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1 Introduction

There has been much recent interest in the interplay between the fields of quantum infor-

mation and quantum gravity. One central point of interest is on the discussions of notions

of entanglement measures in the context of the AdS/CFT correspondence [1, 2]. In par-

ticular, the holographic formula relating entanglement entropy to bulk area of a boundary

homologous minimal surface by Ryu and Takayanagi [3, 4] (later extended to extremal

surfaces in the covariant case by [5]) has spurred a great deal of interest, from its ability

to constrain what sets of states can be dual to classical bulk gravity theories [6, 7] to its

role as motivation for the idea that the gravity theory is emergent from the entanglement

properties of the boundary field theory [8–11].

Even more recently work has been done [12, 13] conjecturing that a holographic object,

the entanglement wedge cross section EW separating two regions, is dual to the information
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theoretic concept of the entanglement of purification Ep. This conjecture, which we refer

to as the EW = Ep conjecture, was made on the basis that EW , a holographic object,

obeys the same set of inequalities that Ep is known to obey. This would be a compelling

correspondence, as it is not known how to calculate Ep for generic quantum states, whereas

EW is an often finite geometric quantity that is simply calculable.

In this work, we will study and generalize the relationship between EW , Ep, and the

holographic entanglement entropy inequalities in three ways: first, we investigate whether

EW can nontrivially bound combinations of entanglement entropies that appear in the

holographic entropy inequalities; second, we check whether Ep provably provides the same

type of bounds to these objects; lastly, we ask whether one can extend the EW = Ep

conjecture to suboptimal purifications and cuts of the entanglement wedge. We will find

that the answers to all three of these questions appear to be affirmative, thus providing

more evidence for the EW = Ep conjecture of [12, 13].

2 Review of known results

2.1 Basic properties of EW and Ep

Let us define both the entanglement wedge cross section EW , and the entanglement of

purification Ep. First, we define holographic states to be quantum states of the boundary

conformal field theory that are dual to a well defined classical bulk gravitational theory

in AdS/CFT. For a holographic state, the entanglement wedge cross-section is defined for

any two regions of time reversal symmetric slices (though the generalization to the fully

covariant case exists in [13]) as

EW (A : B) = min{Area(Γ );Γ ⊂ rAB splits A and B} (2.1)

where rAB is the entanglement wedge1 [14] of AB = A∪B (see figure 1). In words, EW is

the minimal area of a surface Γ that splits rAB into two regions, one of which is bounded

by A but not B, and other by B but not A. If sA, sB and sAB denote Ryu-Takayanagi

(RT) surfaces, then we want Γ to split rAB = r
(A)
AB t r

(B)
AB (here t denotes disjoint union)

and sAB = s
(A)
AB t s

(B)
AB with ∂r

(A)
AB = A∪ s(A)

AB ∪Γ.2 In this work, we refer interchangeably to

the surface and the area thereof as the entanglement wedge cross-section, but the meaning

should be clear from context.

Now, consider an arbitrary bipartite quantum system AB. The entanglement of pu-

rification Ep(A : B) is defined by

Ep(A : B) = min{S(AA′);AA′BB′pure} (2.2)

where S is the Von Neumann entropy (see figure 1). Note that because the overall state is

pure this is symmetric under A↔ B.

1Technically, rAB is the restriction of the entanglement wedge to the time symmetric slice under con-

sideration. Since we will only be concerned with this time symmetric situation, and all objects considered

live on this slice, we leave this restriction implicit throughout.
2It is also worth noting that EW (and its to-be-developed generalization) is finite if the regions being

split are nonadjacent in the boundary theory.
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Figure 1. To the left, Γ is the minimal surface the separates the entanglement wedge cross-section

of AB. Its area is EW [A : B]. To the right, A′ and B′ purify AB. For a choice of A′ and B′ over

all such purifying systems that minimizes the entanglement across the dashed partition we have

Ep(A : B) = S(AA′).

Both EW and Ep are known to satisfy the following inequalities:

min(SA, SB) ≥ E(A : B) ≥ 1

2
I(A : B) (2.3)

E(A : BC) ≥ E(A : B) (2.4)

E(AB : C) ≥ 1

2
(I(A : C) + I(B : C)) , (2.5)

where E here can stand for either Ep or EW , and I(A : B) ≡ S(A) + S(B)− S(AB) is the

mutual information between A and B. We refer the reader to [13] for clear proofs of these

inequalities in the context of EW , and [15, 16] for the same for Ep. These coinciding bounds

for Ep and EW is what motivated the conjecture of [12, 13] that EW is the holographic

dual of Ep.

2.2 Entanglement entropy inequalities

Before we study potential new inequalities for Ep and EW , let’s list some known inequalities

for entanglement entropy that will prove useful in the upcoming discussion. For holographic

proofs of these inequalities we refer the reader to [6, 7, 17]. All tripartite quantum states

satisfy strong subadditivity (SSA):

I(A : B|C) ≡ S(BC) + S(AC)− S(ABC)− S(C) ≥ 0, (2.6)

where I(A : B|C) is the conditional mutual information. When C = ∅, this reduces to

subadditivity, or positivity of the mutual information. Moreover, all holographic states

satisfy monogamy of mutual information (MMI) [7]:

I(A : BC) ≥ I(A : B) + I(A : C)

⇔ I(A : B : C) ≡ I(A : BC)− I(A : B)− I(A : C) ≥ 0, (2.7)

where I(A : B : C) is the tripartite information, which is symmetric under permutations

of its arguments.
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It is worth stressing that not all quantum states satisfy MMI. For example, the GHZ

state defined by |GHZ〉 = 1√
2

(
|0〉⊗n + |1〉⊗n

)
does not do so for n ≥ 4.

Recently, several further holographic entanglement entropy inequalities were proven [6].

Among them, there’s an infinite family of cyclic inequalities given by

Ck(A1, . . . , An) ≡
n∑

i=1

S(Ai|Ai+1 . . . Ai+k)− S(A1 . . . An) ≥ 0, (2.8)

where n = 2k+1, the indices are interpreted mod n, S(A|B) = S(AB)−S(B) is the condi-

tional entropy, and Ck is what we call the k-cyclic information (or just cyclic information).

For k = 1, eq. (2.8) gives MMI, but for k > 1 it gives a family of new and independent

inequalities.

3 Bounding holographic entanglement entropy with EW

3.1 Generalized EW

In order to bound holographic entanglement entropy with EW , we first slightly generalize

the notion of entanglement wedge cross-section EW (A : B) to allow for A ∩ B 6= ∅. A

generalization of Ep(A : B) for this case will be given in section 4.1.

The generalized entanglement wedge cross-section EG
W is defined as

EG
W (A : B) = min{Area(Γ );Γ ⊂ rAB − rA∩B splits A\B and B\A}, (3.1)

so now the surface Γ separates A\B from B\A in the region defined by the entanglement

wedge of AB with the entanglement wedge of A ∩ B removed.3 Note that if A ∩ B = ∅
then EG

W (A : B) = EW (A : B).

We also define a convenient form of mutual information, IG(A : B) = I(A\B,B\A) =

S(A\B) + S(A\B) − S(A\B ∪ B\A). Similiarly, if the intersection between A and B is

trivial this reduces to I(A : B).

3.2 EG
W obeys known EW inequalities

In this section, we show that this generalized entanglement wedge cross-section obeys

the known inequalities for EW in eqs. (2.3)–(2.5). In section 4.2 we will show that a

suitably generalized Ep also obeys these inequalities. Thus there is as much evidence for

the generalized conjecture EG
W = EG

p as there is for the original EW = Ep conjecture.

The upper bound in eq. (2.3) follows from

EG
W (A : B) ≤ EW (A : B\A) ≤ min(S(A), S(B\A)) and

EG
W (A : B) ≤ EW (A\B : B) ≤ min(S(A\B), S(B)), (3.2)

where the first inequalities above follow from the fact that for EG
W (A : B) is the minimum

area curve Γ that separates A\B from B\A in rAB−rA∩B, and so it can be no longer than

optimal curve separating these same regions in rAB.

3For an illustration of what this generalization means geometrically, see figure 2, in which EG
W (AC :

BC) = Area(Γ )).
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The lower bound follows from rAB\(A∩B) ⊂ (rAB − rA∩B), which is a consequence of

entanglement wedge nesting (EWN) [18, 19] and implies

EG
W (A : B) ≥ EW (A\B : B\A) ≥ 1

2
IG(A : B). (3.3)

It follows from entanglement wedge nesting that if A ∩ C = ∅, then

EG
W (A : BC) ≥ EG

W (A : B). (3.4)

Finally,

EG
W (A : BC) ≥ 1

2

(
IG(A : B) + I(A\B : C)

)
(3.5)

follows from eq. (3.3), MMI, and the disjointedness of A and C.

3.3 Upper bounding holographic conditional mutual information

One can ask the question of whether or not holography in general, and EG
W in particular,

provides an upper bound to the conditional mutual information. We note that this question

was first answered in the affirmative by [20] using bit threads, but it is instructive to treat

it again here.

The holographic bound for I(A : B|C) in [20] reads:

I(A : B|C) ≤ 2EG
W (AC : BC). (3.6)

Note that in the case where C = ∅, this reduces to I(A : B) ≤ 2EW (A : B).

This upper bound can also be proven using exclusion/inclusion [17] or equivalently

graph contraction [6], with the main new technique used being that the cutting and reglu-

ing procedure is no longer constrained to only boundary anchored minimal surfaces, but

potentially includes bulk-anchored minimal surfaces such as the entanglement wedge cross-

section as well. See figure 2.

Let’s now follow [17] in putting into equations what figure 2 shows. Let sX denote the

RT surface of some boundary region X, and rX denote its entanglement wedge so that the

boundary of rX is ∂rX = X ∪ sX .
Let A,B, and C be disjoint regions, and let R = rABC\rC . By EWN, ∂R = sabc ∪ sc.

Let Γ be the surface that satisfies the minimization in EW [AC : BC]. Then, it splits R

into two disjoint regions R(A) and R(B) such that

∂R(A) = A+ Γ + s
(A)
ABC + s

(A)
C

∂R(B) = B + Γ + s
(B)
ABC + s

(B)
C , (3.7)

where sC = s
(A)
C t sBC and sABC = s

(A)
ABC t sBABC . Then,

∂(rC ∪R(A)) = (A ∪ C) ∪ (Γ ∪ s(B)
C ∪ s(A)

ABC) (3.8)

∂(rC ∪R(B)) = (A ∪B) ∪ (Γ ∪ s(A)
C ∪ s(B)

ABC) (3.9)
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Figure 2. Graphical proof of the upper bound on the conditional mutual information for both the

case in which the regions A, B, and C are contiguous and the case in which they are disconnected.

It is clear from the diagrams,and Ryu-Takayanagi, that the area of the dotted surfaces plus the

area of the dash-dotted surface is greater than or equal S(AC) and that the area of the dashed

surfaces plus the area of the dash-dotted surface is greater than or equal S(BC). Adding these two

inequalities gives us the desired bound.

Then, by RT, eq. (3.8) implies that the area of (Γ ∪ s(B)
C ∪ s(A)

ABC) is greater than or

equal to SAC , and eq. (3.8) implies that the area of (Γ ∪ s(A)
C ∪ s(B)

ABC) is greater than or

equal to SBC . Adding these two inequality, and applying RT again, we get the desired

inequality

2EW [AC : BC] ≥ SAC + SBC − SABC − SC = I(A : B|C) ≥ 0, (3.10)

where we used the positivity of the conditional mutual information.

3.4 Upper bounding holographic tripartite information

We can also use EG
W to upper bound holographic tripartite information:

I(A : B : C) ≤ EG
W (AC : BC) + EG

W (AB : BC) + EG
W (CB : AC). (3.11)

We could have pursued an inclusion-exclusion style proof for this, but amusingly one does

not have to; this follows from eq. (3.6). Adding three instances of eq. (3.6), we get:

EG
W (AC : BC) + EG

W (AB : CB) + EG
W (BA : CA)

≥ 1

2
(I(A : B|C) + I(A : C|B) + I(B : C|A))

= SAB + SAC + SBC −
3

2
SABC −

1

2
(SA + SB + SC)

≥ SAB + SAC + SBC − SABC − SA − SB − SC (3.12)

where in the last line, we used three party subadditivity (SABC ≤ SA + SB + SC). We

recognize the last expression above as I(A : B : C), thus completing the proof.
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3.5 Upper bounding holographic cyclic information

Similarly, the following upper bound on Ck can also be derived:

n∑
i=1

EG
W (Ai, Ai+i, . . . , Ai+k : Ai+k, Ai+k+1, . . . Ai+n−1) ≥ Ck(A1, . . . , An), (3.13)

where, as before, the indices are to be interpreted mod n, and n = 2k + 1.

To prove this, we use eq. (3.6) to get:

n∑
i=1

EG
W (Ai, . . . , Ai+k : Ai+k, . . . Ai+n−1)

≥
∑
cyc

S(A1 · · ·Ak+1)−
n

2
S(A1A2 . . . An)− 1

2

n∑
j=1

S(Aj)

≥
∑
cyc

S(A1 · · ·Ak+1)−S(A1A2 . . . An)− n−2

2
S(A1A2 . . . An)− 1

2

n∑
j=1

S(Aj)

≥ Ck(A1 . . . An), (3.14)

where we have used subadditivity and that

2
∑
cyclic

S(A1 . . . Ak) ≥ (n− 2)S(A1 . . . An) +
∑
j

S(Aj), (3.15)

which follows from repeated application of SSA, as we now show. First, pairwise application

of SSA to terms of the form S(Ai, . . . , Ak) and S(Ak, . . . , A2k−1) on the left-hand side gives:

2
∑
cyclic

S(A1 . . . Ak) ≥
∑
j

S(Aj) +
∑
cyc

S(A1 . . . A2k−1) (3.16)

Now, let F be a purification of A1 . . . An, so that we have
∑

cyc S(A1 . . . A2k−1) =∑
i S(AiAi+1F ). Applying SSA now to S(A2iA2i+1F ) for i = 1, . . . , k, and to S(A2i−1A2iF )

for i = 1, . . . k we get∑
i

S(AiAi+1F ) ≥ (n− 1)S(F ) + S(A1AnF ) + S(A1 . . . An−1F ) + S(A2 . . . AnF )

≥ (n− 2)S(F ) = (n− 2)S(A1 . . . An). (3.17)

Finally, pairwise application of SSA to S(Ai . . . Ai+k+1) and S(Ai+k+1 . . . Ai+n−1) for i = 1

to k gives

∑
cyc

S(A1 . . . Ak+1) ≥ kS(A1 . . . An) +
k∑

i=1

Si + S(Ak+1Ak+2 . . . An)

≥ (k + 1)S(A1 . . . An). (3.18)

Combining eqs. (3.16), (3.17), and (3.18) yields eq. (3.15).
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Figure 3. As depicted, for the optimal choices of A′, B′ and C(A), we have EG
p (A : B) =

S((A\B)A′C(A)).

3.6 Cyclic EW inequalities

Here we use as a starting point the cyclic entropy inequalities, eq. (2.8), to derive cyclic

EW inequalities. Interestingly, as we show in section 4, the inequalities we arrive are not

obviously violated for generic quantum states when EW is replaced by Ep.

We first rewrite the cyclic entropy cone inequalities, eq. (2.8), in terms of only mutual

information as

n∑
i=2

I(A1A2 . . . Ai−1 : Ai) ≥
∑
cyclic

I(A1 : A2 . . . A1+k). (3.19)

Then, by the upper bound in eq. (2.3), the left-hand side of the inequality above can be

upper bounded by a combination of EW ’s, which gives

n∑
i=2

EW (A1A2 . . . Ai−1 : Ai) ≥
1

2

∑
cyclic

I(A1 : A2 . . . A1+k). (3.20)

4 Bounding entanglement entropy with Ep

4.1 Generalized Ep

Just as we did for EW , we will similarly need to generalize Ep. The generalized entanglement

of purification EG
p is defined as4

EG
p (A : B) = min

A′B′C(A)
S((A\B)A′C(A)), (4.1)

where as before we require that AA′BB′ is pure, and we now also require that C(A) ⊂
C ≡ A ∩ B. For convenience, we also define C(B) = C\C(A) (see figure 3). Note that the

minimization could also have been done over S((B\A)B′C(B)) and also that if A ∩B = ∅
then EG

p (A : B) = Ep(A : B). Moreover, even when A,B and C have a geometrical inter-

pretation (as is the case when they have a holographic bulk dual), there is no requirement

that the split of C into C(A) and C(B) be geometric.

4A different generalization was proposed in [21].
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4.2 EG
p obeys known Ep inequalities

We now show that EG
p also obeys the known inequalities for Ep.

The upper bound in eq. (2.3) follows from

EG
p (A : B) ≤ Ep(A : B\A) ≤ min(S(A), S(B\A)) and

EG
p (A : B) ≤ Ep(A\B : B) ≤ min(S(A\B), S(B)), (4.2)

where the first inequality in each line follows from the fact the minimization procedure

defining EG
p (A : B) is less constrained than the one defining Ep(A : B\A) or Ep(A\B : B),5

and the second inequality in each line follows from eq. (2.3). Together these imply

EG
p (A : B) ≤ min(S(A), S(B)). (4.3)

The lower bound in eq. (2.3) follows from

EG
p (A : B) ≥ Ep(A\B : B\A)

≥ 1

2
(S(A\B) + S(B\A)− S(A\B ∪B\A)) = IG(A : B), (4.4)

where we have used the fact that the minimization procedure for EG
p (A : B) is more

constrained that the one for Ep(A\B : B\A),6 and eq. (2.3).

For any C ∩A = ∅, it is easy to see that

EG
p (A : BC) ≥ Ep(A : B), and (4.5)

EG
p (A : BC) ≥ EP (A−B, (B −A)C) ≥ 1

2

(
IG(A : B) + I(A\B : C)

)
(4.6)

since adding C further constrains the optimization.

4.3 Upper bounding conditional mutual information

We now prove the following upper on conditional mutual information:

I(A : B|C) ≤ 2EG
p (AC : BC). (4.7)

Note that, similarly to the EG
W bound, in the case where C = ∅, this reduces to I(A : B) ≤

2Ep(A : B).

Assume A ∩ B = ∅, and let A′, B′, and C(A) ⊂ C define an optimal purification of

(AC : BC) according to eq. (4.1). Then, we can get the desired upper bound by repeated

application of strong subadditivity:

2EG
p (AC : BC) + S(ABC) + S(C)

= S(AA′C(A)) + S(BB′C(B)) + S(ABC) + S(C)

≥ S(AA′BC) + S(AC(A)) + S(BB′C(B)) + S(C(A)C(B))

≥ S(AA′BC) + S(BB′C(B)) + S(C(A)) + S(AC)

≥ S(BC(B)) + S(AC) + S(C(A)) ≥ S(BC) + S(AC). (4.8)
5This is because for EG

p (A : B) we are free to choose C(A), while in Ep(A : B\A) we have that C(A) = ∅,
and in Ep(A\B : B) we have C(A) = C = A ∩B.

6This follows from the fact that we can always take C(A) to be part of A′ and C(B) part of B′.
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4.4 Upper bounding tripartite information and cyclic information

It is worth noting that the proofs in the previous section of upper bounds for holographic

tripartite information, eq. (3.11), and holographic cyclic information, eq. (3.13), depended

only on eq. (3.6). Since the analogous statement obtained by replacing EG
W by EG

p , i.e.,

eq. (4.7), also holds, the EG
p versions of these upper bounds are also true.

4.5 Lower bound on tripartite information

One can also extract a quantum lower bound for the tripartite information:

I(A : B : C) ≥ −2Ep(A : BC)− 2Ep(B : C). (4.9)

This inequality is obviated in the holographic context by positivity of holographic tripartite

information. For a general quantum state, however, it is nontrivial. To prove this inequality,

we add three instances of positivity of conditional mutual information to find:

I(A : B|C) + I(A : C|B) + I(B : C|A)

= 2S(AB) + 2S(BC) + 2S(AC)− S(A)− S(B)− S(C)− 3S(ABC) ≥ 0.

(4.10)

We can add to this inequality the inequality

S(ABC)− S(A)− S(B)− S(C) ≥ −2Ep(A : BC)− 2Ep(B : C), (4.11)

which follows from two applications of eq. (2.3). The sum of eqs. (4.10) and (4.11) proves

the lower bound in eq. (4.9).

4.6 Cyclic Ep inequalities

If the EW = Ep conjecture is correct, then for holographic states, it follows from

eq. (3.20) that

n∑
i=2

Ep(A1A2 . . . Ai−1 : Ai) ≥
1

2

∑
cyclic

I(A1 : A2 . . . A1+k) (4.12)

However, it is interesting to note that in deriving this, we have combined several

inequalities, thereby weakening them. For instance, the GHZ state defined by |GHZ〉 =
1√
2

(
|0〉⊗n + |1〉⊗n

)
is not holographic for n ≥ 4 and violates instances of eq. (2.8), but still

satisfies eq. (3.20). This can be seen from the fact that for any A and B disjoint proper

subsystems of GHZ, we have [16]:

Ep(A : B) = S(A) = S(B), and I(A : B) = S(A) = S(B). (4.13)

Thus all the terms in Eq. (3.19) and eq. (4.12) are the same, and we can see the former is

violated, while the latter satisfied.

Thus, it is plausible that the inequalities in eq. (4.12) hold for general quantum states.

Because random states are known to obey the holographic inequalities [22], it is also clear

that those states would also obey eq. (4.12).
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We now present evidence that these inequalities are also obeyed by W states, which

are also known not to be holographic and are defined by

|W 〉 =
1√
n

(|100 . . . 0〉+ |010 . . . 0〉+ · · · |00 . . . 01〉) . (4.14)

For any qubit system invariant under the permutation of qubits, we have∑
cyclic

I(A1 : A2 . . . A1+k) = n(S(ρ1) + S(ρk)− S(ρk+1)), (4.15)

where ρi is the reduced density matrix for the i-qubit subsystem. Moreover, by using

eq. (2.5) and permutation symmetry, we can lower bound the left-hand side of eq. (4.12)

as follows:
n∑

i=2

Ep(A1A2 . . . Ai−1 : Ai) ≥
1

2
(6kS(ρ1)− 2kS(ρ2)− S(ρ2k)) (4.16)

.

Thus, eq. (4.12) is implied by

D ≡ (4k − 1)S(ρ1)− 2k(S(ρ2))− S(ρ2k)− (2k + 1)S(ρk)(2k + 1) + S(ρk+1) ≥ 0. (4.17)

Let Wn be the density matrix for the n qubit W state, and let Wn,k be its reduced

density matrix to a k qubit subsystem. We can now write these in component form as

Wn =
1

n



0 0 0 0 0 0 · · · 0

0 1 1 0 1 0 0 0

0 1 1 0 1 0 0 0

0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0

0 0 0 0 0 0 0 0
... 0 0 0 0 0

. . . 0

0 0 0 0 0 0 0 0


, (4.18)

where row i column j contains a 1 if and only if i− 1 and j − 1 are powers of 2, and

Wn,k =
1

n



n−k 0 0 0 0 0 · · · 0

0 1 1 0 1 0 0 0

0 1 1 0 1 0 0 0

0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0

0 0 0 0 0 0 0 0
... 0 0 0 0 0

. . . 0

0 0 0 0 0 0 0 0


, (4.19)

where, apart from the first entry, the same pattern is followed. This allows us to evaluate

the left-hand side of eq. (4.17) and verify its positivity (for numerically tractible n and k).

Moreover, the best fit we found for these curves indicate that this is satisfied for any value

of k and n (See figure 4).
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Figure 4. Displaying the left-hand side of eq. (4.17) for k = 2 and k = 3 for Wn as a function of

n, as well as the best fit curves of the form D = B
n . For k = 2, we found B ≈ 1.537, and for k = 3,

we found B ≈ 3.385.

5 Future direction: new dictionary entries

In this section, we use intuition from bit threads [14] and from the fact that for states with

a holographic dual, Ep = E∞p = ELOq [13] to strengthen the EW = Ep conjecture. For a

definition of these quantities see [15]. For our purposes, we will mainly use the fact that

ELOq(ρAB) is roughly equal to the number of EPR pairs needed to get to ρAB by means

of only local operations.

Let A and B be boundary regions, and let the state on it be given by the density

matrix ρAB. Consider the maximum flow Φ from A and into B.7 We interpret these as

bit threads connecting EPR pairs living on the boundary as follows and imagine the flow

lines that leave A and end on B correspond to EPR pairs between A and B. If a thread

does not end on B, then it should correspond to an EPR pair between A and the purifying

system A′B′. Likewise, the flow lines ending on B and not coming from A would be EPR

pairs between B and A′B′. We assume that the global boundary state is pure.8 This idea

can be made more rigorous as follows:

Conjecture. Let A and B be disjoint boundary regions at a time symmetric slice Σ, rAB

be their entanglement wedge restricted to Σ, and Φ be a maximizing flow from A into B.

Any (non-minimal) surface Γ ⊂ Σ that partitions rAB into a region homologous to A and

a region homologous to B is dual to a (suboptimal) purification A′B′ such that A′ ⊂ Ã

and B′ ⊂ B̃, where Ã (B̃) is the boundary region which is either connected to A (B) by

the flow lines of Φ without crossing Γ or are connected to B (A) while crossing Γ, and

Φ(Γ ) = S(AA′).

7We can do this by simultaneously maximizing the flow out of both A and Bc, which contains A,

something permitted by the nesting property of bit threads.
8This can always be achieved via multiboundary wormhole completion.
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Note that the subsystems A′ ⊂ Ã and B′ ⊂ B̃ need not be geometric. Moreover, since

AÃBB̃ is pure, a purification AA′BB′ always exists.

Intuitively, the conjecture gives EPR pairs from which the original ρAB can be reached

by local operations on A and on B. Moreover, we may speculate that if Γ is perpendicular

to Φ, then A′ and B′ are, respectively, the subsets of Ã and of B̃ that minimize S(AA′)

constrained to AA′BB′ being pure. It would be interesting to have a concrete prescription

for selecting A′ ⊂ Ã and B ⊂ B̃ that works for arbitrary (”wiggly”) cuts.

If this conjecture holds, then it is clear then that S(AA′) is minimized when Γ is

the entanglement wedge cross-section. Combining our conjecture with max-flow min-cut

implies the EW = Ep conjecture,9 as the area of the minimal cross-section of the entangle-

ment wedge is given by the number of bit threads crossing it in this construction, due to

its nature as a bottleneck for the flow from A to B. Thus, it is also clear that for any cut

Γ there exist an A′ and B′ such that Φ(Γ ) = S(AA′).

Still, the conjecture places nontrivial constraints on the dimensionality of the purify-

ing system. This is because the sum of the number of bit threads emerging from the A

system when maximizing the flow through A and those emerging from the B system when

maximizing the flow through B upper bounds the log of the dimensionality of the A′B′

system. Thus, we get

log dA′B′ ≤ S(A) + S(B). (5.1)

Note that this is much tighter than the upper bound given in [15]; this is not all that

surprising, however, given that holographic states have much less entanglement than the

generic quantum states considered in [15]. Moreover the overall holographic state is pure,

and thus one does not get confounding entanglement of purification from considering clas-

sical mixtures.

It would be interesting to study the plausibility of this conjecture in toy models of

holography, in particular suitable generalizations of the qutrit code [23], perfect tensors [24],

or the random tensor model [25]. In these models one would be able to falsify our conjecture

by finding a system AB for which there is no optimal purification A′B′ with dimension

dA′B” satisfying eq. (5.1). In these simpler models, it may also be possible to explicitly

reconstruct A′ and B′ from given known A and B, say by explicitly searching for the

unitary that would extract either the A′ or B′ systems tensored with unentangled ancilla

qubits from the systems in which they are conjectured to be contained; because the search

space is much smaller in finite dimensional systems, this search is in principle feasible here.

Other interesting directions of future research include to either prove as disprove

eq. (4.12) as an inequality valid for all quantum systems, to extend the results of the

present paper to the fully covariant case, as well as connections between the results here

and the Markov property of the vacuum [26].

6 Conclusion

In this paper, we have considered upper and lower bounds for several information theoretic

quantities, including bounds on the conditional mutual information, tripartite information,

9In turn, the EW = Ep conjecture implies Ryu-Takayanagi as a special case.
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Lower Bound Upper Bound

Mutual Information 0 2Ep(A : B)

I(A:B)

Conditional Mutual Information 0 EG
p (AC : BC)

I(A:B—C)

Tripartite Information 0, and EG
p (AC : BC) + EG

p (AB : BC)

I(A:B:C) −Ep(AB : C)− Ep(B : C) +EG
p (AB : AC)

Cyclic Information 0
∑n

i= E
G
p (Ai, . . . ,Ai+k : Ai+k, . . .Ai+n−)

Ck(A1, . . . , A2k+1)

Table 1. The main results are listed in the table. In standard black font are the results that only

hold for holographic states. All others hold for general quantum states. Results that, to the best

of the authors knowledge, are new are in red bold italics text (the upper bound on conditional

mutual information was proved for EW in the language of bit threads in [14]). In blue bold text

are the inequalities that were already known to hold for all quantum states. In addition to these

results, we have also shown the holographic inequality in eq. (3.20), which does not fit neatly into

this table. The general version of this inequality, pending the EW = Ep conjecture, is given by

eq. (4.12). We have shown this to hold for several non-holographic states, but its general validity

is still an open question.

and cyclic information. Despite being motivated by holography, we have shown these to

hold for all quantum states. We have also found a new family of holographic inequalities

for EW , and provided evidence that the corresponding inequality for Ep may be true for

all quantum states. These results are summarized in table 1.

Finally, we conjectured a potential extension of the EW = Ep conjecture of [12, 13],

which asserts that all cuts of the entanglement wedge are dual to purifications. If true,

it may be possible to write such a map explicitly, which could lead to an efficient way of

computing entanglement of purification.
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