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1 Introduction

Holography has provided a robust framework for explaining the Bekenstein-Hawking en-

tropy of a black hole from microscopic considerations. For black holes in asymptotically

flat space-times, the essential breakthrough was [1] but the subsequent development of

AdS/CFT [2] has lead to a far deeper understanding of this line of research. The starting

point of such work is typically supersymmetric black holes and in AdS4, static-BPS black

holes with spherical horizon were only found somewhat recently [3]. In [4, 5] the entropy

of these black holes1 has been reproduced from the holographically dual field theory using

fundamentally different methods than those employed in [1]; namely by localization and

without recourse to the Cardy formula of a two-dimensional CFT.

The purpose of the current work is to further clarify the relationship between the

macroscopic computations of the entropy and the microscopic calculations of [4, 5]. The

holographic dictionary relates the boundary partition function to the on-shell action of

the gravitational theory, not the entropy. In this work we consider supersymmetric (and

extremal) dyonically charged black holes in N = 2 FI gauged supergravity coupled to nv

1as well as the dyonic black holes of [6, 7].
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vector multiplets and show that the on-shell action coincides with the entropy. Our methods

are quite general and do not require the explicit black hole solution beyond the leading order

AdS4 configuration. For the Reissner-Nordström AdS4 black hole (with a single magnetic

charge, constant scalar fields and a negatively curved horizon of genus greater than one)

an equivalent result was obtained [8] by explicit calculation using the BPS limit of the

finite temperature solution. The black holes we study here have comparatively non-trivial

profiles for the metric and scalar fields (as well as possibly spherical horizons), making

explicit evaluation of the on-shell action somewhat unintuitive even if it were possible. We

employ a more formal strategy to derive this equivalence and do not need to reference the

explicit form of the BPS or finite temperature solution. We anticipate this strategy will

generalize to a variety of related settings.

Crucial to this calculation is holographic renormalization2 [10]. The first step of holo-

graphic renormalization is to cancel the divergences and for supersymmetric theories with

scalar fields there are few results in the literature, although recently some interesting works

have appeared [11, 12]. The divergent boundary counterterms we utilize are similar in form

to those presented in [13]: a certain superpotential term cancels the cubic divergences and

a term formed from the boundary Ricci scalar coupled to the scalar fields cancels the linear

divergences. The finite counterterms are typically a more vexing issue but here we find

that the basic principles espoused in [14] work simply and effectively: for BPS solutions

with Neumann boundary counditions for the scalars fields, the Legendre transformation

cancels all finite contributions from asymptotic infinity.

Having renormalized the on-shell action there remains a contribution to the on-shell

action from the horizon. This comes from the extrinsic curvature on Σg × S1 evaluated at

the horizon3 and we show this to be precisely equal to the entropy of the black hole. For

BPS black holes this is the only contribution to the on-shell action and we have

S̃on−shell

∣∣∣
BPS

= − A

4GN
, (1.1)

where S̃on−shell is the Legendre transform of Son−shell defined in (3.33).

2 Supersymmetric black holes in AdS4

In this section we review some facts about quarter-BPS black holes in AdS4 with boundary

Σg×S1. The reader who is already familiar with this literature may wish to skip to section 3.

2.1 N = 2 FI-gauged supergravity

The bulk action of four dimensional N = 2 FI-gauged supergravity with nv vector mulit-

plets is4

Sbulk =
1

8πGN

∫
d4x
√
g

(
1

2
R−gi∂µzi∂µz̄+

1

4
IΛΣF

Λ
µνF

Σµν+
1

4
RΛΣ

εµνρσ

2
√
g
FΛ
µνF

Σ
ρσ−Vg

)
(2.1)

2see the interesting work [9] for work on holographic renormalization of finite temperature black holes

in AdS4.
3The Riemann surface Σg has genus g ≥ 0.
4See appendix A for detail of the notation of the special geometry quantities.
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where the scalar potential is given by

Vg = |Li|2 − 3|L|2 (2.2)

and to which should be added the Gibbons-Hawking-York [15, 16] boundary term

SGHY = − 1

8πGN

∫
M∞

d3x
√
hK . (2.3)

The equation of motion for the metric which follows from (2.1) will be utilized later so we

give it explicitly here

−
(
Rµν −

1

2
gµν

)
= gµνVg + gµνgi∂

σzi∂σz
ı − 2gi∂µz

i∂νz


− 1

4
gµνIΛΣF

Λ
ρσF

ρσΣ + IΛΣF
Λ
µσF

σΣ
ν . (2.4)

The equations of motion for the scalar fields and Maxwell’s equation will not be needed in

this work.

2.2 The black hole ansatz

The (static) black hole ansatz in Euclidean signature is

ds2 = e2Udt2 + e−2Udr2 + e2(V−U)dΣ2
g , (2.5)

pΛ =
1

4π

∫
Σg

FΛ , qΛ =
1

4π

∫
Σg

GΛ (2.6)

where the dual field strength is

GΛ = RΛΣF
Σ − IΛΣ ∗4 FΣ . (2.7)

The Riemann surface Σg is (S2, T 2,H2/Γ) and has genus g, the metric dΣ2
g is the uniform

metric of curvature κ = (1, 0,−1) respectively. The scalar fields are radially dependent

zi = zi(r) and the gauge fields contribute to the solution just through the conserved

charges (2.6). The charges and gauge couplings naturally form symplectic vectors Q and

G from which there are two symplectic invariants L and Z:

Q =

(
PΛ

QΛ

)
, G =

(
gΛ

gΛ

)
, L = 〈G,V〉 , Z = 〈Q,V〉 . (2.8)

Einstein’s equation on this ansatz reduce to5

VBH =
1

2
e2(V−U)

[
κ− 1

2
(e2V )′′ +

(
e2(V−U)(e2U )′

)′]
(2.9)

Vg =
1

2
e2(U−V )

[
κ− 1

2
(e2V )′′

]
(2.10)

giz
i′z̄′ = −eU−V (eV−U )′′ (2.11)

where we use the standard definition of VBH

VBH = |Zi|2 + |Z|2 = −1

2
QTMQ . (2.12)

We will use the explicit form of (2.9)–(2.11) in section 3.1.

5This form of the equations can be found in [17] in signature (+−−−) but we have corrected a minus

sign error in the coefficient of VBH which is crucial for our analysis in the next section.
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2.3 BPS solutions

The BPS equations for the preservation of two real supersymmetries (commonly referred

to as quarter-BPS) are6 [3, 19]

2e2V
[
Im
(
e−iψe−UV

)]′
= 8e2(V−U)Re

(
e−iψL

)
Re
(
e−iψV

)
−Q− e2(V−U)ΩMG (2.13)(

eV
)′

= 2eV−U Im
(
e−iψL

)
(2.14)

ψ′ +Ar = −2e−URe(e−iψL) (2.15)

〈G,Q〉 = −κ (2.16)

where ψ is the phase of the supersymmetry parameter. It will prove useful to reproduce

an equivalent form of (2.13)

2
[
Re(eUe−iψV)

]′
= e2(U−V )ΩMQ+ G , (2.17)

as well as

(eV−U )′ = eV−2U Im(e−iψL) + e−V Re(e−iψZ) (2.18)

which can be derived from (2.13) and (2.14).

Starting from [3], the solution for BPS black holes in AdS4 has been developed [19–22]

and in [7] a general solution for dyonically charged, AdS4 black holes in FI-gauged super-

gravity (with general dyonic gaugings) was derived. This solution assumes that Mv is a

homogeneous space and is presented in terms of the quartic invariant7 I4. We will not

use this explicit solution in much detail but note that e2V is a quartic polynomial. In the

solution of [3] this quartic has a pair of double roots, while for the more general solutions

of [7] it has a single double root (required for all zero-temperature solutions).

The general solution for BPS horizon configurations of the form AdS2×Σg was found

in [6] (for any homogeneous Mv) and the entropy was shown to equal

S =
vol(Σg)

4GN

√
I4(G,G,Q,Q)±

√
I4(G,G,Q,Q)2 − 16I4(G)I4(Q))

8I4(G)
. (2.19)

It was also found that the BPS conditions impose an additional constraint on the charges

in terms of the gauge couplings:

0 = 4I4(G)I4(G,Q,Q,Q)2 + 4I4(Q)I4(Q,G,G,G)2

−I4(G,Q,Q,Q)I4(G,G,Q,Q)I4(Q,G,G,G) . (2.20)

The Dirac quantization condition due to the charged gravitino is

〈G,Q〉 ∈ Z (2.21)

6Half-BPS solutions which fit in this ansatz and preserve eight real supersymmetries also exist [18] but

are nakedly singular. A general analysis of such solutions with scalar fields has not yet been completed.
7We use the same conventions as [23] where the quartic invariant was introduced in the study of these

black holes.
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but supersymmetry enforces something stronger (2.16). One can break supersymmetry

explicitly but preserve extremality by satisfying (2.21) but not (2.16) and indeed the so-

lutions in the literature satisfy the equations of motion when the charges are altered to

satisfy (2.21) instead of (2.16) while keeping all metric modes and scalar fields unchanged,

a fact which was first noted in [24, 25] Throughout this work, while we constantly refer

to BPS solutions, everything will apply equally well to solutions which satisfy (2.21) but

not (2.16).

2.4 AdS4 boundary conditions

The essential computations in this paper will not require the explicit form of the black hole

solutions beyond the asymptotic boundary conditions which we now review. The leading

order solution is the supersymmetric AdS4 vacuum and can be given without reference to

the assumption that Mv is homogenous:

e2V =
r4

R2
AdS

, e2U =
r2

R2
AdS

, Re(e−iψV) =
RAdS

2
G (2.22)

where

RAdS =
1

I4(G)1/4
. (2.23)

When Mv is homogeneous we can additionally infer that

Im(e−iψV) =
R3

AdS

4
I ′4(G) . (2.24)

2.5 STU model

The most well studied black holes in AdS4 with non-trivial scalar fields comes from the STU

truncation [18, 26] of the de-Wit Nicolai N = 8 gauged supergravity [27]. This corresponds

to the data

F = −X
1X2X3

X0
, gΛ = −


0

g

g

g

 , gΛ =


g

0

0

0

 . (2.25)

This can be easily rotated to the more familiar symplectic frame

F = −2i
√
X0X1X2X3 , gΛ = 0 , gΛ =


g

g

g

g

 , (2.26)

which is perhaps better loved by most than the frame (2.25) due the vanishing of the

magnetic gaugings. The quartic invariant is by construction frame invariant

I4(G) = 4g4 . (2.27)

The solution of [3] is given in the frame (2.26) where the charges are purely magnetic.
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While in this work we have little need for the explicit form of the black hole solutions,

which can be found in the various papers already mentioned, we now review the dimension

of the solution space. There are eight charges (four magnetic and four electric) and the

BPS magnetic solutions of [3] have four non-trivial magnetic charges subject to the single

constraint (2.16). The constraint (2.20) vanishes identically for the solutions of [3]. It was

shown in [28] that using a U(1)2 symmetry (axion shifts) of the scalar potential [29] one can

generate two electric charges in addition to the magnetic charges of [3] while preserving

supersymmetry and not changing the form of the metric. A third U(1) symmetry was

identified which generates a third electric charge but this is equivalent to the extra (discrete)

parameter obtained by enforcing (2.21) instead of (2.16). The general BPS solution was

found in [7] and this solution space is six dimensional, it satisfies (2.16) and (2.20) but

one can increase the solution space to seven dimensions by enforcing (2.21) at the expense

of (2.16). Finally we mention [30] where a solution was found for all eight charges although

the subset of these solutions which preserve supersymmetry have not yet been identified.

In the absence of scalar hair (which is not at all clear) it is reasonable to expect that the

solutions of [7] are co-dimension one inside those of [30] but given the rather unwieldy

nature of all these solutions, it seems challenging to make this precise.

2.6 Universal black hole

The universal black hole [31, 32] has constant scalar fields and κ = −1, it is a solution

of any supergravity theory which admits a truncation to minimal gauged supergravity,

thus the moniker “universal”. In the conventions of the STU model in section 2.5 it takes

the form:8

e2(V−U) = r2 , e2U =
1

2

(
2g r − 1

2g r

)2

− 2ηr , (2.28)

RAdS =
1√
2 g

, pΛ =
1

4g
, qΛ=0 , (2.29)

the BPS limit is η = 0. For completeness we give the conventions for the scalar fields and

supersymmetry parameter

LΛ = 2−3/2(1, i, i, i)T , MΛ = 2−3/2(i, 1, 1, 1)T , zj = i , (2.30)

L =
√

2 g , Z =
i

23/2g
, ψ = −π

2
. (2.31)

To first order in η, the horizon is at

rh =
1

2g
+

1√
2g
η1/2 +O(η3/2) . (2.32)

For all the BPS solutions of [7] the metric function e2V is a quartic polynomial and

by comparison with [30] it appears that the corresponding space of finite temperature

solutions has

e2V → e2V − 2ηr (2.33)

8In [8] a second non-BPS parameter was considered corresponding to varying the charge. We do not see

great utility for this since due to Dirac quantization, the charge cannot be varied infinitesimally.
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for some finite paramter η, in particular e2V remains a quartic polynomial for finite η. Since

in the BPS solutions e2V has a double real root, one can show that the first correction to

the horizon is order O(η1/2) and thus β = 1
η1/2

+O(η0).

3 Holographic free energy

To compute the holographic free-energy of BPS black holes in AdS4 we find it useful to

compute the on-shell action in two ways: firstly by using the second order equations of

motion and secondly utilizing the BPS form of the dimensionally reduced 1d action. After

adding counterterms and performing a Legendre transform we will arrive at our central

result (3.36). The entropy emerges from a total derivative term identical to the Gibbons-

Hawking-York boundary term but evaluated at the horizon instead of the boundary.

3.1 On-shell action, a first look

The simplified form of Einstein’s equations (2.9)–(2.11) allow us to evaluate the integral in

Sbulk directly. We first reduce the action to one dimension

Sbulk =
βvol(Σg)

8πGN

∫ r∞

rh

[
− κ+ e2V

[
(U ′ − V ′)2 + 2(V ′)2 + 2V ′′ − U ′′

]
+ e2V giz

i′z′ + e2(U−V )VBH + e2(V−U)Vg

]
(3.1)

then after some algebra we find9

Sbulk =
βvol(Σg)

8πGN

∫ r∞

rh

1

2

(
e2(V−U)(e2U )′

)′
. (3.2)

We now see that Sbulk combines nicely with the GHY term (2.3)

SGHY = −βvol(Σg)

8πGN
e2V (2V ′ − U ′)

∣∣∣
r=r∞

(3.3)

to give

Sbulk + SGHY = − A

4GN
+
βvol(Σg)

8πGN

[
− e2U (e2(V−U))′

]
r=r∞

, (3.4)

where the area of the horizon is

A = vol(Σg)e
2(V−U)

∣∣∣
r=rh

. (3.5)

In deriving (3.4) we have used the definition of the inverse temperature

β =
4π

(e2U )′

∣∣∣
r=rh

(3.6)

and the simple but illuminating relation

e2V (2V ′ − U ′) = e2U (e2(V−U))′ +
1

2
e2(V−U)(e2U )′ . (3.7)

9The domain of Euclidean time is t ∈ (0, β = 1
T

) .
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The second term on the r.h.s. of (3.4) is divergent and must be regularized, an additional

subtle question is whether this term contributes a finite amount to the action.

When evaluated on a BPS solution using (2.18), we find that (3.4) simplifies to

Sbulk + SGHY

∣∣∣
BPS

= − A

4GN
− βvol(Σg)

4πGN
W
∣∣∣
r=r∞

, (3.8)

where W is the superpotential for the 1d action of section 3.2

W = e2V−U Im(e−iψL) + eURe(e−iψZ) . (3.9)

To prove our main result we would like to demonstrate that the second term on the r.h.s.

of (3.8) cancels against the required counterterms.

3.2 BPS form of the action

A key step in our technique for computing the on-shell action is the BPS form of the action

given in [19]. Starting with (2.1), the authors of [19] dimensionally reduced this action to

one dimension and recast it as a sum of squares plus boundary term:10

Sbulk = Ssquare + Sbdy (3.10)

Ssquare =
βvol(Σg)

8πGN

∫ r∞

rh

dr
{
− 1

2
e2(U−V )ξTMξ − e2V

[
ψ′ +Ar + 2e−URe(e−iψL)

]2
− e2V

[
V ′ − 2e−U Im(e−iψL)

]2}
(3.11)

Sbdy =
βvol(Σg)

8πGN

∫ r∞

rh

dr
{
− (κ+ 〈G,Q〉)− 2∂rW + ∂r

[
e2V (2V ′ − U ′)

]}
(3.12)

where11

ξ = 2e2V Im
(
e−iψe−UV

)′
+ 4e2V−U (ψ′ +Ar)Re

(
e−iψV

)
+Q+ e2(V−U)ΩMG . (3.13)

The domain of integration is from the horizon rh where eU vanishes, to a large but finite

asymptotic point r∞. The superpotential W in (3.12) is the same as in (3.9).

The Gibbons-Hawking-York [15, 16] boundary term takes the simple form (3.3) which

is the same form and normalization as the second total derivative term in (3.12) thus

cancelling the contribution of this total derivative term at r∞. We also note that since

eV−U and the scalar fields are finite at the horizon while eU vanishes there, we have

W
∣∣∣
r=rh

= 0 . (3.14)

Finally we see that (with no reference to the BPS limit)

Sbulk + SGHY = Ssquare −
A

4GN
− βvol(Σg)

4πGN
W
∣∣∣
r=r∞

(3.15)

10This 1d action must be supplemented by the zero-energy constraint and then the equations of motion

will give (2.9)–(2.11).
11We have corrected a small typo in [19] for the coefficient of (ψ′ +Ar).
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and comparing with (3.8) we have

Ssquare

∣∣∣
BPS

= 0 . (3.16)

One might expect that (3.16) follows immediately from the fact that the integrand

vanishes on BPS solutions, indeed this is the essence of the Bogolmony argument of [11],

however this intuition is sullied by the divergence coming from the integral over Euclidean

time. Indeed, for the BPS universal black hole, while it is true that Ssquare = 0, it is the

sum of two finite terms which cancel (which is possible because M is negative definite).

Explicitly, for the universal black hole we have the following contributions to Ssquare (the

second term in (3.11) vanishes exactly):

β

4π

∫ r∞

rh

dr
1

2
e2(U−V )ξTMξ = − 1

96g2
+

η1/2

12
√

2 g3/2
+O(η) (3.17)

β

4π

∫ r∞

rh

dr e2V
[
V ′ − 2e−U Im(e−iψL)

]2
=

1

96g2
+

η1/2

48
√

2 g3/2
+O(η) (3.18)

where we have used the relation for the universal black hole

1

T
=

β

4π
=

1

27/2g3/2

1

η1/2
+

1

8g
+O(η1/2) . (3.19)

So we see that in a perturbation around the BPS solution we have

Ssquare = O(η1/2) (3.20)

but the O(η0) term vanishes by a non-trivial cancellation.

3.3 Cancellation of divergences

We must add boundary counterterms to render the on-shell action finite. For minimal

gauged supergravity it has been established some time ago [33–36] that one should add

Sct =
1

8πGN

∫
M∞

d3x
√
h

[
1

g
R(3) + g

]
. (3.21)

The generalization of (3.21) to include scalar fields has been studied [13] and quite recently

revisited to include the constraints imposed by supersymmetry [11, 12], following which we

generalize the second term in (3.21) with part of the superpotential (3.9)

Sct,L =
2

8πGN

∫
M∞

d3x
√
h Im(e−iψL) , (3.22)

canceling exactly the similar term in (3.15).

The precise generalization of the first term in (3.21) is not immediately clear but it

should be of the form

Sct,R =
1

8πGN

∫
M∞

d3x
√
hZ(zi)R(3) (3.23)

– 9 –
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where Z(zi) is a function of the scalar fields. To summarize, the action so far is given by

Son−shell = Sbulk + SGHY + Sct,L + Sct,R (3.24)

and using

R(3) = 2κe2U−2V (3.25)

we have the linearly divergent terms

Sdiv ∼
[
κeUZ(zi)− κr − 〈G,Q〉r − 2eURe(e−iψZ)

]
r=r∞

. (3.26)

It follows from (2.17) and section 2.4 that for black holes which asymptote to a supersym-

metric AdS4 vacuum, we have[
〈G,Q〉r + 2eURe(e−iψZ)

]
r=r∞

= 0 . (3.27)

Since eU = r∞
RAdS

+O(r0
∞), in order that we cancel the linear divergence we require

Z(zi) = RAdS +O(r−1
∞ ) . (3.28)

It may be desirable to find an expression for Z in terms of the fields and not RAdS. It

might be reasonable that Z = 1
Im (e−iψL)

, which would obey this asymptotic condition, is

symplectic invariant and is local on field space but we do not see a way to precisely check

this. Nonetheless, we will see below that for the evaluation of the on-shell action, the

precise form of Z(zi) will not be needed beyond this leading order.

We note that the divergences in the four terms in (3.26) are all equal in magnitude and

we can consider that the first and second two terms cancel amongst themselves. As such

we can relax the BPS Dirac quantization constraint (2.16) to (2.21) while maintaining this

cancellation; our analysis is valid also for the class of non-extremal black holes obtained by

varying the charges in the solutions of [3, 7] to satisfy (2.21).

We have shown a method to cancel the divergences for solutions which asymptote to

a BPS AdS4 background in the UV. It seems reasonable that the counterterms we add

are universal in that all solutions to our theory should be regulated by the same set of

counterterms. If so, it raises an issue of how to render finite a solution which in the UV

does not satisfy the BPS conditions. Power counting suggests that Ssquare diverges as O(r3)

for large r and additional counterterms would be needed to cancel such a divergence.

3.4 Finite action from the boundary

Having cancelled the linear and cubic divergences from the second term on the r.h.s.

of (3.15), we are left with the sometimes thorny issue of O(r0
∞) contributions to the action.

For the class of BPS solutions we consider in this paper, there is a satisfying resolution of

this: all such finite contributions cancel.

The scalar fields zi have for large r the expansion

zi = zi0 +
zi1
r

+
zi2
r2

+ . . . (3.29)

– 10 –
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and it follows that the expansion of Z(zi) and the central charge Z(zi,Q) are of a simi-

lar form

Z(zi) = RAdS +
Z1(zi1)

r∞
+
Z2(zi1, z

i
2)

r2
∞

+ . . . (3.30)

Z(zi,Q) = −1

2
〈G,Q〉+

Z1(zi1,Q)

r∞
+
Z2(zi1, z

i
2,Q)

r2
∞

+ . . . (3.31)

where (Z1,Z1) are homogeneous of degree one12 in zi1, (Z2,Z2) are degree one in zi2 and

degree two in zi1. For a general black hole solution eU may in addition have a constant

term in its expansion (although for the magnetic solutions of [3] it does not) but this will

not be important for our purposes.

To continue this final step, we first assume that the scalar fields zi are purely imaginary

(in the conventions of [21]). Such solutions might be called magnetic black holes since in

the duality frame of [3, 21], the charges of the black holes are purely magnetic. We wish to

enforce Neumann boundary conditions on the resulting imaginary scalar fields, as is well

known [14]: we should perform a Legendre transform

SLegendre = −
∫
d3x zi1

δSon−shell

δzi1
, (3.32)

S̃on−shell = Son−shell + SLegendre (3.33)

and it is S̃on−shell which is related to the boundary partition function.

We see again the utility of the first order action (3.10): Ssquare vanishes in the BPS

limit while Sbdy contributes finitely to
δSon−shell

δzi1
. Since the superpotential term proportional

to Im(e−iψL) has been exactly cancelled, it does not contribute to lower order divergences.

As such we have the crucial observation that zi2 does not contribute to the O(r0
∞) part

of SLegendre. The vanishing of Ssquare is central to this argument, even if we would have

somehow cancelled its cubic and linear divergences, we would risk the presence of finite

terms which depend non-linearly on the modes zi1 and indeed we expect this when the

η-mode scales as 1
r3

at the boundary. More precisely we have

Son−shell

∣∣∣
BPS
∼ − A

4GN
− βvol(Σg)

8GN

(r∞
R

[
κ
Z1(zi1)

r∞
− 2
Z1(zi1,Q)

r∞

]
+O(r−1

∞ )
)

(3.34)

and since Z1 and Z1 are homogeneous of degree one in zi1, it follows that in the BPS

limit the O(r0
∞) term in SLegendre cancels the O(r0

∞) term in the asymptotic expansion of

the Son−shell.

This concludes the argument that the contribution to the Lagrangian from terms of

order O(r0
∞) vanishes for BPS solutions, with the important qualifying statement that

this is for solutions with imaginary scalar fields which satisfy Neumann boundary condi-

tions. This includes the class of black holes in [3, 21] as well as those related by duality

transformation [28, 39].

12so that f − x ∂f
∂x

= 0.
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For the more general dyonic black holes, the scalar fields are complex (the axions are

non-trivial) and in this case [37] the real part of the scalar fields should satisfy Dirichlet

boundary conditions. As such the real part of the scalar fields will potentially contribute

to S̃on−shell through Z1 and Z1 and a priori, to evaluate S̃on−shell we should determine the

precise form of Z in (3.23).13 We thus conjecture that the exact form of Z in (3.34) leads

to an expression where at the subleading order, Son−shell

∣∣∣
BPS

does not depend on scalar

fields which satisfy Dirichlet boundary conditions.

3.5 The complete on shell action

We have now shown that the correct on-shell action is given by

S̃on−shell = Sbulk + SGHY + Sct,L + Sct,R + SLegendre (3.35)

and that

S̃on−shell

∣∣∣
BPS

= − Ah
4GN

. (3.36)

We repeat the steps here for clarity

1. Evaluate the bulk action plus the GHY term on-shell using the second order equations

of motion for the metric, giving (3.4)

2. Evaluate (3.4) on a BPS solution giving (3.8)

3. Reduce the four dimensional theory to a one dimensional action (3.10)

4. By comparison with (3.8), show that terms in the one dimensional action which are

sums of squares must cancel amongst themselves on BPS solutions

5. Cancel cubic divergences in the action by adding part of the superpotential (3.22) as

a counterterm

6. Cancel linear divergences by adding the boundary Ricci scalar multiplied by a func-

tion of the scalar fields (3.23)

7. Cancel terms finite at the boundary in the on-shell Lagrangian in the BPS limit by

performing the Legendre transformation (3.33) and enforcing Neumann boundary

conditions on the scalars

8. The remaining term in the on-shell action comes from the horizon and is exactly the

entropy of the black hole

13Indeed in the subsequent article [38] the precise form of Z has been determined.
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4 Conclusions

We have shown that in a large class of gauged supergravity theories, the on-shell action

of asymptotically AdS4 BPS black holes with Neuman bounary conditions on the scalar

fields, is equal to minus the entropy of the black hole (3.36). Since our line of reasoning

did not require the explicit solution beyond the AdS4 boundary conditions, it should be

straightforward to generalize these arguments to theories with charged hypermultiplets

where solutions are harder to find [40–45] but there are more avenues for embedding such

theories into string or M-theory. It would also seem likely that our methods will generalize

to asymptotically AdS solutions in other dimensions. We conjecture that the precise form

of the boundary counterterms will be such that the on shell action oes not depend at the

subleading order (3.34) on scalar fields which satisfy Dirichlet boundary conditions.

Holography relates the on-shell action of the gravitational theory to the field theory

partition function by a semi-classical approximation to the free-energy14

Z = e−βF ∼ e−Son−shell . (4.1)

Indeed, the Gibbs free energy of the gravity theory [15] in AdS spacetimes was shown to

obey the quantum statistical relation [46]:

S = βG(T,Ωi,Φ) , G ≡M − TS − ΩiJi − ΦQ . (4.2)

The additional insight of holography is of course that G is the free energy of a specific

boundary quantum field theory. From (4.2) it would seem that for the on-shell action to

equal (minus) the entropy we should obey some kind of BPS-like bound

M − ΩiJi − ΦQ = 0 . (4.3)

In this paper we have shown explicitly that for static-BPS black holes in AdS4 within a

certain class of gauged supergravity theories, the on-shell action is equivalent to minus the

entropy. It would be interesting to relate this directly to a BPS bound like (4.3).
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The symplectic sections are given by

V =

(
LΛ

MΛ

)
= eK/2

(
XΛ

FΛ

)
(A.1)

where

XΛ =

(
1

zi

)
, zi = xi + iyi (A.2)

and satisfy

〈V ,V〉 = −i , 〈DiV, DV〉 = igi (A.3)

where the symplectic inner product is

〈A,B〉 = BΛAΛ −BΛA
Λ. (A.4)

Any symplectic vector can be expanded in these sections, for example the charges are

expanded as

Q = iZV − iZV + iZ ıDıV − iZ
i
DiV (A.5)

where

Z = 〈Q,V〉 , Zi = 〈Q, DiV〉 . (A.6)

The other symplectic invariants which we use are constructed from the gauge couplings

L = 〈G,V〉 , Li = 〈G, DiV〉 . (A.7)

We also have a complex structure on the symplectic bundle over Mv:

ΩMV = −iV , ΩM(DiV) = iDiV (A.8)

where

Ω =

(
0 −11

11 0

)
, M =

(
1 −R
0 1

)(
I 0

0 I−1

)(
1 0

−R 1

)
(A.9)

and N = R + iI is the standard matrix which gives the kinetic and topological terms in

the action for the gauge fields.
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