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1 Introduction

Finite volume matrix elements of local operators play an important role in several applica-

tions of integrable quantum field theories. Namely, they are fundamental building blocks

of the form factor perturbation theory [1] and their determination is indispensable for

the computation of the string field theory vertex [2] and of the heavy-heavy-light 3-point

functions [3] in the planar AdS5/CFT4 correspondence.

In the past decade a remarkable progress has been made in the computation of finite

volume form factors in integrable quantum field theories [4–11]. Most of the methods use

the infinite volume form factors [12] as a starting point and the finite volume form factors

are to be determined in the form of a systematic large volume series. As a first step the

large volume corrections, that decay with a power of the volume were determined [4, 5] and

not much later a method was proposed [6] for computing some special type exponential

in volume corrections. These investigations shed light on the fact that the computation
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of diagonal matrix elements is a much simpler task than that of the non-diagonal ones.

Recently, in [13] it has been shown, that the leading term in the large volume series repre-

sentation of the diagonal form-factors in [5, 15] can be derived from the formulas for the

non-diagonal form-factors of [4], by taking the diagonal limit appropriately.

Though the structure of exponentially small in volume corrections for the non-diagonal

matrix elements is still unknown, inspired by [14] for the diagonal matrix elements, a nice

series representation was proposed in [10, 11]. However the proposal is valid only to purely

elastic scattering theories and its extension to non-diagonally scattering theories is still

unknown in general.

Recently, in the Massive Thirring (sine-Gordon) model a similar series representation

was proposed to describe the finite volume diagonal form factors of the theory [17]. The

conjecture was based on the computation of the diagonal solitonic (fermionic) matrix ele-

ments of the U(1) current from the light-cone lattice regularization [20] of the theory.

The purpose of this paper is two-fold. On the one hand we would like to demonstrate

that the light-cone lattice approach admits an appropriate framework for computing the

finite volume form factors of the Massive Thirring (sine-Gordon) model and on the other

hand we would like to give further justification for the validity of the LeClair-Mussardo

type series representation conjectured in [17].

To do so we compute the diagonal form factors of the composite operator Ψ̄Ψ from

the light-cone lattice approach. There are several advantages of the choice of this operator.

First of all, this operator is proportional to the trace of the stress-energy tensor. Thus the

results of reference [18] imply, that up to a constant factor these expectation values can be

computed simply from the non-linear integral equations (NLIE) governing the finite volume

spectrum of the model [22]–[31]. This makes possible to check the results coming from the

lattice computations against a result coming from a completely different method. Second of

all, the operator Ψ̄Ψ is still simple enough not to mix with other operators under renormal-

ization. Nevertheless, contrary to the case of the U(1)-current [17], in this case an infinite

renormalization constant arises in accordance with field theoretical computations [19].

In the present paper, using the framework of Quantum Inverse Scattering Method [34]–

[61], we compute such special spin-spin 2-point functions on the lattice, in which the spin

operators are located at neighboring sites of the lattice. A straightforward computation

shows, that the discretized version of the continuum operator Ψ̄Ψ corresponds to the lattice

operator: σ+
n σ
−
n+1 + σ−n σ

+
n+1. We compute the expectation values of these operators be-

tween those Bethe eigenstates which correspond to the pure fermion (soliton) states in the

continuum theory. Then we show, that in the continuum limit these fermionic expectation

values (as expected) are proportional to the fermionic diagonal matrix elements of the trace

of the stress-energy tensor. Latter can be computed purely [18] from the NLIE description

of the sandwiching states. Our method, by nature accounts for the lattice artifacts, as well.

Our results also show, that in the continuum limit, when the lattice constant tends to

zero, the leading order divergence arising in the fermionic expectation values of Ψ̄Ψ is of

the same form as that expected from the renormalization group analysis of the Massive

Thirring (sine-Gordon) model. Finally, we also checked that the all order conjecture [17]

for the systematic large volume series representation of the diagonal fermionic (solitonic)

form-factors of the Massive Thirring (sine-Gordon) model is also valid for this operator.
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The outline of the paper is as follows: in section 2. we recall the most important proper-

ties of the Massive Thirring and sine-Gordon models and their light-cone lattice regulariza-

tions. This section contains the pure NLIE computation of the fermionic (solitonic) expec-

tation values of the trace of the stress-energy tensor. In section 3. we summarize the Quan-

tum Inverse Scattering Method framework and the lattice part of the computation of the

special spin-spin 2-point functions of interest. The continuum limit procedure is described

in section 4. In section 5. we rephrase our results in the form of a systematic large volume

series and check the validity of the conjecture of [17]. Our summary and outlook closes the

body of the paper in section 6. The paper contains three appendices, as well. In appendix A

we rewrite the sums entering the lattice formulas for the two-point functions into integral

expressions. In appendix B we describe how to compute the lattice cutoff tend to zero limit

within these integral expressions. Finally, appendix C contains the large argument series

representations of the convolution integrals being necessary for the computations.

2 Light-cone lattice approach to the massive-Thirring and sine-Gordon

models

The Massive Thirring (MT) model is defined by the Lagrangian:

LMT = Ψ̄(iγν∂
ν −m0)Ψ− g

2
Ψ̄γνΨΨ̄γνΨ , (2.1)

where m0 and g denotes the bare mass and the coupling constant of the theory, respectively.

As usual, γµs stand for the γ-matrices. They satisfy the algebraic relations: {γµ, γν} = 2ηµν

with ηµν = diag(1,−1). Throughout the paper we use the chiral representation for the

fermions as follows:

Ψ =

(
ψL
ψR

)
, γ0 =

(
0 1

1 0

)
, γ1 =

(
0 1

−1 0

)
, γ5 = γ0γ1 = −η =

(
−1 0

0 1

)
. (2.2)

It is well known [32], that this fermion model can be mapped to the sine-Gordon (SG)

model:

LSG =
1

2
∂νΦ∂νΦ + α0 (cos (βΦ)− 1) , 0 < β2 < 8π, (2.3)

provided the coupling constants of the two theories are related by the formula:

1 +
g

4π
=

4π

β2
. (2.4)

A more detailed investigation of this equivalence [33] pointed out, that the two models are

identical only in the even topological charge sector of their Hilbert-spaces and they differ

in the odd topological charge sector.

The operator we study in this paper is the fermion bilinear Ψ̄Ψ in the MT model. To

be more precise, here Ψ̄Ψ means the bare (unrenormalized) fermion bilinear of the model.

According to the equivalence [32] it is proportional to the potential of the sine-Gordon

model [19]:

Ψ̄Ψ↔ 1

πa
cos(βΦ), (2.5)

– 3 –



J
H
E
P
0
3
(
2
0
1
8
)
0
4
7

with a being a cutoff in coordinate space. The perturbing operator cos(βΦ) of the SG

model is related to the trace of the stress-energy tensor ΘT as follows:1

ΘT = 4πα0

(
1− β2

8π

)
cos(β Φ). (2.6)

From (2.5) and (2.6) the fermion bilinear can be expressed in terms of the trace of the

stress-energy tensor as follows:

Ψ̄Ψ ∼ β2

4π2 (1− β2/8π)

ΘT

aα0
. (2.7)

Due to renormalization effects α0 scales with the coordinate space cutoff a as α0 ∼
a−β

2/4π [19], thus

Ψ̄Ψ ∼ aβ2/4π−1 ΘT . (2.8)

The minimal length a can be thought of as a lattice constant, as well. From (2.8) it can

be seen that the matrix elements of Ψ̄Ψ are divergent in the attractive regime (β2 < 4π)

and the operator valued coefficient of the leading order divergence in a is proportional to

the trace of the stress-energy tensor.2 In this paper we show that our light-cone lattice

computations account for the scaling behavior (2.8) and up to a constant factor, allow one

to compute the diagonal matrix elements of ΘT .

2.1 The light-cone lattice regularization

The light-cone lattice regularization scheme [20] admits an appropriate lattice approach to

the even topological charge sector of the MT model. In this description the space-time is

discretized along the light-cone directions: x± = x± t with an even number of lattice sites

in the spatial direction. The sites of the light-cone lattice correspond to the discretized

points of space-time. The left- and right-mover fermion fields live on the left- and right-

oriented edges of the lattice. In this manner a left- and a right-mover fermion field can

be associated to each site of the lattice (See figure 1). Lattice Fermi operators satisfy the

discretized version of the usual anti-commutation relations:

{ψA,n, ψB,m} = 0, {ψA,n, ψ+
B,m} = δAB δnm, A,B = R,L, 1 ≤ m,n ≤ N. (2.9)

As figure 1 indicates, the chirality of the Fermi operators is related to the parity of the

lattice-site index. Namely, left-mover fields live on the odd- and right-mover fields live on

the even-edges of the lattice, respectively:

ψR,n = ψ2n, ψL,n = ψ2n−1, 1 ≤ n ≤ N

2
. (2.10)

1In this sine-Gordon — Massive Thirring correspondence, the components of the stress energy tensors

of the two models are mapped onto each other.
2The trace of the stress-energy tensor is a conserved quantity in the continuum quantum field theory,

this is why it is not subjected to multiplicative renormalization. Consequently, its matrix elements are finite

in the continuum limit.
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Figure 1. The pictorial representation of the light-cone lattice.

For later purposes it is worth to rewrite the lattice Fermi operators in terms of the spin-

operators of the lattice. This can be achieved by a Jordan-Wigner transformation:

ψ+
n = σ+

n

n−1∏
l=1

σzl , ψn = σ−n

n−1∏
l=1

σzl , (2.11)

where σ± = 1
2(σx ± i σy) with σx,y,z being the Pauli-matrices.

The dynamics of the regularized model is given by light-cone evaluation operators: UL
and UR. They are given by transfer matrices of an inhomogeneous 6-vertex model [20]:

UL = ei
a
2

(H−P ) = T (ξ2|~ξ), U+
R = e−i

a
2

(H+P ) = T (ξ1|~ξ), (2.12)

where T is the trace of the monodromy matrix over the auxiliary space V0 ' C2,

T (λ|~ξ) = Tr0 T (λ|~ξ),
[
T (λ|~ξ), T (λ′|~ξ)

]
= 0. (2.13)

The monodromy matrix is given by the R-matrix of the 6-vertex model in the usual way [40],

T (λ|~ξ) = R01(λ− ξ1)R02(λ− ξ2) . . . R0N (λ− ξN ) =

(
A(λ) B(λ)

C(λ) D(λ)

)
[0]

, (2.14)

R(λ) =


1 0 0 0

0 sinh(λ)
sinh(λ−iγ)

sinh(−iγ)
sinh(λ−iγ) 0

0 sinh(−iγ)
sinh(λ−iγ)

sinh(λ)
sinh(λ−iγ) 0

0 0 0 1

 , (2.15)

such that ξns denote the inhomogeneities of the model. The entries of the 2×2 monodromy

matrix act on the quantum space of the model H = ⊗Ni=1 Vi with Vi ' C2 and they play

crucial role in the algebraic Bethe-Ansatz solution of the model. In (2.12) H, P and a

denote the Hamiltonian, the momentum and the lattice constant of the model, respectively.

– 5 –



J
H
E
P
0
3
(
2
0
1
8
)
0
4
7

In order to get a massive interacting quantum field theory as the continuum limit of this

lattice model, the inhomogeneities of the vertex-model must be chosen as follows [20]:

ξn = ρn − i
γ

2
, ρn = (−1)nρ0, n = 1, . . . , N, (2.16)

such that the parameter ρ0 must be tuned with the lattice constant a, or equivalently with

the number of lattice sites N according to the formula as follows:

ρ0 =
γ

π
ln

4

M a
=
γ

π
ln

2N

ML
, (2.17)

whereM denotes the physical mass of fermions (solitons) of the MT (SG) model, L stands

for the finite volume and N is the number3 of lattice sites of the 6-vertex model.

The parameters of the regularized lattice model are the inhomogeneities, the number

of lattice sites and the anisotropy parameter γ. In (2.16) and (2.17) we described how to

choose the inhomogeneities to obtain a massive interacting integrable quantum field theory

in the continuum limit. The infinite volume solution of the model4 shows [21] that this

massive continuum quantum field theory is nothing but the MT or SG model, provided

the following relation holds between the anisotropy parameter of the vertex model and the

coupling constants of the Lagrangians (2.1) and (2.3):

β2

4π
=

1

1 + g
4π

= 2
(

1− γ

π

)
. (2.18)

For later purpose it is worth to introduce a new parameterization for the anisotropy pa-

rameter:

γ =
π

p+ 1
, with 0 < p <∞, then:

β2

4π
=

2p

p+ 1
. (2.19)

We note, that the regimes 0 < p < 1 and 1 < p correspond to the attractive and repulsive

regimes of the quantum field theory, respectively.

The definition (2.12) embeds the light-cone evolution operators of our model into the

hierarchy of mutually commuting set of transfer matrices of the 6-vertex model. This

implies that the Hamiltonian and the momentum of the model can be diagonalized via the

Algebraic Bethe Ansatz method [34].

2.2 Algebraic Bethe Ansatz

In the framework of algebraic Bethe Ansatz, the eigenvectors of the transfer matrix (2.13)

are constructed by successive application of creation operators on the bare vacuum of the

model. The bare vacuum or reference state |0〉 is the completely ferromagnetic state with

all spins up. The role of creation operators are played by the 12-matrix element of the

3In this convention, in the light-cone lattice the number of lattice sites in spatial direction is N
2
. See

figure 1.
4The infinite volume solution consists of two steps. First, the N →∞ limit is taken with a kept finite.

Equation (2.17) implies that this means that the inhomogeneity ρ0 is also kept finite. Then the a→ 0 limit

is taken by tuning ρ0 in the large N result according to (2.17).
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monodromy matrix (2.14): T12(λ) = B(λ) which decreases the Sz quantum number of a

state by 1. A state constructed in this manner:

|~λ〉 = |λ1, λ2, . . . , λm〉 = B(λ1)B(λ2) . . . B(λm) |0〉, Sz|~λ〉 =

(
N

2
−m

)
|~λ〉, (2.20)

is an is an eigenvector of the transfer matrix, provided the spectral parameters in the

arguments of the creation operators satisfy the Bethe equations:

N∏
i=1

sinh(λa − ξi − iγ)

sinh(λa − ξi)

m∏
b=1

sinh(λa − λb + iγ)

sinh(λa − λb − iγ)
= −1, a = 1, . . . ,m. (2.21)

In the Algebraic Bethe Ansatz approach the solutions of the Bethe equations play central

role, since all physical quantities can be expressed in terms of these roots. The eigenvalue

of the transfer matrix (2.13) on a Bethe-eigenvector (2.20) is given by the formula:

T~λ(µ|~ξ) =
m∏
k=1

sinh(µ− λk + iγ)

sinh(µ− λk)
+

N∏
i=1

sinh(µ− ξi)
sinh(µ− ξi − iγ)

m∏
k=1

sinh(µ− λk − iγ)

sinh(µ− λk)
. (2.22)

For the cases, when the number of Bethe-roots is large, it is more convenient to reformulate

the Bethe-equations (2.21) in their logarithmic form. The central object of this formulation

is the so-called counting-function. For the choice of inhomogeneities (2.16) it is defined by

the formula [27]:

Zλ(λ) =
N

2
(φ1(λ− ρ0) + φ1(λ+ ρ0))−

m∑
k=1

φ2(λ− λk), (2.23)

where φν(λ) is an odd function on the whole complex plane with all discontinuities running

parallel to the real axis. In its fundamental domain |Imλ| < ν, it is given by the analytic

formula:

φν(λ) = −i log
sinh(iγ2ν − λ)

sinh(iγ2ν + λ)
, 0 < ν, φν(0) = 0, |Imλ| < ν. (2.24)

The counting-function allows one to reformulate the Bethe-equations (2.21) in the form as

follows:

Zλ(λa) = 2π Ia, Ia ∈ Z +
1 + δ

2
, δ = m (mod 2), a = 1, . . . ,m. (2.25)

In this formulation, depending on the value of δ, an integer or half-integer quantum number

Ia can be assigned to each Bethe-root. When one considers states formed by only real

Bethe-roots, then all these quantum numbers are different5 and they characterize the state

uniquely.

The true vacuum corresponding to the ground state of the quantum field theory, is the

Sz = 0, anti-ferromagnetic vacuum with δ = 0. This state is formed by real Bethe-roots

such that the quantum numbers of the Bethe-roots fill completely the whole allowed range

5Due to the appropriate choice of branch cuts for φν(λ).
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[Zλ(−∞)/2π, Zλ(∞)/2π] . The excitations above this sea of real roots are characterized

by complex Bethe-roots and holes. In this paper we will consider only hole excitations,

since they correspond to fermion or soliton excitations of the continuum quantum field

theory [26–31]. The holes are such special real solutions of (2.25), which are not Bethe-

roots.6 Holes can be interpreted as missing Bethe-roots and the quantum numbers of the

missing Bethe-roots can be assigned to them:

Zλ(hk) = 2π Ik, Ik ∈ Z +
1 + δ

2
, k = 1, . . . ,mH , (2.26)

where hk denotes the positions of the holes and their number is denoted by mH .

2.3 NLIE for the finite volume spectrum

When one has to deal with a large number of Bethe-roots, it is worth to rephrase the Bethe-

equations (2.21) or equivalently (2.25) in a form of a set of nonlinear-integral equations

(NLIE) [22]–[30].

Here we present the equations only for the pure hole sector of the theory [26] and here

we will use the rapidity convention for the equations. This means a simple rescaling of the

spectral parameter: θ = π
γλ.

In the pure hole sector, the counting-function in rapidity variable ZN (θ) = Zλ( γπθ)

satisfy the nonlinear-integral equations as follows:

ZN (θ) =
N

2
{arctan [sinh(θ −Θ)] + arctan [sinh(θ + Θ)]}+

mH∑
k=1

χ(θ −Hk)

+

∞∫
−∞

dθ′

2πi
G(θ − θ′ − iη)L

(+)
N (θ′ + iη)−

∞∫
−∞

dθ′

2πi
G(θ − θ′ + iη)L

(−)
N (θ′ − iη),

(2.27)

where χ(θ) is the soliton-soliton scattering phase and G(θ) denotes its derivative;

χ(θ) = 2

∞∫
0

dω
sin(ω θ)

ω

sinh( (p−1)πω
2 )

2 cosh(πω2 ) sinh(p π ω2 )
, (2.28)

G(θ) =
d

dθ
χ(θ) =

∞∫
−∞

dω e−i ωθ
sinh( (p−1)πω

2 )

2 cosh(πω2 ) sinh(p π ω2 )
, (2.29)

0 < η < min(pπ, π) is an arbitrary positive contour-integral parameter, Θ = ln 2N
ML is the

inhomogeneity parameter of the vertex-model and Hk = π
γhk denote the positions of the

holes in the rapidity convention. They are subjected to the quantization equations:

ZN (Hk) = 2π Ik, Ik ∈ Z +
1 + δ

2
, k = 1, . . . ,mH . (2.30)

The nonlinearity of the equations is encoded into the form of L
(±)
N (θ), which takes the form:

L
(±)
N (θ) = ln

(
1 + (−1)δ e±i ZN (θ)

)
. (2.31)

6Namely, they do not enter in the definition of Zλ(λ) in (2.23).
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The number of holes is not independent of the Sz quantum number of the state. The

connection between these two quantum numbers is given by the counting-equation7 [27]:

mH = 2Sz − 2

[
1

2
+

Sz
p+ 1

]
, (2.32)

where here [. . .] stands for integer part. This equation immediately implies that on a lattice

with even number of sites, only states with even number of holes can exist.

The main advantage of formulating the spectral problem in terms of the counting

function is that it has a well-defined continuum limit. If one keeps the hole quantum

numbers fixed, it is just the N →∞ limit of the lattice counting-function [23–25]:

Z(θ) = lim
N→∞

ZN (θ), L±(θ) = lim
N→∞

L
(±)
N (θ) = ln

(
1 + (−1)δ e±i Z(θ)

)
. (2.33)

The continuum counting-function satisfy the nonlinear-integral equations as follows [26]–

[30]:

Z(θ) = ` sinh θ +

mH∑
k=1

χ(θ −Hk) +

∞∫
−∞

dθ′

2πi
G(θ − θ′ − iη)L+(θ′ + iη)

−
∞∫
−∞

dθ′

2πi
G(θ − θ′ + iη)L−(θ′ − iη),

(2.34)

where ` =ML with L being the volume and M is the fermion (soliton) mass. The holes

formally satisfy exactly the same quantization equations as in the lattice model:

Z(Hk) = 2π Ik, Ik ∈ Z +
1 + δ

2
, δ ∈ {0, 1}, k = 1, . . . ,mH . (2.35)

The energy and momentum of the pure hole states in the continuum theory read as:

E = M
mH∑
k=1

coshHk −
M
2πi

∑
α=±

α·
∞∫
−∞

dθ sinh(θ + i α η)Lα(θ + i α η), (2.36)

P = M
mH∑
k=1

sinhHk −
M
2πi

∑
α=±

α·
∞∫
−∞

dθ cosh(θ + i α η)Lα(θ + i α η). (2.37)

The counting-equation (2.32) also changes non-trivially in the continuum limit [17, 27]:

mH = Q, (2.38)

where Q is the U(1) (topological) charge of the continuum model.

The NLIE (2.34) can be solved iteratively in the large volume limit. From this solution

it follows, that the nonlinear terms L±(θ± i η) are exponentially small in the volume. As a

7Here we present the equations without the presence of special objects. For a more detailed description

see for example [27, 31].
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consequence in (2.36) and (2.37) the integral terms can be dropped in the infinite volume

limit and one ends up with the energy and momentum formulas of mH pieces of fermions

(solitons) with rapidities {Hj}j=1...mH . This implies that the holes in the sea of real roots

describe the fermions (solitons) of the MT (SG) model. This is why in the sequel we will

refer to holes as fermions or solitons.

Finally, we note that the actual value8 of the quantum number δ is important from

the point of view of the continuum theory. Its value can make difference between fermions

(δ = 1) of the MT model and the solitons (δ = 0) of the SG model in the odd U(1) charge

sector of the theory [28]–[30]. In the even charge sector only the δ = 0 value is physical

and there is no difference between MT fermions and SG solitons [28]–[30].

From the discussion above it follows that only the even charge sector of the MT and

SG models can be regularized by the twistless 6-vertex model. The description of the odd

charge sector requires a twisted vertex-model with a twist angle ω = π
2 [63]. However, in

this paper we restrict ourselves to the twistless case.

2.4 Expectation values of the trace of the stress-energy tensor

In this subsection using the NLIE description of the finite volume spectrum given by (2.34)

and (2.36), we compute the fermionic (solitonic) expectation values of the trace of the

stress-energy tensor ΘT . The finite temperature 1-point functions, which correspond to

the finite volume vacuum expectation value, has been previously computed and discussed

in [70] and [64].

It has been shown in [18] that the diagonal matrix elements of ΘT can be computed

from the volume dependence of the energy of the sandwiching state by the following for-

mula:

〈ΘT 〉 = 〈Θ∞T 〉+ 2πM
(
E(`)

`
+
dE(`)

d`

)
. (2.39)

In the sequel we compute 〈ΘT 〉 when the sandwiching state is an mH -fermion state de-

scribed by the equations (2.34) and (2.36).

As a starting point, it is worth to compute the infinite volume or in other words the

bulk expectation value: 〈Θ∞T 〉. Using Zamolodchikov’s argument [18], it can be expressed

in terms of the eigenstate independent bulk energy of the model by the formula:

〈Θ∞T 〉 = 2πM
(
Ebulk(`)

`
+
dEbulk(`)

d`

)
. (2.40)

In the MT (SG) model the bulk energy term is of the form [25]:

Ebulk(`) = −M`

4
tan

(pπ
2

)
. (2.41)

Inserting (2.41) into (2.40) one obtains:

〈Θ∞T 〉 = −πM2 tan
(pπ

2

)
. (2.42)

8On the lattice the actual value of δ can be influenced by the parity of N
2

.
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As a next step we express the non-bulk part of 〈ΘT 〉 in (2.39) in terms of the solution

of the NLIE (2.34). To do so, it is worth to introduce some useful notations. Let F±(θ)

denote the nonlinear combinations as follows:

F±(θ) =
(−1)δ e±i Z(θ)

1 + (−1)δ e±i Z(θ)
. (2.43)

Then the derivative of L±(θ) with respect to any parameter P is given by the formula:

dL±(θ)

dP
= ±i dZ(θ)

dP
F±(θ). (2.44)

In practice P can denote one of the parameters of the NLIE equations (2.34). Namely,

it can be the dimensionless volume `, the spectral parameter θ or one of the positions of

the holes Hj . The second term in the right hand side of (2.39) consists of two terms. The

first term ∼ E(`)
` can be expressed in terms of dZ(θ)

dθ and of F±(θ), while the second term

∼ dE(`)
d` turns out to be the functional of dZ(θ)

d` and of F±(θ).

Integrating the right hand side of (2.36) by parts, E(`)
` can be rephrased as follows:

E(`)

`
=
M
`

mH∑
k=1

cosh(Hk)X
(d)
k +

M
`

∑
α=±

∞∫
−∞

dθ

2π
cosh(θ + i α η)Gd(θ + i α η)Fα(θ + i α η),

(2.45)

where Gd(θ) = Z ′(θ), X
(d)
k = Gd(Hk)

Z′(Hk) = 1. Differentiating (2.34) with respect to θ, one can

show, that they satisfy the set of linear integral equations as follows:

Gd(θ)−
∑
α=±

∞∫
−∞

dθ′

2π
G(θ − θ′ − i α η)Gd(θ′ + i α η)Fα(θ′ + i α η) =

= ` cosh(θ) +

mH∑
j=1

G(θ −Hj)X
(d)
j ,

X
(d)
j =

Gd(Hj)

Z ′(Hj)
, j = 1, . . . ,mH .

(2.46)

Taking the derivative of (2.36) and (2.34) with respect to `, leads the following expression

for dE(`)
d` :

dE(`)

d`
= −M

mH∑
k=1

sinh(Hk)X
(`)
k −M

∑
α=±

∞∫
−∞

dθ

2π
sinh(θ + i α η)G`(θ + i α η)Fα(θ + i α η),

(2.47)

where G`(θ) = dZ(θ)
d` , X

(`)
k = G`(Hk)

Z′(Hk) = −H ′k(`). They are solutions of the set of linear
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integral equations as follows:9

G`(θ)−
∑
α=±

∞∫
−∞

dθ′

2π
G(θ − θ′ − i α η)G`(θ′ + i α η)Fα(θ′ + i α η) =

= sinh(θ) +

mH∑
j=1

G(θ −Hj)X
(`)
j ,

X
(`)
j =

G`(Hj)

Z ′(Hj)
, j = 1, . . . ,mH .

(2.48)

Plugging (2.45) and (2.47) into (2.39) we obtain our final formula for the fermionic (soli-

tonic) expectation values of the trace of the stress-energy tensor:

〈ΘT 〉= 〈Θ∞T 〉+2πM2
mH∑
k=1

{
cosh(Hk)

X
(d)
k

`
−sinh(Hk)X

(`)
k

}
+ (2.49)

+M2
∑
α=±

∞∫
−∞

dθ

[
cosh(θ+ iαη)

Gd(θ+ iαη)

`
−sinh(θ+ iαη)G`(θ+ iαη)

]
Fα(θ+ iαη).

Representation (2.49) for 〈ΘT 〉 should be used as follows. First one has to solve the NLIE

equations (2.34) for the sandwiching fermion (soliton) state. Then the linear integral

equations (2.46) and (2.48) should be solved. Finally, inserting these solutions into (2.49)

gives the required expectation value. Though, this representation for 〈ΘT 〉 might seem

strange for the first sight, but in the later sections it will turn out, that it fits very well for

the structure of the lattice results.

In the rest of the paper our main goal is to reproduce the formula (2.49) from the

light-cone lattice computation of the multi-fermion (soliton) expectation values of Ψ̄Ψ.

2.5 The lattice counterpart of Ψ̄Ψ

We close this section with a short discussion about the lattice counterpart of the operator

Ψ̄Ψ in the MT model. A simple Jordan-Wigner transformation (2.11) shows, that certain

bilinears of the lattice Fermi operators are simple expressions of the lattice spin operators:

ψ+
n ψn+1 = σ+

n σ
−
n+1,

ψ+
n+1ψn = σ−n σ

+
n+1,

(2.50)

where σ±n are the usual spin creation and annihilation operators corresponding to the

nth site of the lattice, while ψn and ψ+
n are the lattice Fermi operators defined by (2.9)

and (2.10).

Using the representation (2.2) for γ0, the following identification can be made for the

unrenormalized bare operators on the lattice:

Ψ̄Ψ(x)
∣∣
x=na

= Ψ+
R(x)ΨL(x)

∣∣
x=na

+ Ψ+
L (x)ΨR(x)

∣∣
x=na

→ 1

a
ψ+
R,nψL,n +

1

a
ψ+
L,nψR,n =

=
1

a
ψ+

2nψ2n+1 +
1

a
ψ+

2n+1ψ2n =
1

a
σ+

2n σ
−
2n+1 +

1

a
σ−2n σ

+
2n+1, (2.51)

9The X
(`)
k = −H ′k(`) equation can be derived by taking the derivative of the hole quantization equa-

tion (2.35) with respect to `.
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where the term 1
a is introduced to account for the correct bare dimension of the continuum

Fermi field.

A similar computation shows that the pseudo-scalar combination of the Fermi operators

correspond to the antisymmetric combination of the spin operators:

Ψ̄γ5Ψ(x)
∣∣
x=na

→ 1

a
ψ+

2nψ2n+1 −
1

a
ψ+

2n+1ψ2n =
1

a
σ−2n σ

+
2n+1 −

1

a
σ+

2n σ
−
2n+1. (2.52)

Thus (2.51) and (2.52) implies, that the determination of the expectation values of the

bare scalar- and pseudo-scalar fermion bilinears is equivalent to computing the two-point

functions of neighboring spin operators. This task is completed in the rest of the paper via

the QISM [34]–[61].

We note that beyond the computation of 2-point functions 〈σ±n σ∓n+1〉 the 2-point func-

tion 〈en en+1〉 with en = 1
2(1n−σzn) can also be computed with the techniques presented in

this paper. This latter 2-point function contains a combination a 4-fermion term, as well:

en en+1 = (ψ+
n ψn − 1

2)(ψ+
n+1ψn+1 − 1

2). A usual argument based on the bare dimensions

of the operators implies that this operator has a nontrivial mixing under renormalization.

This means that the correct implementation of the renormalization process requires the

computation of the expectation values of further operators. This investigation is left for

future work.

3 Computation of lattice correlators

The strategy of computing the fermionic (solitonic) expectation values of the operators

Ψ̄Ψ and Ψ̄γ5Ψ consists of three main steps. First, one has to compute the expectation

values of the lattice operators σ±n σ
∓
n+1 in pure hole states. The second step is to consider

the symmetric (2.51) and anti-symmetric (2.52) combinations of these expectation values

in order to describe the diagonal form-factors of the operators Ψ̄Ψ and Ψ̄γ5Ψ, respectively.

Finally, one has to take the continuum limit of the lattice results by sending the number

of lattice sites N to infinity such that the inhomogeneity parameter ρ0 is tuned according

to (2.17). In [17] the efficiency of this method has been demonstrated via the computation

of the solitonic (fermionic) expectation values the U(1) current of the model. In this section

we describe in detail the lattice part of the computations.

Consider a vector of the Hilbert-space obtained by successive actions of creation oper-

ators on the bare vacuum:

|~λ〉 = B(λ1)B(λ2) . . . B(λm) |0〉. (3.1)

Such a state is called Bethe-state if the numbers λj are arbitrary and it is called Bethe-

eigenstate if the set {λj}j=1,...,m is equal to the set of roots of the Bethe equations (2.21).

The corresponding “bra” vector can be defined by acting from the right with the annihila-

tion operators on the “bra” bare vacuum:

〈~λ| = 〈0|C(λm) . . . C(λ2)C(λ1). (3.2)
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The determination of the diagonal form-factors of Ψ̄Ψ and Ψ̄γ5Ψ requires the compu-

tation of the following two special 2-point functions:

〈σ±n σ∓n+1〉λ =
〈~λ|σ±n σ∓n+1|~λ〉
〈~λ|~λ〉

, (3.3)

where here |~λ〉 denotes a Bethe-eigenstate.

The determination of these 2-point functions can be achieved in a purely algebraic

way [39, 40] within the framework of the QISM [34], such that only the Yang-Baxter

algebra relations and the expression of local spin operators in terms of the elements of the

monodromy matrix (2.14) of the model are used [39].

The core of the algebraic computations is the relation between the local spin operators

and the elements of the Yang-Baxter algebra [39]:

Eabn =

n−1∏
i=1

(A+D)(ξi) Tab(ξn)

N∏
i=n+1

(A+D)(ξi), a, b = 1, 2, (3.4)

where the operator En is given in terms of local spin operators as follows:

E11
n =

1

2
(1n + σzn), E12

n = σ−n , E21
n = σ+

n , E22
n =

1

2
(1n − σzn). (3.5)

The formulas (3.4) and (3.5) imply the following representation for the 2-point correla-

tors (3.3) of our interest:

〈σ−n σ+
n+1〉λ =

〈~λ|σ−n σ+
n+1|~λ〉

〈~λ|~λ〉
=

1

T~λ(ξn|~ξ) T~λ(ξn+1|~ξ)
〈~λ|B(ξn)C(ξn+1)|~λ〉

〈~λ|~λ〉
, (3.6)

〈σ+
n σ
−
n+1〉λ =

〈~λ|σ+
n σ
−
n+1|~λ〉

〈~λ|~λ〉
=

1

T~λ(ξn|~ξ) T~λ(ξn+1|~ξ)
〈~λ|C(ξn)B(ξn+1)|~λ〉

〈~λ|~λ〉
, (3.7)

where here |~λ〉 denotes a Bethe-eigenstate, T~λ(λ|~ξ) denotes the eigenvalue of the transfer

matrix (2.13) on the state |~λ〉 and ξn is the inhomogeneity parameter belonging to the nth

site of the vertex-model.

To compute (3.6) and (3.7), we need to know, how an operator B(ξn) with ξn being

an inhomogeneity of the vertex model, acts on a “bra”-vector (3.2). This is given by the

formula [40]:

〈0|
M∏
k=1

C(λk)B(ξn) =
M∑
a=1

f
(0)
M (λa|ξn)

×

f
(1)
M (λa|ξn)〈0|

M∏
k=1
k 6=a

C(λk) +

M∑
b=1
b 6=a

f
(2)
M (λa, λb|ξn)〈0|

M∏
k=1
k 6=a,b

C(λk)C(ξn)

 .

(3.8)
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Here the functions f
(0)
M , f

(1)
M and f

(2)
M are of the form:

f
(0)
M (λa|ξ) =

1

r(λa) sinh(λa − ξ)

M∏
k=1

sinh(λa − λk − i γ)

M∏
k=1
k 6=a

sinh(λa − λk)
,

f
(1)
M (λa|ξ) =

sinh(λa − ξ)
sinh(λa − ξ − i γ)

M∏
j=1

sinh(λj − ξ − i γ)

sinh(λj − ξ)
, (3.9)

f
(2)
M (λa, λb|ξ) =

1

sinh(λa − λb − i γ) sinh(ξ − λb)

M∏
j=1

sinh(λj − λb − i γ)

M∏
j=1
j 6=a,b

sinh(λj − λb)
,

where

r(λ) =
N∏
j=1

sinh(λ− ξj − i γ)

sinh(λ− ξj)
. (3.10)

From its definition it follows that its inverse becomes zero at the positions of the inhomo-

geneities of the lattice model:

1

r(ξj)
= 0, j = 1, . . . , N. (3.11)

We note that in general, in (3.8) and (3.9), λks can take any complex value and they do not

need to be solutions of the Bethe-equations (2.21). On the other hand it follows from (3.10)

and (2.21) that if λks are solutions of (2.21), then r(λ) satisfies the identity:

m∏
k=1

r(λk) = 1. (3.12)

Straightforward application of (3.8) to (3.6) and (3.7) lead to the following formulas:

〈σ−n σ+
n+1〉λ =

1

T~λ(ξn|~ξ)T~λ(ξn+1|~ξ)

{
m∑
a=1

f(0)m (λa|ξn) f(1)m (λa|ξn)
〈~µ(a)(ξn+1)|~λ〉
〈~λ|~λ〉

+ (3.13)

+

m∑
a=1

f(0)m (λa|ξn)

m∑
b=1
b 6=a

f(2)m (λa,λb|ξn)
〈~µ(a,b)(ξn, ξn+1)|~λ〉

〈~λ|~λ〉

}
,

〈σ+
n σ
−
n+1〉λ =

1

T~λ(ξn|~ξ)T~λ(ξn+1|~ξ)

{
m∑
a=1

f
(0)
m+1(λa|ξn+1)

m∑
b=1
b 6=a

f
(2)
m+1(λa,λb|ξn+1)

〈~µ(a,b)(ξn, ξn+1)|~λ〉
〈~λ|~λ〉

+ (3.14)

+

m∑
a=1

f
(0)
m+1(λa|ξn+1)

[
f
(1)
m+1(λa|ξn+1)

〈~µ(a)(ξn)|~λ〉
〈~λ|~λ〉

+ f
(2)
m+1(λa, ξn|ξn+1)

〈~µ(a)(ξn+1)|~λ〉
〈~λ|~λ〉

]}
,

where in f
(0,1,2)
m+1 defined in (3.9) with λm+1 ≡ ξn, and we introduced the following notation

for the states entering the scalar products in (3.13) and (3.14):

• |~λ〉 denotes a Bethe-eigenstate (3.1) characterized by m Bethe-roots.
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• |~µ(a)(ξ)〉 denotes a Bethe-state, the difference of which from |~λ〉 is that a single λa → ξ

replacement should be done in (3.1).

• |~µ(a,b)(ξ, ξ′)〉 denotes a Bethe-state, which differs from |~λ〉 by the λa → ξ and λb → ξ′

replacements in (3.1).

We note that in (3.13) and (3.14), we exploited that f
(1)
M (ξn|ξn′) = 0 for any values of M

and of n, n′ ∈ {1, . . . , N}.
Formulas in (3.13) and (3.14) imply, that in order to carry out the computation of the

necessary special 2-point functions, one needs to know the scalar product of a Bethe-state

and a Bethe-eigenstate. This is given by Slavnov’s determinant formula [59]. Let |~µ〉 an

arbitrary Bethe-state in the sense of (3.1) and |~λ〉 be a Bethe-eigenstate. Then their scalar

product can be determined with the help of the formula [59]:

〈~µ|~λ〉 = 〈~λ|~µ〉 =
m∏
l=1

1

r(µl)
· detH(~µ|~λ)∏
j>k

sinh(µk − µj) sinh(λj − λk)
, (3.15)

where H(~µ|~λ) is an m×m matrix with entries:

Hab(~µ|~λ) =
sinh(−i γ)

sinh(λa − µb)

r(µb)
m∏
k=1

sinh(λk − µb − i γ)

sinh(λa − µb − i γ)
−

m∏
k=1

sinh(λk − µb + i γ)

sinh(λa − µb + i γ)

 .

(3.16)

An important special case of (3.15), when the scalar product of two identical Bethe-

eigenstates are considered. This is given by the Gaudin formula [35–37]:

〈~λ|~λ〉 =

m∏
j=1

m∏
k=1

sinh(λj − λk − i γ)∏
j>k

sinh(λk − λj) sinh(λj − λk)
· det Φ(~λ), (3.17)

where Φ(~λ) is the Gaudin-matrix, which is related to the counting-function (2.23) by the

formula:

Φab(~λ) = −i ∂

∂λb
Zλ(λa|~λ), a, b = 1, . . . ,m. (3.18)

Using the actual form of the counting function (2.23), from (3.18) one obtains the following

form for the matrix elements of Φ(~λ):

Φab(~λ) = −i Z ′λ(λa) δab − 2π iK(λa − λb|γ), a, b = 1, . . .m, (3.19)

where

K(λ|γ) =
1

2π

sin(2 γ)

sinh(λ− i γ) sinh(λ+ i γ)
. (3.20)

As it can be seen from (3.13) and (3.14), during the computation of the special 2-point

functions considered in this work, such scalar products arise, in which the components of

the vector ~µ take values either from the set of Bethe-roots {λj}j=1,...m or from the set of
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inhomogeneities {ξk}k=1,...N of the model. In these cases the matrix elements of H(~µ|~λ)

remarkably simplify:

Hab(~µ|~λ)
∣∣
µb→λc

= (−1)m−1
m∏
j=1

sinh(λc−λj− iγ)Φac(~λ), a,b,c= 1, . . . ,m. (3.21)

1

r(µb)
Hab(~µ|~λ)

∣∣
µb→ξc

=

(−1)m sinh(−iγ)
m∏
j=1

sinh(ξc−λj + iγ)

sinh(λa−ξc)sinh(λa−ξc− iγ)
, a,b= 1, . . . ,m, c= 1, . . . ,N.

(3.22)

These simplifications allow10 one to compute a typical scalar product arising in the com-

putation of diagonal form factors:

〈~µ(a1,...,aK)(ξα1 , . . . , ξαK )|~λ〉
〈~λ|~λ〉

= detY

K∏
k=1

m∏
j=1

sinh(ξαk − λj + i γ)

sinh(λak − λj − i γ)

K∏
k>j

sinh(λak − λaj )
sinh(ξαk − ξαj )

×

×
K∏
k=1

m∏
j=1

j 6=a1,...aK

sinh(λak − λj)
sinh(ξαk − ξαj )

, K ≤ m, (3.23)

where 〈~µ(a1,...,aK)(ξα1 , . . . , ξαK )| denotes a state, which is obtained from 〈~λ| = 〈λ1, . . . λm|
by replacing K pieces of λj to certain inhomogeneities of the lattice model:

λak → ξαk , ak ∈ {1, . . . ,m}, αk ∈ {1, . . . , N}, 1 ≤ k ≤ K ≤ m, (3.24)

such that both sets {ak} and {αk} contain distinct numbers. In (3.23) Y denotes a K ×K
matrix with entries as follows:

Yij = r(λai)Xai(ξαj ), i, j ∈ {1, . . . ,K}, (3.25)

where the m-component vector Xb(ξ) is the solution of a set of linear equations:

m∑
b=1

Φab(~λ)Xb(ξ) = Va(ξ), a = 1, . . . ,m, (3.26)

with

Va(ξ) =
− sinh(−i γ)

sinh(λa − ξ) sinh(λa − ξ − i γ)
, a ∈ {1, . . . ,m}. (3.27)

In subsection 4.1 of [17] it has been shown, that the discrete linear problem (3.26) can be

transformed into a set of linear integral equations. Latter formulation proves to be very

convenient, when the continuum limit is taken. For the paper to be self-contained, we

recall the derivation of the transformation of (3.26) into linear integral equations.

The actual forms (3.19) of the Gaudin-matrix and the source vector (3.27) suggest, the

following Ansatz for the m-component solution vector Xa(ξ) of the linear equations (3.26):

Xa(ξ) = X(λa|ξ), a = 1, . . . ,m, (3.28)

10The main technical steps of the computations are the same as those given in sections 4. of [40] and of [17].
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where X(λ|ξ) is supposed to be a meromorphic function in λ on the complex plane, such

that it is analytic in a small neighborhood of the real axis. Thus our task is the de-

termine the functional form of X(λ|ξ). Then using (3.28), (3.19) and (3.20) the linear

equations (3.26) take the form:

−i Z ′λ(λa)X(λa|ξ)−2π i
m∑
b=1

K(λa−λb|γ)X(λb|ξ) = 2π iK
(
λa − ρ(ξ)|γ

2

)
, a = 1, . . . ,m,

(3.29)

where ρ(ξ) = ξ + iγ2 . In our computations ξ takes value from the set of inhomogeneities

of the vertex-model. The actual choice for the inhomogeneities given by (2.16) and (2.17)

imply that we can restrict our investigations to the case, when ρ(ξ) ∈ R. Thus, in the

sequel we will assume ρ(ξ) to be real.

To transform (3.29) into integral equations one needs to use the lemma as follows [25,

27]:

Lemma. Let {λj}j=1,...,m solutions of the Bethe-equations (2.21) and let f(λ) a meromor-

phic function, which is continuous and bounded on the real axis. Denote p(f) its pole located

the closest to the real axis. Then for |Imµ| < |Im p(f)| the following equation holds:

m∑
j=1

f(µ− λj) =

mC∑
j=1

f(µ− cj)−
mH∑
j=1

f(µ− hj) +

∞∫
−∞

dλ

2π
f(µ− λ)Z ′λ(λ)

−
∑
α=±

∞∫
−∞

dλ

2π
f(µ− λ− i α η)Z ′λ(λ+ i α η)F (λ)

α (λ+ i α η),

(3.30)

where hj and cj denote the positions of holes and complex Bethe-roots, respectively and

F (λ)
± (λ) is given by

F (λ)
± (λ) =

(−1)δ e±i Zλ(λ)

1 + (−1)δ e±i Zλ(λ)
, (3.31)

η is a small positive contour-integral parameter which should satisfy the inequalities:

0 < η < min{|Im p±λ |}, |Imµ± η| < |Im p(f)|, (3.32)

where p±λ denotes those complex poles of F (λ)
± (λ), which are located the closest to the real

axis.

The validity of formula (3.30) in µ can be extended to the whole complex plane by an

appropriate analytical continuation method [27].

Then one has to apply (3.30) to the discrete sum arising in (3.29). From the actual

form of (3.30) one can recognize, that under the integrations a factor Z ′λ(λ) always arises.

To eliminate this factor from the equations, it is worth to formulate the integral form of

the discrete set of equations (3.29) in terms of the function:

G(λ|ξ) = Z ′λ(λ)X(λ|ξ). (3.33)
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In the language of this function, the discrete set of linear equations (3.29) take the form of

a set of linear integral equations as follows:

G(λ|ξ) +

∞∫
−∞

dλ′K(λ− λ′|γ)G(λ′|ξ)−

−
∑
α=±

∞∫
−∞

dλ′K(λ− λ′ − i α η|γ)G(λ′ + i α η|ξ)F (λ)
α (λ′ + i α η) =

= −2πK
(
λ− ρ(ξ)|γ

2

)
+

mH∑
j=1

K(λ− hj |γ)X(hj |ξ),

(3.34)

where as a consequence of (3.33) the “discrete degrees of freedom” satisfy the equations:

X(hj |ξ) =
G(hj |ξ)
Z ′λ(hj)

, j = 1, . . . ,mH . (3.35)

To be more precise (3.29) and (3.30) implies that (3.34) holds only at the positions

{λa}a=1...m. For the pure hole states of our interest all Bethe-roots are real, λa ∈ R, and we

need the functional form of G(λ|ξ) or equivalently of X(λ|ξ) to solve (3.29). It follows that

if (3.34) is fulfilled everywhere in an appropriate neighborhood of the real axis, then it will

be satisfied at the discrete points {λa}a=1...m, as well. Thus, we require G(λ|ξ) to be the

solution of the set of linear integral equations (3.34). Finally acting11 on (3.34) with the

inverse of the integral operator12 1+K, one obtains the final form [17] of the linear integral

equations satisfied by G(λ|ξ), when only pure hole excitations above the anti-ferromagnetic

vacuum are considered:

G(λ|ξ)−
∑
α=±

∞∫
−∞

dλ′Gλ(λ− λ′ − i α η)G(λ′ + i α η|ξ)F (λ)
α (λ′ + i α η) =

= S0(λ|ξ) +

mH∑
j=1

2πGλ(λ− hj)X(hj |ξ),

(3.36)

with

S0(λ|ξ) = −π
γ

1

cosh
(
π
γ (λ− ρ(ξ))

) , ρ(ξ) = ξ + i
γ

2
∈ R, (3.37)

where hjs denote the positions of the holes, η is a small positive contour-integral parameter,

and Gλ(λ) is related to the kernel of NLIE equations (2.29) by:

Gλ(λ) =
1

2γ
G

(
π

γ
λ

)
, with γ =

π

p+ 1
. (3.38)

11This action is necessary in order for the final equations to have well defined continuum limit.
12To be more precise the kernel of the integral operator in “lambda” space is given by δ(λ−λ′)+K(λ−λ′|γ)

with δ(λ) being the Dirac-delta function.
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Now, we can return to the computation of the 2-point functions of our interest. In-

serting (2.22) and (3.23) into (3.13) and (3.14), after some simplification one ends up with

the formulas as follows:

〈σ−n σ+
n+1〉λ =−

m∑
a=1

sinh(λa−ξn+1)

sinh(λa−ξn− iγ)
X(λa|ξn+1)+

m∑
a,b=1

sinh(λa−ξn+1)sinh(λb−ξn+1)

sinh(λa−λb− iγ)
×

× X(λa|ξn)X(λb|ξn+1)−X(λa|ξn+1)X(λb|ξn)

sinh(ξn−ξn+1)
, (3.39)

〈σ+
n σ
−
n+1〉λ =−sinh(ξn−ξn+1− iγ)

sinh(ξn−ξn+1)

m∑
a=1

sinh(λa−ξn− iγ)

sinh(λa−ξn+1− iγ)
X(λa|ξn)

+

m∑
a,b=1

sinh(λa−ξn− iγ)sinh(λb−ξn+ iγ)

sinh(λa−λb− iγ)

X(λa|ξn)X(λb|ξn+1)−X(λa|ξn+1)X(λb|ξn)

sinh(ξn−ξn+1)

+
sinh(−iγ)

sinh(ξn−ξn+1)

m∑
a=1

X(λa|ξn+1). (3.40)

In (3.39) and (3.40) we preserved the determinant structure implied by (3.23). Nevertheless

for future computations it is better to shift the anti-symmetrization to the coefficient of

the quadratic expression of X. Then the quadratic in X parts of (3.39) and (3.40) can be

written as follows:

〈σ−n σ+
n+1〉

quad
λ =

1

sinh(ξn − ξn+1)

m∑
a,b=1

f(λa, λb|ξn+1)X(λa|ξn)X(λb|ξn+1), (3.41)

〈σ+
n σ
−
n+1〉

quad
λ =

1

sinh(ξn − ξn+1)

m∑
a,b=1

f(λa, λb|ξn)X(λa|ξn)X(λb|ξn+1), (3.42)

where f(λ, λ′|ξ) is an antisymmetric function given by the formula:

f(λ, λ′|ξ) = cos(γ)
sinh(2(λ− ξ))− sinh(2(λ′ − ξ))− sinh(2(λ− λ′))

cosh(2(λ− λ′))− cos(2γ)
. (3.43)

In (3.41) and (3.42) the coefficient function f has better large λ and λ′ asymptotics, than

the coefficients of the quadratic terms of (3.39) and (3.40). This property proves to be very

useful, when the discrete sums in (3.39) and (3.40) are transformed into integral expressions.

The typical sums arising in (3.39), (3.40), (3.41) and (3.42) are of the form:

Σ
(1)
λ [f ](ξ) =

m∑
a=1

f(λa)X(λa|ξ), (3.44)

Σ
(2)
λ [f ](ξ, ξ′) =

m∑
a,b=1

f(λa, λb)X(λa|ξ)X(λb|ξ′), (3.45)

where in (3.45) f(λ, λ′) is meant to be an antisymmetric function. Formulas (3.44)

and (3.45) are not appropriate to take the continuum limit, this is why it is worth to

transform these sums into integral expressions with the help of lemma (3.30). The trans-

formation procedure together with the integral representations of (3.44) and (3.45) can
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be found in appendix A. The final integral representations for (3.44) and (3.45) are given

by (A.5) and (A.9) together with the related definitions.

To describe the scalar and pseudo-scalar fermion bilinears, it is worth to introduce the

lattice operators O+
2n and O−2n with the definitions:

O±2n = σ−2n σ
+
2n+1 ± σ

+
2n σ

−
2n+1. (3.46)

According to (2.51) and (2.52) they correspond to the lattice counterparts of the bare

fermion bilinears Ψ̄Ψ and Ψ̄γ5Ψ, respectively. Using the formulas (3.39), (3.40), (3.41),

(3.42), (3.44) and (3.45) the following formal representation can be given for the expectation

values of O±2n :

〈O±2n〉λ = −Σ
(1)
λ [f3](ξ−)± sinh(−i γ)

sinh(2ρ0)
Σ

(1)
λ [f1](ξ−)∓ sinh(2ρ0 − i γ)

sinh(2ρ0)
Σ

(1)
λ [f2](ξ+)

+
1

sinh(2ρ0)
Σ

(2)
λ [f±](ξ+, ξ−), ξ± = ±ρ0 − i

γ

2
,

(3.47)

where the functions f1, f2, f3 and f± are of the form:

f1(λ) = 1, (3.48)

f2(λ) =
sinh(λ− ρ0 − i γ2 )

sinh(λ+ ρ0 − i γ2 )
, (3.49)

f3(λ) =
sinh(λ+ ρ0 + i γ2 )

sinh(λ− ρ0 − i γ2 )
, (3.50)

f+(λ, λ′) = 2 cos(γ)
cosh(2ρ0) [sinh(2λ+ i γ)− sinh(2λ′ + i γ)]− sinh(2(λ− λ′))

cosh(2(λ− λ′))− cos(2γ)
, (3.51)

f−(λ, λ′) = 2 cos(γ) sinh(2ρ0)
cosh(2λ+ i γ)− cosh(2λ′ + i γ)

cosh(2(λ− λ′))− cos(2γ)
, (3.52)

and we exploited the concrete inhomogeneity structure of the model, namely that ξ2n =

ρ0 − i γ2 and ξ2n+1 = −ρ0 − i γ2 , with ρ0 given by (2.17).

Using the integral representations (A.5) and (A.9) for Σ
(1)
λ [f ](ξ) and Σ

(2)
λ [f ](ξ, ξ′),

respectively, the formula (3.47) can be rephrased as follows:

〈O±2n〉λ = O±0 +O±X +O±G +O±XX +O±GG +O±XG , (3.53)

where

O±0 = −J0[f3](ξ−)± sinh(−i γ)

sinh(2ρ0)
J0[f1](ξ−)∓ sinh(2ρ0 − i γ)

sinh(2ρ0)
J0[f2](ξ+), (3.54)

O±X = −SX [f3](ξ−)± sinh(−i γ)

sinh(2ρ0)
SX [f1](ξ−)∓ sinh(2ρ0 − i γ)

sinh(2ρ0)
SX [f2](ξ+)

+
ΣX [f±](ξ+, ξ−)

sinh(2ρ0)
, (3.55)

O±G = −SG [f3](ξ−)± sinh(−i γ)

sinh(2ρ0)
SG [f1](ξ−)∓ sinh(2ρ0 − i γ)

sinh(2ρ0)
SG [f2](ξ+)

+
ΣG [f±](ξ+, ξ−)

sinh(2ρ0)
, (3.56)
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O±XX =
ΣXX [f±](ξ+, ξ−)

sinh(2ρ0)
, (3.57)

O±XG =
ΣXG [f±](ξ+, ξ−)

sinh(2ρ0)
, (3.58)

O±GG =
ΣGG [f±](ξ+, ξ−)

sinh(2ρ0)
, (3.59)

such that the functionals J0, SX , SG , Σ0, ΣX , ΣG , ΣXG , ΣXX and ΣGG , are given by the

formulas (A.8), (A.6), (A.7), (A.10), (A.11), (A.12), (A.13), (A.14), (A.15), respectively.

The lower index of the terms in the right hand side of (3.53) carry information about

how these terms depend on the dynamical variables X(λ|ξ) and G(λ|ξ). Namely:

• O±0 stands for the “bulk” term, which is independent of X and G,

• O±X linear in X and independent of G,

• O±G is linear in G and independent of X,

• O±XG is linear in both G and X,

• O±XX is quadratic in X and independent of G, and finally

• O±GG is quadratic in G and independent of X.

Formula (3.53) together with (3.54)–(3.59) and the integral representations (A.6)–

(A.21) given in appendix A constitutes our final result for the lattice expectation values

of the scalar and pseudo-scalar fermion bilinears. To get the expectation values of these

operators in the continuum theory, the lattice formula (3.53) should be evaluated in the

continuum limit. This will be discussed in the next section.

4 Continuum limit

In this section the expectation value formulas (3.53) are evaluated at the continuum limit.

This task reduces to the evaluation of the sums and integrals entering (3.53) in the large

ρ0 limit.13 The ρ0 dependence of these terms is determined by the ρ0 dependence of

the functions f1, f2, f3, f± given in (3.48)–(3.52), and the ρ0 dependence of X(hj |ξ±) and

G(λ|ξ±). Latter is governed by the linear integral equation (3.36). First, it is worth to

discuss the continuum limit of the variables X(hj |ξ±) and G(λ|ξ±). They are solutions of

the set of equations (3.35)–(3.37). The continuum limit means, that one has to take the

number of lattice sites N to infinity, such that the inhomogeneity parameter ρ0 is tuned

with N according to the formula (2.17). This means, that in the continuum limit procedure

ρ0 also tends to infinity, but logarithmically in N or a.

13In the rest of the paper, the terms “large ρ0 limit” and “large N limit” will be equivalently used for

the continuum limit procedure.
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In this limit the counting-function Zλ(λ) (2.23)and its nonlinear combinations

F (λ)
± (λ) (3.31) tend to their (finite) continuum counterparts:

Zλ(λ)→ Zλ,c(λ) = Z

(
π

γ
λ

)
,

F (λ)
± (λ)→ F (λ)

±,c(λ) = F±
(
π

γ
λ

)
,

(4.1)

where Z(θ) is solution of the continuum NLIE (2.34) and F±(θ) is given by (2.43). This

implies that in the leading order in 1
N computations Zλ(λ) and F (λ)

± (λ) can be replaced by

their continuum counterparts given by (4.1).

Then equation (3.36) implies, that the large N limit of G(λ|ξ±) is governed by the

large ρ0 expansion of S0(λ|ξ±) :

S0(λ|ξ±) = −2π

γ
e
±π
γ
λ
e
−π
γ
ρ0 +O(e

−2 π
γ
ρ0). (4.2)

According to (2.17) e
−π
γ
ρ0 ∼ 1

N ∼ a. Since apart from S0, all terms in the equations (3.35)–

(3.37) are proportional to G(λ|ξ) and X(hj |ξ), (4.2) implies that:

G(λ|ξ±) ∼ 1

N
+O

(
1

N2

)
∼ a+O(a2),

X(λ|ξ±) ∼ 1

N
+O

(
1

N2

)
∼ a+O(a2).

(4.3)

With the help of (4.2) and (4.3), one can immediately give a rough estimate for the large

N magnitude of the different terms arising in the right hand side of (3.53). This is implied

by their S0, X, and G content:

O±0 ∼ S0 ∼
1

N
∼ e−(1+p)ρ0 O±XX ∼ XX ∼ 1

N2
∼ e−2(1+p)ρ0

O±X ∼ X ∼
1

N
∼ e−(1+p)ρ0 O±XG ∼ X G ∼

1

N2
∼ e−2(1+p)ρ0 (4.4)

O±G ∼ G ∼
1

N
∼ e−(1+p)ρ0 O±GG ∼ G G ∼

1

N2
∼ e−2(1+p)ρ0 .

This rough estimate implies, that in the continuum limit the terms in (3.53) being quadratic

or multilinear in G and X, (i.e. O±XX ,O
±
GG ,O

±
XG) become negligible with respect to the

constant (O±0 ) and linear terms (O±G ,O
±
X). Thus only the constant and purely linear terms

determine the leading order behavior of 〈O±2n〉λ in the large14 N limit.

Though we would like to emphasize, that (4.4) is only a rough and not the exact

estimate for the large N behavior for the quantities entering the r.h.s. of (3.53). Its purpose

is to give a fast intuitive argument, why the multilinear and quadratic in X and G terms

become negligible in the continuum limit.

The rough estimate (4.4) was derived by neglecting the ρ0 dependence of the functions

f1, f2, f3, f± given by (3.48)–(3.52). For presentational purposes we anticipate the exact

14By large N limit, we mean the continuum limit procedure, which means that we consider the N →∞
limit, such that at the same time ρ0 is also tuned with N according to the formula (2.17).
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result. The careful computations presented in the rest of this section and in appendix B

show, that the exact leading order large N or equivalently ρ0 behavior of the sums and

integrals entering (3.53) is given by the formula:

O±0 ∼ O
±
X ∼ O

±
G ∼∼ e

−(1+p)ρ0 ∼ e(1−p)ρ0 ∼ e−2 p ρ0 ,

O±GG ∼ O
±
XG ∼ O

±
XX ∼ e

−2(1+p)ρ0 ∼ 1

N2
∼ a2. (4.5)

This formula also implies that multilinear and quadratic in X and G terms are negligible

in the continuum limit. This statement is shown in appendix B.1. By comparing (4.5)

and (4.4) it can also be seen that the rough estimate came from a simplified train of

thoughts is exact at the p = 1 free fermion point.

Now, our goal is to compute the leading order in N term of 〈O±2n〉λ in the continuum

limit. To carry out this purpose, it is worth to formulate the problem in terms of the

finite parts of the leading order in N terms of G(λ|ξ±) and X(hj |ξ±). These finite parts are

defined by the following large N (or equivalently ρ0) expansions of G(λ|ξ±) and X(hj |ξ±) :

G(λ|ξ±) = −2π

γ
e
−π
γ
ρ0 G(±)(λ) +O

(
1

N2

)
,

X(hj |ξ±) = −2π

γ
e
−π
γ
ρ0 X

(±)
j +O

(
1

N2

)
, j = 1, . . . ,mH .

(4.6)

From (3.36), (3.35) and (4.1) it follows, that the finite parts G± and X
(±)
j satisfy the

equations:

G(±)(λ)−
∑
α=±

∞∫
−∞

dλ′Gλ(λ− λ′ − i α η)G(±)(λ′ + i α η)F (λ)
α,c (λ′ + i α η) =

= e
±π
γ
λ

+

mH∑
j=1

2πGλ(λ− hj)X(±)
j , X

(±)
j =

G(±)(hj)

Z ′λ,c(hj)
, j = 1, . . . ,mH .

(4.7)

We note, that everywhere in (4.7) the finite continuum limit of the counting-function arises.

Now, we are in the position to determine the leading order term of the expectation

value 〈O±2n〉λ in the large N limit. As (4.5) implies, only the first three terms from the

r.h.s. of (3.53) will contribute at leading order. Namely, 〈O±2n〉λ = O±0 + O±X + O±G +

“next to leading order terms”.

The term O±0 is independent of the positions of the holes. This means that this

contribution is independent of the matrix element of the operator. This is why we will

call it the bulk term: 〈O±2n〉bulk
λ ≡ O±0 . Formula (3.54) implies, that this bulk term can be

represented as follows:

〈O±2n〉
bulk
λ = −J0[f3](ξ−)± sinh(−i γ)

sinh(2ρ0)
J0[f1](ξ−)

∓ sinh(2ρ0 − i γ)

sinh(2ρ0)
J0[f2](ξ+) +

Σ0[f±](ξ+, ξ−)

sinh(2ρ0)
,

(4.8)

where J0 and Σ0 are given by (A.8) and (A.10), respectively.
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On the other hand, with the help of (3.55), (3.56), (A.6)–(A.8), (A.11), (A.12), (A.16)

and (A.18), (A.19) the sum O±X +O±G can be written as follows:

O±X +O±G =

mH∑
j=1

[
C

(±)
+ (hj)X(hj |ξ+)+C

(±)
− (hj)X(hj |ξ−)

]
+ (4.9)

+
∑
α=±

∞∫
−∞

dλ

2π
F (λ)
α (λ+ iαη)

[
G(λ+ iαη|ξ+)C

(±)
+ (λ+ iα)+G(λ+ iαη|ξ−)C

(±)
− (λ+ iα)

]
,

where

C
(±)
+ (λ) =∓sinh(2ρ0− iγ)

sinh(2ρ0)
JG[f2](λ)+

1

sinh(2ρ0)
[JS [f±](λ|ξ−)−JSG[f±](λ|ξ−)] , (4.10)

C
(±)
− (λ) =−JG[f3](λ)±sinh(−iγ)

sinh(2ρ0)
JG[f1](λ)− 1

sinh(2ρ0)
[JS [f±](λ|ξ+)−JSG[f±](λ|ξ+)] ,

(4.11)

with JG, JS and JSG given in (A.8), (A.18) and (A.19), respectively. We are interested

in the leading order large N expression for O±X + O±G , this is why from (4.6) the leading

order expressions of X(hj |ξ±) and of G(λ|ξ±) can be replaced into (4.9). Similarly, the

F (λ)
α (λ)→ F (λ)

α,c (λ) replacement can also be done at leading order. As a result one obtains:

O±X +O±G =−2π

γ
e−(1+p)ρ0

{
mH∑
j=1

[
C

(±)
+ (hj)X

(+)
j +C

(±)
− (hj)X

(−)
j

]
+ (4.12)

+
∑
α=±

∞∫
−∞

dλ

2π
F (λ)
α,c (λ+ iαη)

[
G(+)(λ+ iαη)C

(±)
+ (λ+ iα)+G(−)(λ+ iαη)C

(±)
− (λ+ iα)

]}
+. . . ,

where the dots stand for subleading terms in the large N limit.

The careful evaluation of the functionals (4.8), (4.10) and (4.11) in the large ρ0 limit,

which is presented in appendix B, leads to the following large ρ0 asymptotics for the bulk

term and for C
(±)
± (λ) :

〈O±2n〉
bulk
λ =

{
− p+1

sin γ tan(p π2 ) e−2pρ0 +O(e−2ρ0), case: +,

O(e−2ρ0), case: − .
(4.13)

C
(±)
+ (λ)

ρ0→∞
= ∓K+(λ|ρ0) + . . . , (4.14)

C
(±)
− (λ)

ρ0→∞
= −K−(λ|ρ0) + . . . , (4.15)

where

K±(λ|ρ0) =
p+ 1

2 sin γ
e∓(p+1)λ e(1−p)ρ0 +O(e−2ρ0), (4.16)

and the dots stand for terms tending to zero, when ρ0 →∞ and p < 1.
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Putting the results (4.8), (4.13), (4.12), (4.14) together, one obtains the following

leading order result for 〈O±2n〉λ in the attractive regime:

〈O±2n〉λ = 〈O±2n〉
bulk
λ +

2π

γ
e−(p+1)ρ0

{
mH∑
j=1

K−(hj |ρ0)X
(−)
j ±

mH∑
j=1

K+(hj |ρ0)X
(+)
j + (4.17)

+
∑
α=±

∞∫
−∞

dλ

2π
F (λ)
α,c (λ+ iαη)

[
G(−)(λ+ iαη)K−(λ+ iα)±G(+)(λ+ iαη)K+(λ+ iα)

]}
.

Here as a consequence of (4.5), the contributions coming from O±XX , O
±
XG and O±GG were

neglected.

It turns out, the leading order expression (4.17) for 〈O±2n〉λ can be rephrased in terms

of the variables Gd(θ), X
(d)
j of (2.46) and G`(θ), X

(`)
j of (2.48). The reason for this is that

G(±)(λ) and X
(±)
j of (4.7) can be simply expressed in terms of Gd(θ), X

(d)
j and Gd(θ), X

(d)
j .

Consider the following linear combinations of G(±)(λ) and X
(±)
j :

Ĝd(θ) =
`

2

[
G(+)

(γ
π
θ
)

+ G(−)
(γ
π
θ
)]
, X̂

(d)
j =

`

2

π

γ

(
X

(+)
j +X

(−)
j

)
,

Ĝ`(θ) =
1

2

[
G(+)

(γ
π
θ
)
− G(−)

(γ
π
θ
)]
, X̂

(`)
j =

1

2

π

γ

(
X

(+)
j −X(−)

j

)
.

(4.18)

As a consequence of the linearity of (4.7), it can be shown that the new variables

Ĝd(θ), Ĝ`(θ), X̂
(d)
j , X̂

(`)
j satisfy the linear integral equations as follows:

Ĝd(θ)−
∑
α=±

∞∫
−∞

dθ′

2π
G(θ − θ′ − i α η)Ĝd(θ′ + i α η)Fα(θ′ + i α η) = (4.19)

= ` cosh(θ) +

mH∑
j=1

G(θ −Hj) X̂
(d)
j , X̂

(d)
j =

Ĝd(Hj)

Z ′(Hj)
, j = 1, . . . ,mH .

Ĝ`(θ)−
∑
α=±

∞∫
−∞

dθ′

2π
G(θ − θ′ − i α η)Ĝ`(θ′ + i α η)Fα(θ′ + i α η) = (4.20)

= sinh(θ) +

mH∑
j=1

G(θ −Hj) X̂
(`)
j , X̂

(`)
j =

Ĝ`(Hj)

Z ′(Hj)
, j = 1, . . . ,mH ,

where Z(θ) and Hj are the counting function and the positions of the holes in rapidity

convention. They are solutions of the equations (2.34) and (2.35).

Comparing (4.19) and (4.20) to (2.46) and (2.48) one can recognize that

Ĝd(θ) = Gd(θ), X̂
(d)
j = X

(d)
j , j = 1, . . . ,mH ,

Ĝ`(θ) = G`(θ), X̂
(`)
j = X

(`)
j , j = 1, . . . ,mH .

(4.21)
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Using (4.21) and substituting the inverse relation of (4.18) into (4.17) together with a

change of integrating variables from λ to θ one ends up with the final result:

〈O+
2n〉λ =

2(p+1)e−2pρ0

sinγ

{
−1

2
tan
(pπ

2

)
+

mH∑
k=1

{
cosh(Hk)

X
(d)
k

`
−sinh(Hk)X

(`)
k

}
+

(4.22)

+
∑
α=±

∞∫
−∞

dθ

[
cosh(θ+ iαη)

Gd(θ+ iαη)

`
−sinh(θ+ iαη)G`(θ+ iαη)

]
Fα(θ+ iαη)+. . .

,
〈O−2n〉λ =

2(p+1)e−2pρ0

sinγ

{
mH∑
k=1

(
sinh(Hk)

X
(d)
k

`
−cosh(Hk)X

(`)
k

)
+ (4.23)

+
∑
α=±

∞∫
−∞

dθ

[
sinh(θ+ iαη)

Gd(θ+ iαη)

`
−cosh(θ+ iαη)G`(θ+ iαη)

]
Fα(θ+ iαη)+. . .

,
where dots mean next to leading order terms in the N tends to infinity limit of the attractive

regime. Comparing (2.49) and (4.22) one can easily recognize the proportionality of 〈O+
2n〉λ

and 〈ΘT 〉:

〈O+
2n〉λ =

2 (p+ 1) e−2 p ρ0

sin γ

〈ΘT 〉
2πM2

+ . . . . (4.24)

According to (2.51) the expectation value for the bare fermion bilinear is given by:

〈Ψ̄Ψ〉 =
1

a
〈O+

2n〉λ =
M (p+ 1)

2 sin γ

(
4

Ma

) 1−p
p+1 〈ΘT 〉

2πM2
+ . . . , (4.25)

where we exploited the relation (2.17) between the lattice constant a and the inhomogeneity

parameter ρ0. Using the relation between p and β in (2.19), one can see that 〈Ψ̄Ψ〉 is

proportional to the expectation value of the stress energy tensor, and it scales as aβ
2/4π−1

as it is expected from (2.8) obtained via purely field theoretical considerations.

5 Large volume expansion

In this section we rephrase the leading order terms in the large N expansions of (4.22)

and (4.23) in the form of a systematic large volume series. To get rid of the unnecessary

constants, we consider the following quantities:

O+ =
∑
α=±

∞∫
−∞

dθ

[
cosh(θ+ iαη)

Gd(θ+ iαη)

`
−sinh(θ+ iαη)G`(θ+ iαη)

]
Fα(θ+ iαη)+

+

mH∑
k=1

{
cosh(Hk)

X
(d)
k

`
−sinh(Hk)X

(`)
k

}
, (5.1)
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O−=
∑
α=±

∞∫
−∞

dθ

[
sinh(θ+ iαη)

Gd(θ+ iαη)

`
−cosh(θ+ iαη)G`(θ+ iαη)

]
Fα(θ+ iαη)+

+

mH∑
k=1

{
sinh(Hk)

X
(d)
k

`
−cosh(Hk)X

(`)
k

}
, (5.2)

where Gd(θ), X(d) and G`(θ), X(`) are defined by the equations (2.46) and (2.48) respec-

tively. From (2.49) and (4.22) it can be seen that O+ is simply related to the fermionic

expectation value of the trace of the stress-energy tensor:

O+ =
〈ΘT 〉 − 〈Θ∞T 〉

2πM2
. (5.3)

On the other handO− is proportional to the fermionic expectation value of the renormalized

pseudo-scalar fermion bilinear 〈Ψ̄γ5Ψ〉. Here we do not care about the actual value of the

proportionality factor, since it will turn out, that this expectation value is zero between

multi-fermion states.

The process of the evaluation of (5.1) and (5.2) in the large volume limit is very similar

to the method used for computing the diagonal matrix elements of the trace of the stress-

energy tensor in purely elastic scattering theories [11]. The reason for this is that formally

the NLIE equations (2.34) are very similar to the Thermodynamic Bethe Ansatz (TBA)

equations of a purely diagonally scattering theory of two types of particles. This analogy,

the actual form of the large volume series of the U(1) current of the theory [17] together

with the all order large volume series conjectures for the diagonal form factors of purely

elastic scattering theories [10, 11, 14–16], led to the following large volume series conjecture

for the diagonal multi-fermion (soliton) expectation values of local operators in the MT

(SG) models [17]:

Conjecture. For any local operator O(x) in the MT (SG) model the expectation value in

an n-fermion (soliton) state with rapidities {H1, H2, . . . ,Hn} can be written as:

〈H1, . . . ,Hn|O(x)|H1, . . . ,Hn〉 =
1

ρ(H1, . . . ,Hn)

×
∑

{H+}∪{H−}

DO({H+}) ρ({H−}|{H+}),
(5.4)

where ρ( ~H) is the determinant of the exact Gaudin-matrix:

ρ(H1, . . . ,Hn) = det Φ̂( ~H), Φ̂kj( ~H) =
d

dHj
Z(Hk| ~H), j, k = 1, . . . ,mH , (5.5)

the sum in (5.4) runs for all bipartite partitions of the rapidities of the sandwiching state:

{H1, . . . ,Hn} = {H+} ∪ {H−}, such that

ρ({H+}|{H−} = det Φ̂+( ~H), (5.6)
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with Φ̂+( ~H) being the sub-matrix of Φ̂( ~H) corresponding to the subset {H+}. The quantity

DO({H}) in (5.4) is called the dressed form-factor [11] and it is given by an infinite sum

in terms of the connected diagonal form-factors of the theory:

DO({H1, . . . ,Hn}) =

∞∑
n+=0

∞∑
n−=0

1

n+!n−!

∞∫
−∞

n++n−∏
i=1

dθi
2π

n+∏
i=1

F+(θi + i η)

n++n−∏
i=n++1

F−(θi − i η)

×FOc (H1, H2, . . . ,Hn, θ1+i η, . . . , θn+ +i η, θn++1−i η, . . . , θn++n−−i η),

(5.7)

where FOc denotes the connected diagonal form factors of O(x) in pure fermion (soliton)

states, 0 < η < min(pπ, π) is a small contour deformation parameter and F±(θ) are the

nonlinear expressions of the counting function given by (2.43).

We note that the structure (5.4) is the same for the purely elastic scattering theories

and for the MT (SG) model. The difference arises in the concrete form of the exact Gaudin-

matrix15 and in the actual form of the dressed form factors. However up to exponentially

small in volume corrections the formulas of purely elastic scattering theories are also appro-

priate to describe the multi-fermion (soliton) expectation values of local operators [9, 17].

So far, conjecture (5.4)–(5.7) has been checked against the diagonal fermionic (soli-

tonic) form factors of the U(1) current of the theory [17] and now by rephrasing O+ as a

large volume series, we will show that this conjecture remains valid in the case of the trace

of the stress energy tensor, too. Thus, our purpose is to bring O± into the form of (5.4)

and check whether the coefficients of ρ({H−}|{H+}) agrees with DO({H+}) given by (5.7).

In [11], starting from the Thermodynamic Bethe Ansatz (TBA) equations, the analog

formulas of (5.4)–(5.7) were derived for the diagonal matrix elements of the trace of the

stress energy tensor in purely elastic scattering theories. The computation we present

below is an appropriate adaptation of the derivation given in section 3 of ref. [11].

The first step of the computation is to rewrite Gd(θ), X(d) and G`(θ)X(`) in terms of the

solutions of some “elementary” linear problems. For any function f, let f [±](θ) = f(θ± iη),

then by definition an “elementary” solution indexed by A satisfy the linear equations as

follows:

G[α]
A (θ)−

∑
β=±

∞∫
−∞

dθ′

2π
ψαβ(θ − θ′)G[β]

A (θ′)F [β]
β (θ′) = f

[α]
A (θ), α = ±, (5.8)

where the symmetric kernel ψαβ(θ) is given by:

ψαβ(θ) = G(θ + i (α− β) η), α, β = ±, (5.9)

and fA(θ) is the source term specifying G[α]
A (θ). An “elementary” solution with unshifted

argument satisfies the equations as follows:

GA(θ)−
∑
β=±

∞∫
−∞

dθ′

2π
ψαβ(θ −θ′− i α η)G[β]

A (θ′)F [β]
β (θ′) = fA(θ), α = ±. (5.10)

15In general, the Gaudin-matrix is the derivative of the exact Bethe-equations with respect to the particle

rapidities.

– 29 –



J
H
E
P
0
3
(
2
0
1
8
)
0
4
7

In our problem the index A can take values from the set I = {s, c, 1, 2, . . . ,mH}, such that

the source functions fA(θ) in (5.8) take the form:

fs(θ) = sinh(θ), fc(θ) = cosh(θ), fj(θ) = −G(θ −Hj), j = 1, . . . ,mH . (5.11)

From the defining linear equations (5.8) it can be shown, that the “elementary” solutions

satisfy the following identities:

∑
α=±

∞∫
−∞

dθ

2π
f

[α]
A (θ)G[α]

B (θ)F [α]
α (θ) =

∑
α=±

∞∫
−∞

dθ

2π
f

[α]
B (θ)G[α]

A (θ)F [α]
α (θ), A,B ∈ I,

(5.12)∑
α=±

∞∫
−∞

dθ

2π
f

[α]
A (θ)G[α]

j (θ)F [α]
α (θ) = fA(Hj)− GA(Hj), j = 1, . . . ,mH , A ∈ I.

(5.13)

With the help of the linear equations (2.46), (2.48) and (5.8) with (5.11), the pairs of

quantities Gd(θ), X(d) and G`(θ), X(`) can be expressed in terms of the elementary solutions

as follows:

Gd(θ) = `Gc(θ)−
mH∑
j=1

Gj(θ)X(d)
j , X

(d)
k = 1, k = 1, . . . ,mH , (5.14)

G`(θ) = Gs(θ)−
mH∑
j=1

Gj(θ)X(`)
j , X

(`)
k =

mH∑
j=1

Φ̂−1
kj ( ~H)Gs(Hj), k = 1, . . . ,mH , (5.15)

where Φ̂kj( ~H) is the exact Gaudin-matrix defined by the formula:

Φ̂kj( ~H) =
d

dHj
Z(Hk| ~H) = Z ′(Hk) δjk + Gj(Hk), j, k = 1, . . . ,mH . (5.16)

Using the formulas (5.12)–(5.16), Φ̂kj( ~H) and O± can be expressed in terms of the elemen-

tary solutions of (5.8) as follows:

Φ̂kj( ~H) =

(
`Gc(Hk)−

mH∑
k′=1

Gk′(Hk)

)
δkj + Gj(Hk), j, k = 1, . . . ,mH , (5.17)

O+ =
∑
α=±

∞∫
−∞

dθ

2π
F [α]
α (θ)

[
f [α]
c (θ)G[α]

c (θ)− f [α]
s (θ)G[α]

s (θ)
]

(5.18)

+
1

`

mH∑
j=1

Gc(Hj)−
mH∑
j,k=1

Gs(Hk) Φ̂−1
kj ( ~H)Gs(Hj),

O− =
∑
α=±

∞∫
−∞

dθ

2π
F [α]
α (θ)

[
f [α]
c (θ)G[α]

s (θ)− f [α]
s (θ)G[α]

c (θ)
]

(5.19)

− 1

`

mH∑
j=1

Gs(Hj) +

mH∑
j,k=1

Gs(Hk) Φ̂−1
kj ( ~H)Gc(Hj).

To bring (5.18) and (5.19) into the form of (5.4) one needs to use two theorems.
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Theorem 1. The inverse of the Gaudin-matrix can be expressed in terms of its principal

minors and sequences of its matrix elements [11, 62] by the formula as follows:

Φ̂−1
ij =

Cij
det Φ̂

, i, j = 1, . . . ,mH , (5.20)

with Cij being the co-factor matrix with entries:

Cij =


det Φ̂({i}), i = j,

mH−2∑
n=0

∑
{α}

(−1)n+1 Φ̂iα1 Φ̂α1α2 . . . Φ̂αnj det Φ̂({j, i, α1, . . . , αn}), i 6= j,
(5.21)

where {α} = {1, 2, . . . ,mH} \ {i, j} and Φ̂({I}) denotes the matrix obtained by omitting

from Φ̂ the rows and columns indexed by the set {I}.

Theorem 2. The determinant of the Gaudin-matrix can be expressed in terms of its prin-

cipal minors and sequences of its matrix elements [11] by the formula:

det Φ̂ = `Gc(Hi) det Φ̂({i}) +

mH−1∑
n=1

∑
{α}

(−1)nΦ̂iα1Φ̂α1α2 . . .

Φ̂αn−1αn `Gc(Hαn) det Φ̂({i, α1, . . . , αn}).

(5.22)

Theorems 1 and 2 allow one to rewrite the double and single sums respectively in (5.18)

and (5.19) into a more convenient form. Using (5.22), the single sums of (5.18) and (5.19)

can be represented as:

mH∑
i=1

1

`
GA(Hi) =

mH∑
i=1

GA(Hi)Gc(Hi)
det Φ̂({i})

det Φ̂
+ (5.23)

+

mH∑
i,j=1
i 6=j

GA(Hi)Gc(Hj)

mH−2∑
n=0

∑
{α}

(−1)n+1Gα1(Hi)Gα2(Hα1) . . .Gj(Hαn)
det Φ̂({i, j, α1, . . . , αn})

det Φ̂
,

with A ∈ {s, c}. The double sums of (5.18) and (5.19) can be represented in a very similar

form:

mH∑
i,j=1

GA(Hi) Φ̂−1
ij ( ~H)GB(Hj) =

mH∑
i=1

GA(Hi)GB(Hi)
det Φ̂({i})

det Φ̂
+ (5.24)

+

mH∑
i,j=1
i 6=j

GA(Hi)GB(Hj)

mH−2∑
n=0

∑
{α}

(−1)n+1Gα1(Hi)Gα2(Hα1) . . .Gj(Hαn)
det Φ̂({i, j, α1, . . . , αn})

det Φ̂
,

with A,B ∈ {s, c}. It is convenient to determine first the large volume series expansion of

the first terms in the right hand sides of (5.18) and (5.19). They are called the vacuum

contributions [10, 11] since they correspond to the {H+} = ∅ case. These terms can be

rephrased as an infinite series similar to that of LeClair and Mussardo [14–16]. To get this

series representation, first one has to construct the all order large volume solution of (5.8)
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for A = s, c. This can be obtained by a simple iterative solution of the equations. Then one

has to insert these large volume series into (5.18), (5.19). At the end of this process one gets

a bulky sum of terms, such that a lot of terms are identical under certain permutations of the

integrating variables. Taking into account these permutational symmetries by appropriate

symmetry factors, one ends up with the formula for the vacuum contributions as follows:

O±
∣∣
vac

=

∞∑
n+=0

∞∑
n−=0

1

n+!n−!

∞∫
−∞

n++n−∏
i=1

dθi
2π

n+∏
i=1

F+(θi + i η)

n++n−∏
i=n++1

F−(θi − i η)

×FO±n++n−,c(θ1+i η, . . . , θn+ +i η, θn++1−i η, . . . , θn++n−−i η),

(5.25)

where the “connected” diagonal form factors of O± are given by the definitions:

FO
+

n,c (θ1, θ2, . . . , θn) =
∑
σ∈Sn

(
cosh(θσ(1)) cosh(θσ(n))− sinh(θσ(1)) sinh(θσ(n))

)
×
n−1∏
j=1

G(θσ(j) − θσ(j+1)), (5.26)

FO
−

n,c (θ1, θ2, . . . , θn) =
∑
σ∈Sn

(
cosh(θσ(1)) sinh(θσ(n))− sinh(θσ(1)) cosh(θσ(n))

)
×
n−1∏
j=1

G(θσ(j) − θσ(j+1)), (5.27)

where σ denotes the elements of the symmetric group Sn. From the permutation symmetry

of the summand in (5.27), it follows that FO
−

n,c (θ1, θ2, . . . , θn) = 0, and consequently: O−
∣∣
vac

=

0. The next step is to determine16 the large volume series representations for the 2nd and

3rd terms in (5.18) and (5.19). First one has to rewrite them with the help of the right

hand sides of (5.23) and (5.24) taken at appropriate values of the indexes A and B. Then

the all order large volume series representation of the solution of (5.8) must be inserted

into the result. Finally, the careful bookkeeping of terms being identical under certain

permutations of the variables leads to the final formula:

O± =
1

ρ(H1, . . . ,HmH )

∑
{H+}∪{H−}

DO±({H+}) ρ({H−}|{H+}), (5.28)

where the so-called dressed form factors take the form:

DO±({H1, . . . ,Hn}) =
∞∑

n+=0

∞∑
n−=0

1

n+!n−!

∞∫
−∞

n++n−∏
i=1

dθi
2π

n+∏
i=1

F+(θi + i η)

n++n−∏
i=n++1

F−(θi − i η)

× FO±n+n++n−,c(H1, H2, . . . ,Hn, θ1+i η, . . . , θn+ +i η, θn++1−i η, . . . , θn++n−−i η).

(5.29)

Now we can discuss the results. First we discuss the case of O−. (5.29) and (5.27) implies

that O− = 0 exactly. Taking into account the connection between O− and the fermionic

16The necessary computations are almost literally the same as those presented in section 3. of ref. [11].

– 32 –



J
H
E
P
0
3
(
2
0
1
8
)
0
4
7

expectation values of the pseudo-scalar fermion bilinear:

〈Ψ̄γ5Ψ〉 =
1

a
〈O−2n〉λ ∼ a

p−1
p+1 O−+. . . ,

one17 can conclude that the fermionic expectation values of Ψ̄γ5Ψ are zero.

Next we discuss the result obtained for O+. According to (5.3), O+ is proportional to

the fermionic (solitonic) expectation values of ΘT . This operator belongs to a conserved

current, this is why its connected diagonal form-factors between pure fermion (soliton)

states can be determined by using the arguments of references [14] and [15]. The actual

computations lead to the following simple result:

FΘT
n,c (θ1, θ2, . . . , θn) = 2πM2 FO

+

n,c (θ1, θ2, . . . , θn). (5.30)

Then, (5.30) together with (5.3), (5.28) and (5.29) imply that the conjecture (5.4) of ref. [17]

is valid for the diagonal fermionic (solitonic) matrix elements of the trace of the stress-

energy tensor, too.

6 Summary, outlook and discussion

In this paper, using the light-cone lattice regularization, we computed the finite volume ex-

pectation values of the composite operators Ψ̄Ψ and Ψ̄γ5Ψ between multi-fermion (soliton)

states in the Massive Thirring (sine-Gordon) model. In the light-cone regularized picture,

these expectation values are related to such 2-point functions of the lattice spin operators,

in which the operators are located at neighboring sites of the lattice. The operator Ψ̄Ψ is

a particularly interesting operator, since it is proportional to the trace of the stress-energy

tensor. Thus, its continuum finite volume expectation values can be computed [18] also

from the set of non-linear integral equations (NLIE) governing the finite volume spectrum

of the theory. The final result, which was obtained after a lengthy computation of the

spin-spin 2-point functions of neighboring operators, reproduced the pure NLIE result.

In general the finite volume matrix elements of local operators are computed via their

large volume series. Thinking in this framework, previously in [17], an all order large

volume series representation similar to that of [10, 11, 14] was conjectured for the finite

volume diagonal matrix elements of local operators between multi-fermion (soliton) states.

To check the conjecture of [17] we rephrased the diagonal multi-fermion (soliton) matrix

elements of the trace of the stress-energy tensor as a large volume series. The form of the

series was conform to the conjecture of [17].

Nevertheless, one has to note that, so far the large volume series conjecture of [17] for

the finite volume diagonal matrix elements of local operators between pure fermion (soliton)

states, has been checked in cases when the local operator belongs to a conserved quantity

of the theory. This is why it would be interesting to test the conjecture for such operators,

which do not belong to the conserved quantities of the model. The results of [7, 8] indicate

that the truncated conformal space approach could be an appropriate method for such

investigations.

17Here dots stand for terms tending to zero when a→ 0 in the attractive 0 < p < 1 regime of the model.
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Beyond the results of [17] and the present paper, several questions are still open.

The light-cone lattice approach gives access to all eigenstates of the Hamiltonian. Thus,

diagonal matrix elements between non-pure fermion or soliton states can also be computed

in this framework. It would be interesting to see, how the large volume series representation

of [17] should be modified in that case. Finally, a much more difficult but still open problem

is the determination of non-diagonal finite volume form factors.

Beyond our approach, there is another approach to the form-factors of the SG model

in cylindrical geometry [65–71]. We close the paper with some discussion concerning the

comparison of our method with that of the series of papers [65–71]. In [65–71] the hidden

Grassmannian structure of the XXZ model was exploited to determine the finite tem-

perature 1-point functions [70] and ratios of infinite volume form-factors [71] of the local

operators of the SG theory. In this approach the compactified direction is time and the

compactification length corresponds to the inverse temperature. The 1-point functions and

the form-factors are computed as the continuum limit of appropriate partition functions of

the 6-vertex model.

Our approach is more conventional. We consider the inhomogeneous 6-vertex model

as a lattice regularization of the MT (SG) model and the operators we consider is the set

of composite operators of Fermi fields and their derivatives.18 In our case the compactified

direction is space which makes easy to consider matrix elements of operators between

excited states of the model. The Fermi fields are expressed in terms of local spin operators

and the form-factors are given by such correlation functions of the spins, in which the spins

are located at neighboring positions on the lattice. The correlators are evaluated by usual

Algebraic Bethe Ansatz methods [39]–[43].
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A Integral representation of some typical sums

In this appendix we summarize the integral representations of the typical sums (3.44), (3.45)

arising in the computation of the expectation values (3.6) and (3.7). For the sake of

completeness we recall them in this appendix, too:

Σ
(1)
λ [f ](ξ) =

m∑
a=1

f(λa)X(λa|ξ), (A.1)

Σ
(2)
λ [f ](ξ, ξ′) =

m∑
a,b=1

f(λa, λb)X(λa|ξ)X(λb|ξ′). (A.2)

18Or equivalently their bosonized counterparts in the SG model.

– 34 –



J
H
E
P
0
3
(
2
0
1
8
)
0
4
7

In order to be able to transform these sums into integral expressions, we require that in each

of its arguments f should not have worse than constant asymptotics at infinity. In (A.2)

we also require for f to be an antisymmetric function of its arguments.

First, let us consider the single sum (A.1). The straightforward application of (3.30)

to (A.1) gives the integral representation as follows:

Σ
(1)
λ [f ](ξ) = −

mH∑
j=1

f(hj)X(hj |ξ) +

∞∫
−∞

dλ

2π
f(λ)G(λ|ξ) (A.3)

−
∑
α=±

∞∫
−∞

dλ

2π
f(λ+ i α η)G(λ+ i α η|ξ)F (λ)

α (λ+ i α η).

However the form (A.3) is still not appropriate for our purposes, since it has no well

defined continuum limit in the cases of our interest, when ξ = ξ±. If one tries to take

the continuum limit in (A.3), it becomes immediately obvious that the first integral term

in (A.3) will diverge in the continuum limit. The reason is as follows. On the one hand,

as a consequence of (4.6) and (4.7), it follows that in the continuum limit G(λ|ξ±) ∼ e±
π
γ
λ

at large λ. On the other hand, as it was mentioned in section 3, the concrete functions19

f(λ) for which we should apply (A.3) have constant asymptotics at infinity. Thus, the

integrand in
∞∫
−∞

dλ
2π f(λ)G(λ|ξ) in the r.h.s. of (A.3) blows up exponentially at infinity in

the continuum limit, which implies that the integral itself diverges.

However on the lattice each term of (A.3) is well defined and convergent, because as

a consequence of (3.36) and (3.37) on the lattice G(λ|ξ) decays exponentially at large λ.

This means, that in order to be able to define the continuum limit, further transformations

of (A.3) are required. By exploiting (3.36) one can make the following replacement into

the first integral term of (A.3):

G(λ|ξ)→ −
∑
α=±

∞∫
−∞

dλ′Gλ(λ− λ′ − i α η)G(λ′ + i α η|ξ)F (λ)
α (λ′ + i α η)+

+ S0(λ|ξ) +

mH∑
j=1

2πGλ(λ− hj)Xj(ξ),

(A.4)

Making the replacement (A.4) into the first integral term of (A.3), one ends up with the

formula as follows for Σ
(1)
λ [f ](ξ) :

Σ
(1)
λ [f ](ξ) = J0[f ](ξ) + SX [f ](ξ) + SG [f ](ξ), (A.5)

19We just recall, that in our actual computations f can be f1, f2, or f3 given by the formulas (3.48)–(3.50).
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where J0[f ](ξ), SX [f ](ξ) and SG [f ](ξ) are functionals of f and are of the form:

SX [f ](ξ) =

mH∑
j=1

X(hj |ξ) JG[f ](hj) (A.6)

SG [f ](ξ) =
∑
α=±

∞∫
−∞

dλ

2π
F (λ)
α (λ+ i α η)G(λ+ i α η|ξ) JG[f ](λ+ i α η), (A.7)

J0[f ](ξ) =

∞∫
−∞

dλ

2π
f(λ)S0(λ|ξ), JG[f ](λ) = (f ? Gλ)(λ)− f(λ). (A.8)

Here ? denotes convolution with conventions given by (B.3). In this final representation

each term has a well defined continuum limit.20

Similar, but more tedious computations lead to the following formula for Σ
(2)
λ [f ](ξ, ξ′).

It is composed of six terms:

Σ
(2)
λ [f ](ξ, ξ′) = Σ0[f ](ξ, ξ′) + ΣX [f ](ξ, ξ′) + ΣG [f ](ξ, ξ′) + ΣXX [f ](ξ, ξ′)

+ ΣGG [f ](ξ, ξ′) + ΣXG [f ](ξ, ξ′).
(A.9)

The lower index of each term on the right hand side of (A.9) refers to the internal structure

of the expression as it becomes clear from their explicit form:

Σ0[f ](ξ, ξ′) =

∞∫
−∞

dλ

2π

∞∫
−∞

dλ′

2π
S0(λ′|ξ) f(λ′, λ)S0(λ|ξ′), (A.10)

ΣX [f ](ξ, ξ′) =

mH∑
j=1

X(hj |ξ)FX [f ](hj |ξ′)−
mH∑
j=1

X(hj |ξ′)FX [f ](hj |ξ), (A.11)

ΣG [f ](ξ, ξ′) =
∑
α=±

∞∫
−∞

dλ

2π
F (λ)
α (λ+ i α η)

{
G(λ+ i α η|ξ)FX [f ](λ+ i α η|ξ′)

− G(λ+ i α η|ξ′)FX [f ](λ+ i α η|ξ)
}
, (A.12)

ΣXG [f ](ξ, ξ′) =
∑
α=±

∞∫
−∞

dλ

2π
F (λ)
α (λ+ i α η)

mH∑
j=1

FXX [f ](hj , λ+ i α η)×

×
{
X(hj |ξ′)G(λ+ i α η|ξ)−X(hj |ξ)G(λ+ i α η|ξ′)

}
, (A.13)

ΣXX [f ](ξ, ξ′) =

mH∑
j=1

mH∑
k=1

X(hj |ξ′)FXX [f ](hj , hk)X(hk|ξ), (A.14)

ΣGG [f ](ξ, ξ′) =
∑
α,β=±

∞∫
−∞

dλ

2π

∞∫
−∞

dλ′

2π
F (λ)
α (λ+ i α η)F (λ)

β (λ′ + i β η)×

×G(λ+ i α η|ξ′)G(λ′ + i β η|ξ)FXX [f ](λ+ i α η, λ′ + i β η), (A.15)

20In the terms containing S0(λ|ξ) the continuum limit can be taken after evaluating the integral, because

the naive expansion (4.2) of S0(λ|ξ) under the integral leads to incorrect results. The careful computations

can be found in appendix B.
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where the two functions FX and FXX , which are functionals of f, take the form:

FX [f ](λ|ξ) = JS [f ](λ|ξ)− JSG[f ](λ|ξ), (A.16)

FXX [f ](λ, λ′) = f(λ′, λ) + JG[f ](λ, λ′)− JG[f ](λ′, λ)− JGG[f ](λ, λ′), (A.17)

with the “elementary” functionals:

JS [f ](λ|ξ) =

∞∫
−∞

dλ′

2π
S0(λ′|ξ) f(λ′, λ), (A.18)

JSG[f ](λ|ξ) =

∞∫
−∞

dλ′

2π

∞∫
−∞

dλ′′ S0(λ′|ξ) f(λ′, λ′′)Gλ(λ′′ − λ), (A.19)

JG[f ](λ, λ′) =

∞∫
−∞

dλ′′Gλ(λ− λ′′) f(λ′′, λ′), (A.20)

JGG[f ](λ, λ′) =

∞∫
−∞

dλ′′
∞∫
−∞

dλ′′′Gλ(λ− λ′′) f(λ′′, λ′′′)Gλ(λ′′′ − λ′). (A.21)

Once again, we note, that at the derivation of (A.5) and (A.9), it was important to

bring the sums into a sum of such integral expressions which contain G(λ) only in the

combination G(λ)F (λ)
α (λ). The reason for the preference of such a form is, that in the

continuum limit, this combination is integrable along the lines λ± i η with λ ∈ R and with

η being a small positive contour deformation parameter. This convenient form could be

derived by eliminating the single G(λ) terms with the help of (3.36).

B Large ρ0 expansions

In this appendix we summarize, how one can obtain the coefficient functions

K±(λ|ρ0) (4.16) and the bulk term (4.13) of (4.17) via the computation of the large ρ0 (2.17)

limit of the functionals (4.8), (4.10) and (4.11). The key point of the computations is that

one should work in Fourier space. This is why as a first step we fix our conventions for the

Fourier-transformations. The Fourier-transform of a function f is given by:

f̃(ω) =

∞∫
−∞

dx eiωx f(x). (B.1)

The inverse transformation reads as:

f(x) =

∞∫
−∞

dω

2π
e−iωx f̃(ω). (B.2)
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The Fourier-transform of the convolution of two functions f and g is given by the product

of individual Fourier-transforms:21

(f ? g)(x) =

∞∫
−∞

dy f(x− y) g(y), (̃f ? g)(ω) = f̃(ω) g̃(ω). (B.3)

Formulas (4.8), (4.10) and (4.11) imply that in order to derive the formu-

las (4.14), (4.16) and (4.13), the following functionals should be computed in the large

ρ0 limit:

• JG[f ](λ) of (A.8) taken at the functions f1, f2, and f3 given by (3.48), (3.49)

and (3.50).

• J0[f1](ξ−), J0[f2](ξ+), andJ0[f3](ξ−) defined by (A.8) with ξ± = ±ρ0 − iγ2 .

• FX [f±](λ|ξ±) of (A.16) with f± given by (3.51) and (3.52).

• Σ0[f±](ξ−, ξ+) of (A.10).

The strategy of the large ρ0 evaluation of the above listed functionals is as follows.

One can write them in a very special form, namely as a linear combination of convolutions,

such that ρ0 appears in the argument of the convolutions. This means, that the large ρ0

expansion of the functionals of our interest is equivalent to determine the large argument

series expansion of the convolutions appearing in them. It is worth to represent these

convolutions in Fourier-space, since by using the property (B.3) they can be written as

a single Fourier-integral. The large argument series expansion of these Fourier-integral

expressions can be computed by using the residue theorem. Thus the positions of the poles

of the integrand will determine the large argument decay of the convolutions of our interest.

To complete the concrete large ρ0 computations, first one has to define some functions,

which constitute the elementary building blocks of the calculations:

Fc(λ) =
1

2γ cosh(πγλ)
, F̃c(ω) =

1

2cosh(γ2ω)
, (B.4)

F±c (λ) = e±2λFc(λ), in case p> 1 : F̃±c (ω) = F̃c(ω∓2i), (B.5)

g(λ) =
1

cosh(2λ)−cos(2γ)
, g̃(ω) =

π

sin(2γ)

sinh(ω2 (π−2γ))

sinh(π2ω)
, (B.6)

g̃2(ω) =
π

2sin2(2γ)

{
2cot(2γ)sinh(ω2 (π−2γ))

sinh(π2ω)
+
ω cosh(ω2 (π−2γ))

sinh(π2ω)

}
, (B.7)

gα(λ) =
1

sinh2(λ− iα)
, g̃α(ω) =−πω e(π

2
−α)ω

sinh(π2ω)
, α∈ (0,π), (B.8)

ψ(λ) =
sinh(2λ)

cosh(2λ)−cos(2γ)
, ψ̃′(ω) =

πω

sinh(π2ω)
cosh

(ω
2

(π−2γ)
)
, (B.9)

Gλ(λ) =

∞∫
−∞

dx

2π
e−iωx G̃λ(ω), G̃λ(ω) =

1

2

sinh(πω2 (1− 2γ
π ))

cosh(γω2 )sinh(πω2 (1− γ
π ))

, (B.10)

21Provided they exist.
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G±λ (λ) = e±2λGλ(λ), in case p> 1 : G̃±λ (ω) = G̃λ(ω∓2i), (B.11)

χF (λ) =

λ∫
0

dλ′Fc(λ
′) =

1

π
arctan

[
tanh

(
πλ

2γ

)]
, χ̃F (ω) = i F̃c(ω)r(ω), (B.12)

χ(λ) =

λ∫
0

dλ′Gλ(λ′), χ̃(ω) = i G̃λ(ω)r(ω), with r(ω) =
1

2

(
1

ω+ i0
+

1

ω− i0

)
, (B.13)

where the ±i 0 prescription in r(ω) ensures the correct treatment of the 1/ω singularity of

the Fourier integral representations of (B.12) and (B.13).

Let us start with the computation of the bulk (4.8) or in other words the global constant

in rapidity term. The representation of the building blocks of (4.8) as linear combinations

of convolutions read as:

J0[f1](ξ−) = −1

2
, (B.14)

J0[f2](ξ+) = − sinh(2ρ0) (gγ/2 ? χF )(2ρ0)− 1

2
cosh(2ρ0), (B.15)

J0[f3](ξ−) = sinh(2ρ0 + i γ) (gγ/2 ? χF )(−2ρ0)− 1

2
cosh(2ρ0 + i γ), (B.16)

Σ0[f+](ξ+, ξ−) =
cos γ

2γ2
[cosh(2ρ0) Tγ(ρ0)− I(ρ0)] , (B.17)

Σ0[f−](ξ+, ξ−) = i
cos γ

2γ2
cosh(2ρ0) sin γ T0(ρ0), (B.18)

where Tα(ρ0) and I(ρ0) are given by:

I(ρ0) = 4γ2 (Fc ?ψ
′ ?χF )(2ρ0), (B.19)

Tα(ρ0) = cosαT0(ρ0) = 4γ2 cosα
[
e2ρ0 (F−c ?g?Fc)(2ρ0)−e−2ρ0(F+

c ?g?Fc)(2ρ0)
]
. (B.20)

The large argument expansions of appendix C lead to the following leading order large ρ0

expressions for these building blocks in the attractive regime:

J0[f2](ξ+) = −e
−i pπ

2

2

1+p

cos(pπ2 )
e−2pρ0 +O(e−2ρ0), (B.21)

J0[f3](ξ−) = −e
iγ+i pπ

2

2

1+p

cos(pπ2 )
e−2pρ0 +O(e−2ρ0), (B.22)

Σ0[f+](ξ+, ξ−) =
π

2γ
cosγ

[
cotγ cot

π2

2γ
−1

]
e2(1−p)ρ0 +O(e−2ρ0), (B.23)

Σ0[f−](ξ+, ξ−) =
i

2
sinγ+ isin(2γ)

π

4γ

[
1

sinγ
cot

π2

2γ
− 1

cosγ

]
e2(1−p)ρ0 +O(e−2ρ0). (B.24)

Finally, inserting (B.21), (B.22), (B.23) and (B.24) into (4.8) one ends up with the final

result given by (4.13).

Now, we can continue with the computation of the coefficient functions C±± (λ) given

in (4.10) and (4.11). These functions can also be represented as appropriate linear com-

binations of some convolutions. Such convolution type representations of the elementary
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building blocks of C±± (λ) are given by the following formulas:

JG[f1](λ) = −p+1

2p
, (B.25)

JG[f2](λ) = 2cosh(2ρ0)χ(∞)+sinh(2ρ0)(gγ/2 ?χ)(λ+ρ0)−f2(λ|ρ0), (B.26)

JG[f3](λ) = 2cosh(2ρ0 + iγ)χ(∞)−sinh(2ρ0 + iγ)(gγ/2 ?χ)(λ−ρ0)−f3(λ|ρ0), (B.27)

JS [f+](λ|ξ±) = cosγ cosh(2ρ0)
{
eiγ
[
e2λ(g ?Fc)(λ∓ρ0)−e±2ρ0(g ?F+

c )(λ∓ρ0)
]

(B.28)

− e−iγ
[
e−2λ(g ?Fc)(λ∓ρ0)−e∓2ρ0(g ?F−c )(λ∓ρ0)

]}
−2cosγ (ψ′ ?χF )(λ∓ρ0),

JSG[f+](λ|ξ±) = cosγ cosh(2ρ0)
{
eiγ
[
e2λ(G−?g?Fc)(λ∓ρ0)−e±2ρ0(G?g?F+

c )(λ∓ρ0)
]

−e−iγ
[
e−2λ(G+?g?Fc)(λ∓ρ0)−e∓2ρ0(G?g?F−c )(λ∓ρ0)

]}
−2cosγ(G?ψ′ ?χF )(λ∓ρ0). (B.29)

JS [f−](λ|ξ±) = cosγ sinh(2ρ0)
{
eiγ
[
e2λ(g ?Fc)(λ∓ρ0)−e±2ρ0(g ?F+

c )(λ∓ρ0)
]
−

+e−iγ
[
e−2λ(g ?Fc)(λ∓ρ0)−e∓2ρ0(g ?F−c )(λ∓ρ0)

]}
, (B.30)

JSG[f−](λ|ξ±) = cosγ sinh(2ρ0)
{
eiγ
[
e2λ(G−?g?Fc)(λ∓ρ0)−e±2ρ0(G?g?F+

c )(λ∓ρ0)
]

+e−iγ
[
e−2λ(G+?g?Fc)(λ∓ρ0)−e∓2ρ0(G?g?F−c )(λ∓ρ0)

]}
. (B.31)

The large argument expansions presented in appendix C lead to the following leading order

large ρ0 forms for the functionals (B.25)–(B.31):

JG[f2](λ) = −e(1−p)ρ0e−(1+p)λ e−i
pπ
2

1 + p

2 sin(pπ2 )
+O(e−2ρ0), (B.32)

JG[f3](λ) = −e(1−p)ρ0e(1+p)λ ei γ+i pπ
2

1 + p

2 sin(pπ2 )
+O(e−2ρ0), (B.33)

JS [f+](λ|ξ±)

sinh(2ρ0)
= ∓ cos γ e±(2λ+i γ) +O(e−2ρ0), (B.34)

JSG[f+](λ|ξ±)

sinh(2ρ0)
= ±e±i γ π

2γ

[
tan

π2

2γ
− cot γ

]
e±(1+p)λ e(1−p)ρ0 ∓ cos γ e±(2λ+i γ)

+O(e−2ρ0), (B.35)

JS [f−](λ|ξ±)

sinh(2 ρ0)
= − cos γ e±(2λ+i γ) +O(e−2ρ0), (B.36)

JSG[f−](λ|ξ±)

sinh(2ρ0)
= e±i γ

π

2γ

[
tan

π2

2γ
− cot γ

]
e±(1+p)λ e(1−p)ρ0 − cos γ e±(2λ+i γ)

+O(e−2ρ0). (B.37)

Finally inserting these leading order expressions into (4.10) and (4.11), one ends up

with (4.14) with K±(λ|ρ0) given by (4.16).

B.1 The large N magnitude of the terms O±XX , O
±
XG, and O±GG

At the derivation of (4.17) we omitted the contributions of the terms O±XX , O
±
XG and O±GG

from (3.53). The reason for this was that, according to the anticipated result (4.5), these
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terms are next to leading order ones with respect to O±0 , O
±
X , and O±G in the continuum

limit. In this subsection we present the proof of the second line of (4.5). Namely, we show

, that the multilinear or quadratic in G and X terms are indeed of order 1
N2 in the large N

limit and so they are really negligible with respect to the constant and purely linear terms.

Formulas (3.57), (3.58) and (3.59) together with (A.13)–(A.15) imply the following

representations for O±XX , O
±
XG , and O±GG :

O±XG =
1

sinh(2ρ0)

∑
α=±

∞∫
−∞

dλ

2π
F (λ)
α (λ+ i α η)

mH∑
j=1

FXX [f±](hj , λ+ i α η)×

× {X(hj |ξ−)G(λ+ i α η|ξ+)−X(hj |ξ+)G(λ+ i α η|ξ−)} , (B.38)

O±XX =
1

sinh(2ρ0)

mH∑
j=1

mH∑
k=1

X(hj |ξ−)FXX [f±](hj , hk)X(hk|ξ+), (B.39)

O±GG =
1

sinh(2ρ0)

∑
α,β=±

∞∫
−∞

dλ

2π

∞∫
−∞

dλ′

2π
F (λ)
α (λ+ i α η)F (λ)

β (λ′ + i β η)×

× G(λ+ i α η|ξ−)G(λ′ + i β η|ξ+)FXX [f±](λ+ i α η, λ′ + i β η), (B.40)

where according to (A.17), (A.20) and (A.21):

FXX [f±](λ, λ′) = f±(λ′, λ) +

∞∫
−∞

dλ′′Gλ(λ− λ′′) f(λ′′, λ′)

−
∞∫
−∞

dλ′′Gλ(λ′ − λ′′) f(λ′′, λ)−
∞∫
−∞

dλ′′
∞∫
−∞

dλ′′′Gλ(λ− λ′′) f(λ′′, λ′′′)Gλ(λ′′′ − λ′).

(B.41)

The function Gλ(λ) is given by (B.10) and f±(λ, λ′) is defined in (3.51) and (3.52). To

make apparent the ρ0 dependence of f±, we rephrase them as follows:

f+(λ, λ′) = cosh(2ρ0) f
(1)
+ (λ, λ′) + f

(2)
+ (λ, λ′), (B.42)

f−(λ, λ′) = sinh(2ρ0) f
(1)
− (λ, λ′), (B.43)

with

f
(1)
+ (λ, λ′) = 2 cos(γ)

[sinh(2λ+ i γ)− sinh(2λ′ + i γ)]

cosh(2(λ− λ′))− cos(2γ)
, (B.44)

f
(2)
+ (λ, λ′) = −2 cos(γ)

sinh(2(λ− λ′))
cosh(2(λ− λ′))− cos(2γ)

, (B.45)

f
(1)
− (λ, λ′) = 2 cos(γ)

cosh(2λ+ i γ)− cosh(2λ′ + i γ)

cosh(2(λ− λ′))− cos(2γ)
. (B.46)

The point in the representations (B.42) and (B.43) is that the ρ0 dependence is lifted as a

prefactor, and the coefficient functions f
(1)
± and f

(2)
+ are ρ0 independent.

To determine the magnitude of O±XX , O
±
XG , and O±GG , first one has to compute the

large N magnitudes of each building blocks of the formulas (B.38), (B.39) and (B.40).
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In all the three quantities the functional FXX [f±](λ, λ′) given by (B.41) arises. Now

we show , that it is of order e2ρ0 at large ρ0. Formulas (B.44), (B.45) and ((B.46)) for

the functions f
(1)
± , f

(2)
+ , imply that these functions have constant asymptotics at infinity

in each of their variables. On the other hand (B.10) implies that Gλ(λ) is ρ0 independent

and has the large λ asymptotics:

Gλ(λ) ∼ e−αG |λ|, with: αG = 1 + Min

(
p, 1 +

2

p

)
, 0 < p, (B.47)

with p being the coupling constant defined by (2.19). These large λ and λ′ asymptotics

ensure, that all integrals will converge in (B.41). Furthermore, if one uses the representa-

tions (B.42) and (B.43) in (B.41), then it becomes obvious that the ρ0 dependence is only

given by the trivial factors cosh(2ρ0) or sinh(2ρ0) of (B.42) and (B.43), respectively, such

that these factors can be lifted in front of the convergent ρ0 independent integrals. This

implies, that FXX [f±] ∼ e2ρ0 in the large ρ0 limit.

The next common building block in (B.38), (B.39) and (B.40) is a trivial ρ0 dependent

prefactor: 1
sinh(2ρ0) which is of order e−2ρ0 , when ρ0 →∞.

Formulas (B.38), (B.39) and (B.40) are multilinear in G(λ|ξ±) and X(λ|ξ±). Their

large N magnitudes can be read off from (4.3) and they both turn to be of order 1
N in the

large N limit.

The amount of information provided so far is enough to give the large N estimate

for O±XX given by (B.39). Multiplying the magnitudes of the building blocks immediately

leads to the large N estimate: O±XX ∼
1
N2 .

To prove that O±XG and O±GG are also of order 1
N2 , one should deal with the large N limit

of F (λ)
± (λ± i η), too. This function is defined in (3.31) and due to (4.1) it becomes of order

one in the large N limit. This is why, at leading order its continuum counterpart F (λ)
±,c(λ±

i η) can be substituted into the formulas (B.38) and (B.40). Equation (2.34) implies, that

at large λ this function decays as: F (λ)
±,c(λ ± i η) ∼ e

−` sinh π
γ

(λ±iη)
. This extremely rapid

decay at infinity ensures the convergence of all integrals entering the expressions occurring

in (B.38) and (B.40). This implies that, the large N magnitudes of O±XG and O±GG are given

by the product of the magnitudes of the basic building blocks determined above.

For completeness we summarize below the magnitudes of the important building blocks

of O±XX , O
±
XG , and O±GG together with the relation between ρ0 and N given by (2.17):

1

N
∼ e−(1+p)ρ0 ,

1

sinh(2ρ0)
∼ e−2ρ0 FXX [f±](λ, λ′) ∼ f±(λ, λ′) ∼ e2ρ0 ,

G(λ|ξ±) ∼ e−(1+p)ρ0 , X(λ|ξ±) ∼ e−(1+p)ρ0 .

(B.48)

We emphasize, that these ρ0 dependences are not entangled with the λ dependence of the

quantities they belong to, thus they can be lifted in front of ρ0 independent convergent

sums and integrals entering the formulas (B.38), (B.39) and (B.40) after replacing (B.41)

with the representations (B.42) and (B.43) into them. This implies that the magnitude of

the individual building blocks listed in (B.48) determine that large N magnitudes of O±XX ,
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O±XG and O±GG :

O±XX ∼
1

sinh(2ρ0)
X X FXX [f±] ∼ e−2 (1+p)ρ0 ∼ 1

N2
,

O±XG ∼
1

sinh(2ρ0)
X G FXX [f±] ∼ e−2 (1+p)ρ0 ∼ 1

N2
, (B.49)

O±GG ∼
1

sinh(2ρ0)
G G FXX [f±] ∼ e−2 (1+p)ρ0 ∼ 1

N2
.

One can see from (B.49) that each expression is of order 1
N2 ∼ a2 in the large N limit,

consequently they are negligible in the continuum limit

C Large argument series representations

In this appendix we list the large argument expansions of the convolutions being nec-

essary for the explicit computations presented in appendix B. As it was mentioned in

appendix B, the series representations listed below, can be obtained by evaluating the

Fourier-representations of the convolutions with the help of the residue theorem. The con-

stituent functions of the relevant convolutions together with their Fourier-transforms are

listed in (B.4)–(B.13). The definitions of the necessary convolutions together with their

large argument expansion read as follows:

(Gλ ? g ? F
+
c )(λ)

λ→±∞
=

∞∑
k=0

{
U

(±)
1,k e

∓2(1+k)λ + U
(±)
2,k e

∓(1+2k)π
γ
λ

+ U
(±)
3,k e

2λ∓(1+2k)π
γ
λ

+ U
(±)
4,k e

∓2(1+k) π
π−γ λ

}
, with:

(C.1)

U
(+)
1,k = csc(2γ)sin(2γ(k+1))sec(γ(k+2)),

U
(+)
2,k =

π(−1)−k csc2(γ)sec(γ)tan
(
π2(2k+1)

2γ

)
4γ

,

U
(+)
3,k =

π csc2(γ)sec(γ)sin2
(

(π−2γ)(−2γ+2πk+π)
2γ

)
csc
(

(π−γ)(−2γ+2πk+π)
2γ

)
sec
(
π(γ+2πk+π)

2γ

)
4γ

,

U
(+)
4,k =

π(−1)−k csc(2γ)sin2
(
π(π−2γ)(k+1)

π−γ

)
csc
(
π2(k+1)
π−γ

)
sec
(
πγ(k+1)
π−γ

)
sec
(
γ+ πγ(k+1)

π−γ

)
2(π−γ)

,

U
(−)
1,k = csc(2γ)sin(2γ(k+1))sec(γk), (C.2)

U
(−)
2,k = −

π(−1)k csc2(γ)sec(γ)tan
(
π2(2k+1)

2γ

)
4γ

,

U
(−)
3,k =

π csc2(γ)sec(γ)sin2
(

(π−2γ)(2γ+2πk+π)
2γ

)
csc
(

(π−γ)(2γ+2πk+π)
2γ

)
sec
(
π(−γ+2πk+π)

2γ

)
4γ

,

U
(−)
4,k =

π(−1)k csc(γ)sec(γ)sin2
(
π(π−2γ)(k+1)

π−γ

)
csc
(
π2(k+1)
π−γ

)
sec
(
πγ(k+1)
π−γ

)
sec
(
γ(γ+πk)
π−γ

)
4π−4γ

.
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(Gλ ?g?F
−
c )(λ)

λ→±∞
=

∞∑
k=0

{
Z

(±)
1,k e

∓2(1+k)λ +Z
(±)
2,k e

∓(1+2k)π
γ
λ

+Z
(±)
3,k e

−2λ∓(1+2k)π
γ
λ

+ Z
(±)
4,k e

∓2(1+k) π
π−γ λ

}
, with:

(C.3)

Z
(+)
1,k = csc(2γ)sin(2γ(k+1))sec(γk),

Z
(+)
2,k =

π(−1)−k csc2(γ)sec(γ)cot
(
π(γ+2πk+π)

2γ

)
4γ

,

Z
(+)
3,k = −

π(−1)−k csc2(γ)sec(γ)sin2
(
π2(2k+1)

2γ −2γ
)

sec
(
π2(2k+1)

2γ −γ
)

sec
(
π(γ+2πk+π)

2γ

)
4γ

,

Z
(+)
4,k =

π(−1)−k csc(γ)sec(γ)sin2
(
π(π−2γ)(k+1)

π−γ

)
csc
(
π2(k+1)
π−γ

)
sec
(
πγ(k+1)
π−γ

)
sec
(
γ(γ+πk)
π−γ

)
4π−4γ

,

Z
(−)
1,k = csc(2γ)sin(2γ(k+1))sec(γ(k+2)),

Z
(−)
2,k =

π(−1)k csc2(γ)sec(γ)tan
(
π2(2k+1)

2γ

)
4γ

Z
(−)
3,k = −

π(−1)k csc2(γ)sec(γ)sin2
(

2γ+ π2(2k+1)
2γ

)
sec
(
π(−γ+2πk+π)

2γ

)
sec
(
γ+ π2(2k+1)

2γ

)
4γ

,

Z
(−)
4,k =

π(−1)k csc(2γ)sin2
(
π(π−2γ)(k+1)

π−γ

)
csc
(
π2(k+1)
π−γ

)
sec
(
πγ(k+1)
π−γ

)
sec
(
γ+ πγ(k+1)

π−γ

)
2(π−γ)

,

(G+
λ ? g ? Fc)(λ)

λ→±∞
=

∞∑
k=0

{
V

(±)
1,k e∓2(1+k)λ + V

(±)
2,k e

∓(1+2k)π
γ
λ

+ V
(±)

3,k e
2λ∓(1+2k)π

γ
λ

+ V
(±)

4,k e
2λ∓2(1+k) π

π−γ λ
}
, with:

(C.4)

V
(+)

1,k = csc(γ) sec(γ) sin(γ(k + 1)),

V
(+)

2,k =
π(−1)−k csc2(γ) sec(γ) sin

(
π2(2k+1)

2γ − 2γ
)

sec
(
π2(2k+1)

2γ − γ
)

4γ
,

V
(+)

3,k = −
π(−1)−k csc2(γ) sec(γ) sin

(
2γ + π2(2k+1)

2γ

)
csc
(
π(γ+2πk+π)

2γ

)
4γ

,

V
(+)

4,k = −
π(−1)−k csc(γ) sec(γ) sin

(
π(π−2γ)(k+1)

π−γ

)
sin
(

(π−2γ)(γ+πk)
π−γ

)
4(π − γ) sin

(
π2(k+1)
π−γ

)
cos
(
πγ(k+1)
π−γ

)
cos
(
γ(γ+πk)
π−γ

) ,

V
(−)

1,k = csc(γ) sec(γ) sin(γ(k + 1))− δk,0
π sec(γ)

2π − 2γ
,

V
(−)

2,k = −
π(−1)k csc2(γ) sec(γ) sin

(
2γ + π2(2k+1)

2γ

)
sec
(
γ + π2(2k+1)

2γ

)
4γ

,

– 44 –



J
H
E
P
0
3
(
2
0
1
8
)
0
4
7

V
(−)

3,k =
π(−1)k csc2(γ) sec(γ) sin

(
π2(2k+1)

2γ − 2γ
)

sec
(
π2(2k+1)

2γ

)
4γ

,

V
(−)

4,k = −
π(−1)k csc(γ) sec(γ) sin

(
π(π−2γ)(k+1)

π−γ

)
sin
(

(π−2γ)(π(k+2)−γ)
π−γ

)
4(π − γ) sin

(
π2(k+1)
π−γ

)
cos
(
πγ(k+1)
π−γ

)
cos
(
γ(π(k+2)−γ)

π−γ

) .

(G−λ ? g ? Fc)(λ)
λ→±∞

=

∞∑
k=0

{
J

(±)
1,k e

∓2(1+k)λ + J
(±)
2,k e

∓(1+2k)π
γ
λ

+ J
(±)
3,k e

−2λ∓(1+2k)π
γ
λ

+ J
(±)
4,k e

−2λ∓2(1+k) π
π−γ λ

}
, with:

(C.5)

J
(+)
1,k = csc(γ) sec(γ) sin(γ(k + 1))− δk,0

π sec(γ)

2π − 2γ
,

J
(+)
2,k = −

π(−1)−k csc2(γ) sec(γ) sin
(

2γ + π2(2k+1)
2γ

)
sec
(
γ + π2(2k+1)

2γ

)
4γ

,

J
(+)
3,k =

π(−1)−k csc2(γ) sec(γ) sin
(
π2(2k+1)

2γ − 2γ
)

sec
(
π2(2k+1)

2γ

)
4γ

J
(+)
4,k =

π(−1)−k csc(2γ) sin
(
π(π−2γ)(k+1)

π−γ − 2γ
)

sin
(
π(π−2γ)(k+1)

π−γ

)
2(π − γ) sin

(
π(γ+π(−k−2))

π−γ

)
cos
(
πγ(k+1)
π−γ

)
cos
(
γ(π(k+2)−γ)

π−γ

) ,
J

(−)
1,k = csc(γ) sec(γ) sin(γk),

J
(−)
2,k =

π(−1)k csc2(γ) sec(γ) sin
(
π2(2k+1)

2γ − 2γ
)

sec
(
π2(2k+1)

2γ − γ
)

4γ
,

J
(−)
3,k = −

π(−1)k csc2(γ) sec(γ) sin
(

2γ + π2(2k+1)
2γ

)
sec
(
π2(2k+1)

2γ

)
4γ

,

J
(−)
4,k =

π(−1)k csc(γ) sec(γ) sin
(

(π−2γ)(γ+πk)
π−γ

)
sin
(
π(γ+2γk−πk)

π−γ

)
4(π − γ) sin

(
π(γ+πk)
π−γ

)
cos
(
πγ(k+1)
π−γ

)
cos
(
γ(γ+πk)
π−γ

) .

(Gλ ? ψ
′ ? χF )(λ)

λ→±∞
=

∞∑
k=1

{(
2λ Î

(±)
1,k + I

(±)
1,k

)
e
∓(2k−1)π

γ
λ

+ I
(±)
2,k e

∓2kλ

+I
(±)
3,k e

∓2k π
π−γ λ

}
,

(C.6)

with:

Î
(+)
1,k =

(−1)k+1(p+ 1)2

π
,

I
(+)
1,k =

1

2
(−1)k(p+ 1)(3 cos(π(1− 2k)p)− 1) csc(π(1− 2k)p),

I
(+)
2,k =

1

4
(−1)k sin

(
2πk(p− 1)

p+ 1

)
csc

(
πkp

p+ 1

)
sec2

(
πk

p+ 1

)
,

– 45 –



J
H
E
P
0
3
(
2
0
1
8
)
0
4
7

I
(+)
3,k =

(p+ 1) sec(πk) sin
(

2πk(p−1)
p

)
csc
(
πkp+πk

p

)
sec2

(
πk
p

)
4p

,

Î
(−)
1,k =

(−1)k+1(p+ 1)2

π
,

I
(−)
1,k = −1

2
(−1)k+1(p+ 1)(3 cos(π(2(k + 1) + 1)p)− 1) csc(π(2(k + 1) + 1)p),

I
(−)
2,k = −1

4
(−1)k sin

(
2πk(p− 1)

p+ 1

)
csc

(
πkp

p+ 1

)
sec2

(
πk

p+ 1

)
,

I
(−)
3,k =

(p+ 1) sec
(
πk
p

)
2p

.

(g ? Fc)(λ)
λ→±∞

=

∞∑
k=0

{
H

(±)
1,k e

∓2(k+1)λ +H
(±)
2,k e

∓(2k+1)π
γ
λ
}
, with: (C.7)

H
(+)
1,k = csc(γ) sec(γ) sin(γk),

H
(+)
2,k = −π(−1)k csc(2γ)

γ
,

H
(−)
1,k = csc(γ) sec(γ) sin(γk),

H
(−)
2,k = −π(−1)k csc(2γ)

γ
,

(g ? F+
c )(λ)

λ→±∞
=

∞∑
k=0

{
K

(±)
1,k e

∓2(k+1)λ +K
(±)
2,k e

2λ∓(2k+1)π
γ
λ
}
, with: (C.8)

K
(+)
1,k = csc(2γ) sin(2γk) sec(γ + γk),

K
(+)
2,k = −

π(−1)−k csc(2γ) sin
(

(π−2γ)(2γ−2π(k+1)+π)
2γ

)
sec
(
π(γ+2πk+π)

2γ

)
γ

,

K
(−)
1,k = csc(2γ) sin(2γk) sec(γ − γk),

K
(−)
2,k = −

π(−1)k csc(2γ) sin
(

(π−2γ)(2γ+2πk+π)
2γ

)
sec
(
π(−γ+2πk+π)

2γ

)
γ

.

(g ? F−c )(λ)
λ→±∞

=

∞∑
k=0

{
L

(±)
1,k e

∓2(k+1)λ + L
(±)
2,k e

−2λ∓(2k+1)π
γ
λ
}
, with: (C.9)

L
(+)
1,k = csc(2γ) sin(2γk) sec(γ − γk),

L
(+)
2,k = −

π(−1)k csc(2γ) sin
(

(π−2γ)(2γ+2πk+π)
2γ

)
sec
(
π(−γ+2πk+π)

2γ

)
γ

,

L
(−)
1,k = csc(2γ) sin(2γk) sec(γ + γk),

L
(−)
2,k = −

π(−1)k csc(2γ) sin
(

2γ + π2(2k+1)
2γ

)
sec
(
π(−γ+2πk+π)

2γ

)
γ

.
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(gγ/2 ? χ)(λ)
λ→±∞

= ∓2χ(∞) +
∞∑
k=1

{
e

(±)
1,k e

∓2kλ + e
(±)
2,k e

(1∓2k)π
γ
λ

+ e
(±)
3,k e

∓ 2k π
π−γ λ

}
, (C.10)

e
(+)
1,k = −2eiγk, e

(−)
1,k = −e(+)

1,−k,

e
(+)
2,k = −

iπ(−1)ke
− iπ

2(2k−1)
2γ sec

(
π2(2k−1)

2γ

)
γ

, e
(−)
2,k = −e(+)

2,−k,

e
(+)
3,k =

π sec
(
πγk
π−γ

)
π − γ

, e
(−)
3,k = −e(+)

3,−k.

Then

(f2 ? G)(λ) = 2 cosh(2ρ0)χ(∞) + sinh(2ρ0) (gγ/2 ? χ)(λ+ ρ0),

f2(λ|ρ0) = e−2ρ0 + sinh(2ρ0)
∞∑
k=1

e
(+)
1,k e

−2k(λ+ρ0), (C.11)

(f3 ? G)(λ) = 2 cosh(2ρ0 + i γ)χ(∞)− sinh(2ρ0 + iγ) (gγ/2 ? χ)(λ− ρ0),

f3(λ|ρ0) = e−2ρ0−i γ − sinh(2ρ0 + i γ)
∞∑
k=1

e
(−)
1,k e

2k(λ−ρ0). (C.12)

For α ∈ (0, π) :

(gα ? χF )(±2ρ0) = ∓1

2
+

∞∑
k=0

â+
k e
∓ 2π
γ

(1+2k)ρ0 +

∞∑
k=1

b̂+k e
∓4kρ0 , (C.13)

â
(+)
k =

π(−1)ke
− iπ(π−2α)(2k−3)

2γ sec
(
π(γ+π(2k−3))

2γ

)
γ

, â−k = −(â
(+)
k )∗,

b̂
(+)
k = −e2 i α k sec(γk), b̂−k = −(b̂

(+)
k )∗,

where here ∗ denotes complex conjugation. Finally, we close this appendix with the large

ρ0 series representation of I(ρ0) and T0(ρ0) given by (B.19) and (B.20), respectively.

I(ρ0) = γ2 +

∞∑
k=0

Î1,k e
−4 k ρ0 +

∞∑
k=0

{
(Î2,k + Î3,k ρ0) e

− 2π
γ

(1+2k)ρ0
}
, (C.14)

Î1,k = −2γ2
(
tan2(γk)− 1

)
,

Î2,k = 2π

(
π csc2

(
π2(2k + 1)

2γ

)
− 2γ

)
,

Î3,k = 8π cot

(
π2(2k + 1)

2γ

)
.

T0(ρ0) = e−2ρ0 t0 +

∞∑
k=0

{
t1,k e

2ρ0− 2π
γ

(1+2k) ρ0 + t2,k e
−2ρ0− 2π

γ
(1+2k) ρ0

+ t3,k e
−2 (k+2) ρ0

}
, (C.15)
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with:

t0 = 2γ2 sec(γ),

t1,k = 2πγ

(
csc(γ) cot

(
π2(2k + 1)

2γ

)
− sec(γ)

)
,

t2,k = −2πγ

(
sec(γ) + csc(γ) cot

(
π2(2k + 1)

2γ

))
,

t3,k = 2γ2 [2 sec(γ)− sec(γ(k + 1)) sec(γ(k + 2))] .

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] G. Delfino, G. Mussardo and P. Simonetti, Nonintegrable quantum field theories as

perturbations of certain integrable models, Nucl. Phys. B 473 (1996) 469 [hep-th/9603011]

[INSPIRE].

[2] Z. Bajnok and R.A. Janik, String field theory vertex from integrability, JHEP 04 (2015) 042

[arXiv:1501.04533] [INSPIRE].
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[8] G.Z. Fehér, T. Pálmai and G. Takács, Sine-Gordon multi-soliton form factors in finite

volume, Phys. Rev. D 85 (2012) 085005 [arXiv:1112.6322] [INSPIRE].
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