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1 Introduction

In the pioneering work [1–4], the quantization problem in the asymptotic boundary and the

action of large gauge transformations were studied. Since then, much work has been done

to study the relation between asymptotic symmetries and the infrared effects in various

quantum field theories at null infinity (I±) [5–18, 20, 21].1,2 One crucial element in these

1The large gauge transformations generate charges on the radiative phase space [22–25] associated with

these theories due to the presence of the massless particles. Much of the works mentioned above study the

quantization of these charges.
2For a comprehensive review on this subject interested readers are encouraged to consult ref. [19].
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discussions are related to the modification of the commutators for ‘zero modes’ when extra

boundary conditions like Fzz̄ = 0 at I±
± are imposed to recover a missing factor of 1

2 in

the transformation generated by the Noether charge. However, the inner workings of the

method and its generalizations remain relatively mysterious, partly because of the infinite

volume of the asymptotic boundary (or the equivocal concept of the ‘zero mode’ that occupy

an infinitesimally small volume in the momentum space) that obscures the treatment.

Notably, it is not immediately obvious what is the appropriate treatment when we deal with

1. charges that are not localized at u = ±∞;

2. symmetry transform that are not compatible with the boundary conditions imposed,

such as Fzz̄ = 0 considered in [3, 4].

In this paper, we would like to clarify the situation by introducing proper regularization

and systematically obtain a new set of commutators in this controlled setting. When proper

regularization is in place, it demonstrates with much more clarity the subtleties concerning

quantization on a null hypersurface and the modification of the commutators. We will

discuss these subtleties in detail, demonstrating how they can be dealt with systematically.

We will also illustrate how Dirac brackets can be obtained as we impose further bound-

ary conditions as constraints as in [3, 4]. These are the main results of the paper. Then

we consider various charges generating transformations corresponding to the asymptotic

symmetries of the Maxwell theory, i.e by the BMS [26–31] (or more generally conformal

BMS [32]) generators and demonstrate that we can recover the expected commutation rela-

tions for the super-rotation and dilatation generators. However, additional subtleties arise

while we deal with the super-translation and conformal BMS symmetries. What’s more,

it is noted [4] that the soft theorem implies the decoupling of a special linear combination

of the two zero modes of different helicity from the S-matrix. This motivates us to con-

sider yet another symmetry of the Maxwell theory– namely electromagnetic duality (EM

duality) which is deeply connected to helicity [33] In the second half of the paper, we will

use the methods developed in [34, 35] to construct an action equivalent to Maxwell action

with manifest EM duality symmetry and quantize the theory at I±. One very important

motivation is that the Noether charge involved does not generate the correct algebra using

standard quantization. Extra constraints localized at the boundary points are imposed,

and yet the charge itself is not localized at the boundary such that methods in [3, 4] are not

readily applicable. This example therefore particularly illustrates the power of our method.

Before we end, let us emphasize that although this paper is focused on Maxwell theory,

we believe this method promises many more applications in the quantization of generic

theories at asymptotic infinity.

The organization of the paper is as follows. In section 2, we will revisit the quantization

via ‘Schwinger quantization procedure’ discussed in [36]. We will highlight the subtleties

regarding boundary conditions in the procedure followed there, and explain why it is not

suitable for the quantization problem on a null hypersurface with the boundary conditions

that we are interested in. We will then show that our regularization procedure allows one

to treat these issues explicitly, and obtain suitable commutators for the current situation.

– 2 –
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In section 3, with our regularization in place, we will obtain commutators using the

Schwinger method with different choices of boundary conditions. Extra boundary con-

straints can now be systematically and explicitly imposed via the Dirac procedure. Then

we apply our results to the problem studied in [3, 4], and recover the algebra of the large

gauge symmetry transformations there both with and without the extra boundary condi-

tion, showing that the method is consistent with existing results.

Then we apply our methods to obtaining the correct commutation (sub)-algebra of

asymptotic conformal BMS charges of the pure Maxwell theory in section 4. In section 5,

we will describe the quantization of the Maxwell action that makes electromagnetic duality

explicit. We will obtain the corresponding Noether charges and their commutators in the

asymptotic region.

A review of the Schwinger brackets that follow closely the discussions in [36] is rele-

gated to the appendix. We devote extra emphasis on the subtleties of null hypersurface

quantization and the importance of keeping the contributions coming from the boundary

generator Gb (see equation (2.6) ) that was previously set to zero as an extra constraint [36].

This is crucial particularly when we are interested in cases where the soft modes come into

play. Then we conclude in the section 6. We also include a discussion of the procedure and

implications of imposing a strictly vanishing electric field Fuz,uz̄ at the far past and future

t to±∞ in appendix B.

2 Schwinger method and large gauge transformations

In this section we will briefly discuss the Schwinger quantization procedure, and we will

take large gauge transformations [4] as the first example. We will follow the procedure

given in [36], where the Schwinger quantization procedure for both spacelike hypersurface

and null hypersurface has been discussed in detail. Here, we only quote some important

steps and show why they might not be suitable for problems related to soft modes. We

mainly focus on the quantization on null hypersurface here and the details pertaining to

spacelike hypersurface have been relegated to the appendix. Interested readers are referred

to it for comparisons.

The current paper focuses on the quantization of the Maxwell theory at the asymptotic

null infinity. The retarded coordinate which is suitable for describing physics at future null

infinity I+ reads,

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄, (2.1)

where, u = t − r, γzz̄ = 2
(1+zz̄)2

, and r is treated as ‘time’ in the canonical quantization

procedure, and ‘null infinity’ means the region where r → ∞.

The Maxwell action is

S = −1

4

∫

d4x
√−gFµνFµν . (2.2)

We will work in the retarded radial gauge.

Ar = 0

Au|I+ = O
(

1

r

)

,
(2.3)

– 3 –
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and the corresponding asymptotic behaviour of the gauge fields are given by [4]

Az(r, u, z, z̄) = Az(u, z, z̄) +
∞
∑

n=1

A
(n)
z (u, z, z̄)

rn
,

Au(r, u, z, z̄) =
1

r
Au(u, z, z̄) +

∞
∑

n=1

A
(n)
u (u, z, z̄)

rn+1
.

(2.4)

In the Schwinger quantization method, one first obtains a generator GΣ by varying the ac-

tion. Then one requires that commutation with this generator recovers the transformation

of the fields.

GΣ =

∫

dudzdz̄
(

δAz∂uAz̄ + δAz̄∂uAz

)

− 1

2

∫

dzdz̄
(

AzδAz̄ +Az̄δAz

)∣

∣

∣

∞

−∞
. (2.5)

We call the last term in (2.5) the boundary generator

Gb = −1

2

∫

dzdz̄
(

AzδAz̄ +Az̄δAz

)∣

∣

∣

∞

−∞
. (2.6)

It is important to note the difference between quantization on a null hypersurface and

a spacelike hypersurface. In the former case, the “canonical momenta” Fuz̄ (Fuz) are no

longer independent of Az (Az̄), the gauge potentials themselves. In [36], this problem was

dealt with, by doing an integration by parts to separate the generator into a ‘bulk’ term

and a ‘boundary’ term as in (2.5). Then taking only the fields Az and Az̄ as independent

degrees of freedom, and setting to zero variations of the fields at the boundary (i.e. setting

Gb = 0), one demands,

[Az, GΣ] =
i

2
δAz, [Az̄, GΣ] =

i

2
δAz̄. (2.7)

This implies that

[Az(u, z, z̄), Aw̄(u
′, w, w̄)] = − ie2

4
Θ(u− u′)δ2(z − w).

[Az(u, z, z̄), Aw(u
′, w, w̄)] = [Az̄(u, z, z̄), Aw̄(u

′, w, w̄)] = 0.

(2.8)

where Θ(u− u′) is the sign function.

Subtleties arise when we consider cases where the boundary fields can also vary. If Gb

do not vanish, then the commutators obtained in (2.8) gives

[Az, Gb] = [Az̄, Gb] = 0,

which means

δAz(u = ∞, z, z̄) + δAz(u = −∞, z, z̄) = 0

δAz̄(u = ∞, z, z̄) + δAz̄(u = −∞, z, z̄) = 0
(2.9)

So the variations are not free, and we will have an extra constraint for our transformations.

In the latter part of the original paper of [22, 36], they imposed for simplicity that δA
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vanishes at u = ±∞. This is possible had we treated large gauge transformations as gauge

degrees of freedom as well.

However, as the large gauge transformation should be treated as a real symmetry and

that fields at u = ±∞ can still fluctuate (for example, the soft modes related to large gauge

transformations), the commutators (2.8) is only applicable only if the constraints (2.9) are

satisfied.

For example, for large gauge transformations,

δǫAz(u, z, z̄) = ∂zǫ(z, z̄),

δǫAz̄(u, z̄, z) = ∂z̄ǫ(z, z̄).
(2.10)

We note that

δAz(u = ∞) + δAz(u = −∞) = 2∂zǫ(z, z̄) = 0

δAz̄(u = ∞) + δAz̄(u = −∞) = 2∂z̄ǫ(z, z̄) = 0
(2.11)

The large gauge transformations are not compatible with the constraints (2.9). Consis-

tent use of (2.8) would require that the large gauge transformations be treated as a gauge

degree of freedom. If we would like to include large gauge transformations as a genuine

global symmetry in our theory, we need to modify the commutators and treat the boundary

term consistently.

In [4], a prescription has been provided to resolve the problem by introducing edge

modes [37] and then imposing extra boundary conditions Fzz̄ = 0 at I+
± (both r → ∞ and

u → ±∞ ) to modify the commutators. But it is not clear how to generalize his methods

beyond the special boundary constraint Fzz̄ = 0 at I+
± considered there. As we shall see,

there are situations when Fzz̄|u→±∞ is not compatible with the symmetry of the problem,

and that the expression for the Noether charge is not a u total derivative (i.e when the

charge is not localized at the boundary points and thus also getting contributions from

non-zero modes). In these cases, the current treatment in the literature does not provide a

clear and systematic procedure that singles out the changes to the commutators following

from constraints localized at the end points of the Cauchy surface.

3 A new regularization scheme for the self-consistent quantization of

Maxwell theory on a null hypersurface

In this section, we will show that there is a regularization scheme to include the contribu-

tions from the boundary modes automatically and make the quantization consistent even

without imposing any extra constraints, and it is suitable for generic charges not localized

at the boundary of null infinity.

Inspired by [38], we first regularize our u coordinate on a finite interval [−T
2 ,

T
2 ], and

take T → ∞ limit only at the end of the calculation. Then, we impose periodic boundary

condition for the field strengths as

Fuz

(

−T

2

)

= Fuz

(

T

2

)

, Fuz̄

(

−T

2

)

= Fuz̄

(

T

2

)

. (3.1)
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This was first proposed in [38] as a reasonable boundary conditions that would also be

consistent with a radiated electric fields that vanished in the far past t = −T/2 to remain

vanishing in the far future t = T/2 i.e.
∫ T/2
−T/2 duF

z
uFuz = 0.3

With this periodic boundary condition, we can expand our field strengths as

Fuz(u, z, z̄) =
∞
∑

m=−∞

αm(z, z̄)e
i 2πmu

T

Fuz̄(u, z, z̄) =
∞
∑

m=−∞

ᾱm(z, z̄)e
i 2πmu

T

(3.2)

from which we get the mode expansion of Az and Az̄ as

Az(u, z, z̄) = d0(z, z̄) + α0(z, z̄)u+
∑

m 6=0

T

i 2πm
αm(z, z̄)e

i 2πmu

T ,

Az̄(u, z, z̄) = d̄0(z, z̄) + ᾱ0(z, z̄)u+
∑

m 6=0

T

i 2πm
ᾱm(z, z̄)e

i 2πmu

T .

(3.3)

In the following, we will follow the Schwinger quantization procedure in the presence of

this regularization. To obtain the commutators, we substitute these regularized expressions

into the chargeGΣ given in (2.5). We note that since Az and Az̄ do not vanish at u → ±T/2,

the separation between ‘boundary terms’ and ‘bulk terms’ become ambiguous. Therefore,

one important departure from [36] is that we are obliged to keep these boundary terms (2.6).

So, we end up having,

GΣ =
1

2

∫

dzdz̄

[

T ᾱ0δd0 + T α0δd̄0 −
∑

m 6=0

i T 2

mπ

(

ᾱmδα−m + αmδᾱ−m

)

−
(

T d̄0 +
∑

m 6=0

i T 2(−1)m

2πm
ᾱm

)

δα0 −
(

T d0 +
∑

m 6=0

i T 2(−1)m

2πm
αm

)

δᾱ0

+
∑

m 6=0

i T 2(−1)m

2πm

(

α0δᾱm + ᾱ0δαm

)

]

. (3.4)

Here, as these modes are independent, we demand, as in the Schwinger quantization

procedure,

[d0, GΣ] =
i

2
δd0, [α0, GΣ] =

i

2
δα0, [αm, GΣ] =

i

2
δαm (3.5)

and similarly for the d̄0, ᾱ0, ᾱm. These relations are overdetermined, but pleasingly there

is a set of consistent solutions, which gives,

[d̄0(z, z̄), α0(w, w̄)] = [d0(z, z̄), ᾱ0(w, w̄)] =
i

T
δ2(z − w),

[αm(z, z̄), ᾱn(w, z̄)] = −mπ

T 2
δm+n,0δ

2(z − w),

[d̄0(z, z̄), αm(w, w̄)] = [d0(z, z̄), ᾱm(w, w̄)] =
i

2T
(−1)mδ2(z − w).

(3.6)

3The condition does not ensure that the flux actually vanish. This condition of exactly vanishing flux

in the far past and future and its implications are discussed in detail in appendix B. Here we begin with

following the periodic boundary condition.
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We will use these commutators in the following sections to demonstrate how they work

for different problems. We note that open string quantization in the presence of a non-

trivial B field that leads to constraints at the end points were treated using a very similar

procedure [39, 40]. The only subtlety in the current problem is the infrared limit T → ∞
that has to be taken at the end.

4 Quantization of large gauge transformations

To begin with, we would like to ensure that our commutators recover the correct quantiza-

tion conditions for large gauge transformations considered in [4]. The large gauge transfor-

mations are given in (2.10). The leading order Noether charge in the large r expansion is

Q =

∫

dudzdz̄
(

∂uAz̄∂zǫ+ ∂uAz∂z̄ǫ
)

. (4.1)

In terms of our mode expansion, this becomes

Q = T

∫

dzdz̄
(

ᾱ0∂zǫ+ α0∂z̄ǫ
)

. (4.2)

So we can see immediately using our commutators (3.6)

[Az(u, z, z̄), Q] = i∂zǫ = iδAz

[Az̄(u, z, z̄), Q] = i∂z̄ǫ = iδAz̄

(4.3)

which are the correct commutation relations that we would expect. Here we note that

the factor of 1
2 problem as pointed out in [4] does not appear even if we are allowing Fzz̄

to fluctuate freely at the boundary u → ±T/2. In the following, we would then further

impose also the constraint as in [4]

Fzz̄

∣

∣

∣

±T

2

= 0. (4.4)

The constraint does not appear to be a necessary ingredient in recovering the correct

commutators. We would like to study it in detail however to determine if our brackets

would ultimately be consistent with [4]. We would also like to demonstrate as an extra

bonus, that Dirac brackets following from the constraints can be obtained in a systematic

and transparent manner.

Imposing these constraints in our system will modify our commutators defined in (3.6).

We will show how this can be done explicitly using the Dirac procedure [41]. Using our

regularization, (4.4) is equivalent to the following two constraints,

ϕ1 = ∂zᾱ0 − ∂z̄α0,

ϕ2 = ∂z



d̄0 +
∑

m 6=0

(−1)mT

i 2πm
ᾱm



− ∂z̄



d0 +
∑

m 6=0

(−1)mT

i 2πm
αm



 .
(4.5)

The modified commutators using Dirac procedure, for any two operators F,G is obtained

as follows,

[F,G]D = [F,G]− [F, ϕα]C
αβ [ϕβ, G], (4.6)

– 7 –
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where the matrix Cαβ is the inverse matrix of

Cαβ = [ϕα(z, z̄), ϕβ(w, w̄)], (4.7)

and α is the index for the constraints. Here, it takes value in {1, 2}, and superscript D

denotes the modified commutators after imposing the constraints.

Next we compute the Cαβ . The non-vanishing components for the constraints (4.5) are

C12 = −C21 = [ϕ1(z, z̄), ϕ2(w, w̄)] =
i

T
(∂z∂w̄ + ∂z̄∂w)δ

2(z − w). (4.8)

So we will get,

[α0(z, z̄), d̄0(w, w̄)]
D = − i

2T
δ2(z − w)

[α0(z, z̄), d0(w, w̄)]
D =

i

4πT

1

(z − w)2

[ᾱ0(z, z̄), d̄0(w, w̄)]
D =

i

4πT

1

(z̄ − w̄)2

[d0(z, z̄), ᾱm(w, w̄)]D = [d̄0(z, z̄), αm(w, w̄)]D = 0

[d0(z, z̄), αm(w, w̄)]D = − i

4πT

(−1)m

(z − w)2

[d̄0(z, z̄), ᾱm(w, w̄)]D = − i

4πT

(−1)m

(z̄ − w̄)2

(4.9)

To compare with the charge given in [4],

Q = −2

∫

S2

dzdz̄ǫ(z, z̄) ∂z∂z̄(φ+ − φ−), (4.10)

we write φ+ and φ− in terms of mode expansion,

∂zφ+ = d0 +
T

2
α0 +

∑

m 6=0

T (−1)m

i 2πm
αm,

∂z̄φ− = d̄0 −
T

2
ᾱ0 +

∑

m 6=0

T (−1)m

i 2πm
ᾱm

(4.11)

Using (4.9) it can be shown easily that,

[φ+(z, z̄), φ−(w, w̄)] =
i

4π
ln |z − w|2. (4.12)

And from this, it automatically follows,

[Az(u, z, z̄), Q] = i∂zǫ = iδAz (4.13)

which recovers the correct algebra again.

– 8 –
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4.1 Comments about soft photon theorems

We end this section by briefly comment about soft photon theorems. We have quantized

Maxwell theory with different boundary conditions, one that allow Fzz̄ to fluctuate freely

at u → ±∞ and another, that is proposed in [4], where Fzz̄|u→±∞ = 0. While we found

that using our regularization, both boundary conditions recover the correct large gauge

transformation, it is not clear whether Weinberg’s soft theorem — which is demonstrated

to be equivalent to the Ward identity following from the large gauge symmetry in [4] when

Fzz̄|u→±∞ = 0 in [4] — should carry through in different boundary conditions.

We note that by inspecting the statement of Weinberg’s soft theorem, it is observed that

a linear combination of soft photon decouples from the S-matrix. Quoting the appendix

of [4], the decoupled photon is given by

a−(ω → 0)− 1

2π
(1 + zz̄)

∫

d2w
1

z̄ − w̄
∂w̄

a+(ω → 0)

1 + ww̄
(4.14)

and it behaves as if it is completely decoupled from the theory. In our regularized theory,

this can be translated into the following form

ᾱ0 +
1

2π

∫

d2w
1

w̄ − z̄
∂w̄α0, (4.15)

which is equivalent to the constraint ϕ1. In other words, Weinberg’s soft theorem had

already implied a choice of boundary condition at u → ±∞, that sets ϕ1 to zero. Therefore,

at least the constraint ϕ1 has to be imposed to be consistent with Weinberg’s soft theorem,

even without requiring ϕ2 constraint. So we only require Fzz̄ to be periodic i.e Fzz̄(u =
T
2 ) = Fzz̄(u = −T

2 ) only not necessarilty strictly zero at u → ±T
2 . Imposing ϕ1.

Without imposing any further constraints, however, one finds that the Ward identity

again gives some other relations between the S matrix components with soft insertions

and those without. The relation, however, is different from Weinberg’s soft theorem, as

expected. It is interesting to notice however the “two” soft modes appearing in our Ward

identity always appear together, so we cannot separate the two contributions and get “soft

theorems” for each of them, due to the fact that the U(1) symmetry we break can only

have at most one goldstone mode.

5 Asymptotic symmetries of Maxwell action and the corresponding

quantization

It is well known that in 4 dimensions the Maxwell theory is conformally invariant [42].

Given a four vector ξρ, it generates space-time transformation for the field strengths as

δFµν = LξFµν = ξρ∂ρFµν + ∂µξ
ρFρν − ∂νξ

ρFρµ. (5.1)

where Lξ is the Lie derivative with respect to ξ. Then the variation of the Maxwell action

is given by

δS = −1

4

∫ √−gd4x (5.2)

×
[

∇ρ(FµνFµνξ
ρ)− 1

2

[

FµγFν
γ

(

ξρ∂ρg
µν + gρµ∂ρξ

ν + gρν∂ρξ
µ − 1

2
gµν∇ρξ

ρ

)]]

,
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which vanishes when

ξρ∂ρg
µν + gρµ∂ρξ

ν + gρν∂ρξ
µ − 1

2
gµν∇ρξ

ρ = 0. (5.3)

This is nothing but the conformal killing equations.

However, this symmetry group is enhanced at I±. It has been shown in [32] that the

conformal symmetry group of the flat space time enhances to conformal BMS group at

null infinity. We next consider the corresponding Noether charge for these asymptotic

symmetries of the Maxwell theory and study their commutation relations. In the following

we will show that using our method we can recover the expected commutation relations

for the dilatation and superrotation generators, while there are subtleties that remain

for the supertranslation, BMS dilatation and BMS special conformal symmetries. Simply

speaking, for supertranslation, our regularization scheme introduces a linear u term in the

expansion of the gauge field that appears to break translation invariance in the u direction,

and the symmetry breaking has a remnant even in the limit T → ∞. Although we do

find a consistent way to get rid of the extra terms with a stronger boundary condition

while still keeping the linear term, whether these are artifacts of our regularization scheme

or a genuine symmetry breaking due to the appearance of the boundary modes should

be studied in greater detail in the future. BMS dilatation and BMS special conformal

transformations do not preserve the gauge condition δAu|I± = O(1r ), even though they do

preserve the boundary conditions for the field strength. It is expected that they should be

combined with an extra gauge transformation. We leave this also for future investigations.

We will work with the boundary condition (3.1) below.

5.1 Dilatation

For the conformal killing vector [32],

ξu = u, ξr = r. (5.4)

the corresponding variation of the fields to leading order in the large r expansion, is given by

δAz = u∂uAz, δAz̄ = u∂uAz̄, (5.5)

which scales as r0. The corresponding charge at I± is,

Q =

∫

dudzdz̄
(

Fuz̄δAz + FuzδAz̄

)

= 2

∫

dudzdz̄ u (∂uAz)(∂uAz̄). (5.6)

In terms of the mode expansion ,

Q =

∫

dzdz̄

[

∑

n 6=0

(−1)nT 2

i n π

(

α0ᾱn + ᾱ0αn

)

+
∑

n 6=0

∑

m 6=0

(−1)m+nT 2

(m+ n)π
αmᾱn

]

. (5.7)

Also one can check that it satisfy the correct quantization

[Az, Q] = iu∂uAz = iδAz (5.8)

using the commutators in (3.6).

– 10 –



J
H
E
P
0
3
(
2
0
1
8
)
0
2
7

5.2 Superrotation

We consider the asymptotic killing vector [29–32],

ξu ≡ 1

2
uψ, ξr = −1

2
r ψ − 1

4
uD2ψ, ξA = Y A − u

2r
DAψ (5.9)

where the superscript A ∈ {z, z̄}; DA are the covariant derivatives with respect to the met-

ric on the two-sphere; Y A are conformal Killing vectors on the 2-sphere, and ψ = DAY
A.

Among these generators, the global part of the transformations are, Y z = z2, Y z̄ =

1; Y z = 1, Y z̄ = z̄2; Y z = z, Y z̄ = −z̄; ψ = 0.

The corresponding Noether charge at I± is,

Q =

∫

dudzdz̄
(

Fuz̄δAz + FuzδAz̄

)

, (5.10)

where, up to leading order

δAz = LξAz =
1

2
uψ∂uAz + Y z∂zAz + Y z̄∂z̄Az +Az∂zY

z,

δAz̄ = LξAz̄ =
1

2
uψ∂uAz̄ + Y z∂zAz̄ + Y z̄∂z̄Az̄ +Az̄∂z̄Y

z̄.

(5.11)

Using the mode expansion (3.3) the charge looks like,

Q =

∫

dzdz̄
1

2
ψ

[

∑

n 6=0

(−1)nT 2

i n π

(

α0ᾱn + ᾱ0αn

)

+
∑

n 6=0

∑

m 6=0

(−1)m+nT 2

(m+ n)π
αmᾱn

]

+

[

∑

m 6=0

(−1)mT 2

i 2mπ
ᾱm

(

Y z∂z + Y z̄∂z̄ + ∂zY
z
)

α0

−
∑

m 6=0

T 2

i 2πm
ᾱm

(

Y z∂z + Y z̄∂z̄ + ∂zY
z
)

α−m + ᾱ0T
(

Y z∂z + Y z̄∂z̄ + ∂zY
z
)

d0

+
∑

m 6=0

(−1)mT 2

i 2πm
αm

(

Y z∂z + Y z̄∂z̄ + ∂z̄Y
z̄
)

ᾱ0

−
∑

m 6=0

T 2

i 2πm

(

Y z∂z + Y z̄∂z̄ + ∂z̄Y
z̄
)

ᾱ−m + α0T
(

Y z∂z + Y z̄∂z̄ + ∂z̄Y
z̄
)

d̄0

]

.

(5.12)

Then using commutators defined in (3.6) and after some algebraic manipulations, we can

show that it also generates the correct transformation,

[Az, Q] = i

(

1

2
uψ∂uAz + Y z∂zAz + Y z̄∂z̄Az +Az∂zY

z

)

= iδAz. (5.13)

5.3 Supertranslation

The supertranslation is generated by the following Killing vector [26–32]

ξu ≡ f, ξA = −1

r
DAf (5.14)
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where f is any scalar spherical harmonic. And when f is a constant, this is just the usual

translation in the u direction. The leading order term of the variation that will contribute

to the charge is

δAz = LξAz = f∂uAz, δAz̄ = LξAz = f∂uAz. (5.15)

The corresponding Noether charge at I± is,

Q = 2f

∫

dudzdz̄(∂uAz)(∂uAz̄). (5.16)

In terms of the mode expansion,

Q = 2fT

∫

dzdz̄

(

α0ᾱ0 +
∑

m 6=0

αmᾱ−m

)

. (5.17)

But one can show that the charge is not generating the expected transformation, i.e,

[Az, Q] 6= iδAz (5.18)

Instead, we get

[Az(u, z, z̄), Q] = if

(

α0(z, z̄) +
∑

m 6=0

αm(z, z̄)e
i 2πmu

T

)

+ if

(

α0(z, z̄) +
∑

m 6=0

(−1)mαm(z, z̄)

)

.

(5.19)

The first part corresponds to the expected transformation, however, we have an extra

second part which is the boundary value of the first term.

What happened is that the regularization scheme we use introduces a linear u term

in the expansion of the gauge field that appears to break translation invariance in the u

direction. We find that curiously, even in the limit T → ∞ the symmetry breaking has a

remnant when we study its operator algebra. Whether these are artifacts of our regulariza-

tion scheme or a genuine symmetry breaking due to the appearance of the boundary modes

should be studied in greater detail in the future. Especially, while the charge does recover

the correct transformation for Fuz and Fuz̄, it does not recover the expected transformation

for Fzz̄, where the linear term in u remains. We note however, there are two possible reme-

dies for the problem. We notice that the extra term in (5.19) is just the value of Fuz|u→±∞.

One solution is to impose extra boundary conditions with Fuz|u→±∞ = Fuz̄|u→±∞ = 0.

This gets rid of the extra piece, recovering (super)translational invariance. There is an-

other solution, where the weaker boundary conditions ∂uFzz̄|u→±∞ = 0 are imposed. This

renders (5.19) a pure gauge, allowing us to modify our charge by adding to it the charge

generating large gauge transformations to restore the correct transformation of the gauge

potentials. We note that in both solutions, these extra boundary conditions do not con-

tradict the condition Fzz̄ = 0 that would be a convenient boundary condition consistent

with the soft theorem. Now that we have a systematic way of imposing constraints, we

demonstrate a possible solution and obtain a new set of commutators consistent with

Fuz|u→±∞ = Fuz̄|u→±∞ = 0 in the appendix.
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5.4 BMS dilatation and BMS special conformal transformation

The BMS dilatation and special conformal transformations are tricky. The simple expla-

nation is that they are mixing fields at different orders in 1
r expansion, and they do not

preserve the gauge condition we are considering for the gauge fields. To see that, we inspect

the generators of the BMS dilatation and BMS special conformal transformations [32]:

ξu ≡ u2

2
, ξr = r(u+ r)

ξu ≡ u2

4
ζ, ξr = −

(

u2

4
+

r2

2
+

u r

2

)

ζ, ξA = −u

2

(

1 +
u

2r

)

DAζ

(5.20)

where ζ are strictly conformal killing vectors of 2-sphere as compared to ψ which are any

killing vectors of 2-sphere.

5.4.1 Subtlety 1: commutators between different orders of the fields

First of all, due to the r2 term in the generator of the ξr components, terms with different

orders in the 1
r expansion of the gauge fields mix together, for example, δAz is proportional

to A
(1)
z in equation (2.4). The operator algebra would require expansion in 1

r and retain

sub-leading order term in Az and also their corresponding commutation relations. Here,

we will see that interestingly, further expanding the Schwinger generator shows that fields

at different orders actually decouple (at least for order O(r0) and O(r−1)).

We look at the boundary term (2.5) more closely at this point.

GΣ =
1

2

∫

dudzdz̄r2γzz̄

[

AzδFrz+Az̄δFrz̄+AuδFru−δAzFrz−δAz̄Frz̄−δAuFru
]

. (5.21)

Also we note , Frz = 1
r2γzz̄

(Frz̄ − Fuz̄),Fru = Fur. Using these facts one can easily check

that the O(r0) term is equal to (2.5). Now the O(r−1) contribution is,

G
(1)
Σ =

1

2r

∫

dudzdz̄
(

−A(1)
z ∂uδAz̄ −Az∂uδA

(1)
z̄ −A

(1)
z̄ ∂uδAz −Az̄∂uδA

(1)
z

+ ∂uA
(1)
z δAz̄ + ∂uAzδA

(1)
z̄ + ∂uA

(1)
z̄ δAz + ∂uAz̄δA

(1)
z

− ∂zAuδAz̄ − ∂z̄AuδAz +Az̄∂zδAu +Az∂z̄δAu

)

,

(5.22)

where, we have used the expansion (2.4). Note that the contribution coming from AuδFru

and δAuFru cancel among themselves.

One of the equations of motion at leading order in r reads,

γzz̄∂uAu = ∂u(∂zAz̄ + ∂z̄Az). (5.23)

Which means

γzz̄Au = ∂zAz̄ + ∂z̄Az + h(z, z̄). (5.24)

where h(z, z̄) is the integration constant of u. As we will see in the next section, this

condition is relating Au directly to ‘the dual gauge potential C’. This is expected as this
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equation of motion is relating the electric and magnetic fields. Like in [11], we set all

integration constants to be zero for simplicity, thus making

h(z, z̄) = 0, Au =
∂zAz̄ + ∂z̄Az

γzz̄
.

Using this, the third line of (5.22) vanishes, as it will become total derivatives of z and z̄.

In the spirit of Schwinger quantization procedure, we require the following condition

valid for all orders of r,

[Aw, GΣ] =
i

2
δAw. (5.25)

At O(1r ) we will have,

[Aw, G
(1)
Σ ] +

[

A
(1)
w

r
,G

(0)
Σ

]

=
i

2
δ
A

(1)
w

r
. (5.26)

We note that the commutators among the leading order terms in (5.25) already recovers

the correct transformation of δA
(1)
z,z̄. Therefore one would require that the brackets that

follow from (5.26) do not alter the result of δA
(1)
z,z̄. One natural solution is that different

orders decouple, i.e

[A(1)
w , Az] = 0, [A(1)

w , Az̄] = 0. (5.27)

This procedure can be generalized to arbitrary orders in O(1r ) terms. Solving for the

complete set of brackets is beyond the scope of the current paper, and we end here only

with the roadmap of how it can be obtained at arbitrary order. We caution that there

could potentially exist other solutions, although the computation strongly suggests that

this is the correct solution.

5.4.2 Subtlety 2: an extra gauge transformation

There is one more subtle issue, namely, that the two transformations do not preserve the

gauge condition for Au, i.e, the leading order 1/r asymptotic behaviour of Au.

For the BMS dilatation, we have

δAu = −Au. (5.28)

For the BMS special conformal transformation,

δAu = −Au − 1

2
AzD

zξ − 1

2
Az̄D

z̄ξ. (5.29)

The transformations are both of order O(r0), violating Au|I+ = O(1r ). We notice that

it is possible to recover the gauge condition using a further gauge transformation. This

is possible because the leading term in the asymptotic expansion of the gauge invariant

field strengths are invariant under the transformations generated by the Lie derivatives of

the corresponding asymptotic conformal killing vectors, unlike the gauge fields. We leave

a complete discussion of the problem for future research.
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6 Electromagnetic duality and its quantization

In this section we will consider yet another symmetry of the Maxwell theory, namely

‘Electromagnetic duality’ (EM duality).

In the pure Maxwell theory, the Maxwell equations clearly remain invariant when we

exchange the electric and magnetic fields ~E → ~B and ~B → − ~E. This is only a discrete

subgroup of the complete electric-magnetic duality of Maxwell equations. It is well known

that in fact the equations of motions are invariant under a continuous SO(2) rotation

δ ~E = θ ~B, δ ~B = −θ ~E. However, the Maxwell action itself, which is simply
∫

( ~E2− ~B2), does

not remain invariant under the transformation. In 1968, Zwanziger [33] first introduced a

‘dual potential’ method to make the symmetry explicit at the level of the action, but at

the price of giving up locality in the symmetry transformation. Interestingly, the author

noticed that the conserved charge generating the symmetry after quantization becomes the

total helicity of photons, and it is the number operator for right handed photons minus the

left handed one(which he called chirality in his original paper, but for massless particle,

we know that helicity is equivalent to chirality, and we take the latter name in this paper).

Later in [34] it has been observed that there is a way using the techniques introduced in [35]

to construct a local duality invariant action by introducing an auxiliary field such that the

theory can be reduced to the usual Maxwell theory by eliminating the auxiliary field using

the non-dynamical equations of motion, which are nothing but the duality condition. This

method provides a perfect way to manifest the duality invariance explicitly while losing

manifest Lorentz covariance.

As noticed in [4], the soft theorem implies that a special linear combination of two zero

modes of different helicities decouple from the S-matrix. This motivates us to consider the

EM duality symmetry, which is deeply connected to helicity, also at null infinity. Another

motivation of considering this symmetry is that this is a typical symmetry for which the

corresponding charge density does not localize at the boundary, and that the symmetry

transformation is not compatible with the boundary condition Fzz̄ = 0 at I+
± . Not surpris-

ingly, if we naively apply equation (2.8), the commutation rules are incorrect due to the

problematic treatment of soft-modes. We will deal with this issue using the regularization

methods developed in the previous sections.

6.1 Duality invariant action for null coordinate

To proceed, we obtain the Noether charge of this symmetry by following the approach

of [34, 35]. As the action in [34] has lost Lorentz covariance, we will first derive a duality

invariant action which is adapted to the coordinate system defined in (2.1). We will first

build the action in the gauge Ar = Cr = 0 (where Cµ is the dual field), and then focus on

retarded radial gauge where the corresponding asymptotic behaviour of the gauge fields

are given by (2.3)–(2.4).

Starting with the naive action with two copies of the gauge fields,

Sem = −1

8

∫

d4xr2γzz̄

[

FµνFµν + GµνGµν
]

. (6.1)
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where Fµν is the field strength corresponding to the gauge field Aµ. Gµν is the field strength

corresponding to the dual field Cµ.
Then we would like to impose the following duality condition,

1

2
ǫ̂µνρσFρσ = Gµν . (6.2)

where ǫ̂µνρσ is the Levi-Civita tensor with each of its non vanishing components taking val-

ues either i and −i in the coordinate system we have adopted.4 With this duality condition

imposed, (6.2) gives us back the original Maxwell action in terms of the only gauge fieldsAµ.

Explicitly, they are

1

2
Frur

2γzz̄ = − i

2
Gzz̄,

1

2

[

Fuz̄ −Frz̄

]

=
i

2
Guz̄,

1

2

[

Fuz −Frz

]

= − i

2
Guz,

i

2
Fzz̄ =

1

2
Grur

2γzz̄ ,

− i

2
Fuz̄ =

1

2

[

Guz̄ − Grz̄

]

,
i

2
Fuz =

1

2

[

Guz − Grz

]

.

(6.3)

However, to avoid introducing extra degrees of freedom into our theory, we must impose

the duality conditions as non-dynamical constraints arising naturally for the action. Our

following treatment is inspired by [35] and adopted and modified according to our current

problem. To that end, we first write down the hamiltonian corresponding to (6.1).

H =
(πu

A)
2

r2γzz̄
− 1

4

(Fzz̄)
2

r2γzz̄
− 1

2
FuzFuz̄ + πz̄

AFuz̄ + πz
AFuz − 2πz̄

Aπ
z
A + dual. (6.4)

By “dual” we mean that Fµν and πµ
A are replaced by Gµν and πµ

C . The conjugate momenta

are defined as,

πu
A =

1

2
Frur

2γzz̄, πz
A =

1

2

[

Fuz̄ −Frz̄

]

,

πz̄
A =

1

2

[

Fuz −Frz

]

, πu
C =

1

2
Grur

2γzz̄ ,

πz
C =

1

2

[

Guz̄ − Grz̄

]

, πz̄
C =

1

2

[

Guz − Grz

]

.

(6.5)

Next we impose (6.2) on (6.5) and rewrite them as

πu
C =

i

2
Fzz̄, πu

A = − i

2
Gzz̄, πz̄

A = − i

2
Guz ,

πz
A =

i

2
Guz̄, πz̄

C =
i

2
Fuz, πz

C = − i

2
Fuz̄.

(6.6)

4In our convention ǫurzz̄ = i.
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Then we take this modified Hamiltonian to recover an action again by using (6.6) to get

S =

∫

d4x
[

πu
A∂rAu + πz

A∂rAz + πz̄
A∂rAz̄

+ πu
C∂rCu + πz

C∂rCz + πz̄
C∂rCz̄ −H

]

=

∫

d4x

[

− i

2
Gzz̄Fru +

i

2
Guz̄Frz −

i

2
GuzFrz̄

+
i

2
Fzz̄Gru − i

2
Fuz̄Grz +

i

2
FuzGrz̄

+
1

2

(Fzz̄)
2

r2γzz̄
+

1

2

(Gzz̄)
2

r2γzz̄
+ FuzFuz̄

+ GuzGuz̄ − iFuzGuz̄ + iFuz̄Guz

]

.

(6.7)

Note that for this action, we still have individual gauge transformations δAi = ∂iΛ
(A) and

δCi = ∂iΛ
(C) for the two gauge fields.

Next we find that the variation of this action with respect to Cu gives the following

equations of motion,

∂z

[

Fuz̄ −Frz̄ − iGuz̄

]

+ ∂z̄

[

Frz −Fuz − iGuz

]

= 0. (6.8)

Similarly for Cz and Cz̄ we get,

∂u

[

Frz̄ −Fuz̄ + iGuz̄

]

+ ∂z̄

[

Fru +
i

r2γzz̄
Gzz̄

]

= 0. (6.9)

and,

∂u

[

Frz −Fuz − iGuz

]

− ∂z

[

Fru +
i

r2γzz̄
Gzz̄

]

= 0. (6.10)

By taking suitable linear combinations, we get,

∂u∂z̄

[

Frz −Fuz − iGuz

]

= 0,

∂z∂z̄

[

Fru +
i

r2γzz̄
Gzz̄

]

= 0

∂u∂z

[

Fuz̄ −Frz̄ − iGuz̄

]

= 0.

(6.11)

Just as in [34], these equations of motion are exactly the duality conditions (6.2) we

want to impose when Λ(2) is zero in the “temporal” gauge Ar = Cr = 0. As now it is

clear that the equations of motion for the C fields do not involve any r derivative, (or in

other words, they become constraints for our new Lagrangian [41]), we can treat them as

auxiliary fields and eliminate them by substituting non-dynamical equations of motion.

Then finally we can recover the usual Maxwell action (2.2) in the gauge Ar = 0.

It is interesting to note that, from the above equations of motion at leading order in r

we have,

∂u(Cz − iAz) = 0

∂u(Cz̄ + iAz̄) = 0
(6.12)
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So we have

Cz = iAz + f(z, z̄),

Cz̄ = −iAz̄ + f̄(z, z̄),
(6.13)

where f(z, z̄) and f̄(z, z̄) are arbitrary functions of z and z̄. And if we take them to be zero

as in [11], these equations have a very neat form, which is also what we did in the previous

section. However, we will keep them in the next section to show that the quantization is

consistent even when these fields are there.

6.2 Electromagnetic duality and quantization at null infinity

Now we can show that the following transformation,

δAz = θ Cz, δAz̄ = θ Cz̄,

δCz = −θ Az, δCz̄ = −θ Az̄

(6.14)

where θ is a constant, keeps the action (6.7) invariant at I±. This is a realization of EM

duality via a local symmetry transformations. We arrive at the following Noether charge

corresponding to the transformations (6.14) after using equations of motion (6.13)

Q = i θ

∫

du

∫

dzdz̄
[

(∂uAz̄)Az − (∂uAz)Az̄

]

+
θ

2

∫

dzdz̄
[

fAz̄ + f̄Az

]∣

∣

∣

∞

−∞
. (6.15)

It’s interesting to notice that if we use the commutators of (2.8), we will get

[Az(u, z, z̄), Q] = −θAz(u, z, z̄) +
i θ

4
f(z, z̄) +

θ

4

(

Az(∞, z, z̄) +Az(−∞, z, z̄)
)

. (6.16)

rather than the expected

[Az, Q] = iδAz = θ Cz = −θ Az + i θ f. (6.17)

The problematic parts are all related to the boundary modes, i.e, those soft modes in

momentum space.

On the other hand, if we impose the boundary condition Fzz̄ = 0 at I+
± , all the degrees

of freedom are removed. To see this, we take f = f̄ = 0 for simplicity, then in order to have

δFzz̄ = 0 such that we still preserve the boundary condition after the transformation, we

must have Fzz̄ andGzz̄ both zero at I+
± , equivalently, it means that we have four constraints,

ϕ1 = ∂zᾱ0

ϕ2 = ∂z̄α0,

ϕ3 = ∂z



d̄0 +
∑

m 6=0

(−1)mT

i 2πm
ᾱm





ϕ4 = ∂z̄



d0 +
∑

m 6=0

(−1)mT

i 2πm
αm



 .

(6.18)
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Using the Dirac procedure, we can show that all commutators become zero, thereby

removing all the remaining degrees of freedom. We will thus relax this constraint in the

following.

Now substituting into (6.15) the mode expansion, we have

Q = i θ

∫

d2z

[

ᾱ0 d0 T − α0 d̄0 T +
∑

n 6=0

T 2

iπn
αnᾱ−n −

∑

m 6=0

i(−1)mT 2

2πm
(α0ᾱm − ᾱ0αm)

]

+
θ

2

∫

dzdz̄
[

T (f ᾱ0 + f̄ α0)
]

. (6.19)

We impose only the boundary condition (3.1). One can easily check that (3.1) is consistent

with the transformation (6.14). Then using the commutators defined in (3.6) we can easily

check that,

[Az, Q] = −θ Az + i θ f = iδAz, (6.20)

and similarly

[Az̄, Q] = θ Az̄ + i θ f̄ = iδAz̄. (6.21)

So we have correctly quantized our charge.

Now we would like to inspect the “EM duality charge” of individual modes in the

expansion. We notice that they satisfy

[αn, Q] = −θαn, [ᾱn, Q] = +θᾱn; (6.22)

which follows directly from (6.20), (6.21). This fits very well with the known helicity of

these modes. Recall that

αn<0 = ᾱ†
n>0, ᾱn<0 = α†

n>0, (6.23)

we then identify αn>0, α
†
n>0 to be the creation and annihilation operators respectively for

positive helicity modes, and ᾱn>0, ᾱ
†
n>0 to be negative helicity modes.

Finally, we can identify the decoupled soft photons in our formalism. Comparing

with [4], the decoupled mode is given by the linear combination (4.15), or equivalently as

we discussed previously,

∂ᾱ0 − ∂̄α0, (6.24)

which is indeed a linear combination of the zero modes with opposite helicity.

This gives support to the proposal that the U(1) charge following from electro-magnetic

duality does behave in the expected way as helicity.

7 Summary and discussions

The main result of this paper is to develop a regularization method that allows one to study

the commutators in a controlled and systematic way in the asymptotic null infinity, where

quantization on a null hypersurface is particularly subtle. We demonstrate the power of

our method in recovering known algebra of the large gauge transformations with different

boundary conditions, and demonstrate that extra constraints can be imposed using Dirac
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brackets in a very transparent manner. Then we push our method to more general symme-

try charges, including various asymptotic space-time symmetries notably the BMS symme-

try where the symmetry charge is no longer localized at the boundary points. We demon-

strate that apart from the main subtle situation, namely when the symmetry transforma-

tion is not immediately preserved by the boundary conditions, such as the case of transla-

tion symmetry in u which is broken by the linear u term in the regularized mode expansion,

our method reproduces the expected algebra. It appears that this can be fixed by imposing

some mild constraints at u → ±∞ which we demonstrate in detail in the appendix. Fi-

nally, we highlight the application of our method in quantizing the Maxwell theory where

electromagnetic duality is made explicit in the Schwarz - Sen type action. This allows us

to derive a conserved charge for electromagnetic duality, which, for a long time, is believed

to be related to helicity. Here, we demonstrate that using our regularization method, we

recover the expected commutators at asymptotic infinity, and that the quantum numbers

with respect to the duality charge does coincide with the known helicity of the modes. The

decoupled soft mode also acquires a very simple form in our regularized expansion.

Our paper illustrates a very general procedure, that does not depend on the precise

theory at hand. This promises applications in many other situations, such as in the study

of operator algebra for gravitons in the asymptotic infinity, and the search for interest-

ing central extension and Kac Moody algebra that may emerge with suitable choice of

boundary conditions, in non-Abelian gauge theories for example [1, 7]. Our method is also

particularly suited for exploring subleading/subsubleading soft theorems (for e.g. [5, 6, 14])

in a controlled manner. We hope to return to these questions in a future publication.
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A Schwinger quantization procedure for Maxwell theory on a spacelike

hypersurface

We briefly review Schwinger quantization procedure following [36] for the Maxwell theory

on a spacelike hypersurface. We take the Minkowski metric as

ds2 = −dt2 + dx2 + dy2 + dz2, (A.1)

and take a constant t slice as our spacelike hypersurface, then in order to use the Schwinger

quantization procedure, we rewrite the usual maxwell action

S = −1

4

∫

d4x
√−gFµνFµν (A.2)
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in a first order form

S[Aµ,Fµν ] =
1

4

∫ [

FµνFµν−Fµν(∂µAν−∂νAµ)+
1√−g

∂µ(
√−g(Fµν−Fµν))Aν

]√−gd4x.

(A.3)

where Fµν and Aµ are treated as independent fields. And then we vary our action with

the boundaries of the two fields fixed under variation, then we get two equations of motion

Fµν = ∂µAν − ∂µAν . (A.4)

1√−g
∂µ(

√−gFµν) = 0. (A.5)

The next step is to take the equation of motions while relaxing the variation of the fields

on the boundary surfaces Σ0 and Σ1, then we will get

δS(Aµ,Fµν) = GΣ1
−GΣ0

. (A.6)

where the generator GΣ is GΣ = 1
2

∫

Σ(AνδFµν − FµνδAν)dΣµ. The essence of Schwinger

quantization procedure is that then we will get commutators for any independent field

operators by requiring [O, GΣ] =
i
2δO. Here, we do it for the constant t slice by imposing

temporal gauge

A0 = 0 (A.7)

then for the independent fields, imposing

[Aµ, GΣ] =
i

2
δAµ, [FµνdΣµ, GΣ] =

i

2
δFµνdΣµ. (A.8)

means that

[Ai(~x), Ej(~x′)] = −δi,jδ(~x− ~x′) (A.9)

where Ej = −∂0Aj in this gauge, and this reproduces the usual commutation relation.

Further subtleties arises as usual for gauge theories from the residue gauge degree of freedom

and the properties of this constraint system. For example, we can eliminate the extra degree

of freedom by imposing second class constraints to modify the commutators or imposing

first class constraints to constrain our Hilbert space, and these will not be discussed here,

but can be found in detail in [41]

B Schwinger brackets with the stronger boundary condition Fuz|u→±∞ =

Fuz̄|u→±∞ = 0

We sketch out briefly the details of the computation of the brackets for Fuz = 0 condition.

For this case we have,

GΣ =
1

2

∫

dzdz̄

[

− T
∑

n 6=0

(ᾱn(−1)n)δd0 − T
∑

n 6=0

(αn(−1)n)δd̄0 (B.1)

+
∑

m 6=0

(

(−)mT d̄0 +
i T 2

mπ
ᾱ−m +

∑

n 6=0

i T 2

2π
(−1)m+n

(

1

n
− 1

m

)

ᾱn

)

δαm

+
∑

m 6=0

(

(−)mTd0 +
i T 2

mπ
α−m +

∑

n 6=0

i T 2

2π
(−1)m+n

(

1

n
− 1

m

)

αn

)

δᾱm

]

.

– 21 –



J
H
E
P
0
3
(
2
0
1
8
)
0
2
7

Now we have four independent fields d0, d̄0, αn, ᾱn. Then we demand,

[d0, GΣ] =
i

2
δd0, [d̄0, GΣ] =

i

2
δd̄0, [αn, GΣ] =

i

2
δαn, [ᾱn, GΣ] =

i

2
δᾱn. (B.2)

This gives us the following solutions for the brackets,

[αn, d̄0] = [ᾱn, d0] = − i

T
(−1)n,

[αn, ᾱm] =
nπ

T 2
δm−n +

π

3T 2
n(−1)m+n +

π

T 2
m(−1)m+n.

(B.3)

Here we have used the fact that ζ(0) = −1
2 , ζ(s) =

∑∞
n=1

1
ns is the Riemann zeta function.
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