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1 Introduction

5-brane webs in type IIB string theory have been used to study five-dimensional (5d)

superconformal field theories (SCFTs) that are ultraviolet (UV) completions of a certain

class of 5d N = 1 supersymmetric gauge theories [1–6]. A 5-brane web configuration

provides us with a tool to compute the instanton partition function that captures the BPS

spectrum of a 5d theory realized on a 5-brane web as well as with a perspective of qualitative

understandings of the SCFTs such as global symmetry enhancements and various dualities.

By introducing an orientifold plane like an O7-plane or an O5-plane, 5-brane webs can

be enriched so that one can describe 5d theories with some other classical gauge group,

such as SO(N),USp(2N) [7–10], in addition to the standard classical gauge group SU(N).

In recent years there has been some progress on brane configurations with the orientifold

planes. For example, in [11–13], whether we resolve an O7−-plane into two [p, q] 7-branes or

not in a certain 5-brane web configuration gives an explanation for equivalence proposed

in [14] of two theories at the UV fixed point, an SU(N + 1) theory with Nf ≤ 2N + 6

hypermultiplets in the fundamental representation (flavors) and the Chern-Simons (CS)

level κ = ± (N + 3−Nf/2), and an USp(2N) theory with the same number of flavors. In

particular, it has been discussed in [10, 15] that 5-brane configurations with an O5-plane

can realize an SO(N) gauge theory even with hypermultiplets in the spinor/conjugate
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spinor representation. It is also noticeable that one can differentiate the discrete theta

angle (θ = 0, π) of the 5d pure USp(2N) gauge theory [2–4] from 5-brane webs with an

O5-plane. The two different theta angles turn out to imply two distinct phase structures

for their 5-brane webs, that are characterized by two distinct “generalized” flop transitions

which may be applied to 5-branes intersecting at the same point with an O5-plane [16].

There has been also progress along a quantitative side on 5-brane webs with an O5-

plane. The conventional topological vertex formalism [17–19] enables one to systematically

compute the Nekrasov instanton partition function of a 5d theory on a 5-brane web via

the correspondence [20] between a toric diagram and a certain (p, q) 5-brane web diagram.

Although 5-brane webs for SU(N) gauge theories with a large number of flavors or a

large CS level often lead to non-toric Calabi-Yau geometries [21], the topological vertex

formulation is still applicable to reproduce the correct partition function [12, 22–26]. Quite

recently, the topological vertex formulation has been further extended to 5-brane webs with

an O5-plane [27]. Together with a generalized flop transition, the new method utilizes a

configuration where one-half of the original brane configuration is glued to the other half

from the mirror image due to an O5-plane in a specific manner.

The purpose of this paper is to further extend the study of 5-brane webs with an O5-

plane and propose 5-brane web diagrams for 5d N = 1 gauge theories of an exceptional

gauge group G2, using these recent developments on 5-brane webs. We then compute their

Nekrasov partition functions based on the topological vertex formalism for 5-brane webs

with an O5-plane.

Our strategy is as follows: a 5-brane web diagram for the SO(7) gauge theory with a

hypermultiplet in the spinor representation has been constructed in [10]. We then consider

the Higgs branch of the SO(7) gauge theory with one spinor in terms of the web diagram,

which should yield a 5-brane web configuration for the pure G2 gauge theory.1

We note that there are two ways to obtain the web diagram for the SO(7) gauge theory

with one spinor. One way is to Higgs the SO(8) gauge theory with a hypermultiplet in the

vector representation and a hypermultiplet in the spinor or conjugate spinor representation.

The other way is to Higgs the SO(8) gauge theory with a hypermultiplet in the spinor

representation and a hypermultiplet in the conjugate spinor representation. These two

SO(8) gauge theories should be equivalent to each other due to the triality of SO(8), and

both Higgsings hence give rises to the SO(7) gauge theory with one spinor, while the

resulting brane configurations look different. Further Higgsing of the two types of the

diagrams leads to two different 5-brane webs for the pure G2 gauge theory, which therefore

gives two different configuration for the same G2 gauge theory. It is possible to add flavors

to the pure G2 gauge theory by Higgsing the SO(7) gauge theory with hypermultiplets

either in the vector representation or the spinor representation in addition to one spinor.

We test our proposal by comparing the area of compact faces that a D3-brane wraps on

the 5-brane webs with the tension of a monopole string which can be calculated from the

effective prepotential of the theory in question. In fact the analysis implies an interesting

feature like which faces of a 5-brane web a D3-brane wraps in the presence of an O5-plane.

1We thank Gabi Zafrir for illuminating discussion about this strategy.
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We then go on to compute the Nekrasov partition function for 5d N = 1 G2 gauge

theories by applying the recently proposed topological vertex method for 5-brane webs

with an O5-plane [27]. We check that our partition function for the pure G2 gauge theory

reproduces the one-instanton result [28, 29] and also the two-instanton result [30–32]. We

also show that the partition function of the G2 gauge theory with one flavor is consistent

with flavor decoupling.

The paper is organized as follows: in section 2, we first discuss a 5-brane web for the

SO(7) gauge theory with a hypermultiplet in the spinor representation. By Higgsing the

SO(7) theory with one spinor, we propose a 5-brane web for the pure G2 gauge theory. We

check that the proposed diagram is consistent with the effective prepotential of the pure

G2 gauge theory. We also present two ways to introduce flavors. In section 3, using the

triality of SO(8) gauge theory among hypermultiplets in the vector, spinor, and conjugate

spinor representations, we propose another 5-brane web for the pure G2 theory through

successive Higgsings of the SO(8) gauge theory with one spinor and one conjugate spinor.

In section 4, we first review a recent proposal for the topological vertex formulation with

an O5-plane and extend it to the cases with an Õ5-plane. We then use it to compute the

partition functions of 5d N = 1 G2 gauge theories with no flavor and with one flavor. In

section 5, we summarize the results and comment on further directions.

Note added: we are informed that the authors of [33] computed the partition function

for 5d N = 1 G2 gauge theories using the ADHM-like method, which will appear in arXiv.

2 G2 gauge theories from an Õ5-plane

In string theory, a wide class of 5d theories with eight supercharges can be constructed

by (p, q) 5-brane webs in type IIB string theory [5, 6, 20] or M-theory on Calabi-Yau

threefolds [2–4]. We will make use of the 5-brane web description for constructing 5d

N = 1 gauge theories in this paper. In this section, we present 5-brane web diagrams

which realize 5d G2 gauge theories by using an Õ5-plane. Although D5-branes on top of

an O5-plane or an Õ5-plane usually generate an SO/USp gauge theory, we will argue that

some simple 5-brane web diagram with an Õ5-plane can yield a 5d G2 gauge theory in an

intriguing way.

2.1 SO(7) gauge theory with spinor matter

Before constructing 5-brane webs for G2 gauge theories, we first discuss 5-brane web re-

alization of SO(7) gauge theories using an Õ5-plane in this subsection. By using this

construction, we will see in section 2.2 that a Higgsing of the 5-brane web diagrams of the

SO(7) gauge theories with a hypermultiplet in spinor representation can generate 5-brane

webs for the pure G2 gauge theory.

A 5-brane web diagram for the pure SO(7) gauge theory can be realized using an Õ5-

plane. Naively, a 5-brane web with an Õ5-plane may look problematic since the difference

of the RR charge between an Õ5
+

-plane and an Õ5
−

-plane is fractional, which implies

the appearance of (p, q) 5-branes with non-integer p. A way out is that an Õ5-plane may
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O5+ O5+O5-

(a)

O5+ O5+O5-

(b)

O5+ O5+O5-
~

O5- O5-

(c)

O5+ O5+O5-
~

O5- O5-

(d)

Figure 1. A Higgsing procedure of the 5-brane web of the SO(8) gauge theory with one flavor to

the 5-brane web of the pure SO(7) gauge theory. (a): moving the flavor D7-brane to the middle

of the diagram. The branch cut is denoted by the dashed line. (b): lowering the flavor D7-brane

as well as the bottom color D5-brane to the O5−-plane. (c): splitting the D7-branes into two

half D7-branes. We have an Õ5
−

-plane between the half D7-branes and there are effectively three

fractional D5-branes between the half D7-branes. We also have monodromy branch cuts for the

half D7-branes represented by the red and orange dashed lines. (d): removing the two fractional

D5-branes. We have a half D5-brane denoted by the blue line stretched between the (2, 1) 5-brane

and the (1,−1) 5-brane. The diagram gives the pure SO(7) gauge theory.

be thought of as an O5-plane with a half monodromy branch cut associated to a half

D7-brane [10]. Namely, an effective description of an Õ5
−

-plane is an O5−-plane and a

half D5-brane plus the half monodromy cut. An Õ5
+

-plane is also effectively described by

an O5+-plane plus the half monodromy cut. Since the monodromy created by this cut is

half of the original monodromy associated to one full D7-brane, it changes the potential

fractional charge to integer charge.

The web diagram for the pure SO(7) gauge theory can be derived by a Higgsing of

the SO(8) gauge theory with a hypermultiplet in the vector representation. Through this

process, we will see that the Õ5-plane is accompanied by the half monodromy cut. A 5-

brane web diagram of the SO(8) gauge theory with one flavor is constructed with O5−-plane

as given in figure 1(a).

We put a floating D7-brane to realize one flavor and we put the branch cut associated

with this D7-brane in the left direction. Note that (p, q) charges of the 5-branes change

when they go across this cut. In order to perform the Higgsing, we lower this D7-brane

as well as the bottom color D5-brane to the position of the O5−-plane. Since the left part

of the web diagram crosses the branch cut, the 5-brane charges change accordingly as in

figure 1(b).

On the O5−-plane, the D7-brane can be split into two half D7-branes, generating an

Õ5
−

-plane in between [34–37]. Counting the half D5-brane associated to the Õ5
−

-plane

– 4 –
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O5+ O5+O5-
~~ ~

Figure 2. Another 5-brane web diagram for the 5d pure SO(7) gauge theory by removing the half

D7-branes in the opposite directions. The diagram is constructed with an Õ5-plane. The Õ5-plane

is realized by the O5-plane with the half monodromy cut which is denoted by the orange dashed line.

together with the bottom color D5-brane, we have effectively three half D5-branes between

these two half D7-branes. Note also that half monodromy cut appears between the two

half D7-branes. The 5-brane web after the splitting is depicted in figure 1(c).

At this stage, it is possible to move the two half D5-branes between the half D7-

branes off the plane of the 5-brane web, which degree of freedom corresponds to the one-

dimensional Higgs branch. Thus, removing the two half D5-branes infinitely far away

should correspond to the Higgsing of the SO(8) gauge theory with one flavor down to the

pure SO(7) gauge theory. After removing the two half D5-branes, we see that one half D5-

brane stretch between the (2, 1) 5-brane and the (1,−1) 5-brane including the one coming

from the Õ5
−

-plane. In addition, we have one half D5-brane connecting the (2, 1) 5-brane

to the left half D7-brane and also another half D5-brane connecting the (1,−1) 5-brane to

the right half D7-brane as in figure 1(d), which configuration preserves the s-rule.

Although the 5-brane web diagram in figure 1(d) still has an remaining O5-plane,

one can change it into an Õ5
−

-plane by moving the left/right half D7-brane to infinitely

left/right respectively. No half D5-branes are attached to the half D7-branes after they go

across the (2, 1) 5-brane or (1,−1) 5-brane due to Hanany-Witten effect [38]. Note that

the half monodromy cut between the two half D7-brane still remains even after moving

them to infinity. That is, we see that the Õ5-plane is accompanied by the half monodromy

cut. The 5-brane web diagram after moving the half D7-branes in the opposite directions is

given in figure 2. This is exactly the web diagram for the pure SO(7) gauge theory, which

have three color D5-branes with the Õ5
−

-plane.

It is straightforward to include a hypermultiplet in the vector representation of SO(7).

The vector matter can be introduced by adding a flavor D5-brane to the 5-brane web

diagram of the pure SO(7) gauge theory. In fact, one can also introduce spinor matter to

the 5-brane web of the SO(7) gauge theory. From the 5-brane web viewpoint, the spinor

matter can be realized non-perturbatively [10]. To see that, let us consider a 5-brane web

diagram in figure 3. The web diagram gives a [1]−SO(9)−USp(2)−
[
3
2

]
quiver theory. Here

[n]−G stands for n flavors attached to the G gauge theory. The quiver theory has a Higgs

branch associated to moving a D5-brane off the plane of the 5-brane web. The Higgsing

yields a 5-brane web diagram given in figure 4. The resulting theory might naively look like

the pure SO(7) gauge theory. However, the gauge coupling of the “USp(0)” gauge group is

– 5 –
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~~ ~
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~

Figure 3. A 5-brane web diagram for the [1] − SO(9)−USp(2)−
[
3
2

]
quiver theory.

O5+ O5+O5-
~~ ~

O5-
~

Figure 4. A 5-brane web diagram for a SO(7) gauge theory with spinor matter obtained by

removing the D5-brane from the diagram for the [1] − SO(9)−USp(2)−
[
3
2

]
quiver theory.

not still turned off. We may expect some additional degrees of freedom whose mass is the

inverse of the gauge coupling. In other words, the 5-brane web appears to have “USp(0)”

instantons. Before the Higgsing, we indeed have USp(2) instantons and the instantons

carry charges in the spinor representation of SO(9). Hence, after the Higgsing, a natural

candidate for the “USp(0)” instantons is a hypermultiplet in the spinor representation of

the SO(7) gauge theory. Namely, the 5-brane web in figure 4 gives rise to an SO(7) gauge

theory with a hypermultiplet in the spinor representation.

2.2 5-brane web for pure G2 gauge theory

We then move on to construct a 5-brane web diagram for a pure G2 gauge theory. By

Higgsing the SO(7) gauge theory with one hypermultiplet in the spinor representation

yields the pure G2 gauge theory. Thus, the corresponding process in the 5-brane web

diagram for the SO(7) gauge theory with one spinor in figure 4 should lead to the web

diagram for the pure G2 gauge theory. The web diagram in figure 4 implies that the theory

possesses an SU(2) flavor symmetry associated to parallel external (2, 1) 5-branes. This

global symmetry is expected to act on the hypermultiplet in the spinor representation.

Thus, the distance of the two parallel external (2, 1) 5-branes should be associated to the

mass of this spinor and the Higgs branch should open up in the massless limit at certain

subspace in the Coulomb moduli. The question is how one can take the massless limit. It

seems to be difficult take the massless limit from the diagram in figure 4 since we need to

“flop” the Õ5
+

-plane between the (2, 1) 5-brane and the (1,−1) 5-brane.

In order to resolve the issue, it turns out to be useful to consider an equivalent but

different 5-brane web diagram for the SO(7) gauge theory with one spinor. Analogous to

figure 2 being obtained from figure 1(d), the diagram in figure 4 may be obtained by moving

the two half D7-branes in the opposite directions from the diagram in figure 5(a). Instead,

– 6 –
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O5+ O5+O5-
~

O5- O5- O5-

(a)

O5+ O5+O5- O5-

(b)

Figure 5. 5-brane web diagrams for the SO(7) gauge theory with one spinor. (a): the 5-brane

web diagram which is obtained by Higgsing the diagram of the SO(8) gauge theory with one vector

and one spinor. Compared to the diagram in figure 1(d), the (2, 1) 5-brane is attached on the

right, yielding the spinor matter. Removing the half D7-branes in the opposite direction gives the

diagram in figure 4. (b): an equivalent diagram to the one in figure 5(a) (and also to the one in

figure 4). We move the half D7-branes in the left direction compared to the diagram in figure 5(a).

Then the monodromy cut disappears and the diagram is constructed with an O5-plane.

we can consider another deformation from the diagram in figure 5(a) by moving both the

half D7-branes to infinitely left. The resulting 5-brane web is depicted in figure 5(b). After

this deformation, the monodromy cuts completely disappears from the diagram and hence

we have only an O5-plane. Therefore, a 5-brane web diagram with an Õ5-plane has an

equivalent 5-brane web diagram without an Õ5-plane but with only an O5-plane. The

transition is done by moving a half D7-brane from the infinitely right to the infinitely left

in the diagram with an Õ5-plane. We will make use of this transition in this paper.

By using this diagram, we can take the massless limit of the spinor by using “generalized

flop transition” [16]. Let us focus on the local part of the diagram describing the “USp(0)”

gauge theory. On the left side a (1,−1) 5-brane intersects with an O5-plane together with

a full D5-brane. On the other hand, a (2, 1) 5-brane intersects with the O5-plane on the

right side. The local structure exactly appears in the 5-brane diagram of the E2 theory, and

hence we can perform a generalized flop transition for this local part by using the results

in [16]. Through the process of studying the phase diagram of the E2 theory, it is proposed

that the diagram in figure 6(a) is flopped either to the one in figure 6(b) or figure 6(c).

Whether the diagram is flopped to the one in figure 6(b) or figure 6(c) is translated to the

sign of the mass parameter of the USp(0) gauge theory, which is the sign of the Coulomb

branch parameter in our case. Although this transition is obtained for the E2 theory, it

is natural to assume that this transition is always available regardless of the detail of the

remaining diagram to which this subdiagram is attached. On one hand, by considering

a limit where the D5-brane comes down to the position of an O5-plane as we did in the

process of the Higgsing, figure 6(a) reduces to figure 7(a), which corresponds to the one

appearing in the local part of the diagram in figure 5(b). On the other hand, by the same

limit, figure 6(b) and figure 6(c) both reduce to figure 7(b). Therefore, we propose that

the USp(0) part in figure 5(b) can be flopped to the form in figure 7(b). The equivalent

flop transition in the presence of an Õ5-plane is given in figure 8.

After considering the transition in figure 7 for the local USp(0) part in figure 5(b), the

5-brane web diagram becomes the one in figure 9(a). Hence, we obtain another 5-brane web

diagram given in figure 9(a) which also realizes the SO(7) gauge theory with one spinor.

– 7 –
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(a) (b) (c)

Figure 6. A generalized flop transition for a 5-brane web with an O5-plane. Whether the diagram

in (a) is flopped to (b) or (c) depends on the sign of the mass parameter associated to the D5-brane.

(a) (b)

Figure 7. The generalized flop transition in figure 6 in the case when the height of the D5-brane

in figure 6 is set to zero.

O5+ O5-
~~

O5-
~

(a)

O5-
~

O5-
~

(b)

Figure 8. A generalized flop transition from (a) to (b) which is equivalent to the one in figure 7.

From the 5-brane web diagram in figure 9(a) it is now straightforward to perform the

Higgsing: after two flop transitions, we obtain the diagram in figure 9(b), from which we

can take the massless limit by putting the parallel external (2, 1) 5-branes on top of each

other. We also tune the Coulomb branch moduli of the SO(7) gauge theory, leaving two

Coulomb branch moduli as in figure 9(c). By putting a (2, 1) 7-brane at each end of the

two parallel external (2, 1) 5-branes, we can move a segment of a (2, 1) 5-brane between

the external (2, 1) 7-branes as in figure 9(d), which degrees of freedom corresponds to the

Higgs branch of the SO(7) gauge theory with one spinor. Removing the D5-brane implies

that we take a far infrared limit of the SO(7) gauge theory with one spinor at the Higgs

branch. Then the resulting 5-brane web diagram should describe the pure G2 gauge theory.

Therefore, we conclude that the 5-brane web diagram in figure 9(e) realizes the pure G2

gauge theory.

We can write an equivalent diagram with an Õ5-plane as in figure 10. The diagram in

figure 10 is obtained by moving one of the half D7-brane which was sent to the infinitely

left to the infinitely right. Then the D5-brane on the O5-plane disappears and we have an

Õ5-plane realized with the half monodromy cut.
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O5+ O5- O5-

(a)

O5+ O5- O5-

(b)

O5+ O5- O5-

(c)

O5+ O5- O5-

(d)

O5+ O5- O5-

(e)

Figure 9. A Higgsing procedure which gives rise to a 5-brane web diagram for the pure G2 gauge

theory. (a): we performed the generalized flop transition compared to the diagram in figure 5(b).

(b): we performed two standard flop transitions to the diagram in figure 9(a). (c): putting the two

parallel external (2, 1) 5-branes on top of each other. We also introduced the (2, 1) 7-branes at each

end of the external (2, 1) 7-branes. (d): removing one (2, 1) 5-brane between the (2, 1) 7-branes.

(e): sending the (2, 1) 5-brane to infinity. The diagram yields the pure G2 gauge theory.

O5+ O5- O5-
~~ ~

Figure 10. Another 5-brane web with an Õ5-plane which gives the pure G2 gauge theory. The

diagram can be obtained by applying the same Higgsing procedure in figure 9 to the diagram in

figure 4.
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2.3 Check from effective prepotential

In this subsection, we see evidence that the 5-brane web diagram in figure 10 yields the 5d

pure G2 gauge theory from the analysis effective prepotentials.

In general, the effective prepotential of a 5d gauge theory with a gauge group G is

given by [1, 2, 4]

F(φ) =
1

2
m0hijφiφj +

κ

6
dijkφiφjφk +

1

12

 ∑
r∈roots

|r · φ|3 −
∑
f

∑
w∈Rf

|w · φ+mf |3
 , (2.1)

where m0 is the inverse of the squared gauge coupling, φi are the Coulomb branch mod-

uli, κ is the classical Chern-Simons level and mf is the mass of a hypermultiplet in the

representation Rf of G. r are the roots of G and w are the weights of the representation

Rf . We also used hij = Tr(TiTj) and dijk = 1
2Tr (Ti{Tj , Tk}) where Ti are the Cartan

generators of G.

In the following, we consider the prepotential of the pure SO(7) gauge theory, the

SO(7) gauge theory with a spinor and then the pure G2 gauge theory step by step.

Pure SO(7). The first example is the 5d pure SO(7) gauge theory. When we parameter-

ize the Coulomb branch moduli φi in the Dynkin basis, the prepotential of the pure SO(7)

gauge theory becomes

FSO(7)(φ) = m0(φ
2
1 − φ1φ2 + φ22 − 2φ2φ3 + 2φ23)

+
4

3
φ31 −

1

2
φ21φ2 −

1

2
φ1φ

2
2 +

4

3
φ32 − 3φ22φ3 + 2φ2φ

2
3 +

4

3
φ33, (2.2)

where we chose [2,−1, 0], [−1, 2,−2], [0,−1, 2] for the simple roots for defining the Weyl

chamber. The tension of a monopole string may be computed by taking a derivative with

respect to a Coulomb branch modulus. The monopole string tension from the prepoten-

tial (2.2) is

∂FSO(7)

∂φ1
=

1

2
(2φ1 − φ2)(2m0 + 4φ1 + φ2), (2.3)

∂FSO(7)

∂φ2
=

1

2
(−φ1 + 2φ2 − 2φ3)(2m0 + φ1 + 4φ2 − 2φ3), (2.4)

∂FSO(7)

∂φ3
= (−φ2 + 2φ3)(2m0 + 3φ2 + 2φ3). (2.5)

It is also possible to compute the tension of a monopole string from 5-brane web di-

agrams. Monopole strings in a 5d gauge theory are realized by D3-branes which stretch

along some face bounded by 5-branes. Therefore, the tension of a monopole string corre-

sponds to the area of a face where a D3-brane can extend. Hence we need to compute the

area of faces in the diagram in figure 2 for the pure SO(7) gauge theory.

For that, we first need to identify the gauge theory parameters with the length of 5-

branes in the diagram in figure 2. The height of the color D5-branes is the Coulomb branch

modulus and we denote the height of the bottom color D5-brane, the middle color D5-brane

and the top color D5-brane by a1, a2, a3 respectively. In order to compute the inverse of the
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m0

Figure 11. A gauge theory parameterization for the pure SO(7) gauge theory. a1, a2, a3 are the

Coulomb branch moduli and m0 is the inverse of the squared gauge coupling.

O5+ O5+O5-
~~ ~

①

②

③

Figure 12. Labeling for the three faces in the pure SO(7) diagram.

squared gauge coupling, we first turn off all the Coulomb branch moduli. Then the external

(2, 1) 5-brane and the external (1,−1) directly intersect with the O5-plane and the length

of the D5-branes between the (2, 1) 5-brane and the (1,−1) 5-brane on the O5-plane gives

m0. Alternatively, one can extrapolate the external (2, 1) 5-brane and the external (1,−1)

5-brane in figure 2 to the position of the O5-plane and measure the distance between the

external (2, 1) 5-brane and the external (1,−1) 5-brane on the O5-plane. The gauge theory

parameterization for the pure SO(7) gauge theory is summarized in figure 11.

By using the parameterization depicted in figure 11, we compute the area of faces in

the pure SO(7) diagram in figure 2. We label the faces as in figure 12. The area of the

three faces becomes

1© =
1

2
(a3 − a2)(2m0 + a2 + 5a3), (2.6)

2© =
1

2
(a2 − a1)(2m0 − a1 + 3a2 + 4a3), (2.7)

3© =
1

2
a1(2m0 + a1 + 4a2 + 4a3). (2.8)

We can then compare the are (2.6), (2.7) and (2.8) with the tension (2.3), (2.4)

and (2.5). In the computation of the area from the pure SO(7) diagram we parameterized

the Coulomb branch moduli a1, a2, a3 in the orthonormal basis of R3. The relation between

a1, a2, a3 and φ1, φ2, φ3 is

φ1 = a3, φ2 = a2 + a3, φ3 =
1

2
(a1 + a2 + a3). (2.9)

Then the comparison of (2.6), (2.7) and (2.8) with (2.3), (2.4) and (2.5) yields

1© =
∂FSO(7)

∂φ1
, (2.10)

2© =
∂FSO(7)

∂φ2
, (2.11)

2× 3© =
∂FSO(7)

∂φ3
. (2.12)
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O5+ O5+O5-
~~ ~

①

②

③

④

Figure 13. A 5-brane web diagram of the SO(7) gauge theory with a massless spinor. The mass

is related to the length between the parallel (2, 1) 5-branes and they are on top of each other in the

massless limit. We also label the four faces in the diagram.

Therefore, a D3-brane can stretch along the region 1© or the region 2©. On the other hand,

one needs to double the area of the region 3©, which implies that a D3-brane will not end

on the Õ5
−

-plane and will end on a mirror D5-brane.

SO(7) with a massless spinor. The next example is the SO(7) gauge theory with a hy-

permultiplet in the spinor representation. For simplicity we consider a case where the spinor

matter is massless. In this case, there are several phases where the effective mass of the hy-

permultiplets vanishes. We here choose a phase where [0, 0, 1], [0, 1,−1], [1,−1, 1], [−1, 0, 1]

among the weights of the spinor representation are positive. Then the prepotential of the

SO(7) gauge theory with a massless spinor becomes

FSO(7)s = m0(φ
2
1 − φ1φ2 + φ22 − 2φ2φ3 + 2φ23)

+
4

3
φ31 − φ1φ22 +

4

3
φ32 − φ21φ3 + φ1φ2φ3 − 3φ22φ3 + 2φ2φ

2
3 + φ33. (2.13)

The monopole string tension is then

∂FSO(7)s

∂φ1
= (2φ1 − φ2)(m0 + 2φ1 + φ2 − φ3), (2.14)

∂FSO(7)s

∂φ2
= (−φ1 + 2φ2 − 2φ3)(m0 + 2φ2 − φ3), (2.15)

∂FSO(7)s

∂φ3
= m0(−2φ2 + 4φ3)− φ21 + φ1φ2 − 3φ22 + 4φ2φ3 + 3φ23. (2.16)

Let us then compute the area of faces in a diagram for the SO(7) gauge theory with a

massless spinor. We need to use a particular diagram which corresponds to the phase we

chose to compute the prepotential (2.13). Such a diagram is depicted in figure 13 and we

label the four faces in the diagram. The Coulomb branch moduli a1, a2, a3 are again the

height of the bottom color D5-brane, the middle color D5-brane and the top color D5-brane

respectively. We also extrapolate the external (2, 1) 5-brane and the external (1,−1) 5-

brane on top of the Õ5-plane and the distance between the extrapolated external 5-branes

is the inverse of the squared gauge coupling m0. The gauge theory parameterization is

summarized in figure 14.
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Figure 14. A gauge theory parameterization for the SO(7) gauge theory with a massless spinor.

a1, a2, a3 are the Coulomb branch moduli and m0 is the inverse of the squared gauge coupling.

We can now compute the area of the four faces in figure 13 by the parameterization in

figure 14. The result is

1© =
1

2
(a3 − a2)(2m0 − a1 + a2 + 5a3), (2.17)

2© =
1

2
(a2 − a1)(2m0 − a1 + 3a2 + 3a3), (2.18)

3© =
1

2
a1(2m0 + a1 + 3a2 + 3a3), (2.19)

4© =
1

4
(−a21 + 2a1a2 − a22 + 2a1a3 + 2a2a3 − a23). (2.20)

The comparision of (2.17), (2.18), (2.19) and (2.20) with (2.14), (2.15) and (2.16) yields

relations

1© =
∂FSO(7)s

∂φ1
, (2.21)

2© =
∂FSO(7)s

∂φ2
, (2.22)

2× 3©+ 4© =
∂FSO(7)s

∂φ3
, (2.23)

using the relation (2.9). As in the case of the pure SO(7) gauge theory, we need to double

the area of the region 3©. In fact, we further need to add the area of the region 4© for the

monopole string tension corresponding to
∂FSO(7)s

∂φ3
. This fact becomes important also for

the comparison of the monopole tension in the case of the pure G2 gauge theory.

Pure G2. Finally we consider the prepotential of the pure G2 gauge theory. When we

use the Dynkin basis for parametrizing the Coulomb branch moduli φi, the prepotential of

the 5d pure G2 gauge theory becomes

FG2(φ) = m0(φ
2
1 − 3φ1φ2 + 3φ22) +

4

3
φ31 − 4φ21φ2 + 3φ1φ

2
2 +

4

3
φ32, (2.24)

where we chose [2,−3] and [−1, 2] for the simple roots for defining the Weyl chamber.

Hence the expected monopole tension from the prepotential (2.24) is

∂FG2

∂φ1
= (m0 + 2φ1 − φ2)(2φ1 − 3φ2), (2.25)

∂FG2

∂φ2
= (−φ1 + 2φ2)(3m0 + 4φ1 + 2φ2). (2.26)
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Figure 15. A gauge theory parameterization for the pure G2 gauge theory. a1, a2 are the Coulomb

branch moduli and m0 is related to the inverse of the gauge coupling.

O5+ O5- O5-
~~ ~

①

②

③

④

Figure 16. Labeling for the four faces in the pure G2 diagram. Note that the regions 1© and 4©
are not separated by a 5-brane and are connected to each other.

The gauge theory parameterization for the pure G2 gauge theory realized in figure 10

can be understood in a similar way to the case of the SO(7) gauge theories. We denote the

height of the lowest color D5-brane by a1 and the height of the second lowest color D5-brane

by a2 as in figure 15. The inverse of the square gauge coupling can be calculated from the

distance between the extrapolated external (2, 1) 5-brane and the external (1,−1) 5-brane

and it is denoted by m0 in figure 15. We are now able to compute the area corresponding

to the tension of monopoles strings by using the parameters in figure 15. We label four

faces in the pure G2 diagram as in figure 16. The area of the four regions is

1© = a1(m0 + 2a1 + 3a2), (2.27)

2© = (a2 − a1)(m0 + a1 + 3a2), (2.28)

3© = a1(m0 + 2a1 + 3a2), (2.29)

4© = a1a2. (2.30)

We can deduce which area we should compare with the monopole string tension (2.25)

and (2.26) from the analysis of the SO(7) gauge theory with a massless spinor. For the

SO(7) gauge theory with a spinor, the area corresponding to the monopole string tension

is 1©, 2©, 2 × 3© + 4©. After the Higgsing, the region 1© is combined with 4©, hence the

area corresponding to the monopole string tension for the pure G2 gauge theory should be

2© and 1©+ 2× 3©+ 4©. Such an area is given by

2© = (a2 − a1)(m0 + a1 + 3a2), (2.31)

1©+ 2× 3©+ 4© = a1(3m0 + 6a1 + 10a2). (2.32)

We compare the tension (2.25) and (2.26) computed from the prepotential (2.24) with

the tension (2.31) and (2.32) from the area of the 5-brane web in figure 16. Note that the
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Coulomb branch moduli a1, a2 are related to φ1, φ2 by

2φ1 − 3φ2 = a2 − a1, −φ1 + 2φ2 = a1. (2.33)

Using the relation (2.33), we can see that

2© =
∂FG2

∂φ1
, (2.34)

1©+ 2× 3©+ 4© =
∂FG2

∂φ2
. (2.35)

We note that the Higgsing of the SO(7) gauge theory with a spinor enforces the pa-

rameters for the SO(7) gauge theory to be a3 = a1 + a2 in figure 14. This means that the

SO(7) Coulomb branch moduli satisfy φ1 = φ3. With the proper map between the SO(7)

Coulomb branch moduli φ
SO(7)
i and the G2 Coulomb moduli φG2

j given by φ
SO(7)
1 → φG2

2

and φ
SO(7)
2 → φG2

1 , one can easily see that the prepotential for 5d SO(7) gauge theory

with a spinor (2.13) becomes the G2 prepotential (2.24). It follows that the tensions of the

monopole strings are also consistent with the Higgsing

∂FSO(7)s

∂φ2

∣∣∣
Higgsing

=
∂FG2

∂φ1
,

(
∂FSO(7)s

∂φ1
+
∂FSO(7)s

∂φ3

)∣∣∣
Higgsing

=
∂FG2

∂φ2
, (2.36)

or in other words, through the Higgsing, (2.16) → (2.34) and agrees with (2.14) +(2.16),

→ (2.35). The analysis of the prepotential therefore presents further support for the claim

that the diagram in figure 10 realizes the 5d pure G2 gauge theory.

2.4 Adding flavors to G2

5d G2 gauge theories may have hypermultiplets in the fundamental representation and the

maximal number flavors for a G2 gauge theory to have a 5d UV fixed point is five [39, 40].

From the viewpoint of 5-brane webs, one can also add hypermultiplets in the fundamen-

tal representation of G2 to the 5-brane web diagram in figure 10. There are two ways to

introduce flavors for the G2 theory. One way uses the vector matter of the SO(7) gauge

theory and the other way utilizes the spinor matter of the SO(7) gauge theory. After

the Higgsing from SO(7) to G2, the former becomes the fundamental matter of the G2

gauge theory and the latter becomes the fundamental matter plus a singlet hypermulti-

plet of the G2 gauge theory. The singlet appears since the spinor representation of SO(7)

is the eight-dimensional representation and the fundamental representation of G2 is the

seven-dimensional representation. Hence, the Higgsing of the SO(7) gauge theory with a

hypermultiplet in the vector representation and a hypermultiplet in the spinor represen-

tation gives the G2 gauge theory with one flavor, and similarly the Higgsing of the SO(7)

gauge theory with two hypermultiplets in the spinor representation gives the G2 gauge the-

ory with one flavor and a singlet. The two 5-brane diagrams giving the G2 gauge theories

with one flavor are depicted in figure 17(a) and 17(b). It is straightforward to add more

flavors to G2 gauge theories by Higgsing the 5d SO(7) gauge theory with one spinor and

more than one hypermultiplets either in the vector representation or the spinor represen-

tation. An example of a 5-brane web diagram for the G2 gauge theory with two flavors is

depicted in figure 18.
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Figure 17. 5-brane web diagrams of the G2 gauge theory with one flavor. (a): the diagram is

obtained by Higgsing the SO(7) gauge theory with one vector and one spinor. The resulting theory

is G2 gauge theory with one flavor. (b): the diagram is obtained by Higgsing the SO(7) gauge

theory with two spinors. The resulting theory is the G2 gauge theory with one flavor and a singlet.

O5+ O5- O5-
~~ ~

Figure 18. A 5-brane diagram for the G2 gauge theory with two flavors.

As for the 5-brane web obtained by Higgsing the SO(7) gauge theories with two spinors,

one can also perform the generalized flop transition in figure 8 and then the 5-brane diagram

becomes the one in figure 19(a). It is also possible to obtain an equivalent diagram by

moving the half D7-brane associated the monodromy cut from the infinitely right to the

infinitely left in figure 19(a), and the resulting diagram after the transition is given in

figure 19(b) without any branch cut.

3 Another 5-brane web for pure G2 gauge theory

In this section, we present another 5-brane web diagram for the 5d pure G2 gauge theory

without using an Õ5-plane different to the one in section 2. This diagram turns out to be

useful for the topological vertex computation in section 4.

3.1 Higgsing 5d SO(8) gauge theory with one spinor and one conjugate spinor

In section 2, we used the 5-brane web diagram in figure 5 for the 5d SO(7) gauge theory

with one spinor and the Higgsing of the diagram yielded the web diagram for the pure

G2 gauge theory in figure 9(e). The 5-brane diagram of the 5d SO(7) gauge theory has
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Figure 19. 5-brane diagrams for the G2 gauge theory with one flavor and a singlet after performing

the generalized flop transitions. (a): a 5-brane web for a G2 gauge theory with one flavor which is

obtained after performing the generalized flop transition to the diagram in figure 17(b). The diagram

contains only an Õ5
−

-plane. (b): an equivalent 5-brane web diagram to the one in figure 19(a). We

move the half D7-brane in the infinitely right to the infinitely left. Then the Õ5-plane disappears

and we only have an O5-plane. The diagram still yields the G2 gauge theory with one flavor and

a singlet.

been originally obtained by the Higgsing associated to vector matter of the 5d SO(8) gauge

theory. In other words, the 5-brane web diagram of the pure G2 gauge theory in figure 9(e)

was obtained by the two successive Higgsings from the 5d SO(8) gauge theory with one

vector and one spinor. Due to the triality of the 5d SO(8) gauge theory, the 5d SO(8)

gauge theory with one vector and one spinor is equivalent to the 5d SO(8) gauge theory

with one spinor and one conjugate spinor. Therefore, we should again obtain a 5-brane

web diagram for the pure G2 gauge theory by Higgsing a 5-brane web for the 5d SO(8)

gauge theory with one spinor and one conjugate spinor.

To introduce a hypermultiplet in the spinor representation to the 5-brane web diagram

for the 5d SO(8) gauge theory, we consider a “quiver theory” of SO(8) − USp(0) and the

USp(0) instanton plays a role of the spinor matter [10]. For introducing two spinors, we

consider a quiver USp(0) − SO(8) − USp(0). However, we need two spinors of opposite

chirality. The difference between a spinor and a conjugate spinor can be realized by con-

sidering different discrete theta angles for the two USp(0) gauge groups [10]. Namely, we

consider a 5-brane diagram of the quiver USp(0) − SO(8) − USp(0) but the two USp(0)

gauge groups have different discrete theta angles.2

A 5-brane web diagram of the 5d SO(8) gauge theory with one spinor and one conjugate

spinor is given in figure 20. Note that there are two parallel external (2, 1) 5-branes and two

parallel external (2,−1) 5-branes. Each two parallel external 5-branes implies an SU(2)

flavor symmetry and hence the theory shows an SU(2)×SU(2) perturbative flavor symmetry

from one spinor and one conjugate spinor. At the level of the diagram in figure 20, the

difference of the discrete theta angle is invisible. However, the difference appears after the

generalized flop transition [16]. The two different types of the flop transitions depending

on the discrete theta angle are depicted in figure 21. We can then apply the generalized

flop transition in figure 21 to the diagram in figure 20 and it yields another 5-brane web

2There is another 5-brane web diagram for the 5d SO(8) gauge theory with one spinor and one conjugate

spinor and it is given by a diagram for a quiver SO(8)−USp(0)−[1]. However, in order to perform a Higgsing,

it is useful to consider a 5-brane web for the USp(0) − SO(8)−USp(0) quiver theory.
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Figure 20. A 5-brane web diagram for the 5d SO(8) gauge theory with one spinor and one

conjugate spinor. The discrete theta angle of the two USp(0) theories is different from each other

although the difference is not explicitly expressed in the diagram.

O5+O5- O5-

(a)

O5- O5-

(b)

O5- O5-

(c)

Figure 21. The generalized flop transition for the 5-brane web for USp(0). Depending on the

discrete theta angle, the transition changes the figure (a) into either figure (b) or figure (c).

O5-O5- O5-

Figure 22. A 5-brane web diagram for the 5d SO(8) gauge theory with one spinor and one

conjugate spinor after performing the generalized flop transitions.

diagram for the 5d SO(8) gauge theory with one spinor and one conjugate spinor. The

resulting diagram is depicted in figure 22. In order to perform the Higgsing to the 5d pure

G2 gauge theory, we consider a further transition given in figure 6, yielding a 5-brane web

in figure 23.

We can use the 5-brane web in figure 23 to obtain another 5-brane web diagram for the

5d pure G2 gauge theory by two Higgsings. Let us first perform a Higgsing associated to the

parallel external (2, 1) 5-branes on the right part in figure 23. The procedure is essentially

the same as what has been done in figure 9 and the resulting 5-brane web diagram is given

in figure 24. Due to the triality, the 5-brane web diagram in figure 24 should give rise to

the 5d SO(7) gauge theory with one spinor. Hence the diagram in figure 24 realizes the

SO(7) gauge group without introducing an Õ5-plane different from the diagram in figure 4.

Since the diagram in figure 24 still contains parallel external (2,−1) 5-branes, we can

perform a Higgsing associated to them. Note that after the Higgsing, the consistency of the
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Figure 23. Another 5-brane web diagram for the 5d SO(8) gauge theory with one spinor and one

conjugate spinor.

O5-O5- O5-

Figure 24. Another 5-brane web diagram for the 5d SO(7) gauge theory with one spinor.

O5-O5- O5-

Figure 25. Another 5-brane web diagram for the 5d pure G2 gauge theory.

diagram restricts the position of the lowest color D5-brane to the location of the O5-plane.

The resulting diagram is depicted in figure 25. The 5-brane web diagram of the pure G2

gauge theory is given without an Õ5-plane in this case. In fact, it turns out that this

diagram is more useful to apply the topological vertex technique to compute the partition

function than the diagram in figure 10.

3.2 Check from effective prepotential

As we have done in section 2.3, we can give evidence that the diagram in figure 25 yields

the pure G2 gauge theory by computing the tension of a monopole string from the diagram.

For that, we first associate the gauge theory parameters, the Coulomb branch moduli a1, a2
and the inverse of the squared gauge coupling m0 to some lengths of 5-branes. a1 is the

height of the lowest color D5-brane and a2 is the height of the second lowest D5-brane. m0

is determined by extrapolating the external (2, 1) 5-brane and the external (2,−1) 5-brane
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Figure 26. A gauge theory parameterization for the pure G2 gauge theory for the diagram in

figure 25. a1, a2 are the Coulomb branch moduli and m0 is related to the inverse of the squared

gauge coupling.

①

②

③

④⑤

O5-O5- O5-

Figure 27. Labeling for the five faces in the pure G2 diagram. Note that the regions 1©, 4© and

5© are not separated by a 5-brane and are connected to each other.

to the location of the O5-plane. The relations between the gauge theory parameters and

the lengths of 5-branes are depicted in figure 26.

The tension of a monopole string is given by the area of a face where a D3-brane

stretch. There are five faces in the 5-brane web in figure 25 and we denote the five faces

by 1©– 5© as in figure 27. The areas of the five faces are respectively

1© = a1(m0 + 2a1 + 4a2), (3.1)

2© = (a2 − a1)(m0 + a1 + 3a2), (3.2)

3© = a1(m0 + 2a1 + 2a2), (3.3)

4© = a1a2, (3.4)

5© = a1a2. (3.5)

One face where a D3-brane stretch is 2©. As for the other case, note that we needed to

double the area of the region 3© and further add the area 4© as in figure 16. Two sequences

of Higgsing connect the region 1©, 4© and 5©. Hence, in this case the other face should be

1© + 2 × 3© + 4© + 5©. Then, the area of the faces corresponding to the monopole string

tension is

2© = (a2 − a1)(m0 + a1 + 3a2), (3.6)

1©+ 2× 3©+ 4©+ 5© = a1(3m0 + 6a1 + 10a2), (3.7)

which exactly reproduce the area (2.31) and (2.32) calculated from the diagram in figure 10.

Therefore the monopole tension computation gives another evidence that the diagram in

figure 25 yields the 5d pure G2 gauge theory.

– 20 –



J
H
E
P
0
3
(
2
0
1
8
)
1
2
5

4 5d Nekrasov partition functions of G2 gauge theories

In section 2 and section 3, we have constructed 5-brane web diagrams which realize 5d G2

gauge theories. In section 2 we presented 5-brane webs for G2 gauge theories using an Õ5-

plane and in section 3 we presented the 5-brane web for the pure G2 gauge theory with an

O5-plane. One of the applications of these 5-brane webs is to compute the BPS partition

functions of 5d theories realized by the webs. Since 5-brane webs can be reinterpreted as

toric diagrams [20], we can apply the topological vertex formalism [17–19]. In [27], the

topological vertex formalism for webs with an O5-plane has been developed and hence we

can utilize the technique to compute the partition function for the pure G2 gauge theory

realized by the 5-brane web with an O5-plane. Although the 5-brane web diagrams in

section 2 are realized with an Õ5-plane, we extend the formalism so that it can apply to

webs with an Õ5-plane in section 4.1. Then we apply the method to compute the partition

functions of the 5d pure G2 gauge theory and the 5d G2 gauge theory with one flavor.

4.1 Vertex formalism with an O5- and Õ5-plane

Here, we first briefly review the topological vertex formalism for 5-brane webs with an

O5-plane proposed in [27]. As for the 5-branes which do not touch the O5-plane, the

rule is exactly the same as the conventional topological vertex formalism [17]: we first

assign different Young diagrams Yi to different (p, q) 5-branes. Then, we introduce the

edge factor (−Q)|Y |fY
n to each edge, where Q is given by the exponential of the length of

the corresponding (p, q) 5-brane. Here, fY is the framing factor defined as

fY = (−1)|Y |g
1
2
(||Y t||2−||Y ||2), (4.1)

with |Y | =
∑

i Yi and ||Y ||2 =
∑

i Yi
2. n is a certain integer which is associated to the

relative difference of the framing when we glue two topological vertices. The parameter g

is related to the Omega deformation parameters by g = e−ε1 = e+ε2 . We also introduce

the topological vertex CY1Y2Y3 to each vertex of a diagram, where the Young diagrams

Y1, Y2, Y3 are ordered clockwise. On top of that, the additional rule is given for (p,−1) and

(−p,−1) 5-branes which intersect with each other on the O5-plane as depicted in figure 28

(a). The point is to assign the identical Young diagram to these two 5-branes and to assign

an edge factor

(+Q1Q2)
|Y |fY

n, (n = p1q2 + p2q1 + 1), (4.2)

corresponding to this part, where Q1 and Q2 are the exponential of the (rescaled) length

of the two 5-branes respectively. By multiplying all these factors and by summing over all

the possible Young diagrams, we obtain the topological string partition function.

Although we can compute the topological string partition function directly using the

rules above with a configuration in figure 28 (a), it turns out to be more convenient to cut

the D5-branes with a finite length and to use the mirror image for a part of the diagram so

that the two 5-branes which originally intersected with each other on the O5-plane become

a single edge as in figure 28 (b) [27]. This operation corresponds to using the identity

CY1Y2Y3 = (−1)|Y1|+|Y2|+|Y3|f−1Y1 f
−1
Y2
f−1Y3 CY t

3 Y
t
2 Y

t
1
. (4.3)
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YQ1 Q2

O5�
(p,�1)

(p1, q1)

(p2, q2)
Y

Y

Q1

Q2

O5�

(p,�1)

(p,�1)

(�p2, q2)

(b)(a)

(�p,�1)

(p1, q1)

Figure 28. (a): the (p,−1) and (−p,−1) 5-branes which intersect with each other on the O5-plane.

(b): an equivalent diagram to (a) but we use the mirror image for a part of the diagram.

to all the vertices reflected along the O5-plane because a clockwise direction is mapped to

a counter-clockwise direction under this reflection. Note that the Young diagrams assigned

to the edges reflected along the O5-plane should be transposed. After the proper reflec-

tion, each sub-diagram can be seen as a strip diagram. Such sub-amplitudes are already

computed in [41]. The strip amplitudes are written in terms of the product of the factor

defined as

Zν(g) =
∏

(i,j)∈ν

(1− gνi+ν
t
j−i−j+1), (4.4)

and the factor defined as

RXY (Q) =M(Q)−1NXtY (Q), (4.5)

with

M(Q) = PE

[
g

(1− g)2
Q

]
, (4.6)

where PE is the Plethystic exponential defined as

PE[f(·)] = exp

[ ∞∑
i=1

1

n
f(·n)

]
, (4.7)

and

Nλµ(Q) =
∏

(i,j)∈λ

(1−Qgλi+µ
t
j−i−j+1)

∏
(i,j)∈µ

(1−Qg−λ
t
j−µi+i+j−1). (4.8)

What remains is to glue each strip at the edges where we cut before the reflection by

multiplying corresponding edge factors and by summing over Young diagram assigned to

these edges. In this process, we also need to take into account the additional factors of the

form (−1)|Y |f−1Y in (4.3). If two vertices connected to the same edge are both reflected along

the O5-plane, such contribution cancels with each other as (−1)|Y |f−1Y × (−1)|Y
t|f−1Y t = 1.

Only when one vertex is reflected while the other vertex is not, we need to multiply such

a factor.
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(a) (b) (c)

Figure 29. Configurations with an O5-plane

(a) (b) (c)

�

��1

Figure 30. Configurations with an O5-plane with mirror image.

This method can be generalized to webs with an Õ5-plane. As we did in section 2.1,

we can interpret that an Õ5-plane is realized between two fractional D7-branes on top of

the O5-plane placed at infinitely left and infinitely right, respectively [10, 36]. The point

is to convert an Õ5-plane to an O5-plane by moving one of these fractional D7-branes to

the other side by using Hanany-Witten transition as discussed in figure 5. After that, it

can be seen as a special case of a 5-brane web with an O5-plane. For example, as is also

mentioned in section 2, the diagram in figure 29 (a) can be understood as a special case

of the ones in figure 29 (b) or (c). As discussed above, by considering the mirror image

as in figure 30 (b) or (c), we can interpret the configurations as a part of trip diagrams.

Therefore, a configuration with figure 29 (a) should be also considered as a special case of

figure 30 (b) or (c), where we tune the Kähler parameter ∆ → 1 so that the position of

the D5-brane comes to exactly the place where the O5-plane exists.

4.2 Pure G2 gauge theory

We apply the technique of the topological vertex for webs involving an O5-plane or an

Õ5-plane described in section 4.1 to the 5-brane web of 5d G2 gauge theories. We first

consider a 5-brane web for the 5d pure G2 gauge theory. So far we have presented two

types of the 5-brane webs for the pure G2 gauge theory. One is depicted in figure 10 with

an Õ5-plane and the other is depicted in figure 25 with an O5-plane. For applying the

topological vertex formalism it is appropriate to use the one in figure 25 since the diagram

in figure 10 has a configuration where a single 5-brane directly intersects with an O5-plane

and we have not yet known the vertex rule for such a configuration.

We use the 5-brane diagram in figure 25 to compute the partition function of the 5d

pure G2 gauge theory. First we introduce the gauge theory parameters for the diagram

as in figure 26. The Coulomb branch moduli a1, a2 of the pure G2 gauge theory are given

by the height of the bottom and the second bottom color D5-brane respectively. We then

define A1, A2 by

A1 = e−a1 , A2 = e−a2 , (4.9)
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O5-O5- O5-

Y2
Y1

Y0

Y-1

QB2
QB1

QB0

QB-1

(a)

Y2

Y1

Y0

Y-1

A2

A1

A-1

A =10

(b)

Figure 31. (a): the assignment of the Young diagrams Yi, i = −1, 0, 1, 2 and the Kähler parameter

QBi , i = −1, 0, 1, 2 for the diagram in figure 25 of the pure G2 gauge theory. (b): an equivalent

diagram to the one in figure 31(a). We use the mirror image for the outmost 5-brane in figure 31(a).

As for the bottom 5-brane in figure 31(a), we use the mirror image for the left part and use the

original one for the right part.

which are the parameters directly appearing in the partition function. For the convenience

of the later computation, we also introduce

A0 = 1, A−1 = A−11 A−12 , (4.10)

and define

Qij = AiAj
−1, (−1 ≤ j < i ≤ 2). (4.11)

The inverse of the squared gauge coupling is given by m0 in figure 26 and we define the

instanton fugacity by

q = e−m0 . (4.12)

Then the Kähler parameters associated to the length of the horizontal lines in fig-

ure 31(a) are3

QB2 = qA2
4, QB1 = QB0 = qA1

2A2
2, QB−1 = qA1

4A2
4. (4.13)

With the parameterization, we compute the topological string partition function by

applying the topological vertex to the 5-brane web in figure 25. Since the diagram involves

an O5-plane, we utilize the method in section 4.1. First, we cut the color D5-branes in

figure 31(a) in the middle and use the mirror image for the outmost 5-brane for describing

the diagram as in figure 31(b). The diagram now consists of two strip diagrams. Note that

the diagram in figure 31(b) is almost the same as the diagram of the pure SU(4) gauge

theory of CS level zero with A0 set to 1. A difference comes from the assignment of the

Young diagram for Y0. In order to see it, recall the diagram of the 5d SO(7) gauge theory

3The length of the 5-branes in the diagram is given by a linear combination of a1, a2 and m0. On the

other hand, the instanton partition function is written by the exponentiated parameters A1, A2, q. Hence

when we put for example A1 to some length in a diagram, it means that the length is a1. We will make use

of this notation for the topological string partition function computation.

– 24 –



J
H
E
P
0
3
(
2
0
1
8
)
1
2
5

with one spinor in figure 24, which is the diagram before Higgsing to the one in figure 25.

Let us cut then the diagram in figure 24 in the middle into the left part and the right

part and use the mirror image for a part of the diagram to apply the topological vertex

computation in section 4.1. Then we use the mirror image for the bottom color D5-brane

in the left part while we use the original bottom color D5-brane for the right part in the

upper half plane. After the Higgsing, the bottom color D5-brane in figure 24 becomes

the color D5-brane on top of an O5−-plane in figure 25. Therefore, when we consider the

diagram in figure 31(b), we should transpose the Young diagram Y0 in the left strip while

we keep the Young diagram Y0 in the right strip. This is essentially the only difference

from the 5-brane web of the pure SU(4) gauge theory. The Young diagram assignment is

summarized in figure 31(b).

It is now straightforward to apply the topological vertex formalism to the diagram in

figure 31(b). It is useful to compute the partition function for the left strip and the right

strip separately first and glue them together later. The partition function for the left strip

is given by

Zstrip1({Qij};Y−1, Y0, Y1, Y2) =

2∏
i=−1

g
1
2
||Yi||2

2∏
i=−1

ZYi(g)
∏

−1≤j<i≤2
RYiY t

j
(Qij)

−1. (4.14)

The partition function of the right strip can be expressed as Zstrip2({Qij};Y−1, Y t
0 , Y1, Y2)

with

Zstrip2({Qij};Y−1, Y0, Y1, Y2) =

2∏
i=−1

g
1
2
||Y t

i ||2
2∏

i=−1
ZYi(g)

∏
−1≤j<i≤2

RYiY t
j
(Qij)

−1. (4.15)

The rest is gluing the contribution of the left strip and the right strip to each other. When

we glue these two sub-diagram, we should also take into account the effect of flipping the

Young diagram, which is given by the extra factor of the form (−1)|Y0|fY0 coming from the

identity (4.3). Note that such factor for the upper most D5-brane cancels out as discussed

in section 4.1 since the whole edge is reflected. Then, the topological string partition

function for the diagram in figure 31(b) is

ZG2 =
∑
{Yi}

(−1)|Y0|f3Y2fY1fY0f
−3
Y−1

2∏
i=−1

(−QBi)
|Yi|

Zstrip1({Qij};Y−1, Y0, Y1, Y2)Zstrip2({Qij};Y−1, Y t
0 , Y1, Y2). (4.16)

We claim that this is the partition function of the 5d pure G2 gauge theory up to the

perturbative contribution of the Cartan subalgebra of the pure G2 which should be added

by hand in the topological vertex computation. Notice that the only difference between

this G2 partition function and the pure SU(4) partition function with A0 = 1 in (4.10) is

as follows: the Young diagram Y0 in Zstrip2 is transposed, the power of framing factor fY0
is 1 instead of −1, and also the associated sign factor (−)|Y0| is present.
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Perturbative part. Let us look at the partition function (4.16) in more detail. The

perturbative part of the partition function is obtained by considering a limit q → 0. The

limit corresponds to the restriction of the Young diagrams Yi = ∅ for i = −1, 0, 1, 2. Then

the partition function (4.16) is simplifies and is given by

Zpert =M(A1)
2M(A−11 A2)

2M(A2)
2M(A1A2)

2M(A2
1A2)

2M(A1A
2
2)

2

= PE

(
2g

(1− g)2
(A1 +A2 +A1A2 +A1

−1A2 +A1A2
2 +A1

2A2)

)
. (4.17)

We can compare (4.17) with the field theory result of the perturbative part of the

partition function of the pure G2 gauge theory, which is given by

Z ′pert = PE

(
g

(1− g)2
χ14

)
, (4.18)

where χ14 is the character of the adjoint representation,

χ14 = A1 +A1
−1 +A2 +A2

−1 +A1A2 +A1
−1A2

−1

+A1A2
−1 +A1

−1A2 +A1A2
2 +A1

−1A2
−2 +A1

2A2 +A1
−2A2

−1 + 2. (4.19)

The partition function (4.17) obtained from the topological vertex is indeed consistent

with (4.18) up to the terms independent of the Coulomb moduli, namely the Cartan part,

and up to the procedure corresponding to the “flop transition”

PE

(
g

(1− g)2
Q

)
→ PE

(
g

(1− g)2
Q−1

)
. (4.20)

Instanton part. Let us then look at the instanton part of the partition function (4.16).

The instanton part is given by removing the perturbative part

ZG2,inst =
ZG2

Zpert
=
∑
k

Zkq
k. (4.21)

The k-instanton contribution is given by the function Zk for the qk order. The explicit

form of the one-instanton contribution is

Z1 =
2gA1

3A2
3(1 +A1 +A1A2)(1 +A2 +A1A2)

(1− g)2(A1 −A2)2(1−A1
2A2)2(1−A1A2

2)2
. (4.22)

The explicit form of the two-instanton contribution is

Z2 = g5A1
10A2

10 (Numerator)

(Denominator)
, (4.23)

with

(Denominator) = (1− g)4(1 + g)2(A1 −A2)
2(1−A1

2A2)
2(1−A1A2

2)2

× (1− gA1
2A2)

2(1− gA1A2
2)2(1− g−1A1

2A2)
2(1− g−1A1A2

2)2

× (1− gA1A2
−1)2(1− gA1

−1A2)
2, (4.24)
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and

(Numerator)

= (−2g1 + 6)χ14
3 + (3g1 − 1)χ7

2χ14
2 + (10g1 + 2)χ7χ14

2 + (g3 + 5g2 − g1 + 3)χ14
2

+ (2g2 + 16g1 + 22)χ7
3χ14 + (38g2 + 66g1 + 12)χ7

2χ14

+ (26g3 + 66g2 + 38g1 + 14)χ7χ14 + (2g4 + 24g3 + 18g2 + 12g1 + 8)χ14

+ (−8g1 − 8)χ7
5 + (−18g2 − 11g1 + 3)χ7

4 + (−12g3 + 4)χ7
3

+ (13g3 + 7g2 − 16g1 − 38)χ7
2 + (6g4 + 12g3 − 22g2 − 60g1 − 8)χ7

+ (2g4 − 9g3 − 19g2 − 21g1 − 21), (4.25)

where

gn =
n∑

k=−n
gk, (4.26)

χ7 = A1 +A1
−1 +A2 +A2

−1 +A1A2 +A1
−1A2

−1 + 1, (4.27)

χ14 = A1 +A1
−1 +A2 +A2

−1 +A1A2 +A1
−1A2

−1

+A1A2
−1 +A1

−1A2 +A1A2
2 +A1

−1A2
−2 +A1

2A2 +A1
−2A2

−1 + 2. (4.28)

We can compare the result (4.22) and (4.23) with the field theory result. The explicit

expression of the one-instanton partition function of the pure G2 gauge theory is obtained

in [28, 29], and it is generalized to higher instantons in [30–32]. We checked that the one-

instanton partition function (4.22) and the two-instanton partition function (4.23) perfectly

agree with the known results.

4.3 G2 gauge theory with one flavor

In section 4.2, we have computed the partition function of the pure G2 gauge theory from

the topological vertex. In this section, we apply the method to a diagram for the 5d G2

gauge theory with one flavor. We have two types of the diagram for the G2 gauge theory

with one flavor in figure 17. In order to apply the topological vertex, we need to avoid a

configuration where a single 5-brane intersects with an O5-plane. Hence we will use the

diagram in figure 17(b) or equivalently the one in figure 19(b), which yields the 5d G2

gauge theory with one flavor and a singlet, for the application of the topological vertex.

In order to apply the topological vertex to the 5-brane web diagram in figure 19(b),

we first divide the diagram into the left strip and the right strip and assign the Kähler

parameters as in figure 32. The diagram in figure 32(a) gives the left strip and the one

in figure 32(b) gives the right strip. Instead of using the upper half plane with an O5-

plane, we write the diagram as a strip diagram by using the mirror image as discussed in

section 4.1. Then, the application of the topological vertex to the diagram in figure 32

yields the result

Z leftstrip({Qi};µ, ν, ρ, σ)

= g
1
2
(||µ||2+||ν||2+||ρ||2)+||σt||2Zµ(g)Zν(g)Zρ(g)Zσ(g)2 (4.29)

Rρσt(Q1)Rνσt(Q1,2)Rρ∅(Q0,1)Rσσ(Q0,0)Rµσt(Q1,2,3)Rν∅(Q0,1,2)Rµ∅(Q0,1,2,3)

Rµνt(Q3)Rνρt(Q2)Rµρt(Q2,3)Rρσ(Q0,0,1)Rνσ(Q0,0,1,2)Rµσ(Q0,0,1,2,3)
,
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ρ

Φ
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~

~
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2

0 1

0 1 2 3

(b)

Figure 32. (a): the left strip. (b): the right strip.

where we denote

Qi,j = QiQj , Qi,j,k = QiQjQk, Qi,j,k,` = QiQjQkQ`, · · · (4.30)

for the left strip. As for the right strip, we obtain

Zrightstrip({Q̃i};µ, ν, ρ) = g
1
2
(||µ||2+||νt||2+||ρt||2)Zµ(g)Zν(g)Zρ(g) (4.31)

1

Rνρt(Q̃3)Rρ∅(Q̃2)R∅µ(Q̃1)Rν∅(Q̃2,3)Rρµ(Q̃1,2)Rνµ(Q̃1,2,3)
,

with

Q̃1 = Q0Q1Q2Q3, Q̃2 = Q0Q1, Q̃3 = Q2. (4.32)

Note also that the web diagram gives a constraint

Q3 = Q0Q1. (4.33)

The full partition function is given by gluing the left strip (4.29) to the right strip (4.31)

with framing factors and the final result is given by

Z̃G2,Nf=1 =
∑
µ,ν,ρ,σ

(+QBQ3
2)|µ|(−QB)|ν|+|ρ|(+Q0)

|σ|fµ
3fνfρ

−1fσ

Z leftstrip({Qi};µ, ν, ρ, σ)Zrightstrip({Q̃i};µ, ν, ρ), (4.34)

where QB is the Kähler parameter for the bottom color D5-brane in figure 19. Since

the 5-brane web in figure 19(b) has parallel external legs. We need to remove an extra

factor [22, 42–45]. Hence the partition function after removing the extra factor is

ZG2,Nf=1 =
Z̃G2,Nf=1

M(Q0Q3
1Q

2
2Q3)

. (4.35)

We claim that the partition function (4.35) is the partition function of the G2 gauge theory

with one flavor and a singlet.

– 28 –



J
H
E
P
0
3
(
2
0
1
8
)
1
2
5

Since the partition function (4.35) is still written by the Kähler parameter of the 5-

brane web in figure 32, we will rewrite it by the gauge theory parameters. First the G2

gauge theory should have two Coulomb branch moduli A1, A2 and one instanton fugacity

q. There is also a mass parameter M for the flavor. Since the one flavor and the singlet

both come from the same spinor matter of the SO(7) gauge theory, the mass parameter

for the singlet is the same as the mass parameter for the one flavor.

The Coulomb branch parameterization is essentially the same as the parameterization

in the case of the pure G2 gauge theory. Namely, the Coulomb branch moduli are the

height of the color D5-branes. Hence we impose

Q0Q1 = A1, Q0Q1Q2 = A2. (4.36)

Note that the web diagram in figure 19(b) has parallel (1,−1) 5-branes. The parallel

(1,−1) 5-branes imply an SU(2) flavor symmetry for the one flavor of the G2 gauge theory.

Therefore, the distance between the two parallel (1,−1) 5-branes is the mass parameter.

This leads to a condition

Q0Q
3
1Q

2
2Q3 = M2. (4.37)

The instanton fugacity can by computed similarly to the way when we calculated the

instanton fugacity for the 5d pure G2 gauge theory. We extrapolate the leftmost external

(1,−1) 5-brane and the external (2, 1) 5-brane on the right to the position of the O5-plane

in figure 19(b) and compute the length between the two extrapolated 5-branes on the O5-

plane. In fact it turns out that we need to extrapolate the leftmost external (1,−1) 5-brane

instead of the other external (1,−1) 5-brane. This can be justified by the comparison with

the instanton fugacity obtained by another 5-brane web digram for the G2 gauge theory

with one flavor in figure 17(a). Then the instanton fugacity is given by

QBQ
−1
0 Q1Q

−1
2 Q−13 = q. (4.38)

Hence the relations (4.36), (4.37), (4.38) with the condition (4.33) yields

Q0 = M−1A1A2, Q1 = MA2
−1, Q2 = A1

−1A2, QB = qM−2A1A2
3. (4.39)

Namely, we can compare the partition function (4.35) with the parameterization (4.39)

with the Nekrasov partition function of the G2 gauge theory with one flavor and a singlet.

Perturbative part. Since QB is proportional to the instanton fugacity q, the pertur-

bative part of the partition function can be obtained by setting QB → 0. The limit

corresponds to the restriction µ = ∅, ν = ∅, ρ = ∅. In this case, the sum of Young diagrams

for the right strip partition function disappears and it reduces to

Zright
pert = M(Q̃3)M(Q̃2)M(Q̃1)M(Q̃2,3)M(Q̃1,2)M(Q̃1,2,3)

= M(A−11 A2)M(A1)M(A1A2)M(A2)M(A2
1A2)M(A1A

2
2). (4.40)
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On the other hand, one Young diagram summation remains in the left strip partition

function and it becomes

Z left
pert = Z left

pert 1Z
left
pert 2,

Z left
pert 1 =

M(Q3)M(Q2)M(Q2,3)M(Q0,0,1)M(Q0,0,1,2)M(Q0,0,1,2,3)

M(Q1)M(Q1,2)M(Q0,1)M(Q0,0)M(Q1,2,3)M(Q0,1,2)M(Q0,1,2,3)
, (4.41)

Z left
pert 2 =

∑
σ

Q
|σ|
0 fσg

||σt||2Z2
σ(g)
N∅σt(Q1)N∅σt(Q1,2)Nσtσ(Q0,0)N∅σt(Q1,2,3)

N∅σ(Q0,0,1)N∅σ(Q0,0,1,2)N∅σ(Q0,0,1,2,3)
. (4.42)

By the explicit computation of the Young diagram summation of (4.42), we argue that the

partition function (4.42) becomes

Z left
pert 2 =

M(Q0,0)M(Q0,1)M(Q0,1,2)M(Q0,0,1,1,2)M(Q0,1,2,3)M(Q0,0,1,1,2,3)

M(Q0)M(Q0,0,1)M(Q0,0,1,2)M(Q0,1,1,2)M(Q0,0,1,2,3)M(Q0,1,1,2,3)

×M(Q0,0,1,1,2,2,3)M(Q0,1,1,1,2,2,3)

M(Q0,1,1,2,2,3)M(Q0,0,1,1,1,2,3)
. (4.43)

We checked the equality (4.43) until the order Q6
0. Then combining (4.43) with (4.41)

yields

Z left
pert =

M(Q3)M(Q2)M(Q2,3)M(Q0,0,1,1,2)M(Q0,0,1,1,2,3)M(Q0,0,1,1,2,2,3)M(Q0,1,1,1,2,2,3)

M(Q1)M(Q1,2)M(Q1,2,3)M(Q0)M(Q0,1,1,2)M(Q0,1,1,2,3)M(Q0,1,1,2,2,3)M(Q0,0,1,1,1,2,2,3)

=
M(A1)M(A−11 A2)M(A2)M(A1A2)M(A2

1A2)M(A1A
2
2)M(M2)

M(MA−12 )M(MA−11 )M(M)M(M−1A1A2)M(M)M(MA1)M(MA2)M(MA1A2)
.

(4.44)

Therefore, the perturbative part of the partition function of (4.35) is

Zpert =
Z left
pertZ

right
pert

M(Q0Q3
1Q

2
2Q3)

=
M(A1)

2M(A−11 A2)
2M(A2)

2M(A1A2)
2M(A2

1A2)
2M(A1A

2
2)

2

M(MA−12 )M(MA−11 )M(M)M(M−1A1A2)M(M)M(MA1)M(MA2)M(MA1A2)
.

(4.45)

The perturbative partition function then consists of three factors as follows:

Zpert = Zvector
pert · Z fund

pert · Z
singlet
pert , (4.46)

where

Zvector
pert = M(A1)

2M(A−11 A2)
2M(A2)

2M(A1A2)
2M(A2

1A2)
2M(A1A

2
2)

2, (4.47)

Z fund
pert =

1

M(MA−12 )M(MA−11 )M(M−1A1A2)M(M)M(MA1)M(MA2)M(MA1A2)
,

(4.48)

Zsinglet
pert =

1

M(M)
. (4.49)

Eqs. (4.47), (4.48) and (4.49) are exactly equal to the perturbative part of the partition

functions of the G2 vector multiplets, hypermultiplets in the fundamental representation

of G2 and a singlet hypermultiplet up to the Cartan parts and flop transitions as in the

case of the pure G2 gauge theory.
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Instanton part. Let us move on to the instanton part of the G2 partition function (4.35).

The instanton part is obtained after removing the perturbative part obtained in (4.45).

Namely the instanton partition function of the G2 gauge theory with one flavor is

ZG2,Nf=1,inst =
ZG2,Nf=1

Zpert
, (4.50)

where ZG2,Nf=1 is (4.35) and Zpert is (4.45). The order qk of (4.50) gives the k-instanton

contribution of the G2 gauge theory with one flavor.

Since an explicit form of the instanton partition function of the G2 gauge theory with

one flavor is not known, we compare the expression (4.50) with the instanton partition

function of the pure G2 gauge theory after decoupling the flavor. After sending M → 0, then

the 5-brane web diagram will become the one for the pure G2 gauge theory in figure 9(e).

Hence, Q0Q1, Q2, QB are still finite in the limit and the instanton fugacity for the pure G2

gauge theory is given by q′ = qM−2. Since the limit M → 0 should be compatible with

the expansion of Q0 in (4.50) for the comparison, we will take the following steps. At each

order of q′, we first rewrite (4.50) by M,A1 and Q2 and then expand it by M and A1. In

this case, the term QkBQ
a
0Q

b
1 becomes

QkBQ
a
0Q

b
1 = q′kM−a+bA2a−b+4k

1 Qa−b+3k
2 (4.51)

The term which survives after the limit M → 0 satisfies a = b.4 In order to obtain an

reliable expression until the order q′kAa+4k
1 , we need to sum up the Young diagrams in (4.50)

until the order Qa0Q
k
B. Then we can compare the result which is expanded by A1 with the

gauge theory computation for the pure G2 gauge theory. We checked that the partition

function (4.50) after applying the limit M → 0 indeed agrees with the gauge theory result

until a = 6 for the one-instanton and the two-instanton parts of the Nekrasov partition

function of the pure G2 gauge theory obtained in [28–32]. This gives an evidence that we

obtain the correct the partition function (4.50) for the G2 gauge theory with one flavor.

5 Conclusion

In this paper, we studied 5d N = 1 G2 gauge theories from 5-brane web diagrams with an

O5-plane in type IIB string theory. The result that we obtained is summarized as follows:

• Two equivalent types of 5-brane webs for 5d pure G2 gauge theory are presented, in

figures 9(e), 10, and in figure 25. Webs for 5d G2 gauge theory with matter are also

discussed in subsection 2.4.

• Based on the 5-brane webs that we obtained, we computed the partition functions

of the BPS spectrum. In particular, the partition function for the pure G2 theory is

given in (4.16), and the G2 theory with one flavor is given in (4.35).

4It turns out that an explicit evaluation of (4.50) shows that there are no terms in M of the negative

powers until a = 6, k = 2.
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For the first type of pure G2 diagram, corresponding to figures 9(e) and 10, we started

from a conventional 5-brane web diagram for the 5d SO(7) gauge theory with a hyper-

multiplet in the spinor representation. Applying a generalized flop transition such as in

figure 8, we perform a Higgsing associated to the spinor matter to obtain a 5-brane web

diagram for the 5d pure G2 gauge theory. The detail discussion regarding two diagrams is

presented in section 2.

For the second type of pure G2 diagram, corresponding to figure 25, we started with

a 5-brane configuration for 5d SO(8) gauge theory with a hypermultiplet in the spinor

representation and a hypermultiplet in the conjugate spinor representation. We made use

of triality of SO(8) gauge theory so that one can interpret this configuration as 5d SO(8)

gauge theory with a vector and a spinor rather than a spinor and a conjugate spinor. With

this, we performed a successive Higgsing associated with the vector and the spinor to obtain

another 5-brane web for pure G2 theory, which is of an O5-plane only.

Our results are tested in two different ways:

• Based on the webs, we computed the tension of monopole strings and compared it

with the tension of monopole strings obtained from derivatives of the prepotential of

5d G2 gauge theories. They completely agree as shown in (2.34) and (2.35).

• For pure G2 case, we explicitly compared both the perturbative and instanton parts

of the obtained pure G2 partition function with the literature. For one flavor case,

however, as an explicit expression for the partition function for G2 theory with one

flavor is not known, we instead checked an important consistency. Namely, the fla-

vor decoupling limit of the instanton part for the G2 gauge theory with one flavor

reproduces that for the pure G2 gauge theory.

Regarding the 5-brane web for pure G2 gauge theory, it is worth noting that the

5-brane diagram of the second type has an interesting feature. The diagram is almost

identical to the diagram for the pure SU(4) gauge theory of Chern-Simons level zero with a

restriction of the Coulomb branch moduli. From the point of view of the topological string

computation, the only difference between this G2 gauge theory and the pure SU(4) gauge

theory is whether a Young diagram is transposed or not. This means that the (unrefined)

partition function computations only differ by whether the power of the framing factor

is +1 or −1, and also by whether an associated sign factor is included or not. It would

be interesting to see how this feature is modified when one fully refines the G2 partition

functions [46].

As the topological vertex formalism is now applicable to a large class of 5-brane webs

with an O5-plane or an Õ5-plane, it would be interesting to see whether one can use

this method to compute partition functions of 5d SO(N) gauge theories with spinors [46].

Another direction to pursue is to obtain 5d Seiberg-Witten curves dictating M5-brane

configurations based on their dual diagrams [46].
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