. (5.1) and (5.2) would be inconsistent with

quantum gravity.

We now want to argue that the requirements of crossing symmetry and unitarity of

CFTLVS will be sensitive to such structures, although attempts at a detailed analysis of

the Witten diagrams or construction of a dual CFT are beyond the scope of this paper.

To be self-contained, we first briefly review the requirement of crossing symmetry

within a CFT. In a CFT, operators can be organised in times of primaries and their

descendants. As any two primary operators Oa and Ob approach each other, they can be

replaced by an operator product expansion

Oa(x2)Ob(x1) =
∑

i

Ci
ab|x2 − x1|∆i−∆a−∆bOi(x1) + descendants, (5.3)

where ∆a is the conformal dimension of operator Oa, the index i sums over all operators

of the CFT and the descendant contributions are related by kinematics to that of the

primary operators. Given the dimensions of the primary operators, the structure constants

Ci
ab (which must be real in a unitary theory) then completely define the CFT, and in

principle any higher point CFT correlator can be evaluated through a recursive series of

OPE expansions down to sums over lower-point correlators.

The result of this recursive evaluation must be independent of the order in which the

OPEs are performed. In particular, this holds for a CFT 4-point function 〈Oa(x1)Ob(x2)

· Oc(x3)Od(x4)〉. There are two distinct ways to expand the 4-point function — either

by first performing the Oa(x1)Ob(x2) and Oc(x3)Od(x4) OPEs and then contracting the

resulting 2-pt functions in the ‘s-channel’, or equivalently by first expanding Oa(x1)Oc(x3)

and Ob(x2)Od(x4) OPEs and contracting in the ‘t-channel’. As in principle all fields can
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appear within the OPE, this gives the schematic expression
∑

i

Ci
abC

i
cd G12→34

i (x1, x2, x3, x4) =
∑

j

Cj
acC

j
bd G13→24

j (x1, x3, x2, x4). (5.4)

Here i and j sum over all fields in the CFT, Ci
ab represents the structure constant for Oi

within the OPE of Oa and Ob, and G12→34
i represents the effects of exchange of field Oi (plus

descendants) from x1 to x3, arising from the OPEs of Oa(x1)Ob(x2) and Oc(x3)Od(x4).

Now let us specialise to CFTs that would be dual to any LVS (or related) construction.

As described in section 2, the low-lying single trace operators will consist of the stress tensor

plus an even parity scalar field dual to the volume modulus (which we also denote Φ) and

an odd-parity scalar field dual to the volume axion (which we also denote a). Such Z2

symmetric 3d CFTs have been analysed extensively within the bootstrap literature, but

mainly from a perspective where both scalar operators would be relevant (e.g. see [59, 64]).

We assume that the low-lying sector should satisfy crossing symmetry on its own

accord (i.e. without having to include the effects of heavy states) and want to consider the

structure of crossing symmetry for the 〈Φ(x1)Φ(x2)a(x3)a(x4)〉 correlator,
∑

i

Ci
ΦΦC

i
aa G12→34

i (x1, x2, x3, x4) =
∑

j

(Cj
Φa)

2 G13→24
j (x1, x3, x2, x4). (5.5)

In the asymptotic large volume limit, the conformal dimensions of the operators are fixed

— they arise from the single trace fields a, Φ and gµν , plus double- and higher-trace modes

such as Φ2, Φa, etc. The interesting physics is therefore in the structure constants Ci
ab,

which can in principle be found through Witten diagrams evaluated using the interactions

of the AdS theory.

The Z2 parity allows the operators to be divided into even- and odd-parity sets, Oi+

(which includes the identity operator 1) and Oj−. In eq. (5.5) the left-hand side involves

exchange of Oi+ and the right-hand side the exchange of Oj−. The OPE expansions take

the schematic form

Oi+ ×Oi+ ∼ Ci+
i+i+Oi+,

Oi+ ×Oj− ∼ Cj−
i+j−Oj−,

Oj− ×Oj− ∼ Ci+
j−j−Oi+, (5.6)

and so the l.h.s. of eq. (5.5) involves the first and third of these OPEs while the r.h.s. only

involves the second. Equality of the left and right hand sides of eq. (5.5) will then imply

relationships between these different terms.

From eqs. (5.1) and (5.2), there are two basic forms of scalar field interactions — the

potential terms which depend solely on the even-parity Φ field and include Φ3,Φ4, . . . inter-

actions, and the kinetic terms involving mixed even-odd interactions of the form Φn∂µa∂
µa.

We expect the Z2 symmetry to restrict the origin of the various OPE coefficients: for ex-

ample, we expect the potential terms to be responsible for CΦm

ΦΦ terms, whereas the Ci+
aa

coefficients will arise from the axion kinetic terms.

For example, on the right hand side of eq. (5.5) the OPEs involve (Ca
Φa)

2, which in a

unitary theory must be positive as Ca
Φa is real. However, on the left hand side the OPEs
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involve the product CΦ
ΦΦC

Φ
aa. Here the sign is not fixed a priori and the contribution of

this term will be sensitive to the signs and coefficients of both the Φ3 self-interaction and

also the Φ∂µa∂
µa axion kinetic term.9 While the full statement of crossing symmetry

requires the sum over all intermediate modes in eq. (5.5), this suggests the presence of

intricate consistency requirements on the interaction coefficients of eq. (5.6). Assuming

that eq. (5.1) and eq. (5.2) do define a theory CFTLVS, the essence of our conjectures is

that modifications of eq. (5.1) and eq. (5.2) into a swampland theory will correspond to

modifying the OPE structure constants of CFTLVS such that it can no longer represent a

unitary conformal field theory.

Let us be a little more specific on this and consider one specific modifications of the

axion kinetic term while leaving the LVS scalar potential unaffected. In eqs. (5.1) and (5.2),

the coefficient of the Φ3 and Φ∂µa∂
µa terms are both negative, and so the product has

positive sign (cf our discussion of CΦ
ΦΦC

Φ
aa). We now imagine changing the sign of the

exponential in the e
−
√

8

3
Φ
∂µa∂

µa kinetic term to e
+
√

8

3
Φ
∂µa∂

µa, modifying eq. (5.2) by a

factor of (−1)n. Based on everything that is known about string theory, this new theory is

in the swampland. We expect this modification to change Ci+
aa couplings by similar factors

of (−1)n, which would significantly modify the signs of the OPE sum on the l.h.s. of eq. (5.5)

while leaving the r.h.s. unaffected. More generally, one can imagine continuously varying

the coefficient in the exponential from
√

8
3 to −

√

8
3 , which would be a trajectory in the

AdS theory that leads us from the landscape into the swampland. By continuity there is

a definite point on this trajectory where the AdS theory enters the swampland, and so we

expect that some similar marker should occur on the CFT side at this point.

We stress that these arguments do not represent full calculations of the CFT structure

constants starting from the AdS theory. In this paper we are simply motivating why

CFT structures should be sensitive to modifications of consistent non-swampland AdS

theories into inconsistent swampland AdS theories — it would be striking if the swampland

boundary on the AdS side was not mirrored by a similar boundary on the CFT side.

6 Conclusions

Holographic descriptions of flux compactifications and moduli stabilisation has been a

subject of intermittent interest over the years. We believe now is a suitable time to revisit

this topic in detail, following the technological advances in the study of the conformal

bootstrap. We hope to have shown that holographic duals of flux compactifications may not

be as far-fetched as has been thought, as the effective low-energy Lagrangian of the Large

Volume Scenario is, when rewritten in terms of RAdS, uniquely determined in the large

volume limit. This rewritten form is remarkably simple, radiatively stable and universal

in the limit of V → ∞. In particular, there is a sharp prediction of ∆Φ = 3
2

(

1 +
√
19
)

for

the dimension of the operator dual to the volume modulus. This also offers the chance to

disprove the Large Volume Scenario by showing, from the CFT side, an inconsistency in

the structure of eqs. (5.1) and (5.2).

9This is one reason why we explicitly include unitarity as part of our conjectures; a Witten diagram

might respect crossing symmetry but not unitarity (e.g. see [57]).
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There are various modifications that can be made to the low-energy Lagrangian of

eqs. (5.1) and (5.2) that, from an AdS perspective, would put the theory rather clearly

into the swampland. We have conjectured that these modifications should have an in-

terpretation on the CFT side in terms of a modification to the field theory that makes

it impossible to satisfy the conformal field theory constraints of unitarity and crossing

symmetry. We have also conjectured that such bootland constraints will also hold more

generally for other AdS moduli stabilisation scenarios.

Of course, it may be that such a relationship is false, and inconsistent modifications to

AdS Lagrangians still lead to (at least apparently) consistent CFTs. In this case it would

not be possible to draw any conclusions about the swampland through CFT arguments. On

the other hand, if it were possible to identify CFT inconsistencies for certain couplings in the

effective AdS Lagrangian, then this would open the door to potential disproofs of standard

moduli stabilisation scenarios such as LVS — or at least to far more robust checks on their

consistency. The ideal result would be a clear map of consistent and inconsistent AdS

Lagrangians, within which one could locate the standard moduli stabilisation Lagrangians.

More generally, the simplicity and universality of the rewritten LVS Lagrangian may

also offer a new approach to thinking about swampland constraints on consistent AdS grav-

ity theories, potentially entering a new era of ‘quantum gravitational string phenomenol-

ogy’ [65].
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